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INNER RATES OF FINITE MORPHISMS

YENNI CHERIK

Abstract. Let (X, 0) be a complex analytic surface germ embedded in (Cn, 0)
with an isolated singularity and Φ = (g, f) : (X, 0) −→ (C2, 0) be a finite mor-
phism. We define a family of analytic invariants of the morphism Φ, called
inner rates of Φ. By means of the inner rates we study the polar curve associ-
ated to the morphism Φ when fixing the topological data of the curve (gf)−1(0)
and the surface germ (X, 0), allowing to address a problem called polar ex-
ploration. We also use the inner rates to study the geometry of the Milnor
fibers of a non constant holomorphic function f : (X, 0) −→ (C, 0). The main
result is a formula which involves the inner rates and the polar curve alongside
topological invariants of the surface germ (X, 0) and the curve (gf)−1(0).

Introduction

Let (X, 0) be a complex analytic surface germ with an isolated singularity and
Φ = (g, f) : (X, 0) −→ (C2, 0) be a finite morphism. The polar curve of the
morphism Φ is the curve ΠΦ defined as the topological closure of the ramification
locus of Φ. Polar curves play an important role in the study of the geometry and
the topology of germs of singular complex varieties, see, e.g.[Tei82, GBT99a, HP03,
BNP14, BdSFP22a].

In this paper we introduce and study a family of analytic invariants of the mor-
phism Φ that we call inner rates of Φ, generalizing the notion of inner rates of a
complex analytic surface germ (X, 0) first introduced by Birbrair, Neumann and
Pichon in [BNP14] as metric invariants, and later defined in [BdSFP22a] by Be-
lotto, Fantini and Pichon. Our main result (Theorem A) establishes a formula, the
inner-rates formula, which relates the inner rates with analytical data of the polar
curve ΠΦ and, in particular, provides a concrete way to compute the inner rates.
It has an equivalent version in terms of the laplacian of a certain graph (Corollary
5.7) which is a broad generalization of the Laplacian formula [BdSFP22a, Theorem
4.3]. An important motivation of our result concerns the study of Milnor fibers.
Consider a non-constant holomorphic function f : (X, 0) → (C, 0) and a generic
linear form (Definition 10.7) ` : (X, 0) → (C, 0). We provide an interpretation of
the inner rates of the morphism Φ = (`, f) : (X, 0) → (C2, 0) in terms of metric
properties of the Milnor fiber, Theorem D.

As an application of our methods, we study the problem of polar exploration asso-
ciated to Φ, following [BdSFP22a, BdSFNP22]. Roughly speaking, it is the study of
the relative position on (X, 0) of the two curves ΠΦ and (gf)−1(0) i.e., of the relative
positions of their strict transform by a resolution of (X, 0). More precisely it is the
problem of determining the embedded topological type (Definition 9.1) of the union
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ΠΦ ∪ (gf)−1(0) from that of the curve (gf)−1(0). This is a natural problem which
has been studied by many authors such as Merle, Garćıa Barroso, Delgado, Maugen-
dre, Kuo, Parusiński, Michel, Belotto, Fantini, Némethi, Pichon, among others (see,
e.g.,[Mer77, KP04, GB00, DM03, Mic08, MM20, DM21, BdSFNP22, BdSFP22b]).
An important contribution in the general case was made by Michel in [Mic08] via
the Hironaka quotients of the morphism Φ (Definition 7.1). New techniques and
results involving inner rates were recently developed in [BdSFNP22] in the case
where Φ is a generic linear projection of (X, 0), and a complete answer to polar ex-
ploration was given in [BdSFP22b] in the case where (X, 0) is a Lipschitz normally
embedded surface germ. In the present paper, we address the case of a general
finite morphism Φ. We show the relation between the inner rates and the Hironaka
quotients (Theorem B(ii)), and we give an alternative proof of [Mic08, Theorem
4.9] based on our inner rates formula. Finally, we give a family of examples where
the inner rates formula provides tighter restrictions on the relative position of the
polar curve than the ones obtained from previous methods (Proposition C).

We now present our results in a sharp form. Let π : (Xπ, E) −→ (X, 0) be
a good resolution of singularities of (X, 0), that is, a proper bimeromorphic map
which is an isomorphism on the complementary of a simple normal crossing divisor
π−1(0) = E, called the exceptional divisor. Let Ev be an irreducible component of
E. We call curvette of Ev a smooth curve germ which intersects transversely Ev at
a smooth point of E.

Throughout the paper, we use the big-Theta asymptotic notation of Bachmann–
Landau in the following form: given two function germs h1, h2 :

(
[0,∞), 0

)
→(

[0,∞), 0
)

we say that h1 is a big-Theta of h2 and we write h1(t) = Θ
(
h2(t)

)
if there exists real numbers η > 0 and K > 0 such that for all t ∈ [0, η) we have
K−1h2(t) ≤ h1(t) ≤ Kh2(t).

Let (u1, u2) = (g, f) be the coordinates of C2. We prove (Proposition 2.3) the
existence of a rational number qfg,v such that for any smooth point p of E in Ev
which does not meet the strict transforms of f−1(0), g−1(0) or the polar curve ΠΦ
and for any pair of disjoint curvettes γ∗1 and γ∗2 of Ev passing through points of E
close enough to p,

d(γ1 ∩ {u2 = ε}, γ2 ∩ {u2 = ε}) = Θ(εq
f
g,v ),

where γ1 = Φ ◦π(γ∗1), γ2 = Φ ◦π(γ∗2) and d is the standard hermitian metric of C2.
We call the number qfg,v inner rate of f with respect to g along Ev.

As already mentioned, the notion of inner rates associated to a finite morphism
generalizes the inner rates of [BdSFP22a]. Indeed, suppose that (X, 0) is embedded
in Cn. Assume that π is a good resolution which factors through the blowup of
the maximal ideal and the Nash transform (see e.g [Spi90, Introduction] for the
definition of the Nash transform) and that Φ is a ”generic” linear projection in the
sense of [BdSFP22a, Subsection 2.2]. Then, the inner rates associated to Φ coincide
with the inner rates of the surface germ (X, 0) (see [BdSFP22a, Definition 3.3]),
which are metric invariants of (X, 0).

Let us now state the main result of this paper, which is proved in section 3. Let
Γπ be the dual graph of the good resolution π, that is, the graph whose vertices are in
bijection with the irreducible components of E and such that the edges between the
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vertices v and v′ corresponding to Ev and Ev′ are in bijection with Ev ∩Ev′ . Each
vertex v of this graph is weighted with the self intersection number E2

v and the genus
gv of the corresponding complex curve Ev. Let valΓπ (v) :=

(∑
i∈V (Γπ),i6=v Ei

)
·Ev

be the valency of v. We denote by V (Γπ) the set of vertices of Γπ and E(Γπ)
the set of edges. Let us denote by mv(f) the order of vanishing of the function
f ◦ π along the irreducible component Ev of E and by f∗ the strict transform of
the curve f−1(0) by π.

Theorem A (The inner rates formula). Let (X, 0) be a complex surface germ
with an isolated singularity and let π : (Xπ, E) −→ (X, 0) be a good resolution
of (X, 0). Let g, f : (X, 0) −→ (C, 0) be two holomorphic functions on X such
that the morphism Φ = (g, f) : (X, 0) −→ (C2, 0) is finite. Let Ev1 , Ev2 , . . . , Evn
be the irreducible components of E. Let Mπ = (Evi · Evj )i,j∈{1,2,...,n} be the
intersection matrix of the dual graph Γπ. Consider the four following vectors:
afg,π := (mv1(f)qfg,v1

, . . . ,mvn(f)qfg,vn), Kπ := (valΓπ (v1)+2gv1−2, . . . , valΓπ (vn)+
2gvn − 2), the F -vector Fπ = (f∗ · Ev1 , . . . , f

∗ · Evn) and the P-vector Pπ =
(Π∗Φ · Ev1 , . . . ,Π∗Φ · Evn) . Then we have:

Mπ.a
f
g,π = Kπ + Fπ − Pπ.

Equivalently, for each irreducible component Ev of E we have the following: ∑
i∈V (Γπ)

mi(f)qfg,iEi

 · Ev = valΓπ (v) + f∗ · Ev −Π∗Φ · Ev + 2gv − 2,

where ”·” denotes the intersection number between curves.

The idea of the proof is to relate the inner rates to the canonical divisor of the com-
plex surface Xπ and then apply the classical adjunction formula on the irreducible
components of the exceptional divisor E = π−1(0). This proof is quite shorter and
different from the one provided in [BdSFP22a] which relies on topological tools.

Not only does theorem A gives us a concrete way to compute the inner rates
in terms of a good resolution π of (X, 0) just by computing the polar curve (see
Example 9.2), but, since the intersection matrix Mπ is negative definite by a result
of Mumford [Mum61, §1], it also proves that given the dual graph Γπ together
with the F -vector, the inner rates qfg,v determines and are determined by the P-
vector (Π∗Φ · E1, . . . ,Π∗Φ · En). This fact allows us to study polar curves by means
of the inner rates, more specifically, to address the problem of polar exploration,
which we now describe. Suppose that π : (Xπ, E) −→ (X, 0) is the minimal good
resolution of (X, 0) and (gf)−1(0), that is, the minimal good resolution of (X, 0)
such that f∗∪g∗ is a disjoint union of curvettes of E. Following [BdSFP22a], polar
exploration consists in answering the following question: is it possible to determine
the P-vector from the data of the dual graph Γπ, the F -vector and the G-vector?

An important contribution to this problem was made by Michel ([Mic08, The-
orem 4.9]) by means of the Hironaka quotients. The Hironaka quotient of the
morphism Φ associated to an irreducible component Ev of E is the rational num-
ber hfg,v = mv(g)

mv(f) , v ∈ V (Γπ). In this paper we will improve this result of Michel by
using the inner rates instead of the Hironaka quotients. The reason why the inner
rates are more efficient than the Hironaka quotients for polar exploration comes
from the following result.
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Theorem B. Let (X, 0) be a complex surface germ and let Φ = (g, f) : (X, 0) −→
(C2, 0) be a finite morphism. Let π : (Xπ, E) −→ (X, 0) be a good resolution of
(X, 0). There exists a subgraph Aπ of Γπ such that:

(i) Call f -node any vertex w of Γπ such that f∗ ·Ew 6= 0. Let v be a vertex of
Γπ. There exists a path from an f -node to v in Γπ along which the inner
rates are strictly increasing.

(ii) The inner rates and the Hironaka quotients of Φ coincide on Aπ.
(iii) The Hironaka quotients are constant on Γπ\Aπ.

Points (i) and (ii) are proved in the sections 6 and 7, while the point (iii) comes
from [MM20, Theorem 1].

In Section 8, we show that [Mic08, Theorem 4.9] can be obtained as a consequence
of Theorems A and B. We state it here taking account of [MM20, Theorem 1]:

Theorem ([Mic08, Theorem 4.9]). Let (X, 0) be a complex surface germ with an
isolated singularity and let g, f : (X, 0) −→ (C, 0) be two holomorphic functions
on X such that the morphism Φ = (g, f) : (X, 0) −→ (C2, 0) is finite. Let π :
(Xπ, E) −→ (X, 0) be a good resolution of (X, 0). Let Aπ be a subgraph of Γπ as in
the statement of Theorem B. Let Z be a connected component of Γπ\Aπ or a single
vertex on the complementary of Γπ\Aπ, then :

∑
v∈Z

mv(f)Π∗Φ · Ev = −
(∑
v∈Z

mv(f)χ′v

)
.

where χ′v := 2− 2gv − val(v)− f∗ · Ev − g∗ · Ev.

It is now natural to ask: can we get a better restriction for the value of the P-
vector when using the inner rates and their properties? We give a positive answer
to this question via the following result (see proposition 9.4 for a more precise
statement).

Proposition C. There exists a sequence of graphs with arrows (Γn)n≥2 such that
for each n:

(i) There exists a complex surface singularity (Xn, 0) and a finite morphism
Φn = (gn, fn) : (Xn, 0) −→ (C2, 0) such that Γn is the dual graph of the
minimal good resolution of (Xn, 0) and (gnfn)−1(0);

(ii) The P-vector of any such morphism Φn belongs to a set of n+ 5 elements.

If one performs a polar exploration on this family of examples using only [Mic08,
Theorem 4.9], one obtains an exponential bound for the number of P-vectors (see
Remark 9.8), while Proposition C provides a linear bound.

Another important motivation to study the inner rates is to provide analytic
invariants of the Milnor fibration. Let (X, 0) be a complex analytic surface germ
embedded in Cn and let f : (X, 0) −→ (C, 0) be a non constant holomorphic
function. Let π : (Xπ, E) −→ (X, 0) be a good resolution which factors through
the blowup of the maximal ideal and the Nash transform relative to f (Definition
10.1). Let ` be a generic linear form with respect to π (Definition 10.7). The inner
rates qf`,v, v ∈ V (Γπ) associated to the morphism (`, f) do not depend of the choice
of the generic linear form `, we then denote them qfv , v ∈ V (Γπ). In this case the
inner rates qfv gives informations on the inner metric of the Milnor fibers:
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Theorem D (Theorem 10.8). Let (X, 0) ⊂ (Cn, 0) be a complex surface germ with
an isolated singularity at the origin of Cn and let f : (X, 0) −→ (C, 0) be a non
constant holomorphic function. Let π : (Xπ, E) −→ (X, 0) be a good resolution
which factors through the Nash transform of X relative to f and the blowup of the
maximal ideal.

