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Abstract

We introduce a new second order stochastic algorithm to estimate the entropically
regularized optimal transport cost between two probability measures. The source
measure can be arbitrary chosen, either absolutely continuous or discrete, while the
target measure is assumed to be discrete. To solve the semi-dual formulation of such a
regularized and semi-discrete optimal transportation problem, we propose to consider
a stochastic Gauss-Newton algorithm that uses a sequence of data sampled from the
source measure. This algorithm is shown to be adaptive to the geometry of the under-
lying convex optimization problem with no important hyperparameter to be accurately
tuned. We establish the almost sure convergence and the asymptotic normality of var-
ious estimators of interest that are constructed from this stochastic Gauss-Newton
algorithm. We also analyze their non-asymptotic rates of convergence for the ex-
pected quadratic risk in the absence of strong convexity of the underlying objective
function. The results of numerical experiments from simulated data are also reported
to illustrate the finite sample properties of this Gauss-Newton algorithm for stochastic
regularized optimal transport, and to show its advantages over the use of the stochastic
gradient descent, stochastic Newton and ADAM algorithms.

Keywords: Stochastic optimization; Stochastic Gauss-Newton algorithm; Optimal trans-
port; Entropic regularization; Convergence of random variables.

AMS classifications: Primary 62G05; secondary 62G20.

1 Introduction

1.1 Computational optimal transport for data science

The use of optimal transport (OT) and Wasserstein distances for data science has recently
gained an increasing interest in various research fields such as machine learning [1, 20, 21,
23,25,42,44], statistics [5,7,8,13,30,35,40,46,49] and image processing or computer vision
[4,12,19,26,39,45]. Solving a problem of OT between two probability measures µ and ν is
known to be computationally challenging, and entropic regularization [15,16] has emerged
as an efficient tool to approximate and smooth the variational Wasserstein problems arising
in computational optimal transport for data science. A detailed presentation of the recent
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research field of computational optimal transport is given in [38], while recent reviews on
the application of optimal transport to statistics can be found in [9, 36].

Recently, approaches [5, 23] based on first order stochastic algorithms have gained
popularity to solve (possibly regularized) OT problems using data sampled from µ. These
approaches are based on the semi-dual formulation [16] of regularized OT problems that
can be rewritten as a non-strongly convex stochastic optimization problem. In this paper,
for the purpose of obtaining stochastic algorithms for OT with faster convergence in prac-
tice, we introduce a second order stochastic algorithm to solve regularized semi-discrete
OT between an arbitrary probability measure µ, typically absolutely continuous, and a
known discrete measure ν with finite support of size J . More precisely, we focus on the
estimation of an entropically regularized optimal transport cost Wε(µ, ν) between such
measures (where ε > 0 is an entropic regularization parameter) using a class of stochastic
quasi-Newton algorithms that we refer to as Gauss-Newton algorithms and which use the
knowledge of a sequence (Xn) of independent random vectors sampled from µ.

Applications of semi-discrete optimal transport can be found in computational geom-
etry and computer graphics [33, 34], as well as in the problem of optimal allocation of
resources from online observations [5]. For an introduction to semi-discrete optimal trans-
port problems and related references, we also refer to [38, Chapter 5]. In a deterministic
setting where the full knowledge of µ is used and in the unregularized case, the conver-
gence of a Newton algorithm for semi-discrete optimal transport has been studied in depth
in [29]. An extension of the formulation of semi-discrete OT to include an entropic regular-
ization is proposed in [16]. The main advantage of incorporating such a regularization term
in classical OT is to obtain a dual formulation leading to a smooth convex minimization
problem allowing the implementation of simple and numerically more stable algorithms as
shown in [16]. The use of regularized semi-discrete OT has then found applications in im-
age processing using generative adversarial networks [24,43]. In these works, samples from
the generative model are typically drawn from an absolutely continuous source measure
in order to fit a discrete target distribution.

