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1 Introduction

Let us consider the infinite extension

L = Q(21/2, 21/3, 21/4, . . .).

Obviously, there exist algebraic numbers α in L of positive but arbitrary small
(absolute, logarithmic) Weil’s height:

h(21/n) =
1

n
h(2) =

log 2

n
.

A very special (but still open) case of a conjecture of Rémond1 suggests that these
are the only exceptions. More precisely, the conjecture predicts in this case that for
each α ∈ L∗ we have that either α = ±2k/n for some n, k ∈ N or h(α) ≥ c for some
absolute constant c > 0. A partial result in this direction was proven in [1], where

we give a positive answer when L is replaced by the subfield Q(21/3, 21/32 , 21/33 , . . .)
(the results of op.cit. is indeed more general).

Now we restrict ourself to algebraic integers α in L and we consider instead

of the height the so-called house of α, that is the maximum modulus α of its
algebraic conjugates. Since

h(α) ≤ log α ,

we expect again to have either α = ±2k/n for some n, k ∈ N or α ≥ C for some
C > 1.

Note that lower bounds for the house can be easier to prove than lower bounds
for the height, as the following fondamental example shows. Let γ ∈ Q∗ be an al-
gebraic integer of degree d, not a root of unity. Lehmer conjecture (1933) predicts

1See [10], conjecture 3.4 and [1] for further references.
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the lower bound h(γ) ≥ c/d for some absolute c > 0. Schinzel-Zassenhaus conjec-

ture (1965) predicts the lower bound γ ≥ C1/d for some absolute C > 1. Thus
Schinzel-Zassenhaus is a consequence of Lehmer, and for long time it was (wrongly)
believed that both are of the same difficulty. In spite of that, Dimitrov [7] recently
proved in a very beautiful way Schinzel-Zassenhaus (with C = 21/4) while Lehmer
is still open. This may suggest that, even in our setting, lower bounds for the
house for integers in L can be more easily proved than lower bounds for the height.

The following is a corollary of our main result.

Corollary 1.1. Let2 α ∈ Z[21/2, 21/3, 21/4, . . .] be non-zero. Then either α = ±2k

for some n, k ∈ N or

α ≥
√

2 .

The proof of this statement is easy enough to be sketched in the introduc-
tion. Take a non-zero α ∈ Z[21/2, 21/3, 21/4, . . .] outside the multiplicative group
generated by ±1 and by the nth roots of 2. Thus α ∈ Z[21/N ] for some positive
integer N and we can write α = a0 +a121/N + · · ·+aN−12(N−1)/N for some integers
a0, . . . , aN−1. We consider the trace Tr: Q(21/N ) → Q. Our result rests on this
elementary remark:

1

N
Tr(2j/N ) =

{
1 if j ≡ 0 mod N ;

0 otherwise.

We distinguish two cases.

First case. There exists an index j such that |aj | ≥ 2. Since all the conjugates

of 2−j/N have absolute value 2−j/N ≤ 1 we have:

2 ≤ |aj | =
1

N
|Tr(2−j/Nα)| ≤ α .

Thus we get in this case the better lower bound α ≥ 2.

Second case. For each j we have |aj | ≤ 1. Then, by assumption, there exist
two distinct indexes j0, j1 such that aj0 = ±1 and aj1 = ±1. Choosing the sign in
a right way we get

1

N
|Tr((2−j0/N ± 2−j1/N )α)| = 2.

We now prove an upper bound for the quantity on the left hand side. Let k =
N/ gcd(j1 − j0, N). We notice that k ≥ 2 since j0 6= j1. Thus

1

N
|Tr((2−j0/N + 2−j1/N )α)| ≤ α

1

k

k−1∑
l=0

|2−j0/N ± 2−j1/N exp(2πli/k)|.

2Note that Z[21/2, 21/3, 21/4, . . .] is not the full ring of integer of L, see Remark 1.2.
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We quote the following elementary estimate (see Lemma 2.1 in section 2), which
holds since 2−j0/N , 2−j1/N ≤ 1 and k ≥ 2:

1

k

k−1∑
l=0

|2−j0/N ± 2−j1/N exp(2πli/k)| ≤
√

2. (1.1)

We get

α ≥ 2/
√

2 =
√

2

as required.