Let γ∗1 and γ∗2 be two curvettes of an irreducible component Ev of the exceptional
divisor E such that γ∗i ∩ f∗ = ∅ for i ∈ {1, 2}. Then there exists qfv ∈ Q>0 such
that

dε(γ1 ∩ f−1(ε), γ2 ∩ f−1(ε)) = Θ(εq
f
v )

where γ1 = π(γ∗1),γ2 = π(γ∗2) and dε is the Riemanian metric induced by Cn on the
Milnor fiber f−1(ε). Furthermore we have qfv = qf`,v whenever ` is a generic linear
form with respect to f and π.

Theorem D is a relative version (with respect to f) and a generalization of [BdSFP22a,
Lemma 3.2]. Indeed, one obtains [BdSFP22a, Lemma 3.2] by taking f a generic
linear form in the sense of [BdSFP22a, Subsection 2.2].

As an application of Theorems A and D we give a generalization of a result
of Garćıa Barroso and Teissier on the asymptotic behavior of the integral of the
Lipschitz-Killing curvature (Definition 11.1) along Milnor fibers. Let π : (Xπ, E) −→
(X, 0) be a good resolution which factors through the blowup of the maximal ideal
and the Nash transform relative to f . Let Ev be an irreducible component of E
and let N (Ev, ε), ε > 0 be a family of tubular neighborhoods of Ev in Xπ such
that lim

ε→0
N (Ev, ε) = Ev and such that Horn(ε, v) := π(N (Ev, ε)) is included in Bε.

Consider the set F vε,t = f−1(t) ∩ Horn(ε, v) and let δ`ε > 0 be such that for any
complex number t with |t| ≤ δ`ε , we have Card{F vε,t ∩ Π`} = mv(f)Π∗` · Ev where `
is a generic linear form with respect to π. Set δε = min`{δ`ε}.

Theorem E (Theorem 11.5). Let (X, 0) be a complex surface germ with an isolated
singularity embedded in (Cn, 0) and let f : (X, 0) −→ (C, 0) be a non constant
holomorphic function germ. Let π : (Xπ, E) −→ (X, 0) be a good resolution of
(X, 0) which factors through the Nash transform of X relative to f and through the
blowup of the maximal ideal of (X, 0). Let v be a vertex of Γπ, then:

lim
ε→0,|t|<δε

∫
p∈Fvε,t

KFvε,t
(p)dV = πω2

2ω2n−1
Vol(Gn−1(Cn))Cf ,

where

Cf = mv(f)

2gv − 2 + ValΓπ (v) + f∗ · Ev −
∑

i∈V (Γπ)

mi(f)qfi Ei · Ev

 .

and ωi is the volume of the unit sphere Si.

Theorem E generalizes the work of Garćıa Barosso and Teissier in [GBT99b]
which treat the case of germs of holomorphic functions at the origin of C2.

Acknowledgments. I would like to express my deep gratitude to my thesis advi-
sors André Belotto and Anne Pichon for their help and enthusiastic encouragements
during the preparation of this paper. I would also like to thank Patricio Almirón
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for fruitful conversations about polar curves and in particular for pointing out Ex-
ample 9.2. This work has been supported by the Centre National de la Recherche
Scientifique (CNRS) which funds my PhD scholarship.

1. Resolution of curves and surfaces

In this section we introduce some classical materials as they are presented in the
introductions of [MM20],[Mic08] and [BdSFP22a].

Definition 1.1. Let (X, 0) be a complex surface germ with an isolated singularity.
A resolution of (X, 0) is a proper bimeromorphic map π : (Xπ, E) −→ (X, 0) such
that Xπ is a smooth complex surface and the restricted function π|Xπ\E : Xπ\E −→
X\0 is a biholomorphism. The curve E = π−1(0) is called the exceptional divi-
sor.
The resolution π : (Xπ, E) −→ (X, 0) is good if E is a simple normal crossing
divisor i.e., it has smooth compact irreducible components and the singular points
of E are transversal double points. Let Ev be an irreducible component of E. A
curvette of Ev is a smooth curve germ which intersects Ev transversely at a smooth
point of E.

Definition 1.2. Let π : (Xπ, E) −→ (X, 0) be a resolution of (X, 0) and let (C, 0)
be a curve germ in (X, 0). The strict transform of C by π is the curve C∗ in Xπ

defined as the topological closure of the set π−1(C\{0}). Let E1, E2, . . . , En be the
irreducible components of E and h : (X, 0) −→ (C, 0) be a holomorphic function.
The total transform of h by π is the principal divisor (h ◦ π) on Xπ, i.e.,

(h ◦ π) =
n∑
i=1

mi(h)Ei + h∗

where mi(h) is the order of vanishing of the holomorphic function h ◦ π on the
irreducible component Ei of E and h∗ is the strict transform of the curve h−1(0).

Proposition 1.3 ([Lau71, Theorem 2.6] or [N9́9, 2.6] for a topological proof). Let
π : (Xπ, E) −→ (X, 0) be a resolution of (X, 0). Let h : (X, 0) −→ (C, 0) be a
holomorphic function, then we have the following:

(h ◦ π) · Ev = 0, ∀v ∈ V (Γπ).
where ”·” denote the intersection multiplicity between curves.

Definition 1.4. Let (C, 0) be a curve germ in (X, 0). A proper bimeromorphic
map π : (Xπ, E) −→ (X, 0) is a good resolution of (X, 0) and (C, 0) if it is a
good resolution of (X, 0) such that the strict transform C∗ is a disjoint union of
curvettes.

Definition 1.5. The dual graph of a good resolution π : (Xπ, E) −→ (X, 0) of
(X, 0) is the graph Γπ whose vertices are in bijection with the irreducible components
of E and such that the edges between the vertices v and v′ corresponding to Ev and
Ev′ are in bijection with Ev ∩ Ev′ , each vertex v of this graph is weighted with
the self intersection number E2

v and the genus gv of the corresponding curve Ev.
We denote by V (Γπ) the set of vertices of Γπ and E(Γπ) the set of edges. The
valency of a vertex v is the number valΓπ (v) :=

(∑
i∈V (Γπ),i6=v Ei

)
· Ev. Let

Φ = (g, f) : (X, 0) −→ (C, 0) be a finite morphism and let Ev ⊂ E be an irreducible
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component which meets the strict transform g∗ (resp. f∗), following notations of
[MM20], we attach to the vertex v corresponding to Ev a going-out arrow (resp. a
going-in arrow) weighted with the intersection number g∗ · Ev (resp. f∗ · Ev).

Example 1.6. Consider the finite morphism Φ = (g, f) : (C2, 0) −→ (C2, 0),
where g(x, y) = x + y and f(x, y) = y5 − x12. The minimal good resolution π :
(Xπ, E) −→ (C2, 0) of the curve (gf)−1(0) has the following dual graph: all the
irreducible components of E have genus 0.

(1) (1)
−2 −4 −2 −1

(1, 5) (1, 10) (3, 35) (5, 60)

(2, 24)

(1, 12)

−3

−2

Figure 1. The numbers between parenthesis are the orders of
vanishing (mv(g),mv(f)) of the functions g ◦π and f ◦π along the
irreducible components of E, these numbers can be determined
from the dual graph using Proposition 1.3.

2. Inner rates of a finite morphism

Let (X, 0) be a complex surface germ with an isolated singularity and g, f :
(X, 0) −→ (C, 0) two holomorphic functions such that the morphism Φ = (g, f) :
(X, 0) −→ (C2, 0) is finite. The aim of this section is to define the notion of inner
rates associated to the morphism Φ = (g, f). This definition is a generalization
of the inner rates of a complex surface germ with an isolated singularity
first introduced in [BNP14] and later in [BdSFP22a, Definition 3.3].

Definition 2.1 (See e.g [KP04, Definition 0.1]). The polar curve of the morphism
Φ is the curve ΠΦ defined as the topological closure of the critical locus of the finite
morphism Φ = (g, f), that is

ΠΦ = {x ∈ X\{0} | dxΦ : TxX −→ C2 is non surjective}

Definition 2.2. (See e.g [BdSFP22a, section 3]) Given two functions germs h1, h2 :
([0,+∞), 0) −→ ([0,+∞), 0), we say that h1 is a big-Theta of h2 and we write
h1(t) = Θ(h2(t)) if there exists real numbers η > 0 and K > 0 such that for all
t ∈ [0, η),

1
K
h2(t) ≤ h1(t) ≤ Kh2(t)

Proposition 2.3. Let π : (Xπ, E) −→ (X, 0) be a good resolution of (X, 0) and
let Ev be an irreducible component of the exceptional divisor E. Let us denote by
(u1, u2) = (g, f) the coordinates of C2 and by d the standard hermitian metric of
C2. Then there exists a positive rational number qfg,v such that for every smooth
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point p of E in Ev\(f∗ ∪ g∗ ∪ Π∗Φ), there exists an open neighborhood Op ⊂ Ev of
p such that for every pair of curvettes γ∗1 , γ∗2 of Ev verifying:{

γ∗1 ∩ γ∗2 = ∅
γ∗i ∩Op 6= ∅ for i = 1, 2. (2.1)

we have:
d(γ1 ∩ {u2 = ε}, γ2 ∩ {u2 = ε}) = Θ(εq

f
g,v ),

where γ1 = (Φ ◦ π)(γ∗1 ), γ2 = (Φ ◦ π)(γ∗2) and ε ∈ R. Furthermore the number
mv(f)qfg,v is an integer.

Definition 2.4. We call qfg,v the inner rate of f with respect to g along Ev.

Let us explain why the definition 2.4 is a generalization of the notion of inner rates
of a complex surface germ with an isolated singularity as defined in [BdSFP22a,
Definition 3.3]. Let (X, 0) be a complex surface germ embedded in Cn with an
isolated singularity and let π : (Xπ, E) −→ (X, 0) be a good resolution which
factors through the blowup of the maximal ideal and the Nash transform (see e.g
[Spi90, Introduction] for the definition of the Nash transform). Let `1 and `2 be
two linear forms of Cn such that the projection ` = (`1, `2) is a generic projection
in the sense of [BdSFP22a, Subsection 2.2]. For every irreducible component Ev of
E, by [BdSFP22a, Lemma 3.2], the inner rate q`2

`1,v
is equal to the inner rate of the

complex surface germ (X, 0) associated with the component Ev.

Proof of Proposition 2.3. Let p be a smooth point of Ev which does not belong to
the strict transforms f∗, g∗ and Π∗Φ. Let (x, y) be a local system of coordinates of
Xπ centered at p such that Ev has local equation x = 0 and such that (f ◦π)(x, y) =
xmv(f) . Let U be the unit of C{x, y} such that (g ◦ π)(x, y) = xmv(g)U(x, y). We
can write

U(x, y) =
∑
i≥0

ai0x
i +
∑
j≥1

yj
∑
i≥0

aijx
i

Since Φ is a finite morphism the set {i ≥ 0 | ∃j > 0, aij 6= 0} is non empty. Let k
be its minimal element. Then,

U(x, y) = g0(x) + xk
∑
j≥1

yjgj(x),

where g0(x) =
∑
i≥0 ai0x

i and gj(x) =
∑
i≥0 aijx

i−k. Note that the set {j >
0 | gj(0) 6= 0} is non empty.

Setting qp := mv(g)+k
mv(g) , we then have:

(g ◦ π)(x, y) = xmv(g)g0(x) + xqpmv(g)
∑
j≥1

yjgj(x). (2)

Let γ∗1 and γ∗2 be two curvettes of Ev parametrized respectively by
t 7→ (t, α+ th1(t)), t 7→ (t, β + th2(t)), α, β ∈ C

where h1 and h2 are convergent power series. The curves γ1 = (Φ ◦ π)(γ∗1 ) and
γ2 = (Φ ◦ π)(γ∗2 ) are then parametrized respectively by

t 7→ (tmv(g)g0(t) + tqpmv(g)
∑
j≥1

(α+ th1(t))jgj(t), tmv(f))
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and
t 7→ (tmv(g)g0(t) + tqpmv(g)

∑
j≥1

(β + th2(t))jgj(t), tmv(f)).