1.2 Main contributions and structure of the paper

As discussed above, we introduce a stochastic Gauss-Newton (SGN) algorithm for regu-
larized semi-discrete OT for the purpose of estimating Wε(µ, ν), and the main goal of this
paper is to study the statistical properties of such an approach. This algorithm is shown
to be adaptive to the geometry of the underlying convex optimization problem with no
important hyperparameter to be accurately tuned. Then, the main contributions of our
work are to derive the almost sure rates of convergence, the asymptotic normality and the
non-asymptotic rates of convergence (in expectation) of various estimators of interest that
are constructed using the SGN algorithm to be described below. Although the underly-
ing stochastic optimization problem is not strongly convex, fast rates of convergence can
be obtained by combining the so-called notion of generalized self-concordance introduced
in [2] that has been shown to hold for regularized OT in [5], and the Kurdyka- Lojasiewicz
inequality as studied in [22]. We also report the results from various numerical experi-
ments on simulated data to illustrate the finite sample properties of this algorithm, and to
compare its performances with those of the stochastic gradient descent (SGD), stochastic
Newton (SN) and ADAM [28] algorithms for stochastic regularized OT.

The paper is then organized as follows. The definitions of regularized semi-discrete OT
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and the stochastic algorithms used for solving this problem are given in Section 2. The
main results of the paper are stated in Section 3, while the important properties related to
the regularized OT are given in Section 5. In Section 4, we describe a fast implementation
of the SGN algorithm for regularized semi-discrete OT, and we assess the numerical ability
of SGN to solve OT problems. In particular, we report numerical experiments on simulated
data to compare the performances of various stochastic algorithms for regularized semi-
discrete OT. The statistical properties of the SGN algorithm are established in an extended
Section 6 that gathers the proof of our main results. Finally, two technical appendices A
and B contain the proofs of auxiliary results.

2 A stochastic Gauss-Newton algorithm for regularized semi-
discrete OT

In this section, we introduce the notion of regularized semi-discrete OT and the stochastic
algorithm that we propose to solve this problem.

2.1 Notation, definitions and main assumptions on the OT problem

Let X and Y be two metric spaces. Denote byM1
+(X ) andM1

+(Y) the sets of probability
measures on X and Y, respectively. Let 1J be the column vector of RJ with all coordinates
equal to one, and denote by 〈 , 〉 and ‖ ‖ the standard inner product and norm in RJ . We
also use λmax(A) and λmin(A) to denote the largest and smallest eigenvalues of a symmetric
matrix A, whose spectrum will be denoted by Sp(A) and Moore-Penrose inverse by A−.
By a slight abuse of notation, we sometimes denote by λmin(A) the smallest non-zero
eigenvalue of a positive semi-definite matrix A. Finally, ‖A‖2 and ‖A‖F stand for the
operator and Frobenius norms of A, respectively. For µ ∈ M1

+(X ) and ν ∈ M1
+(Y), let

Π(µ, ν) be the set of probability measures on X×Y with marginals µ and ν. As formulated
in [23], the problem of entropically regularized optimal transport between µ ∈ M1

+(X )
and ν ∈M1

+(Y) is defined as follows.

Definition 2.1. For any (µ, ν) ∈ M1
+(X ) ×M1

+(Y), the Kantorovich formulation of the
regularized optimal transport between µ and ν is the following convex minimization problem

Wε(µ, ν) = min
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) + εKL(π|µ⊗ ν), (2.1)

where c : X × Y → R is a lower semi-continuous function referred to as the cost function
of moving mass from location x to y, ε > 0 is a regularization parameter, and KL stands
for the Kullback-Leibler divergence between π and a positive measure ξ on X × Y, up to
the additive term

∫
X×Y dξ(x, y), namely

KL(π|ξ) =

∫
X×Y

(
log
(dπ
dξ

(x, y)
)
− 1
)
dπ(x, y).