Remark 1.2. The above argument cannot be extended to the full ring of integers,
since for arbitrary integers in Q(21/N ) the trace could be 1. Consider the following
exemple taken from [6, Theorem 5.1]. Let p ≥ 3 be a Wieferich prime to base
2, that is a prime satisfying the congruence 2p−1 ≡ 1 mod p2, as for instance
p = 1093. Then γ = (21/p − 2)p−1/p 6∈ Z[21/p] is an integer of trace 2p−1. Taking
a suitable linear combination over Z of γ and 1, we get an integer α ∈ Q(21/p) of
trace 1.

The lower bound α ≥
√

2 in this corollary holds even replacing the base 2 by
any other integral base ≥ 2. Even more, we can consider roots of infinitely many
integers, and moreover we can replace Z by Z[ζn]n∈N (with ζn a nth root of unity),
at the cost of a slight worst lower bound:

Corollary 1.3. Let α ∈ Z[ζn, p
1/n]n∈N, p prime be non-zero. Then either αn ∈ N

for some n ∈ N or

α ≥

√
1 +
√

5

2
.

More generally we have the following statement. Let K ⊂ C be a subfield of
Q, and let O be a subring of K such that the following holds.

There exists C > 1 such that for each non-zero γ ∈ O

either γ is a root of unity, or γ ≥ C. (1.2)

Let γ1, γ2, . . . ∈ O be non-zero. We assume that for each j the archimedean
absolute value of γj is ≥ 1. We further assume that for each finite subset Γ ⊂
{γ1, γ2, . . .} and for each N ∈ N the extension K(γ1/N |γ ∈ Γ)/K is of degree N |Γ|.

Remark 1.4. By Kummer’s Theory this last assertion holds if

i) K contains the roots of unity;

ii) None of the γj is a (non trivial) power in K;

iii) For each N ∈ N, γ1, γ2, . . . are multiplicatively independent modulo3 (K∗)N .

3That is: γa1
1 , . . . , γar

r ∈ (K∗)N whenever γa1
1 · · · γar

r ∈ (K∗)N for some integers ai.
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The following is our main result.

Theorem 1.5. Let α ∈ O[γ
1/n
i ]i,n∈N be non-zero. Then either αn = γk11 · · · γkrr for

some n, r, k1, . . . , kr ∈ N or

α ≥ min(C,
√

2) .

More precisely, if α < C then the maximum absolute value of the conjugates of

α over K is ≥
√

2.

The plan of the paper is as follow. In section 2, Lemma 2.1, we prove a L1-
mean estimate which implies 1.1. In section 3 we prove Theorem 1.5 and we deduce
Corollary 1.3 from it. We conclude this article with a more speculative section 4
where we state some questions and remarks on lower bounds for the house.

Acknowledgment. We are indebted with Gaël Rémond, who suggests us a sim-
ple proof of Lemma 2.1 with a better (and optimal) constant, and with Lukas
Pottmeyer for the Remark 4.2.

2 An elementary lemma

In this section we prove the following elementary lemma. Inequality (1.1) in the
introduction is a special case.

Lemma 2.1. Let x, y be non-zero complex numbers and let k ≥ 2 be an integer.
Then

1

k

k−1∑
l=0

|x+ y exp(2πli/k)| ≤
√
x2 + y2 .

Proof. By Cauchy-Schwartz,

1

k

k−1∑
l=0

|x+ y exp(2πli/k)| ≤ 1

k

(
k−1∑
l=0

|x+ y exp(2πli/k)|2
)1/2

×
√
k .

Writing y/x = |y/x| exp(iθ) we get

|x+ y exp(it)|2 = |x|2 + 2|xy| cos(θ + t) + |y|2.

Remark that
∑k−1

l=0 exp(2πli/k) = 0 since k ≥ 2. Hence
∑k−1

l=0 cos(θ + 2πli/k) = 0
and

k−1∑
l=0

|x+ y exp(2πli/k)|2 = k(|x|2 + |y|2).

The conclusion follows.

Remark 2.2. The result is optimal: take x/y = i and k = 2.
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3 Proofs of the main results

Proof of Theorem 1.5 The proof follows the same lines as the proof sketched in

the introduction. Take a non-zero α ∈ O[γ
1/n
i ]i,n∈N. Thus α ∈ O[γ

1/N
1 , . . . , γ

1/N
r ]

for some r, N ∈ N. Let L = K(γ
1/N
1 , . . . , γ

1/N
r ) and Tr = TrLK be the trace

relative to K. We suppose that for each n, k1, . . . , kr ∈ N, α does not satisfy
αn = γk11 · · · γk1r . We write

α =
∑
j

ajγ
j1/N
1 · · · γjr/Nr .

where the sum is over the multi-indeces j = (j1, . . . , jr) with 0 ≤ ji < N . We
distinguish two cases.