Therefore, for ε > 0, we have

d(γ1 ∩ {u2 = ε}, γ2 ∩ {u2 = ε}) =
∣∣∣∣ε qpmv(g)

mv(f)

∣∣∣∣H(ε),

where

H(ε) =

∣∣∣∣∣∣
∑
j≥1

(
(α+ ε

1
mv(f)h1(ε

1
mv(f) ))j − (β + ε

1
mv(f)h2(ε

1
mv(f) ))j

)
gj(ε

1
mv(f) )

∣∣∣∣∣∣ .
We need to prove that

H(0) =

∣∣∣∣∣∣
∑
j≥1

(
αj − βj

)
gj(0)

∣∣∣∣∣∣ .
is non zero 0 when α and β are distinct and in a small enough neighborhood of the
origin of C. Let j0 > 0 be the minimal element of the set {j > 0 | gj(0) 6= 0} then

H(0) =

∣∣∣∣∣∣(αj0 − βj0)gj0(0) +
∑

j≥1,j 6=j0

(
αj − βj

)
gj(0)

∣∣∣∣∣∣ .
Now, let us prove that j0 = 1. Let us compute in the coordinates (x, y) the equation
of the total transform of the polar curve. The jacobian matrix of Φ ◦ π is

Jac(Φ ◦ π)(x, y) =
(

∗ xqpmv(g)(g1(x) + 2yg2(x) + . . .)
mv(f)xmv(f)−1 0

)
then Det(Jac(Φ ◦ π)(x, y)) = mv(f)xqpmv(g)+mv(f)−1(g1(x) + 2yg2(x) + . . .) = 0
is the equation of the total transform of ΠΦ. Since gj0(0) 6= 0 it follows that the
equation of the strict transform of the polar curve Π∗Φ is∑

j≥1
jyj−1gj(x) = 0.

By hypothesis p /∈ Π∗Φ which means that g1(0) 6= 0 and then j0 = 1. Thus

H(0) = |(α− β)g1(0) +
∑
j>1

(
αj − βj

)
gj(0)|.

If α and β are distinct and in a small enough neighborhood of 0 ∈ C we have
H(0) 6= 0. With this, we can conclude that there exists a neighborhood Op of p
such that for every curvettes satisfying (2.1)

d(γ1 ∩ {u2 = ε}, γ2 ∩ {u2 = ε}) =
∣∣∣∣ε qpmv(g)

mv(f)

∣∣∣∣H(ε) = Θ(ε
mv(g)qp
mv(f) ).

Now we will see that the number qpmv(g)
mv(f) does not depend of the point p. Let p′ be

another smooth point of E in Ev such that p′ /∈ f∗ ∪ g∗ ∪Π∗Φ. Let c : [0, 1] −→ Ev
be a continuous injective path which does not pass through f∗, g∗ or Π∗Φ such that
c(0) = p and c(1) = p′. By compacity of Ev, we can choose a finite family of open
sets {Opi , i ∈ {1, . . . , s}} which covers the curve c[0, 1] and such that for every pair
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of curvettes γ∗i,1 and γ∗i,2 of Ev passing through two different points of Opi there
exists ai ∈ R which verifies

d(γi,1 ∩ {u2 = ε}, γi,2 ∩ {u2 = ε}) = Θ(εai),
where γi,1 = Φπ(γ∗i,1) and γi,2 = Φπ(γ∗i,2). We can suppose, even if it means
refining and reordering the open cover {Oi}, that a1 = qpmv(g)

mv(f) , as = qp′mv(g)
mv(f) and

that Opi ∩Opi+1 6= ∅ for i = 1, 2, . . . , s− 1.
Let γ∗i,i+1 and γ′∗i,i+1 be two curvettes passing through two different points of Opi ∩
Opi+1 , then, by definition of the open cover {Opi}i we have

d(γi,i+1 ∩ {u2 = ε}, γ′i,i+1 ∩ {u2 = ε}) = Θ(εai) = Θ(εai+1),

where γi,i+1 = Φ ◦ π(γ∗i,i+1), γ′i,i+1 = Φ ◦ π(γ′∗i,i+1). Finally, we get that qpmv(g)
mv(f) =

a1 = a2 = . . . = as = qp′mv(g)
mv(f) := qfg,v. Furthermore mv(f)qfg,v = mv(f) qpmv(g)

mv(f) is
an integer. �

The following remark will be used in the proofs of the inner rates formula A and of
Lemma 5.5.

Remark 2.5. By equation (2), for any smooth point p of E in Ev with p /∈ f∗ ∪
g∗ ∪Π∗Φ, there exists a local system of coordinates (x, y) centered at p such that{

(u1 ◦ Φ ◦ π)(x, y) = xmv(g)g0(x) + xq
f
g,vmv(f)∑

j≥1 y
jgj(x)

(u2 ◦ Φ ◦ π)(x, y) = xmv(f)

with g0(0) 6= 0, g1(0) 6= 0.

3. Inner rates formula

In this section we state and prove the main theorem of this article the inner
rates formula A.

Theorem 3.1 (The inner rates formula). Let (X, 0) be a complex surface germ
with an isolated singularity and let π : (Xπ, E) −→ (X, 0) be a good resolu-
tion of (X, 0). Let g, f : (X, 0) −→ (C, 0) be two holomorphic functions on X
such that the morphism Φ = (g, f) : (X, 0) −→ (C2, 0) is finite. Let Mπ =
(Evi · Evj )i,j∈{1,2,...,n} be the intersection matrix of the dual graph Γπ, afg,π :=
(mv1(f)qfg,v1

, . . . ,mvn(f)qfg,vn), Kπ := (valΓπ (v1) + 2gv1 − 2, . . . , valΓπ (vn) + 2gvn −
2), Fπ = (f∗ ·Ev1 , . . . , f

∗ ·Evn) be the F -vector and Pπ = (Π∗Φ ·Ev1 , . . . ,Π∗Φ ·Evn)
be the polar vector or P-vector. Then we have:

Mπ.a
f
g,π = Kπ + Fπ − Pπ.

Equivalently, for each irreducible component Ev of E we have the following: ∑
i∈V (Γπ)

mi(f)qfg,iEi

 · Ev = valΓπ (v) + f∗ · Ev −Π∗Φ · Ev + 2gv − 2,

As mentioned in the introduction, this result is a generalization of the ”laplacian
formula” proved by Belotto, Fantini and Pichon [BdSFP22a, Theorem 4.3]. Their
proof relies on topological tools. Here, we are going to prove the theorem 3.1 by
using as main ingredient the classical adjunction formula. That we state now.
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Definition 3.2 (See e.g [Sha13, Chapter 3. Subsection 6.3]). Let S be a smooth
complex surface. The canonical divisor of S, denoted KS, is the divisor KΩ
associated to any meromorphic 2-form Ω defined on S. It is well defined up to linear
equivalence i.e., for any pair of 2-forms Ω and Ω′ of S there exists a meromorphic
function h on S such that

KΩ = (h) +KΩ′

where KΩ and KΩ′ are respectively the divisors associated to the 2-forms Ω and Ω′.

Theorem 3.3 (Adjunction formula, see e.g [Sha13, Chapter 4. Subsection 2.3]).
Let S be a complex surface and C ⊂ S be a compact Riemann surface embedded in
S. Then

(KS + C) · C = 2gC − 2, where gC is the genus of C.

Proof of Theorem 3.1. Let us set Φπ = Φ ◦ π. Let Ev be an irreducible component
of E. Let us denote by (u1, u2) = (g, f) the coordinates of C2. By remark 2.5,
given a smooth point p of E in Ev with p /∈ f∗∪ g∗∪Π∗Φ there exists a local system
coordinates (x, y) centered at p such that{

(u1 ◦ Φπ)(x, y) = xmv(g)g0(x) + xq
f
g,vmv(f)∑

j≥1 y
jgj(x)

(u2 ◦ Φπ)(x, y) = xmv(f)

with g0(0) 6= 0 and g1(0) 6= 0. Let us consider the holomorphic 2-form ω on C2

defined by ω = du1 ∧ du2. Let Ω := Φ∗πω be the pullback of ω by the holomorphic
function Φπ. In the neighborhood of p, the 2-form Ω is given in the coordinates
(x, y) by:

Ω = −mv(f)xq
f
g,vmv(f)+mv(f)−1

∑
j≥1

jyj−1gj(x)dx ∧ dy.

Since Φπ = Φ ◦ π is a local isomorphism on the complement of E ∪ Π∗Φ in Xπ, the
2-form Ω does not vanish on this set. Therefore, the canonical divisor KXπ of the
smooth complex surface Xπ is represented by

KΩ =
∑

i∈V (Γπ)

(qfg,imi(f) +mi(f)− 1)Ei + Π∗Φ.

We now apply the ajunction formula 3.3 to the compact Riemann surface Ev
(KΩ + Ev) · Ev = 2gv − 2. (3)

Replacing KΩ by its value in the equation (3), we obtain:∑
i∈V (Γπ)

qfg,imi(f)Ei ·Ev+
∑

i∈V (Γπ)

mi(f)Ei ·Ev−
∑

i∈V (Γπ),i6=v

Ei ·Ev+Π∗Φ ·Ev = 2gv−2

Finally, by Proposition 1.3 we have: ∑
i∈V (Γπ)

mi(f)Ei · Ev

 = (−f∗ · Ev) .

Replacing this in the previous equation, we get the desired equality:∑
i∈V (Γπ)

qfg,imi(f)Ei · Ev = valΓπ (v) + f∗ · Ev −Π∗Φ · Ev + 2gv − 2.

�
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Remark 3.4. Since the intersection matrix of the dual graph Γπ associated with
a good resolution π : (Xπ, E) −→ (X, 0) is negative definite. Theorem 3.1 implies
that given the dual graph Γπ together with the F -vector (f∗ · E1, . . . , f

∗ · En), the
inner rates qfg,v, v ∈ V (Γπ) determines and are determined by the P-vector (Π∗Φ ·
E1, . . . ,Π∗Φ · En).

Let us give an example where we compute the inner rates using the theorem 3.1.

Example 3.5. Consider the case where (X, 0) = (C2, 0). Let f(x, y) = y5−x12 and
g(x, y) = x + y and consider the finite morphism Φ = (g, f) : (C2, 0) −→ (C2, 0).
The polar curve ΠΦ of this morphism has equation (∂f∂y .

∂g
∂x )(x, y)− (∂f∂x .

∂g
∂y )(x, y) =

5y4 + 12x11 = 0. Consider the minimal good resolution π : (Xπ, E) −→ (C2, 0) of
the curve (gf)−1(0). We attach each vertex v of Γπ corresponding to an irreducible
component Ev which meet the strict transform of the polar curve with a red going-
out arrow weighted with the intersection number Π∗Φ · Ev.

(1)

(1)

(2)

(1)
−2 −4 −2 −1
v1(5) v2(10) v5(35) v6(60)

v4(24)

v3(12)

−3

−2

Figure 2. The graph Γπ, decorated with the orders of vanishing of
the function f ◦π and red arrows corresponding to the components
of the polar curve weighted with the intersection numbers.

For i = 1, . . . 6, denote qi := qfg,vi . By applying Theorem 3.1 on the dual graph
Γπ we get the following system of equations:


−2 1 0 0 0 0
1 −4 0 0 1 0
0 0 −2 1 0 0
0 0 1 −3 0 1
0 1 0 0 −2 1
0 0 0 1 1 −1

 ·


5q1
10q2
12q3
24q4
35q5
60q6

 =


1− 2
2− 2
1− 2
2− 2
2− 2
2− 2

+


0
0
0
0
0
1

−


0
0
2
1
0
0

 ,

whose solution is:

(q1, q2, q3, q4, q5, q6) = (1
5 ,

1
10 ,

1
4 ,

1
8 ,

3
35 ,

1
12)
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( 1
5 ) ( 1

10 ) ( 3
35 ) ( 1

12 )

( 1
8 )

( 1
4 )

Figure 3. The dual graph weighted with the inner rates qi.

4. Non-archimedean link and metric dual graph

In this section we will follow closely [BdSFP22a, Preliminaries]. Let (X, 0) be
a complex surface germ with an isolated singularity. Denote by O = ÔX,0 the
completion of the local ring of X at 0 with respect to its maximal ideal.

Definition 4.1. A (rank 1) semivaluation on O is a map v : O −→ R ∪ {+∞}
such that, for every f, g ∈ O and every λ ∈ C×

• v(fg) = v(f) + v(g)
• v(f + g) ≥ min{v(f), v(g)}

• v(λ) =
{

+∞ if λ = 0
0 if λ 6= 0 .

A valuation is semivalutation such that 0 is the only element sent to +∞.

Example 4.2. Let π : (Xπ, E) −→ (X, 0) be a good resolution of (X, 0). Let Ev be
an irreducible component of the exceptional divisor E. Let M be the maximal ideal
of O and set mv(M) = inf{mv(f) | f ∈M}. The map

valEv : O → R+ ∪ {+∞},
f 7→ mv(f)

mv(M)

is a valuation on O. We call it the divisorial valuation associated with Ev.

Definition 4.3. The non-archimedean link NL(X, 0) of (X, 0) is the set
NL(X, 0) = {v : O −→ R+ ∪ {+∞} semi-valuation | v(M) = 1 and v|C∗ = 0}

whose topology is induced from the product topology (R+ ∪ {+∞})M.

Let π : (Xπ, E) −→ (X, 0) be a good resolution of (X, 0). There exists an
embedding

iπ : Γπ −→ NL(X, 0)
and a continuous retraction

rπ : NL(X, 0) −→ Γπ
such that rπ◦iπ = IdΓπ . The embedding iπ maps each vertex v of Γπ to the divisorial
valuation associated with the component Ev, and each edge ev,v′ that corresponds
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to a point p of the intersection Ev ∩ Ev′ to the set of monomial valuations on Xπ

at p. We refer to [BdSFP22a, Preliminaries].