For ε = 0, the quantity W0(µ, ν) is the standard OT cost, while for ε > 0, we refer to
Wε(µ, ν) as the regularized OT cost between the two probability measures µ and ν. In
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this framework, we shall consider cost functions that are lower semi-continuous and that
satisfy the following standard assumption (see e.g. [48, Part I-4]), for all (x, y) ∈ X × Y,

0 6 c(x, y) 6 cX (x) + cY(y), (2.2)

where cX and cY are real-valued functions such that
∫
X cX (x)dµ(x) < +∞ and∫

Y cY(y)dν(y) < +∞. Under condition (2.2), Wε(µ, ν) is finite regardless any value of
the regularization parameter ε > 0. Moreover, note that Wε(µ, ν) can be negative for
ε > 0, and that we always have the lower bound Wε(µ, ν) > −ε. In this paper, we
concentrate on the regularized case where ε > 0, and on the semi-discrete setting where
µ ∈ M1

+(X ) is an arbitrary probability measure (e.g. either discrete or absolutely con-
tinuous with respect to the Lesbesgue measure), and ν is a discrete measure with finite
support Y = {y1, . . . , yJ} that can be written as

ν =

J∑
j=1

νjδyj .

Here, δ stands for the standard Dirac measure, the locations {y1, . . . , yJ} as well as the
positive weights {ν1, . . . , νJ} are assumed to be known and summing up to one. We shall
also use the notation

min(ν) = min
16j6J

{νj} and max(ν) = max
16j6J

{νj}.

We shall also sometimes refer to the discrete setting when µ is also a discrete measure. Let
us now define the semi-dual formulation of the minimization problem (2.1) as introduced
in [23]. In the semi-discrete setting and for ε > 0, using the semi-dual formulation of
the minimization problem (2.1), it follows that Wε(µ, ν) can be expressed as the following
convex optimization problem

Wε(µ, ν) = − inf
v∈RJ

Hε(v) (2.3)

with

Hε(v) = E[hε(X, v)] =

∫
X
hε(x, v)dµ(x), (2.4)

where X stands for a random variable drawn from the unknown distribution µ, and for
any (x, v) ∈ X × RJ ,

hε(x, v) = ε+ ε log
( J∑
j=1

exp
(vj − c(x, yj)

ε

)
νj

)
−

J∑
j=1

vjνj . (2.5)

Throughout the paper, we shall assume that, for any ε > 0, there exists v∗ ∈ RJ that
minimizes the function Hε, leading to

Wε(µ, ν) = −Hε(v
∗).

The above equality is the key result allowing to formulate (2.3) as a convex stochastic
minimization problem, and to consider the issue of estimating Wε(µ, ν) in the setting of
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stochastic optimization. For a discussion on sufficient conditions implying the existence of
such a minimizer v∗, we refer to [5, Section 2]. As discussed in Section 5, the function Hε

possesses a one-dimensional subspace of global minimizers, defined by {v∗ + tvJ , t ∈ R}
where

vJ =
1√
J
1J .

Therefore, we will constrain our algorithm to live in 〈vJ〉⊥, which denotes the orthogonal
complement of the one-dimensional subspace 〈vJ〉 of RJ spanned by vJ . In that setting,
the OT problem (2.3) becomes identifiable.

2.2 Pre-conditionned stochastic algorithms

In the context of regularized OT, we first introduce a general class of stochastic pre-
conditionned algorithms that are also referred to as quasi-Newton algorithms in the lit-
erature. Starting from Section 2.1, our approach is inspired by the recent works [5, 23],
which use the property that

Wε(µ, ν) = −Hε(v
∗) = − min

v∈RJ
E[hε(X, v)]

where hε(x, v) is the smooth function defined by (2.5) that is simple to compute. For a
sequence (Xn) of independent and identically distributed random variables sampled from
the distribution µ, the class of pre-conditionned stochastic algorithms is defined as the
following family of recursive stochastic algorithms to estimate the minimizer v∗ ∈ 〈vJ〉⊥
of Hε. These algorithms can be written as

V̂n+1 = PJ

(
V̂n − nαS−1

n ∇vhε(Xn+1, V̂n)
)

(2.6)

for some constant 0 6 α < 1/2, where ∇vhε stands for the gradient of hε with respect to v,
V̂0 is a random vector belonging to 〈vJ〉⊥, and Sn is a symmetric and positive definite J×J
random matrix which is measurable with respect to the σ-algebra Fn = σ(X1, . . . , Xn).
In addition, PJ is the orthogonal projection matrix onto 〈vJ〉⊥,

PJ = IJ − vJv
T
J .