First case. There exists an index j such that aj is neither zero nor a root of
unity. We have

1

N r
Tr(γ−j1/N · · · γ−jr/Nα) = aj.

By assumption (1.2), aj ≥ C. Thus

C ≤ aj =
1

N r Tr(γ−j1/N · · · γ−jr/Nα) ≤ α

since all the conjugates of γ−j/N have absolute value ≤ 1. We get in this case the

lower bound α ≥ C.

Second case. For each j the coefficient aj is either zero or a root of unity. By
assumption, there exist two distinct multi-indexes j, j′ such that aj and aj′ are

both roots of unity. Otherwise, α = ajγ
j1/N
1 · · · γjr/Nr for some j and in this case

either α = 0 or αNk = γj1k1 · · · γjrkr if aj is a kth root of unity.

Let x = (ajγ
j1/N
1 · · · γjr/Nr )−1 and y = (aj′γ

j′1/N
1 · · · γj

′
r/N

r )−1. Then

1

N r
Tr((x+ y)α) = 2. (3.1)

By assumption L/K is of degree N r. Thus the K-embeddings L ↪→ C are given

by σω(γ
1/N
i ) = ωiγ

1/N
i with ωi ∈ µN , the group of Nth roots of unity. Thus

1

N r
|Tr((x+ y)α)| = 1

N r

∣∣∣ ∑
ω∈µr

N

(σω(x) + σω(x))σω(α)
∣∣∣

≤ α
K

1

N r

∑
ω∈µr

N

|x+ ω
j′1−j1
1 · · ·ωj′r−jr

r y|

= α
K

1

k

∑
ω∈µk

|x+ ωky|
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with

k = lcm

(
N

gcd(j′1 − j1, N)
, . . . ,

N

gcd(j′1 − j1, N)

)
.

and where
α

K
= max{|σα|, σ ∈ Gal(Q/K)} ≤ α

is the maximum of the absolute value of the conjugates of α over K.
Note that k ≥ 2 since for at least one of the index i we have j′i 6≡ ji mod N .

Note also that |x|, |y| ≤ 1 (since |γj | ≥ 1). Thus we can apply Lemma 2.1:

1

N r
|Tr((x+ y)α)| ≤

√
2× α . (3.2)

By (3.1) and (3.2) we get the desired conclusion.

�

Proof of Corollary 1.3 We apply Theorem 1.5, choosing K = Qab the maximal
cyclotomic extension and O = OK = Z[ζn]n∈N. Then (1.2) holds with

C =

√
1 +
√

5

2
<
√

2

by a result of Schinzel (apply [11], Corollary 1′, p. 386, to the linear polynomial
P (z) = z − α; see the next section for details). Notice also that the square of
the integers are in K. We choose γi =

√
pi where (pi)i∈N is the sequence of the

rational primes. We still have to show that for each finite subset Γ ⊂ {γ1, γ2, . . .}
and for each N ∈ N the extension K(γ1/N |γ ∈ Γ)/K is of degree N |Γ|.

We make use of Remark 1.4. Assertion i) is satisfied by the choice of K; and
assertion ii) is satisfied since K∗ does not contain nontrivial kth roots of rationals
for k ≥ 3 (they generate over Q a non-Galois extension). It is thus enough to prove
assertion iii), i.e. that γ1, γ2, . . . are multiplicatively independent modulo (K∗)N .
Let α :=

∏
p p

ap/2 where the product is over a finite set of primes and where ap are

integers. Suppose α ∈ (K∗)N for some N ≥ 2. Then α2 ∈ (K∗)2N ∩Q∗. Since K∗

does not contains nontrivial kth roots of rationals for k ≥ 3, α2 ∈ (Q∗)N which in
turns imply n | ap for all p, and thus pap/2 ∈ (K∗)N .

�

4 Concluding remarks

Dimitrov’s proof of Schinzel-Zassenhaus conjecture and our results in this paper
suggest that lower bounds for the house are sensibly simpler to prove than lower
bound for the height. This opens a large spectre of conjectures, problems and
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results by considering the house of an algebraic number instead of the more familiar
Weil’s height.