Theorem 4.4 (See e.g., [GR21, Theorem 2.27] and [Jon15, Theorem 7.9]). The
family of the continuous retractions {rπ | π is a good resolution of (X, 0)} induces
a natural homeomorphism from NL(X, 0) to the inverse limit of the dual graphs Γπ

NL(X, 0) ∼= lim←−
π

Γπ.

Let Φ = (g, f) : (X, 0) −→ (C2, 0) be a finite morphism. It induces a natural
morphism Φ̃ : NL(X, 0) −→ (C2, 0). Indeed, we set Φ# : Ô(C2,0) −→ Ô(X,0) defined
by Φ#(h) = h ◦ Φ. Hence

Φ̃ : NL(X, 0) → NL(C2, 0).
v 7→ v ◦ Φ#

By using the description of NL(X, 0) as inverse limit of dual graphs (Theorem 4.4),
we have a way to compute the image by Φ̃ of a divisorial valuation v:

(i) Take a good resolution π : (Xπ, E) −→ (X, 0) such that v is associated to
some exceptional component Ev of E.

(ii) Let p be a smooth point of E such that p does not belong to f∗ ∪ g∗ ∪Π∗Φ.
(iii) Take two curvettes γ∗1 and γ∗2 of Ev which passes through two distinct

points of Ev which are in a neighborhood Op of p.
(iv) Consider the curves γ1 = Φ ◦ π(γ∗1) and γ2 = Φ ◦ π(γ∗2 ).
(v) Let σ : (Y, F ) −→ (C2, 0) be the minimal sequence of blowups such that

the strict transforms of γ1 and γ2 are smooth and meet transversely an
irreducible component Fw ⊂ F at two different points. The morphism
σ and the exceptional component Fw do not depend of the choice of the
curvettes γ∗1 and γ∗2 as a consequence of Proposition 2.3.

(vi) Finally, Φ̃(v) = w where w is the divisorial valuation of NL(C2, 0) associated
to Fw.

Since Φ is finite, the map Φ̃ is a ramified covering. It is reflected at the level of the
dual graphs as follows. Let π : (Xπ, E) −→ (X, 0) be a good resolution of (X, 0)
and σ : (Y, F ) −→ (C2, 0) be a sequence of blowups of the origin of C2 such that
for any divisorial valuation v associated to an irreducible component Ev of E, the
induced divisorial valuation Φ̃(v) = w is associated to an irreducible component
Fw of F . Then the set {Φ̃(valEv ) | Ev ⊂ E} defines a subgraph of Γσ and the
restriction of Φ̃ to Γπ is a ramified covering of graphs onto its image.

Let f : (X, 0) −→ (C, 0) be a holomorphic function germ. We now define a
metric on NL(X, 0) compatible with f following [BdSFP22a, Subsection 2.3]. We
start by doing it on any graph Γπ where π : (Xπ, E) −→ (X, 0) is a good resolution.
Let us endow the dual graph Γπ with a metric by declaring the length of an edge
ev,v′ to be

lengthf (ev,v′) = 1
mv(f)mv′(f) .

(See [BdSFP22a, Remark 2.5] for a geometric interpretation of this metric in terms
of the Milnor fibers of f).

Now, let p be an intersection point between two irreducible components Ev and
Ev′ of E and let π̃ : (Xπ̃, Ẽ) −→ (X, 0) be the good resolution obtained by blowing
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up the point p. Then the exceptional component Ew that arises has multiplicity
mw(f) = mv(f) + mv′(f) . Since 1

mw(f)mv(f) + 1
mw(f)mv′ (f) = 1

mv(f)mv′ (f) , the
inclusion of Γπ in Γπ̃ is an isometry. Therefore, by passing to the limit, the metric
on the dual graphs Γπ defines a metric on the non-archimedean link NL(X, 0) called
the skeletal metric on NL(X, 0) with respect to f .

Example 4.5. Consider again the dual graph Γπ of the minimal good resolution π
of the curve of equation f(x, y) = y5 − x12 = 0 in C2 introduced in Example 1.6.
The following figure shows Γπ decorated with the order of vanishing of the function
f ◦ π and the length of each of its edges.

(5) (10) (35) (60)

(24)

(12)

1
50

1
350

1
2100

1
1440

1
288

Figure 4. The graph Γπ decorated with the orders of vanishing
of the function f ◦ π and the length of each of its edges.

With the metric defined before on Γπ we then have a metric graph

Γπ =
(
V (Γπ), E(Γπ), lengthf : E(Γπ) → Q+

evv′ 7→ length(evv′) = 1
mv(f)mv′ (f)

)
Definition 4.6. A function F : Γπ −→ R is piecewise linear if F is a continu-
ous piecewise affine map with integral slopes with respect to the metric induced by
lengthf and F has only finitely many points of non-linearity on each edge of Γπ.

A divisor D =
∑
v∈Γπ avv of Γπ is a finite sum of points of Γπ with integral

coefficients av ∈ Z. We denote by Div(Γπ) the group of divisors of Γπ.

Definition 4.7. Let F be a piecewise linear map on the dual graph Γπ. The Lapla-
cian of F is the divisor ∆Γπ (F ) of Γπ whose coefficient at a point v of Γπ is the
sum of the outgoing slopes of F at v:

∆Γπ (F ) =
∑

v∈V (Γπ)

∑
v′ 6=v

F (v′)− F (v)
lengthf (v′, v) (Ev · Ev′)

 v.
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5. The inner rates function

Let (X, 0) be a complex surface germ with an isolated singularity and let g, f :
(X, 0) −→ (C, 0) be two holomorphic functions such that the morphism Φ = (g, f) :
(X, 0) −→ (C2, 0) is finite. The aim of this section is to define a continuous function
on the non archimedean link whose values are the inner rates on the divisorial
elements of NL(X, 0).
Now, let us state the main proposition of this section which is a direct adaptation
of [BdSFP22a, Lemma 3.8].

Proposition 5.1. Denote by (u1, u2) = (g, f) the coordinates of C2. There exists
a unique continuous function

Ifg : NL(X, 0) −→ R>0 ∪ {+∞}

such that Ifg (v) = qfg,v for every divisorial point v of NL(X, 0) and such that we
have the following commutative diagram

NL(X, 0)
Ifg

''

Φ̃ // NL(C2, 0)

Iu2
u1
��

R>0 ∪ {+∞}

Furthermore, if π is a good resolution of (X, 0) compatible with the finite morphism
Φ = (g, f) then Ifg is piecewise linear on Γπ with respect to the metric lengthf .

Definition 5.2. The function Ifg is called the inner rates function with re-
spect to the morphism Φ = (g, f).

In order to prove Proposition 5.1 we will need the following lemmas.

Lemma 5.3. Let Φ = (g, f) : (X, 0) −→ (C2, 0) be a finite morphism and let
π : (Xπ, E) −→ (X, 0) be a good resolution of (X, 0) and (gf)−1(0). Let Ev be an
irreducible component of E such that it intersects the curve f∗ ∪ g∗. We have

qfg,v = mv(g)
mv(f)

Proof. Let p be a point of g∗. Let (x, y) be a local system of coordinates centered
at p such that Ev has local equation x = 0 and such that (f ◦π)(x, y) = xmv(f). Let
Sg be the element of C{x, y} such that (g ◦ π)(x, y) = xmv(g)Sg(x, y) . Then, the
equation of the strict transform g∗ in the coordinates (x, y) is Sg(x, y) = 0. Since
the curve g∗ is transverse to the component Ev we can write Sg(x, y) = ykvUg(x, y)
where Ug is a unit of C{x, y} and kv is an element of N∗.

Let γ∗1 and γ∗2 be two curvettes of Ev parametrized respectively by

t 7→ (t, α), t 7→ (t, β), α, β ∈ C.

The curves γ1 = (Φ◦π)(γ∗1 ) and γ2 = (Φ◦π)(γ∗2) are then parametrized respectively
by

t 7→ (αkv tmv(g)Ug(t, α), tmv(f))

t 7→ (βkv tmv(g)Ug(t, β), tmv(f)).
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Therefore, for ε > 0, we have

d(γ1 ∩ {u2 = ε}, γ2 ∩ {u2 = ε}) =
∣∣∣εmv(g)
mv(f)

∣∣∣H(ε),

where
H(ε) =

∣∣∣αkvUg(ε 1
mv(f) , α)− βkvUg(ε

1
mv(f) , β)

∣∣∣ .
There exists two numbers α and β such that H(0) 6= 0, we can then conclude that
qfg,v = mv(g)

mv(f) . The case p ∈ f∗ is treated with similar arguments.
�

Definition 5.4. A good resolution π : (Xπ, E) −→ (X, 0) of (X, 0) is said to be
compatible with the finite morphism Φ = (g, f) if it is a good resolution of the
curve ΠΦ ∪ (gf)−1(0).

Lemma 5.5. Let Φ = (g, f) : (X, 0) −→ (C2, 0) be a finite morphism and let
π : (Xπ, E) −→ (X, 0) be a good resolution of (X, 0) compatible with the finite
morphism Φ. Let Ev be an irreducible component of E. Let p be a point of Ev and
let Ew be the exceptional component created by the blowup of Xπ at p. Then:

(i) if p is a smooth point of E, then
• if p does not lies in the strict transforms g∗, f∗ or Π∗Φ, then

mw(g) = mv(g), mw(f) = mv(f), and qfg,w = qfg,v + 1
mv(f) ;

• if p lies in the strict transform g∗ then:

mw(g) = mv(g) + g∗ · Ev, mw(f) = mv(f), and qfg,w = mw(g)
mw(f) = qfg,v + g∗ · Ev

mv(f) ;

• if p lies in the strict transform f∗ then:

mw(g) = mv(g), mw(f) = mv(f) + f∗ · Ev, and qfg,w = mw(g)
mw(f) =

mv(f)qfg,v
mv(f) + f∗ · Ev

;

• if p lies in the strict transform Π∗Φ

mw(g) = mv(g), mw(f) = mv(f), and qfg,w = qfg,v + 1 + Π∗Φ · Ev
mv(f) ;

(ii) if p is a double point of Ev and Ev′ , then
mw(g) = mv(g) +mv′(g) and mw(f) = mv(f) +mv′(f);

qfg,w =
qfg,vmv(f) + qfg,v′mv′(f)

mv(f) +mv′(f)
Remark 5.6. The point (i) of this lemma is more general than needed for this
paper. Indeed, we will only use it for the morphism identity of C2, whose polar
curve is empty.

Proof. Denote by ep the blowup of Xπ centered at p. Assume first that p is a
smooth point of Ev which does not lie in the strict transform of f, g or the polar
curve. By remark 2.5 there exists a local system of coordinates (x, y) centered at p
such that:
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{
(g ◦ π)(x, y) = xmv(g)g0(x) + xq

f
g,vmv(f)∑

j≥1 y
jgj(x)

(f ◦ π)(x, y) = xmv(f)

with g0(0) 6= 0, g1(0) 6= 0.
Let ep be the blowup of Xπ at p. In the coordinates chart (x, y) 7→ (x′, x′y′) we
have{

(g ◦ π ◦ ep)(x′, y′) = x′
mv(g)

g0(x′) + x′
qfg,vmv(f)+1∑

j≥1 y
′jx′

j−1
gj(x′)

(f ◦ π ◦ ep)(x′, y′) = x′
mv(f)

.

Therefore mw(g) = mv(g) and mw(f) = mv(f). By comparing the equality of
g◦π◦ep with the first equality given by the remark 2.5 for Ew, we get qfg,wmw(f) =
qfg,vmv(f) + 1, which proves

qfg,w = qfg,v + 1
mv(f) .

Assume that p is in g∗. Using again the notations of the proof of Lemma 5.3. In
the coordinates chart (x, y) 7→ (x′, x′y′), we have:{

(g ◦ π ◦ ep)(x′, y′)) = x′
mv(g)+kvy′kvUg(x′, x′y′)

(f ◦ π ◦ ep)(x′, y′)) = x′
mv(f)

where Ug is a unit of C{x, y} and kv is a non zero integer. Thus, by noticing that
kv = g∗ · Ev, we have

mw(g) = mv(g) + g∗ · Ev and mw(f) = mv(f).
Since the component Ew intersects g∗, then, by the lemma 5.3, we get that

qfg,w = mw(g)
mw(f) = qfg,v + g∗ · Ev

mv(f)
If p is in f∗, with similar arguments we get:

mw(g) = mv(g) and mw(f) = mv(f) + f∗ · Ev.

qfg,w = mw(g)
mw(f) =

mv(f)qfg,v
mv(f) + f∗ · Ev

We will now suppose that p lies in the strict transform of the polar curve Π∗Φ.
Let (x, y) be a local system of coordinates centered at p such that Ev has local
equation x = 0 and such that (f ◦ π)(x, y) = xmv(f). Let U be the unit of C{x, y}
such that (g ◦ π)(x, y) = xmv(g)U(x, y). Let ep be the blowup of Xπ at p. in the
coordinates chart (x, y) 7→ (x′, x′y′) we have{

(g ◦ π ◦ ep)(x′, y′) = x′
mv(g)

U(x′, x′y′)
(f ◦ π ◦ ep)(x′, y′) = x′

mv(f)
.