This stochastic algorithm allows us to estimate Wε(µ, ν) by the recursive estimator

Ŵn = − 1

n

n∑
k=1

hε(Xk, V̂k−1). (2.7)

The special case where Sn = s−1nIJ with some constant s > 0, corresponds to the
well-known stochastic gradient descent (SGD) algorithm that has been introduced in the
context of stochastic OT in [23], and recently investigated in [5]. Following some recent
contributions [6, 14] in stochastic optimization using Newton-type stochastic algorithms,
another potential choice is Sn = Sn where Sn is the natural Newton recursion defined as

Sn = IJ +
n∑
k=1

∇2
vhε(Xk, V̂k−1) = Sn−1 +∇2

vhε(Xn, V̂n−1) (2.8)
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where ∇2
vhε stands for the Hessian matrix of hε with respect to v, We refer to the choice

(2.8) for Sn as the stochastic Newton (SN) algorithm. Unfortunately, from a computational
point of view, a major limitation of this SN algorithm is the need to compute the inverse of
Sn at each iteration n in equation (2.6). As Sn is given by the recursive equation (2.8), it is
tempting to use the Sherman-Morrison-Woodbury (SMW) formula [27], that is recalled in
Lemma A.1, in order to compute S−1

n from the knowledge of S−1
n−1 in a recursive manner.

However, as detailed in Section A.2 of Appendix A, the Hessian matrix ∇2
vhε(Xn, V̂n−1)

does not have a sufficiently low-rank structure that would lead to a fast recursive approach
to compute S−1

n . Therefore, for the SN algorithm, the computational cost to evaluate S−1
n

appears to be of order O(J3) which only leads to a feasible algorithm for very small values
of J . This important computational limitation then drew our investigation towards the
SGN algorithm instead of the SN approach.

2.3 The stochastic Gauss-Newton algorithm

Historically, the Gauss-Newton adaptation of the Newton algorithm consists in replacing
the Hessian matrix ∇2

vhε(Xn, V̂n−1) by a tensor product of the gradient ∇vhε(Xn, V̂n−1).
In our framework, it leads to another pre-conditionned stochastic algorithm. We introduce
Sn recursively as

Sn = IJ +
n∑
k=1

∇vhε(Xk, V̂k−1)∇vhε(Xk, V̂k−1)T + γ

(
1 +

⌊
k

J

⌋)−β
ZkZ

T
k (2.9)

= Sn−1 +∇vhε(Xn, V̂n−1)∇vhε(Xn, V̂n−1)T + γ
(

1 +
⌊n
J

⌋)−β
ZnZ

T
n ,

for some constants γ > 0 and 0 < β < 1/2, and where (Z1, . . . , Zn) is a deterministic
sequence of vectors defined, for all 1 6 k 6 n, by

Zk =
√
ν`ke`k

with `k = 1+(k−1) (mod J), where (e1, . . . , eJ) stands for the canonical basis of RJ . We
shall refer to the choice (2.9) for Sn as the regularized stochastic Gauss-Newton (SGN)
algorithm and from now on, the notation Sn refers to this definition. We also use the
convention that S0 = IJ .

3 Main results on the SGN algorithm

Throughout this section, we investigate the statistical properties of the recursive sequence
(V̂n) defined by (2.6) with 0 6 α < 1/2, where (Sn) is the sequence of random matrices
defined by (2.9) with 0 < β < 1/2 that yields the SGN algorithm. The initial value V̂0 is
assumed to be a square integrable random vector that belongs to 〈vJ〉⊥. Then, thanks to
the projection step in equation (2.6), it follows that for all n > 1, V̂n also belongs to 〈vJ〉⊥.
To derive the convergence properties of the SGN algorithm, we first need to introduce the
matrix-valued function Gε(v) defined as

Gε(v) = E
[
∇vhε(X, v)∇vhε(X, v)T

]
(3.1)

that will be shown to be a key quantity to analyze the SGN algorithm. In particular,
we shall derive our results under the following assumption on the smallest eigenvalue of
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Gε(v
∗) associated to eigenvectors belonging to 〈vJ〉⊥.