Let A be a set of algebraic numbers. Following [5], we say that A has the
Bogomolov Property (B) if there exists a real number c = c(A) > 0 such that the
set of non-zero α ∈ A of height < c consists of roots of unity. Several examples of
fields with property (B) are known. For instance the field Qtr of all totally real
algebraic numbers ([11]), the fields with bounded local degrees at some finite place
([5]), the maximal abelian extension Qab of Q ([3]). We refer the interested reader
to the introduction of [2] for details and for other examples.

Property (B) for fields is not stable by finite extensions. For instance4 the
field Qtr(i), which is the compositum of all CM-field, does not have property (B),
see again [2], section 5. However, the ring of integers of Qtr(i) has property (B)
by a result of Schinzel (apply [11], Corollary 1′, p. 386, to the linear polynomial
P (z) = z−α), and the same is true for any finite extension of Qtr by [9], Theorem 1.

Since h(α) ≤ log α , a fortiori this ring satisfies the House Property below:

Definition 4.1. Let A be a set of algebraic integers. We say that A has the House
Property if there exists a real number C = C(A) > 1 such that the set of non-zero
α ∈ A of house < C consists of roots of unity.

By abuse of notation we say that a field of algebraic numbers has the House
Property if its ring of integers have it. In this context, some questions arise natu-
rally.

By the remark above, fields with (B) satisfy the House Property, and moreover
this property is satisfied by Qtr(i), which does not satisfy (B). Are there other
significant examples of fields which satisfy the House Property but do not have
(B), or at least for which we cannot prove that they satisfy (B)?

Related to this question, we might ask if the House Property is stable by finite
extensions. A positive answer could be suggested by the example Qtr(i)/Qtr above,
where the House Property is satisfied even if Qtr(i) does not satisfy (B). In spite
of that we have:

Remark 4.2 (Pottmeyer). Let α be any Salem number5 and K = Q(α). Let β be
any non-real conjugate of α. Then β1/n ∈ Ktr(i) for each n ∈ N. In particular,
Ktr(i) does not satisfy the House Property.

Proof. Let n ∈ N. Then all Galois conjugates of β1/n over K have absolute value 1.
By [9, Lemma 1], β1/n ∈ Ktr(i).

By the already quoted result of Schinzel, Ktr satisfies (B) and hence the House
property. Thus Ktr(i)/Ktr is a degree two extension which does not satisfy the
House property even if the ground field does.

4note that the extension Qtr(i)/Qtr is essentially the only known example of this phe-
nomenon, see [9].

5Thus α > 1 is an algebraic integer, α−1 is a conjugate of α, and the other conjugates
lie on the unit circle.
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Super. Pisa Cl. Sci. (5) 15 (2016), 599–608.

[2] F. Amoroso, S. David and U. Zannier, “On fields with the property
(B)”, Proc. Amer. Math. Soc., 142 no 6, pages 893–1910, 2014.

[3] F. Amoroso and R. Dvornicich, “A Lower Bound for the Height in
Abelian Extensions.” J. Number Theory 80 (2000), no 2, 260–272.

[4] F. Amoroso and U. Zannier, “A relative Dobrowolski’s lower bound
over abelian extensions.” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
29 (2000), no. 3, 711–727.

[5] E. Bombieri and U. Zannier, “A note on heights in certain infinite
extensions of Q.” Rend. Mat. Acc. Lincei (9), 12 (2001), 5–14.

[6] K. Conrad, “The ring of integers in a radical extension”.
https://kconrad.math.uconn.edu/blurbs/gradnumthy/

integersradical.pdf.

[7] V. Dimitrov, “A proof of the Schinzel-Zassenhaus conjecture on
polynomials”. Preprint. https://arxiv.org/abs/1912.12545

[8] E. Dobrowolski, “On the maximal modulus of conjugates of an al-
gebraic integer. ” Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom.
Phys. 26 (1978), 291–292.

[9] L. Pottmeyer, “A note on extensions of Qtr”. J. Théor. Nombres
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Math. France, Paris, 2017.

[11] A. Schinzel, “On the product of the conjugates outside the unit
circle of an algebraic number”; Acta Arith. 24 (1973), 385–399.
Addendum; ibid., 26 (1973), 329–361.

8

https://kconrad.math.uconn.edu/blurbs/gradnumthy/integersradical.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/integersradical.pdf
https://arxiv.org/abs/1912.12545

	Introduction
	An elementary lemma
	Proofs of the main results
	Concluding remarks