We then deduce that mw(f) = mv(f), mw(g) = mv(g) and it follows using the
inner rates formula 3.1 on the vertex w that:

qfg,w = qfg,v + 1 + Π∗Φ · Ew
mv(f) .

We now need to prove that Π∗Φ ·Ew = Π∗Φ ·Ev. The equation of the total transform
of the polar curve in the coordinates (x, y) is xmv(g)+mv(f)−1 ∂U

∂y (x, y) = 0. Since
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the polar curve is transverse to the exceptional divisor Ev we can write ∂U
∂y (x, y) =

ykvV (x, y) where V is an element of C{x, y} such that y is not a divisor of V and
kv is a non zero positive integer. The total transform of the polar curve by ep ◦ π,
in the coordinates chart (x, y) 7→ (x′, x′y′), is:

mv(f)x′mv(g)+mv(f)+kv−1y′kvV (x′, x′y′) = 0.

Using this last equation, a direct computation shows that the intersection num-
ber between the curve Ew and the strict transform of the polar curve equals
kv = Π∗Φ · Ev.

Assume now that p is an intersecting point between two irreducible components
Ev and Ev′ . In local coordinates (x, y) centered at p, we can assume without loss
of generality that

(f ◦ π)(x, y) = xmv(f)ymv′ (f).

In the coordinates chart (x, y) 7→ (x′, x′y′) we have

(f ◦ π ◦ ep)(x′, y′) = x′mv(f)+mv(g)y′mv′ (f),

we then deduce that mw(f) = mv(f) + mv′(f). By symmetry of the roles of f
and g we also have mw(g) = mv(g) +mv′(g). By applying the inner rates formula
(Theorem 3.1) on the vertex w we get:

qfg,w =
qfg,vmv(f) + qfg,v′mv′(f)

mv(f) +mv′(f)
�

Now we are ready to prove the proposition that shows the existence of the inner
rates function.

Proof of Proposition 5.1. Let π : (Xπ, E) −→ (X, 0) be a good resolution of (X, 0)
compatible with the morphism Φ = (g, f). We only need to show that the in-
ner rates extend uniquely to a continuous map on Γπ which is linear on its edges
with integral slopes, because NL(X, 0) is homeomorphic to the inverse limit of dual
graphs.
Let evv′ be an edge of Γπ. By definition, the slope on ev,v′ is

qf
g,v′
−qfg,v

lengthf (evv′ )
=

mv(f)mv′(f)(qfg,v′ − qfg,v) and it is an integer by Proposition 2.3.
By density, it is sufficient to prove the linearity of Ifg along evv′ on the set of

the divisorial valuations. On the other hand, since every divisorial point of that
edge are obtained by successively blowing up its double points, it is sufficient to
prove that Ifg is linear on the set {v, v′, v′′}, where v′′ is obtained by blowing up
the double point Ev ∩ Ev′ . Therefore, all we have to show is that

Ifg (v′)− Ifg (v)
lengthf (evv′)

=
Ifg (v′′)− Ifg (v)
lengthf (evv′′)

. (4)

Since the good resolution π is compatible with the morphism Φ, the strict trans-
forms f∗, g∗ and Π∗Φ do not pass through the double point Ev ∩ Ev′ . The equality
(4) is then a direct consequence of the last part of Lemma 5.5.

�
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5.1. Laplacian formula on the metric dual graph of a good resolution.
Let (X, 0) be a complex surface germ with an isolated singularity and Φ = (g, f) :
(X, 0) −→ (C2, 0) be a finite morphism. Let π : (Xπ, E) −→ (X, 0) be a good
resolution of (X, 0) compatible with the morphism Φ. We proved in Proposition
5.1 that the inner rate function Ifg is a piecewise linear map on the dual graph
Γπ with respect to the metric Lengthf . Then, as an application of the inner rates
formula 3.1 we will compute the laplacian of Ifg on the dual graph. We will now
give three example of divisor on the dual graph Γπ which are important for the
statement of our result :

(i) KΓπ =
∑
v∈Γπ mv(f)(valΓπ (v) + 2gv − 2).v it is a divisor because every

point v which is not a vertex of Γπ has valency 2 and genus equal 0.
(ii) FΓπ =

∑
v∈Γπ (mv(f) + mv(g))(f∗ · Ev).v it is a divisor because there are

finitely many branches of f∗.
(iii) PΓπ =

∑
v∈Γπ mv(f)(Π∗Φ · Ev).v it is a divisor because there are finitely

many branches of Π∗Φ.
Now, we are ready to state the inner rates formula (Theorem 3.1) in terms of the
laplacian of the function Ifg .

Corollary 5.7. The laplacian of the inner rates function Ifg is given by the formula

∆Γπ (Ifg ) = KΓπ + FΓπ − PΓπ

Proof. Let v be a vertex of Γπ and let us write the inner rates formula 3.1 on v:

 ∑
i∈V (Γπ)

mi(f)qfg,iEi

 · Ev = valΓπ (v) + f∗ · Ev −Π∗Φ · Ev + 2gv − 2.

Let v1, v2, . . . , vk be the vertices of Γπ adjacent to v. Then, the last equality is
equivalent to

k∑
i=1

mvi(f)qfg,vi +mv(f)qfg,vE2
v = valΓπ (v) + f∗ · Ev −Π∗Φ · Ev + 2gv − 2.

By Proposition 1.3 we have mv(f)E2
v = −

∑k
i=1mvi(f)Evi − f∗ ·Ev and we inject

it on the last equation:
k∑
i=1

mvi(f)(qfg,vi − q
f
g,v) = (qfg,v + 1)f∗ · Ev + valΓπ (v) + 2gv − 2−Π∗Φ · Ev.

If f∗ · Ev 6= 0, by Lemma 5.3, we have qfg,v = mv(g)
mv(f) . Then, by multiplying both

sides of the equation by mv(f), we get
k∑
i=1

mv(f)mvi(f)(qfg,vi−q
f
g,v) = (mv(g)+mv(f))f∗·Ev+mv(f)(valΓπ (v)+2gv−2)−mv(f)Π∗Φ·Ev.

Since lengthf (v, vi) = 1
mv(f)mvi (f) , we can then conclude that

∆Γπ (Ifg ) = KΓπ + FΓπ − PΓπ

�
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6. Growth behaviour of the inner rates function

The aim of this section is to prove Point (i) of Theorem B. For this aim, we will
need the following lemma which is an adaptation of [BdSFP22a, Subsection 4.5].

Lemma 6.1. Let (X, 0) be a complex surface germ with an isolated singularity
and let Φ = (g, f) : (X, 0) −→ (C2, 0) be a finite morphism. Let π : (Xπ, E) −→
(X, 0) be a good resolution of (X, 0). There exists a finite sequence of blowups
σ : (Y, F ) −→ (C2, 0), a good resolution π̃ : (Xπ̃, Ẽ) −→ (X, 0), a finite sequence of
blowups απ : (Xπ̃, Ẽ) −→ (Xπ, E) and a morphism Φπ̃ : (Xπ̃, Ẽ) −→ (Y, F ) such
that the following diagram commutes

(Xπ̃, Ẽ)
Φπ̃

%%

π̃

))απ // (Xπ, E) π // (X, 0)

Φ
��

(Y, F ) σ // (C2, 0)
and the following properties are satisfied

(i) For every vertex v of Γπ, we have Φ̃(v) ∈ V (Γσ)
(ii) For every vertex w of Γσ, we have Φ̃−1(w) ⊂ V (Γπ̃).

Definition 6.2. We call the map π̃ defined as above the good resolution of (X, 0)
adapted to π and Φ.

Remark 6.3. This definition is a generalization of [BdSFP22a, Definition 4.13].

Proof of Lemma 6.1. Let σ : (Y, F ) −→ (C2, 0) be the minimal sequence of blowups
of the origin of C2 such that Φ̃(V (Γπ)) ⊂ V (Γσ). Consider the pullback by Φ of
the resolution σ i.e.,

X ′ = {(a, b) ∈ X\0× Y \F | Φ(a) = σ(b)} ⊂ X × Y.
Let p1 : X ′ −→ X and p2 : X ′ −→ Y be the first and second projection respectively.
Let π′ : Xπ̃ −→ X ′ be the minimal good resolution of X ′. We consider the mor-
phisms

π̃ := p1 ◦ π′ : (Xπ̃, Ẽ) −→ (X, 0) and Φπ̃ := p2 ◦ π′ : (Xπ̃, Ẽ) −→ (Y, F ).
The existence of the morphism Φπ̃ implies that for every vertex w of Γσ we have
Φ̃−1(w) ⊂ V (Γπ̃). Let v ∈ Γπ. By definition of σ, we have Φ̃(v) ⊂ V (Γσ) and then
v ∈ V (Γπ̃). Therefore, V (Γπ) ⊂ V (Γπ̃), which means that the resolution π̃ factors
through π . The resulting sequence of blowups is the desired απ : (Xπ̃, Ẽ) −→
(Xπ, E) �

We are now ready to prove Point (i) of Theorem B that we restate in terms of
the inner rates function:

Proposition 6.4. Let π : (Xπ, E) −→ (X, 0) be a good resolution of the complex
surface germ (X, 0). Let v be an element of V (Γπ). There exists a path from an
f -node to v in Γπ along which the function Ifg is strictly increasing.

Remark 6.5. This result is a generalization of [BdSFP22a, Proposition 3.9] which
treated the case where the morphism Φ is a linear projection on C2.
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Proof. The case where (X, 0) = (C2, 0) and Φ is the identity of C2 and where π is
a finite sequence of point blowups is a direct consequence of Lemma 5.5.

Let us now treat the general case. The statement when v is an f -node is trivial by
taking the constant path. Assume now that v is not an f -node. Let π̃ : (Xπ̃, Ẽ) −→
(X, 0) be the good resolution of (X, 0) adapted to π, we will use the notations of
lemma 6.1. Let ṽ ∈ V (Γπ̃) such that απ(ṽ) = v. Since v is not an f -node, it is
also the case for ṽ. Let (u1, u2) be the coordinates of C2. Consider w = Φ̃(ṽ) and
let β′ be the simple path in Γσ starting from u2-node and ending at w . By the
particular case (X, 0) = (C2, 0) treated at the beginning of the proof, the function
Iu2
u1

is strictly increasing along β′. The path β′ can be lifted via the ramified
covering Φ̃ to a union of simple paths each of them joining an f -node to a vertex
of Φ̃−1(w) ⊂ Γπ̃. Let us choose one of them ending at ṽ and name it β̃. Let
α̃π : Γπ̃ −→ Γπ be the continuous map induced by απ. Then, the function Ifg is
strictly increasing along the path β = α̃π(β̃) which start from an f -node and ends
at v. �

7. Proof of points (ii) and (iii) of Theorem B

Let (X, 0) be a complex surface germ with an isolated singularity and Φ = (g, f) :
(X, 0) −→ (C2, 0) be a finite morphism. We start by restating Theorem B in terms
of the inner rates function defined in Section 5 and the Hironaka quotients function
on NL(X, 0) that we define now.

Definition 7.1 ([MM20, Definition 4]). Let Ev be an irreducible component of E.
The Hironaka quotient of Ev with respect to Φ = (g, f) is the number:

hfg,v := mv(g)
mv(f) .

Using Lemma 5.5 and the same arguments of the proof of Proposition 5.1 we
obtain:

Proposition 7.2. There exists a unique continuous function

Hfg : NL(X, 0) −→ R>0 ∪∞

such that Hfg (v) = hfg,v for every divisorial point v of NL(X, 0) and we have the
following commutative diagram

NL(X, 0)
Hfg

&&

Φ̃ // NL(C2, 0)

Hu2
u1
��

R>0 ∪∞
If π is a good resolution of (X, 0) compatible with the finite morphism Φ = (g, f)
then Hfg is linear on the edges of Γπ with integral slopes.

Proof. The commutative diagram of this proposition is a consequence of [MM20,
Remark 5]. We get the rest with the arguments of the proof of Proposition 5.1 �

Definition 7.3. The function Hfg is called the Hironaka quotients function
with respect to the morphism Φ = (g, f).
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Definition 7.4. We denote by Aπ the union of every simple paths joining an f -
node to a g-node along which the inner rates function Ifg is strictly increasing.

Now, we can restate Theorem B in terms of the inner rates functions and the
Hironaka quotients function.
Theorem 7.5. Let (X, 0) be a complex surface germ with an isolated singularity
and let Φ = (g, f) = (u1, u2) : (X, 0) −→ (C2, 0) be a finite morphism. Let π :
(Xπ, E) −→ (X, 0) be a good resolution of (X, 0). Then:

(i) Let v be a vertex of Γπ. There exists a path from an f-node to v in Γπ along
which the function Ifg is strictly increasing.