Invertibility assumption. The matrix Gε(v
∗) satisfies

min
v∈〈vJ 〉⊥

{vTGε(v∗)v
‖v‖2

}
> 0.

In all the sequel, we suppose that this invertibility assumption is satisfied. We denote by

G−ε (v∗) the Moore-Penrose inverse of Gε(v
∗) and by G

−1/2
ε (v∗) its square-root. We now

discuss, in what follows, the next keystone inequality.

Proposition 3.1. Assume that the regularization parameter ε > 0 satisfies

ε 6
min(ν)

max(ν)−min(ν)
. (3.2)

Then, in the sense of partial ordering between positive semi-definite matrices, we have

Gε(v
∗) 6 ∇2Hε(v

∗). (3.3)

Inequality (3.3) is an important property of the SGN algorithm to prove its adaptivity to
the geometry of the stochastic optimization problem (2.3). Of course, one can observe that
no hyperparameter depending on the Hessian of Hε needs to be tuned to run this algorithm
provided that condition (3.2) holds. One can also remark that there is no restriction on
the regularization parameter ε when ν is the uniform distribution, that is when νj = 1/J ,
for all 1 6 j 6 J , implying that max(ν) = min(ν). Throughout the paper, we suppose

that condition (3.2) holds true. Below, we denote by λ
〈vJ 〉⊥
min (A) the smallest non-zero

eigenvalue of a positive semi-definite matrix A, when the associated eigenvectors belong
to 〈vJ〉⊥, the orthogonal complement of vJ .

It immediately follows from inequality (3.3) that

1 6 λ
〈vJ 〉⊥
min (G−1/2

ε (v∗)∇2Hε(v
∗)G−1/2

ε (v∗)). (3.4)

Inequality (3.4) will be a key property in this paper to derive the rates of convergence
of the estimators obtained from the SGN algorithm. Note that the (pseudo) inverse of
the Hessian matrix ∇2Hε(v

∗) somehow represents an ideal deterministic pre-conditioning
matrix, whose use would lead to the second order Newton algorithm: this ideal pre-
conditioned algorithm is non-adaptive since it requires the use of ∇2Hε(v

∗), which is
unknown in practice.

Indeed, in our SGN algorithm, adaptivity is tightly related to the limiting recursion
induced by Equation (2.6). If we admit (temporarily) the almost sure convergence of
the SGN algorithm towards v∗ and of n−1Sn towards Gε(v

∗), the recursion induced by
(2.6) looks very similar to a discretization of a dynamical system with a step size n−(1−α)

and with a limiting linearized drift of the form −Gε(v∗)−1∇2Hε(v
∗)(v − v∗). For further

details on this point, we refer to the so-called ODE method (see e.g. [3] ). The keystone
property induced by Proposition 3.1 is that thanks to Equation (3.3) and Equation (3.4),
the linearized drift of the limiting deterministic dynamical system has its eigenvalues that
are lower bounded by 1, regardless of the value of the Hessian matrix ∇2Hε(v

∗). This
translates an adaptation of the algorithm to the curvature of Hε near the target point
v∗. Therefore, the matrix Gε(v

∗) that is learnt on-line, and automatically adapts to
the eigenspaces associated to the smallest eigenvalues of ∇2Hε(v

∗). Therefore, one may
interpret (3.4) as the adaptivity of the SGN algorithm to the geometry of the semi-dual
formulation of regularized OT.
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3.1 Almost sure convergence

The almost sure convergence of the sequences (V̂n), (Ŵn) and (Sn) are as follows where
Sn = 1

nSn.

Theorem 3.1. Assume that α ∈ [0, 1/2[ and α+ β < 1/2. Then, we have

lim
n→+∞

V̂n = v∗ a.s. (3.5)

and

lim
n→+∞

Sn = Gε(v
∗) a.s. (3.6)

The following result is an immediate corollary of Theorem 3.1, thanks to the continuity of
the function hε.

Corollary 3.1. Assume that α ∈ [0, 1/2[ and α + β < 1/2. Suppose that the cost function
c satisfies, for any 1 6 j 6 J ,∫

X
c2(x, yj)dµ(x) < +∞. (3.7)

Then, we have
lim

n→+∞
Ŵn = Wε(µ, ν) a.s.

We now derive results on the almost sure rates of convergence of the sequences (V̂n) and
(Sn) that are the keystone in the proof of the asymptotic normality of the estimator V̂n
studied in Section 3.2. We emphasize that we restrict our study to the case α = 0, which
yields the fastest rates of convergence and that corresponds to the meaningful situation
from the numerical point of view.

Theorem 3.2. Assume that α = 0. Then, we have the almost sure rate of convergence∥∥V̂n − v∗∥∥2
= O

( log n

n

)
a.s. (3.8)

In addition, we also have∥∥Sn −Gε(v∗)∥∥F = O
( 1

nβ

)
a.s. (3.9)

and ∥∥S−1
n −G−ε (v∗)

∥∥
F

= O
( 1

nβ

)
a.s. (3.10)

3.2 Asymptotic normality

The asymptotic normality of our estimates depends on the magnitude of the smallest
eigenvalue (associated to eigenvectors belonging to 〈vJ〉⊥) of the matrix

Γε(v
∗) = G−1/2

ε (v∗)∇2Hε(v
∗)G−1/2

ε (v∗). (3.11)
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Thanks to the key inequality (3.4), we have that the smallest eigenvalue of Γε(v
∗) is always

greater than 1, in the sense that

min
v∈〈vJ 〉⊥

vTΓε(v
∗)v

‖v‖2
> 1.

One can observe that we also restrict our study to the case α = 0 which yields the usual√
n rate of convergence for the central limit theorem that is stated below.

Theorem 3.3. Assume that α = 0. Then, we have the asymptotic normality

√
n
(
V̂n − v∗

) L−→ N(0, G−1/2
ε (v∗)

(
2Γε(v

∗)− PJ
)−
G−1/2
ε (v∗)

)
. (3.12)

In addition, suppose that the cost function c satisfies, for any 1 6 j 6 J ,∫
X
c4(x, yj)dµ(x) < +∞. (3.13)

Then, we also have

√
n
(
Ŵn −Wε(µ, ν)

) L−→ N (0, σ2
ε

)
(3.14)

where the asymptotic variance σ2
ε = E[h2

ε(X, v
∗)]−W 2

ε (µ, ν).

In order to discuss the above result on the asymptotic normality of V̂n, we denote by

Σε(v
∗) = G−1/2

ε (v∗)
(
2Γε(v

∗)− PJ
)−
G−1/2
ε (v∗)

the asymptotic covariance matrix in (3.12). One can check that Σε(v
∗) satisfies the Lya-

punov equation(1

2
PJ −A∇2Hε(v

∗)
)

Σε(v
∗) + Σε(v

∗)
(1

2
PJ −A∇2Hε(v

∗)
)T

= −AGε(v∗)A (3.15)

with A = G−ε (v∗). Moreover, one can observe that

Gε(v
∗) = lim

n→+∞
E[εn+1ε

T
n+1|Fn] a.s.

is the asymptotic covariance matrix of the martingale increment εn+1 = ∇vhε(Xn+1, V̂n)−
∇Hε(V̂n). Hence, to better interpret the asymptotic covariance matrix Σε(v

∗), let us
consider the following sub-class of pre-conditionned stochastic algorithms

Ṽn+1 = PJ

(
Ṽn −

1

n
A∇vhε(Xn+1, Ṽn)

)
, (3.16)

where A is a deterministic positive semi-definite matrix satisfying the stability condition

A∇2Hε(v
∗) >

1

2
PJ . (3.17)

Then, adapting well-known results on stochastic optimisation (see e.g. [18, 37]), one may
prove that

√
n
(
Ṽn − v∗

) L−→ N (0,Σ(A)
)

9



where Σ(A) is the solution of the Lyapunov equation (3.15) with Σ(A) instead of Σε(v
∗).