(ii) The functions Ifg and Hfg coincide on Aπ.
(iii) The Hironaka quotients function Hfg restricted to Γπ is constant on every

connected component of the topological closure of Γπ\Aπ.
Remark 7.6. Point (i) is exactly Proposition 6.4. It implies in particular that the
inner rates function is not locally constant on Γπ.

The rest of this section is devoted to the proof of Points (ii) and (iii).

Proof of Point (ii) of Theorem 7.5. The case where (X, 0) = (C2, 0) and Φ is the
identity map of (C2, 0) is a direct consequence of Lemmas 5.5 and 5.3. Notice that
in this case Aπ is a simple path joining the u2-node to the u1-node where (u1, u2)
are the coordinates of C2.

Let π̃ : (Xπ̃, Ẽ) −→ (X, 0) be the good resolution of (X, 0) adapted to π, we use
again the commutative diagram of Lemma 6.1. We need to prove that Φ̃(Aπ) ⊂ Aσ.
Let α : [0, 1] −→ Aπ̃ be a path from an f -node to a g-node along which the inner
rates function Ifg is strictly increasing. The existence of the morphism Φπ̃ implies
that every f -node (resp. g-node) is sent by Φ̃ to the u2-node (resp. u1-node) of
Γσ. Thus, β(t) = Φ̃(α(t)) is a path starting from the u2-node and ending in the
u1-node. By Proposition 5.1 we have the following diagram

NL(X, 0)
Ifg

''

Φ̃ // NL(C2, 0)

Iu2
u1
��

R>0 ∪ {+∞}

Then Iu2
u1

(β(t)) = (Iu2
u1
◦ Φ̃)(α(t)) = Ifg (α(t)) which means that the function

Iu2
u1

(β(t)) is strictly increasing. By definition, the curve Φ̃(α) = β is included
in Aσ and it follows that Φ̃(Aπ̃) ⊂ Aσ. Since απ is a sequence of blowups of Xπ

then Aπ ⊂ Aπ̃ which implies that Φ̃(Aπ) ⊂ Φ̃(Aπ̃) ⊂ Aσ. Now, let v ∈ Aπ, we
know that the functions Iu2

u1
and Hu2

u1
coincide on Aσ which implies that

Ifg (v) = (Iu2
u1
◦ Φ̃)(v) = (Hu2

u1
◦ Φ̃)(v). (5)

On the other hand, by proposition 7.2, we have the following commutative diagram

NL(X, 0)
Hfg

''

Φ̃ // NL(C2, 0)

Hu2
u1
��

R>0 ∪ {+∞},
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which implies that (Hu2
u1
◦ Φ̃)(v) = Hfg (v). Finally, by equation (5), it follow that

Ifg (v) = Hfg (v).
�

Example 7.7. This example illustrates the statement of Theorem 7.5 in the case
(X, 0) = (C2, 0) and Φ(x, y) = (g(x, y), f(x, y)) = (x + y, y5 − x12). The following
graph is the dual graph of the minimal good resolution π of the curve (gf)−1(0)

(1) (1)
1
5

1
10

3
35

1
12

( 1
5 ) ( 1

10 ) ( 3
35 ) ( 1

12 )

( 1
12 )

( 1
12 )

1
8

1
4

Figure 5. The graph Γπ is weighted with the inner rates (without
parenthesis) and the Hironaka quotients (between parenthesis).

We now recall the growth behaviour of the Hironaka quotients function which
was proved by Maugendre and Michel in [MM20].

Theorem 7.8 ([MM20, Theorem 1]). We denote by Gπ the union of every path
joining an f -node to a g-node along which the Hironaka quotients function Hfg is
strictly increasing. Let (X, 0) be a complex surface germ with an isolated singularity
and Φ = (g, f) : (X, 0) −→ (C2, 0) be a finite morphism. Let π : (Xπ, E) −→ (X, 0)
be a good resolution of (X, 0). The Hironaka quotients function Hfg restricted to Γπ
is constant on every connected component of the topological closure of Γπ\Gπ.

Proof of Point (iii) of Theorem 7.5. By Theorem [MM20] it suffices to prove that
Aπ = Gπ. Theorem 7.5(ii) implies directly the inclusion Aπ ⊂ Gπ. Then, we need
to prove the inclusion Gπ ⊂ Aπ. For that aim, we prove that the functions Ifg
and Hfg coincide on Gπ. In the case where (X, 0) = (C2, 0), we get directly from
Lemmas 5.5 and 5.3 that Iu2

u1
and Hu2

u1
coincide on Gσ. The rest of the proof is

easily adapted from the arguments of the proof of Theorem 7.5(ii) by using the two
commutative diagrams of Propositions 5.1 and 7.2. �

8. A first application of the inner rates formula

As a first application of the inner rates formula 3.1, we give a new proof of
[Mic08, Theorem 4.9].

Theorem 8.1 ([Mic08, Theorem 4.9]). Let (X, 0) be a complex surface germ with
an isolated singularity and let g, f : (X, 0) −→ (C, 0) be two holomorphic functions
on X such that the morphism Φ = (g, f) : (X, 0) −→ (C2, 0) is finite. Let π :
(Xπ, E) −→ (X, 0) be a good resolution of (X, 0). Let Z be a connected component
of Γπ\Aπ or a single vertex on the complementary of Γπ\Aπ, then :
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∑
v∈Z

mv(f)Π∗Φ · Ev = −
(∑
v∈Z

mv(f)χ′v

)
.

where χ′v := 2− 2gv − val(v)− f∗ · Ev − g∗ · Ev
Remark 8.2. The theorem 8.1 is more general than the original statement [Mic08,
Theorem 4.9] because we do not assume that π is a good resolution of the curve
(gf)−1(0). Notice that without that hypothesis the number χ′v is not, in general,
equal to the euler characteristic of the surface E′v := Ev −

((⋃
i6=v Ei

)
∪ f∗ ∪ g∗

)
which appears in the original statement.

Proof of Theorem 8.1. Let us recall the inner rates formula 3.1 applied on an irre-
ducible component Ev of the exceptional divisor

 ∑
i∈V (Γπ)

mi(f)qfg,iEi

 · Ev = val(v) + f∗ · Ev −Π∗Φ · Ev + 2gv − 2.

Let us add the term g∗ · Ev to both sides of this equality knowing that

g∗ · Ev = −

 ∑
i∈V (Γπ)

mi(g)Ei · Ev

 (proposition 1.3).

We get

∑
i∈V (Γπ)

(
mi(f)qfg,i −mi(g)

)
Ei ·Ev = val(v) + f∗ ·Ev + g∗ ·Ev −Π∗Φ ·Ev + 2gv − 2,

by definition of χ′v, the last equation becomes∑
i∈V (Γπ)

(
mi(f)qfg,i −mi(g)

)
Ei · Ev = −Π∗Φ · Ev − χ′v.

Let Z be as in the statement of the theorem. Let us multiply both side of the last
equality by mv(f) and take the sum over v in V (Z)

∑
v∈V (Z)

∑
i∈V (Γπ)

(
mv(f)mi(f)qfg,i −mv(f)mi(g)

)
Ei·Ev = −

∑
v∈V (Z)

mv(f)Π∗Φ·Ev+mv(f)χ′v.

It remains to prove that the left side

A =
∑

v∈V (Z)

∑
i∈V (Γπ)

(
mv(f)mi(f)qfg,i −mv(f)mi(g)

)
Ei · Ev

is equal zero. Let us inject the equality mv(f)E2
v = −

∑
i 6=vmi(f)Ei ·Ev + f∗ ·Ev

(by proposition 1.3) in A :

A =
∑

v∈V (Z)

∑
i∈V (Γπ)i 6=v

(
mi(f)mv(f)(qfg,i − qfg,v) +mi(f)mv(g)−mi(g)mv(f)

)
Ei·Ev.

Let us notice that for every vertex v of Aπ ∩ Z we have:
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∑
i∈V (Aπ)i 6=v

(
mi(f)mv(f)(qfg,i − qfg,v) +mi(f)mv(g)−mi(g)mv(f)

)
Ei · Ev = 0,

because qfg,i = mi(g)
mi(f) for every vertex i of Aπ. On the other hand, if v is a vertex

of Z\Aπ, all it’s neighbor vertices are in Z, this imply that

A =
∑

v∈V (Z)

∑
i∈V (Z),i6=v

(
mi(f)mv(f)(qfg,i − qfg,v) +mi(f)mv(g)−mi(g)mv(f)

)
Ei·Ev.

By Theorem 7.5(ii), mi(g)
mi(f) = mj(g)

mj(f) , for every i, j ∈ V (Z). Therefore

A =
∑

v∈V (Z)

∑
i∈V (Z)i 6=v

mi(f)mv(f)(qfg,i − qfg,v)Ei · Ev.

By reordering the terms of A, we obtain:
A =

∑
v,i∈V (Z),v 6=i

(qfg,i − qfg,v)(mi(f)mv(g)−mv(f)mi(g))Ei · Ev.

Again, by Theorem 7.5(ii), all the terms of A are equal to zero therefore A = 0 as
desired. �

9. Polar exploration

As an application of the inner rates formula (Theorem 3.1), we will perform polar
exploration using the inner rates expanding the ideas of [BdSFP22a, BdSFNP22,
BdSFP22b]. The main aim of this section is to prove Proposition C .

Definition 9.1. Let (X1, 0) and (X2, 0) be two complex analytic surface germ with
an isolated singularity. Let (C1, 0) and (C2, 0) be two germ of complex analytic
curves embedded in (X1, 0) and (X2, 0) respectively. We say that the curves (C1, 0)
and (C2, 0) have the same embedded topological type if there exists a germ of
homeomorphism ψ : (X1, C1) −→ (X2, C2).

Neumann gave in [Neu81] a complete invariant of the embedded topological type of
a germ of complex analytic curve embedded in a complex surface with an isolated
singularity as follows. Let (C, 0) be a germ of analytic curve embedded in a germ
of complex analytic surface (X, 0). The embedded topological type of the curve
(C, 0) determines and is determined by the dual graph of the minimal good resolu-
tion π of (X, 0) and (C, 0) decorated with arrows corresponding to the irreducible
components of the strict transform of C by π.

Let (X, 0) be a complex analytic surface germ with an isolated singularity and let
Φ = (g, f) : (X, 0) −→ (C2, 0) be a finite morphism. Let π : (Xπ, E) −→ (X, 0) be
a good resolution of (X, 0) and (gf)−1(0). Let Ev1 , Ev2 , . . . , Evn be the irreducible
components of E. Let us recall the inner rates formulas applied on morphisms
(g, f) and (f, g):

Mπ · afg,π = Kπ + Fπ − Pπ, Mπ · agf,π = Kπ +Gπ − Pπ
where Mπ = (Evi · Evj )i,j∈{1,2,...,n}, afg,π := (mv1(f)qfg,v1

, . . . ,mvn(f)qfg,vn), Kπ :=
(valΓπ (v1) + 2gv1 − 2, . . . , valΓπ (vn) + 2gvn − 2), Fπ = (f∗ · Ev1 , . . . , f

∗ · Evn),
Gπ = (g∗ · Ev1 , . . . , g

∗ · Evn), and Pπ = (Π∗Φ · Ev1 , . . . ,Π∗Φ · Evn). What we call
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polar exploration consists of finding the P-vector Pπ = (Π∗Φ · Ev1 , . . . ,Π∗Φ · Evn)
knowing the vectorsMπ, Kπ, Fπ andGπ in the case π is the minimal good resolution
of (X, 0) and (gf)−1(0). In other words, we wants to find all the possible P-vector
for a fixed embedded topological type of the curve (gf)−1(0).

Let us give an example where for a given topological type the polar exploration
gives three possible P-vectors. We prove they are all realized by a morphism.

Example 9.2. Consider again Example 1.6.

(1) (1)
−2 −4 −2 −1

(1, 5) (1, 10) (3, 35) (5, 60)

(2, 24)

(1, 12)

−3

−2

Figure 6. The numbers between parenthesis are the orders of
vanishing (mv(g),mv(f)) of the functions g ◦π and f ◦π along the
irreducible components of E, these numbers can be determined
from the dual graph using Proposition 1.3.

Now, we will focus on determining the P-vector of Φ using only the dual graph Γπ.
By applying [Mic08, Theorem 4.9](Theorem 8.1) successively to each vertex v1, v2
and v3 of Aπ, we get Π∗Φ ·Evi = 0 for i = 1, 2, 3. Now we apply the theorem on the
set {v4, v5, v6} which is a connected component of Γπ\Aπ and we get the equation

60Π∗Φ · Ev4 + 24Π∗Φ · Ev5 + 12Π∗Φ · Ev6 = 48.

this gives three possible P-vectors

(Π∗Φ ·Ev1 ,Π∗Φ ·Ev2 ,Π∗Φ ·Ev3 ,Π∗Φ ·Ev4 ,Π∗Φ ·Ev5 ,Π∗Φ ·Ev6) ∈

 (0, 0, 2, 1, 0, 0),
(0, 0, 4, 0, 0, 0),
(0, 0, 0, 2, 0, 0)


We already know from the computations made in Example 3.5 that the P-vector

(0, 0, 2, 1, 0, 0) corresponds to the morphism Φ. Now, a natural question is wether
the two vectors (0, 0, 4, 0, 0, 0), (0, 0, 0, 2, 0, 0) can be realized by the P-vectors of two
other morphisms. The answer is yes, we will show it by using the following lemma:

Lemma 9.3 ([CA93, lemma 6.6.1]). Let γ be a germ of complex curve at the origin
of C2. The following assertions are equivalent:

(i) γ has equation

h(x, y) = a0,ny
n + am,0x

m +
∑

ni+mj>nm
ai,jx

iyj = 0

with a0,n 6= 0 and am,0 6= 0.