Hence, the asymptotic normality of the SGN algorithm coincides with the one of the
pre-conditionned stochastic algorithm (3.16) for the choice A = G−ε (v∗). Hence, the main
advantage of the SGN algorithm is to be fully data-driven as G−ε (v∗) is obviously unknown.
Among the deterministic pre-conditionning matrices satisfying condition (3.17), it is also
known (see e.g. [18, 37]) that the best choice is to take A = ∇2H−ε (v∗) that corresponds
to an ideal Newton algorithm and which yields the optimal asymptotic covariance matrix

Σ∗ = Σ
(
∇2Hε(v

∗)
)

= ∇2Hε(v
∗)−Gε(v

∗)∇2Hε(v
∗)− 6 Σε(v

∗).

Therefore, the SGN algorithm does not yield an estimator V̂n having an asymptotically
optimal covariance matrix. Note that, as shown in [5, Theorem 3.4], using an average
version of the standard SGD algorithm, that is with Sn = s−1nIJ and 0 < α < 1/2,
allows to obtain an estimator having an asymptotic distribution with optimal covariance
matrix Σ∗. However, in numerical experiments, it appears that the choice of s for the
averaged SGD algorithm is crucial but difficult to tune. The results from [5] suggests to
take s = ε/(2 min(ν)) which follows from the property that

λmin

(
∇2Hε(v

∗)
)
>

min(ν)

ε
,

that is discussed in Section 5. Hence, the choice s = ε/(2 min(ν)) ensures that the pre-
conditioning matrix A = s−1IJ satisfies the stability condition (3.17). However, as shown
by the numerical experiments carried out in Section 4, it appears that the SGN algorithm
automatically adapts to the geometry of the optimisation problem with better results
than the SGD algorithm. Finally, we remark from the asymptotic normality (3.14) and [5,

Theorem 3.5] that the asymptotic variance of the recursive estimator Ŵn is the same when
V̂n is either computed using the SGN or the SGD algorithm.

3.3 Non-asymptotic rates of convergence

The last contribution of our paper is to derive non-asymptotic upper bounds on the ex-
pected risk of various estimators arising from the use of the SGN algorithm when (Sn) is
the sequence of positive definite matrices defined by (2.9). In particular, we derive the
rate of convergence of the expected quadratic risks

E
[∥∥V̂n − v∗∥∥2]

and E
[∥∥Sn −Gε(v∗)∥∥2

F

]
.

We also analyze the rate of convergence of the expected excess risk Wε(µ, ν) − E[Ŵn] of

the recursive estimator Ŵn defined by (2.7) used to approximate the regularized OT cost
Wε(µ, ν).

Theorem 3.4. Assume that α ∈]0, 1/2[ and that 4β < 1− 2α. Then, there exists a positive
constant cε such that for any n > 1,

E
[∥∥V̂n − v∗∥∥2]

6
cε
n1−α and E

[∥∥Sn −Gε(v∗)∥∥2

F

]
6

cε
n2β

. (3.18)

Moreover, we also have∣∣E[Ŵn]−Wε(µ, ν)
∣∣ 6 cε

n1−α , (3.19)

10



and if the cost function c satisfies
∫
X c

2(x, yj)dµ(x) < +∞, for any 1 6 j 6 J , then

E
[∣∣Ŵn −Wε(µ, ν)

∣∣] 6 cε√
n
. (3.20)

Note that the value of the constant cε appearing in Theorem 3.4 may also depend on
α and β, but we remove this dependency in the notation to simplify the presentation.
One can observe that choosing α > 0 allows the algorithm to be fully adaptative in
the sense that no important hyperparameter needs to be tune to obtain non-asymptotic
rates of convergence. The case α = 0 could also be considered but this will require to
introduce a multiplicative positive constant c in the definition of the SGN algorithm by
replacing nαS−1

n in equation (2.6) by cS−1
n . Then, provided that c is sufficiently large,

one may obtain faster rate of convergence for the expected quadratic risk of the order
O(log(n)/n). However, in our numerical experiments, we have found that introducing
such a large multiplicative constant c makes the convergence of the SGN algorithm too
slow. Therefore, results on non-asymptotic convergence rates in the case α = 0 are not
reported here.