28 YENNI CHERIK

(ii) γ has the same embedded topological type as the curve of equation
yn + xm = 0

By lemma 9.3 the dual graph of the minimal good resolution of the curves (x, y5−
x12) = 0 and (x+ y)(y5 − x12 + x10y) = 0 is Γπ. A direct computation shows that:

(i) The polar curve ΠΦ1 of the morphism Φ1 = (x, y5 − x12) has equation
y4 = 0, the P-vector is

(0, 0, 4, 0, 0, 0).
(ii) The polar curve ΠΦ2 of the morphism Φ2 = (x + y, y5 − x12 + x10y) has

equation 5y4 + x10 + 12x11 − 10x9y = 0, the P-vector is
(0, 0, 0, 2, 0, 0)

In Example 9.2, Theorem 8.1 ([Mic08, Theorem 4.9]) is sufficient to find all the
realized P-vectors. We will now prove Proposition C stated in the introduction
which provides a family of examples where the knowledge of the inner rates and
their properties (Theorem 7.5) gives a better restriction on the possible P-vectors
than Theorem 8.1. In fact we will prove the following more precise version of
Proposition C.
Proposition 9.4. Let n ∈ N≥2 and consider the following graph with arrows Γn:

(6)

(9)

(1)
v1(−2)v2(−2)v3(−3)

v4

v5

v6

v4n−1

(−2)v4n

(−2)w2n

w2n+1 w2

w1

(−2)

(−2)

(−2)

(−2)

(−2)
(−n− 1)

(−2)

Figure 7. The genus is 0 for every vertex

(i) There exists a complex surface singularity (Xn, 0) and a finite morphism
Φn = (gn, fn) : (Xn, 0) −→ (C2, 0) such that Γn is the dual graph of the
minimal good resolution of (Xn, 0) and (gnfn)−1(0);
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(ii) The P-vector of any such morphism Φn belongs to a set of n+ 5 elements.
More precisely:
Π∗Φn · Ev1 = 14 and Π∗Φn · Evk = 0 for every k = 2, 3, . . . , 4n,

(Π∗Φn ·Ew2n ,Π∗Φn ·Ew2n+1 ,Π∗Φn ·Ew2 ,Π∗Φn ·Ew1) ∈


(1, 0, 1, 0),
(1, 0, 0, 2),
(0, 1, 0, 1),

(0, 0, k, k + 2),
0 ≤ k ≤ n+ 1


In order to prove Proposition 9.4 we will need some tools we are going to present

now. All the definitions and results of this subsection can be found e.g in [N9́9].
We call cycle on Γπ every effective divisor of Xπ which is supported on E. Let

h : (X, 0) −→ (C, 0) be a holomorphic function. Denote by (hπ) the compact part
of the total transform oh h by π i.e,

(hπ) =
∑

i∈V (Γπ)

mi(h)Ei.

The cycle (hπ) is called analytic cycle and we denote by Zan(Γπ) the set of analytic
cycles on Γπ. A topological cycle D is an effective cycle such that D ·Ev ≤ 0 for
every irreducible component Ev of E, we denote by Ztop(Γπ) the set of such cycles.

There is a natural ordering of the cycles: D1 =
∑
niEvi ≤ D2 =

∑
n′iEvi if and

only if ni ≤ n′i for all i. By [N9́9, Lemma 2.6] the set Ztop(Γπ) contains a minimal
element denoted Zmin(Γπ) called the minimal cycle.

Definition 9.5 ([N9́9, Appendix 2]). The Euler characteristic of an effective
cycle D is defined by

χ(D) = −1
2D · (D +Kπ)

where KXπ is the canonical divisor of Xπ.

Definition 9.6 ([N9́9][Theorem 3.8], [Art66]). The complex surface germ (X, 0) is
said to be rational if χ(Zmin(Γπ)) = 1 where π is a good resolution of (X, 0).

Theorem 9.7 ([N9́9, Theorem 3.14], [Art66] ). Let (X, 0) be a complex surface
germ with an isolated singularity. If (X, 0) is rational then

Ztop(Γπ) = Zan(Γπ),

for every good resolution π of (X, 0).

Now, we are ready to prove Proposition 9.4.

Proof of Proposition 9.4. Let us first prove the existence of the surfaces (Xn, 0). By
a classical result of Grauert ([Gra62]) every weighted graph without loops and with
negative definite intersection matrix can be realized as the dual graph Γπ associated
with the minimal good resolution of some complex analytic surface germ (X, 0) (See
e.g [NP07, Section 2] for details). The intersection matrix of the dual graph Γn is
negative definite, therefore, there exists a germ complex surface singularity (Xn, 0)
such that the dual graph of its minimal good resolution πn : (Xπn , En) −→ (Xn, 0)
is Γn.
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Now, we prove the existence of the morphisms Φn = (gn, fn). The minimal cycle
of Γπn denoted Zmin(Γπn) is obtained by using Laufer’s algorithm [Lau71] (see e.g,
[N9́9, 2.10] for more details):

Zmin(Γπn) = Ev1+Ev2+Ev3+2(Ev4+Ev5+. . .+Ev4n−1+Ev4n+Ew2n+1)+Ew2+Ew1+Ew2n .

A direct computation using the adjunction formula 3.3 shows that χ(Zmin(Γπn)) =
1. By using Lemma 1.3 we now compute from the dual graph Γπn the orders of
vanishing of the functions fn ◦ πn and gn ◦ πn along the irreducible components of
En:

(6)

(9)

(1)
v1(5, 7)v2(4, 5)v3(3, 3)

v4

v5

v6

v4n−1

(4n, 4n)v4n

(2n, 2n)w2n

w2n+1 w2

w1

(4, 4)

(5, 5)

(6, 6)

(4n− 1, 4n− 1)

(2n+ 1, 2n+ 1)
(2, 2)

(1, 1)

Figure 8. The numbers between parenthesis are the orders of
vanishing (mv(gn),mv(fn)) of the functions gn ◦ πn and fn ◦ πn
along the irreducible components of En, these numbers can be
determined from the dual graph using Proposition 1.3.

We are going to construct two holomorphic function germs gn, fn : (Xn, 0) −→
(C, 0) whose analytic cycles are respectively:

Dn,1 = 7Ev1 + 5Ev2 +
4n∑
k=3

kEvk + 2nEw2n + (2n+ 1)Ew2n+1 + 2Ew2 + Ew1

Dn,2 = 5Ev1 + 4Ev2 +
4n∑
k=3

kEvk + 2nEw2n + (2n+ 1)Ew2n+1 + 2Ew2 + Ew1 .

and such that f∗n ∪ g∗n is a disjoint union of curvettes of En.
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Let a1, a2, . . . a15 be distinct smooth points of Ev1 . Let en be the composition of
the blowups of the points blowup ai and let Ev′

i
= e−1

n (ai) for i = 1, . . . 15. Since
χ(Zmin(Γπn)) = 1, by Theorem 9.7, there exists functions fn and gn whose analytic
cycles on Γen◦πn are

D′n,1 = Dn,1 + 7(Ev′1 + . . . Ev′6) + 8(Ev′7 + . . .+ Ev′15
)

D′n,2 = Dn,1 + 8(Ev′1 + . . . Ev′7) + 7(Ev′1 + . . . Ev′15
).

Using Lemma 1.3 we can check that f∗n ∪ g∗n is a disjoint union of curvettes of the
exceptional divisor of en ◦πn such that f∗n ·Ev′i = 0 and g∗n ·Ev′i = 1 for i = 1, . . . , 6,
and f∗n · Ev′i = 1 and g∗n · Ev′i = 0 for i = 7, . . . , 15. Therefore blowing down the
fifteen components Ev′

i
we obtain that the union of strict transforms of fn and gn

by πn is a disjoint union of curvettes of En.
Let us now prove (ii). Let Φn be a morphism as in (i). Let compute its possible

P-vectors. Until the end of the proof we will use the notations pi := Π∗Φn ·Evi and
p′i := Π∗Φn · Ewi .
By Theorem 7.5(ii), we know that qfngn,v1

= 5
7 , qfngn,v2

= 4
5 and qfngn,v3

= 1 . Let
us apply Theorem 3.1 on the vertices v1 and v2, we then obtain p1 = 14 and
p2 = 0. Apply again Theorem 3.1 on the vertex v3, we obtain p3 = 5− 4qfngn,v4

. By
Theorem 7.5(i) we have qfngn,v4

> qfngn,v3
= 1, then p3 = 5−4qfngn,v4

< 1 and it follows
p3 = 0, qfngn,v4

= 5
4 .

We now prove by induction that for every k ∈ {3, 4, . . . , 4n} we have qfngn,vk = 2k−3
k

and pk−1 = 0 . It is true for k = 3. Let us suppose it is true for a given k < 4n.
By applying the inner rates formula on the vertex Ek we get

pk = 2k − 1− (k + 1)qfngn,vk+1
.

By Theorem 7.5(i) we know that qfngn,vk+1
> qfngn,vk = 2k−3

k . Then

pk = 2k − 1− (k + 1)qfngn,vk+1
< 2k − 1− 2k − 3

k
(k + 1) = 3

k
< 1.

Therefore pk = 0 and it follows that qfngn,vk+1
= 2k−1

k+1 as desired.
Let us now apply Theorem 8.1 on the vertices {v1, . . . , v4n, w2n, w2n+1, w2, w1},

we get the following equality:

2n+ 2 = 4np4n + 2np′2n + (2n+ 1)p′2n+1 + 2p′2 + p′1.

Solving this last equation ends the proof.
�

Remark 9.8. In this last proposition if we did not make use of the inner rates and
only restricted ourselves to Theorem 8.1 we would have ended with the following
equality

3p3 + 4p4 + 5p5 + . . .+ 4np4n + 2np′2n + (2n+ 1)p′2n+1 + 2p′2 + p′1 = 2n+ 2

where p′i := Π∗Φn · Ewi and pi := Π∗Φn · Evi .
The cases p′2n+1 = 1 and p′2n = 1 were already treated so we can suppose that
p′2n+1 = p′2n = 0
By renaming x1 = p′1, x2 = p′2, x3 = p3, x4 = p4, etc., we end up with the equation

x1 + 2x2 + 3x3 + . . .+ (2n+ 2)x2n+2 = 2n+ 2, xi ∈ N,
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let Π(n) be the cardinal of the set of solutions of this equation. The sequence Π(n)
is equivalent to

Π(n) ∼ 1
(8n+ 8)

√
3

exp
(
π

√
4n+ 4

3

)
,

as was proved by Hardy and Ramanujan (see e.g [HW08]). On the other hand, by
using the inner rates in the proof of Proposition 9.4, we end up with only n + 5
possible cases.

10. Geometric interpretation of the inner rates

Let (X, 0) ⊂ (Cn, 0) be a complex surface germ with an isolated singularity at the
origin of Cn. The aim of this section is to give a geometrical interpretation of the
inner rates as metric invariants of the Milnor fibers of a non constant holomorphic
function f . First, we will need to define the notion of generic linear form and
generic polar curve with respect to a resolution and a function.

10.1. Generic linear form and generic polar curve. All the results of this
subsection are an adaption of of [BNP14, Section 3] and [BdSFP22a, Subsection
2.2].

Let f : (X, 0) −→ (C, 0) be a non constant holomorphic function. We call Gauss
map relative to f as defined in [Tei82, page 364] the map :

γf : X\{0} → P(Cn).
p 7→ ker(dpf)

Let us now consider the following complex surface
Nf (X) = Graph(γf ) = {(p, d) ∈ X\{0} × P(Cn) | dpf(d) = 0} ⊂ Cn × P(Cn)

Definition 10.1 ([Tei82, Definition page 367]). The Nash transform of X rela-
tive to f is the modification νf defined by

νf : Nf (X) → X
(p, d) 7→ p

Let D ∈ P(Cn) and consider its dual linear form `D : Cn −→ C. Let Ωf be the
Zariski open set of P(Cn) such that ΦD = (`D |X , f) : (X, 0) −→ (C2, 0) is a finite
morphism. We will denote by ΠD the polar curve associated with the morphism
ΦD, whenever D is an element of Ωf .

Definition 10.2 ([Spi90, Definition 1.1 Chapter III]). Let α : (X̃, E) −→ (X, 0) be
a modification and let Ω be an open Zariski set of P(Cn). Let {(γD, 0) ⊂ (X, 0)}D∈Ω
be a family of complex curve germs. We say that a point p of E is a base point
of α for the family of curves {(γD, 0)}D∈Ω if there exists an open Zariski set Ωp
of P(Cn) contained in Ω such that p ∈ γ∗D for all D in Ωp, where γ∗D is the strict
transform of the curve γD by the modification α.

We will use the following properties of the Nash transform. For (i) see [Tei82,
1.1 page 417] and (ii) is a direct consequence of the third point of [Tei82, Corollary
1.3.2 page 420].

Proposition 10.3. The Nash transform has the following properties:
(i) The map (γf ◦ νf ) : Nf (X)\ν−1

f (0) −→ P(Cn) extends to a holomorphic
map γ̃f on Nf (X).
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(ii) The Nash transform has no base point for the family of the polar curves.

The following definition is an adaptation of the definition of the local bilipchitz
constant introduced in [BNP14, Section 3].

Definition 10.4. Let vp be a unit vector of TpX such that dpf(vp) = 0. The local
bilipschitz constant of the morphism ΦD = (`D |X , f) is the map defined by:

KD : X\0 → R ∪ {∞}

p 7→
{ 1
||dpΦD(vp)|| if p /∈ ΠD

∞ if p ∈ ΠD

Lemma 10.5. Given any neighborhood U of Π∗D∩ν−1
f (Bε∩X) in Nf (X)∩ν−1

f (Bε∩
X), the local bilipschitz constant KD of the morphism ΦD is bounded on Bε ∩
(X\νf (U)).

Proof. We have

(KD ◦ νf )(p, d) = KD(p) = 1
||(0, `D(vp))||

Let us consider the map
κD : P(Cn) → R ∪ {∞}

d 7→

{ 1
||(0,`D( d

||d|| ))||
if d /∈ D⊥

∞ if d ∈ D⊥

By definition of the Nash transform we have dpf(d) = 0 for all (p, d) ∈ Nf (X).
We then have the equality

(KD ◦ νf )(p, d) = (κD ◦ γ̃f )(p, d), ∀(p, d) /∈ Π∗D (6)

where γ̃f is the holomorphic extension of the map γf ◦νf to Nf (X) (Remark 10.3).
The map κD ◦ γ̃f is continuous and takes finite values outside Π∗D. This implies
that given any open neighbourhood U of Π∗D∩ν−1

f (Bε∩X) in Nf (X)∩ν−1
f (Bε∩X)

the map κD ◦ γ̃f is bounded on the compact set ν−1
f (Bε∩X)\U . Then, by Equality

(6), the local bilipschitz constant KD of ΦD is bounded on Bε ∩ (X\νf (U)). �

Let π : (Xπ, E) −→ (X, 0) be a good resolution which factors through the Nash
transform νf : Nf (X) −→ X and the blowup of the maximal ideal b0 : BL0(X) −→
X i.e. there exists two modifications µπ : (Xπ, E) −→ (Nf (X), ν−1

f (0)) and µ′π :
(Xπ, E) −→ (BL0(X), b−1

0 (0)) such that νf ◦ µπ = π and b0 ◦ µ′π = π. Let us
denote by Ef the strict transform of ν−1

f (0) by the modification µπ and by E0 the
strict transform of b−1

0 (0) by the modification µ′π . By Remark 10.3 there exists
an open Zariski set Ωπf included in Ωf such that for any element D of Ωπf , the
strict transforms of the curves ΠD and `−1

D (0) by π meet Ef and E0 respectively at
smooth points of E. With this, we have the following result as direct consequence
of Lemma 10.5

Corollary 10.6. Given any element D of Ωπf and any neighborhood U of Π∗D ∩
π−1(Bε∩X) in Xπ∩π−1(Bε∩X), the local bilipschitz constant KD of the morphism
ΦD is bounded on Bε ∩ (X\π(U)).



34 YENNI CHERIK

�
Now, we can define the notion of generic linear form and generic polar curve

with respect to f and π. The following definition is an adaptation of the notion of
generic projection defined in [BdSFP22a, Subsection 2.2].

Definition 10.7. We say that a linear form ` : (X, 0) −→ (C, 0) is generic with
respect to f and π if it is the dual linear form of an element D of Ωπf . In which
case We say that ΠD is a generic polar curve.

10.2. Inner rates of a Milnor fibration. We are now ready to state and prove
the main theorem of this section which allows us to see the inner rates as metric
invariants of the Milnor fibration of the function f . It is also a relative version of
[BdSFP22a, Lemma 3.2].

Theorem 10.8. Let (X, 0) ⊂ (Cn, 0) be a complex surface germ with an isolated
singularity and let f : (X, 0) −→ (C, 0) be a non constant holomorphic function.
Let π : (Xπ, E) −→ (X, 0) be a good resolution which factors through the Nash
transform of X relative to f and the blowup of the maximal ideal of (X, 0).

There exists a rational number qfv ∈ Q>0 such that for any pair of curvettes
γ∗1 and γ∗2 of an irreducible component Ev of the exceptional divisor E verifying
γ∗i ∩ f∗ = ∅ for i ∈ {1, 2} we have

dε(γ1 ∩ f−1(ε), γ2 ∩ f−1(ε)) = Θ(εq
f
v ),

where γ1 = π(γ∗1),γ2 = π(γ∗2 ) and dε is the Riemanian metric induced by Cn on the
Milnor fiber f−1(ε). Furthermore we have qfv = qf`,v whenever ` is a generic linear
form with respect to f and π.

Proof. Let p be a smooth point of E in Ev\f∗. Since π factors through the Nash
transform of X relative to f and the blowup of the maximal ideal, it has no base
point for the family of the generic polar curves and the family of the generic hyper-
plane sections (by remark 10.3). Thus, there exists a generic linear form ` such that
p /∈ `∗∪Π∗Φ where Φ = (`, f). By proposition 2.3 there exists an open neighborhood
Op ⊂ Ev of p such that for every pair of curvettes γ∗1 , γ∗2 of Ev verifying:

(i) γ∗1 ∩ γ∗2 = ∅
(ii) γ∗i ∩Op 6= ∅, for i = 1, 2,

we have:
d(Φ(γ1) ∩ {u2 = ε},Φ(γ2) ∩ {u2 = ε}) = Θ(εq

f
`,v ),

where γ1 = π(γ∗1 ), γ2 = π(γ∗2) and ε ∈ R. By using Corollary 10.5 we deduce that

dε(γ1 ∩ f−1(ε), γ2 ∩ f−1(ε)) = Θ(εq
f
`,v ).

This means that the number qf`,v does not depend on the choice of the generic linear
form `, it will be then denoted qfv .

Let us now take any pair of curvettes γ∗ and γ′∗ meeting Ev at two distinct
smooth points p and p′ of E. Since dε(γ ∩ f−1(ε), γ̃ ∩ f−1(ε)) = Θ(εqfv ) for any
neighbor curve germ γ̃ of γ = π(γ∗) we have

dε(γ ∩ f−1(ε), γ′ ∩ f−1(ε)) = Θ(εqv(γ,γ′)) with qv(γ, γ′) ≤ qfv ,
where γ = π(γ∗) and γ′ = π(γ′∗).
By compactness of E, we can choose a finite sequence of smooth points p =
p1, p2, . . . , ps = p′ and a curvette γ∗i passing through each pi such that:
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dε(γi ∩ f−1(ε), γi+1 ∩ f−1(ε)) = Θ(εq
f
v )

We then have

K ′εqv(γ,γ′) ≥ dε(γ ∩ f−1(ε), γ′ ∩ f−1(ε)) ≥
s∑
i=1

dε(γi ∩ f−1(ε), γi+1 ∩ f−1(ε)) ≥ Kεq
f
v .

where K and K ′ are constants. We deduce that qv(γ, γ′) ≥ qfv , which ends the
proof.

�

11. Application to Lipchitz-Killing curvature

As an application of Theorem 10.8 we will prove theorem E which generalizes
the result of Garćıa Barosso and Teissier in [GBT99b].

11.1. Lipchitz-Killing curvature. Let X be a real smooth submanifold of Rn of
dimension m. Let TpX be the tangent space of X at a point p. Let −→np be a normal
vector of TpX in Rn. Consider V−→np the vector space generated by TpX and −→np. Let
P−→np be the orthogonal projection on V−→np and X−→np = P−→np(X).

Definition 11.1. [Lan80a] The Lipchitz-Killing curvature of X at the point p
is:

KX(p) = ωm
2ωn−1

∫
−→np∈ν(p)

kX−→np (P−→np(p)),

where ωi is the volume of the unitary sphere Si of Ri+1, ν(p) is the set of normal
vectors at p and kX−→np is the classical Gaussian curvature.

Now let us state the exchange formula due to Rémi Langevin which provides
an easy way to compute the integral of the Lipshitz-Killing curvature in the case
of a compact complex submanifold of Cn possibly with boundaries .

Theorem 11.2. [Lan80b, Theorem A.III.3’] Let X be a compact complex subman-
ifold embedded in Cn of dimension m then

(−1)m
∫
p∈M

KX(p)dV = πω2m

2ω2n−1

∫
H∈Gn−1(Cn)

Card{z ∈ X | TzX ⊂ H}dH,

where dV and dH are respectively the volume forms of X and the grassmannian of
hyperplanes Gn−1(Cn).

11.2. The Lipshitz-Killing curvature of a Milnor fiber. Let (X, 0) be a com-
plex surface germ with an isolated singularity embedded in Cn and f : (X, 0) −→
(C, 0) be a non constant holomorphic function. For any element H of Gn−1(Cn)
denote by `H a linear form whose kernel is H. Consider the morphism ΦH = (`H , f)
and denote by ΠH the associated polar curve. Let us now apply Theorem 11.2 on
the Milnor fiber Fε,t := f−1(t) ∩Bε:∫

p∈Fε,t
KFε,t(p)dV = −πω2

2ω2n−1

∫
H∈Gn−1(Cn)

Card{ΠH ∩ Fε,t}dH.
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On the other hand, for every element H of Gn−1(Cn) there exists a positive real
number δHε such that for every t in C whose module is less than or equal to δHε we
have

Card{Fε,t ∩ΠH} = ΠH · f−1(0).
Let δε := inf{δHε | H ∈ Gn−1(Cn)}. Thus, by taking the limit we get

lim
ε→0,|t|<δε

∫
p∈Fε,t

KFε,t(p)dV = −πω2

2ω2n−1

∫
H∈Gn−1(Cn)

ΠH · f−1(0)dH. (7)

As a direct consequence of (7) and Theorem 8.1 we obtain the following result.

Theorem 11.3. Let (X, 0) be a complex surface germ with an isolated singularity
embedded in (Cn, 0) and let f : (X, 0) −→ (C, 0) be a non constant holomorphic
function. Let π : (Xπ, E) −→ (X, 0) be a good resolution of (X, 0), then:

lim
ε→0,|t|<δε

∫
p∈Fε,t

KFε,t(p)dV = πω2

2ω2n−1
Vol(Gn−1(Cn))

∑
v∈V (Γπ)

mv(f)χ′v,

where χ′v := 2− 2gv − val(v)− f∗ · Ev − `∗H · Ev.

�

Remark 11.4. Theorem 11.3 was proved in [Lan79] when (X, 0) = (Ck, 0).

Let π : (Xπ, E) −→ (X, 0) be a good resolution of (X, 0) and let Ev be an irre-
ducible component of E. Let N (Ev, ε), ε > 0 be a family of tubular neighborhoods
of Ev in Xπ such that

lim
ε→0
N (Ev, ε) = Ev,

and such that the set Horn(ε, v) := π(N (Ev, ε)) is included in Bε. For example
one can choose a Riemanian metric on Xπ and consider the set of points which are
close enough to Ev with respect to that metric. Consider now the intersection of
the Milnor fiber of f with this set

F vε,t = f−1(t) ∩Horn(ε, v).

Let δHε > 0 be such that for any complex number t whose module is less then or
equal to δHε we have

Card{F vε,t ∩ΠH} = mv(f)Π∗H · Ev,
where Π∗H is the strict transform of ΠH by π.

Theorem 11.5. Let (X, 0) be a complex surface germ with an isolated singularity
embedded in (Cn, 0) and let f : (X, 0) −→ (C, 0) be a non constant holomorphic
function. Let π : (Xπ, E) −→ (X, 0) be a good resolution of (X, 0) which factors
through the Nash transform of X relative to f and the blowup of the maximal ideal
of (X, 0). Let v be a vertex of Γπ, then:

lim
ε→0,|t|<δε

∫
p∈Fvε,t

KFvε,t
(p)dV = πω2

2ω2n−1
Vol(Gn−1(Cn))Cf ,

where

Cf = mv(f)

2gv − 2 + ValΓπ (v) + f∗ · Ev −
∑

i∈V (Γπ)

mi(f)qfi Ei · Ev

 .
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Proof. It is a direct consequence of Theorems 3.1, 10.8 and 11.2. �

Remark 11.6. Garćıa Barosso and Teissier gave in [GBT99b] an analogous result
to Theorem 11.5 when f is a germ of non constant holomorphic function at the
origin of C2.
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bure dans des fibres de Milnor. Comment. Math. Helv., 74(3):398–418, 1999.
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