4 Implementation of the SGN algorithm and numerical experi-
ments

In this section, we first discuss computational considerations on the implementation of the
SGN algorithm, and we also make several remarks to justify its use. Then, we report the
results of numerical experiments.

4.1 A fast recursive approach to compute S−1
n .

In this paragraph, we discuss on the computational benefits of using the Gauss-
Newton method as an alternative to the Newton algorithm. A key point to define
the SGN algorithm consists in replacing in equation (2.8) that defines the SN algo-
rithm, the positive definite Hessian matrices ∇2

vhε(Xk, V̂k−1) by the tensor product
∇vhε(Xk, V̂k−1)∇vhε(Xk, V̂k−1)T of the gradient of hε at (Xk, V̂k−1). A second impor-
tant ingredient in the definition (2.9) of the SGN algorithm is the additive regularization

terms γ
(
1 +

⌊
k
J

⌋)−β
ZkZ

T
k whose role is discussed in the sub-section below.

Note that ZkZ
T
k = ν`ke`ke

T
`k

(with `k = (k − 1) (mod J) + 1) is a diagonal matrix,
such that all its diagonal elements are equal to zero, except the `k-th one which is equal

to ν`k . In this manner, the difference Sn − Sn−1 = φnφ
T
n + γ

(
1 +

⌊
n
J

⌋)−β
ZnZ

T
n is thus

the sum of two rank one matrices, where φn = ∇vhε(Xn, V̂n−1). Therefore, one may easily
obtain S−1

n from the knowledge of S−1
n−1 as follows. Introducing the intermediate matrix

Sn− 1
2

= Sn−1 + γ
(
1 +

⌊
n
J

⌋)−β
ZnZ

T
n , we observe that Sn = Sn− 1

2
+ φnφ

T
n . Consequently,

by applying the SMW formula (A.3), we first notice that

S−1
n− 1

2

= (Sn−1 + γ
(

1 +
⌊n
J

⌋)−β
ZnZ

T
n )−1

= S−1
n−1 − (ZTn S

−1
n−1Zn + γ−1

(
1 +

⌊n
J

⌋)β
)−1S−1

n−1ZnZ
T
n S
−1
n−1

11



Using that Zn =
√
ν`ne`n , we furthermore have that

S−1
n− 1

2

= S−1
n−1 − ν`n

(S−1
n−1).,`n(S−1

n−1)T`n,.

ν`n(S−1
n−1)`n,`n + γ−1

(
1 +

⌊
n
J

⌋)β . (4.1)

Secondly, applying again the SMW formula (A.3), we obtain that

S−1
n = S−1

n− 1
2

−
S−1
n− 1

2

φnφ
T
nS
−1
n− 1

2

φTnS
−1
n− 1

2

φn + 1
. (4.2)

Hence, the recursive formulas (4.1) and (4.2) allow, at each iteration n, a much more
faster computation of S−1

n from the knowledge of S−1
n−1, which is a key advantage of the

SGN algorithm over the use of the SN algorithm. Indeed, the cost of computing S−1
n

using the above recursive formulas is that of matrix vector multiplication which is of order
O(J2).

4.2 The role of regularization.

Let us denote by Rn =
n∑
k=1

γ
(
1 +

⌊
k
J

⌋)−β
ZkZ

T
k the sum of the deterministic regularization

terms in (2.9) implying that Sn can be decomposed as

Sn = IJ +
n∑
k=1

∇vhε(Xk, V̂k−1)∇vhε(Xk, V̂k−1)T +Rn. (4.3)

If n = pJ for some integer p > 1, the regularization by the matrices γ
(
1 +

⌊
k
J

⌋)−β
ZkZ

T
k

in (2.9) sum up to a simple expression given by

Rn =

(
p∑

m=1

m−β

)
γ diag(ν).

The following two important comments can be made to clarify the role of this regularization
effect:

- adding the supplementary matrix Rn in (4.3) implies that Sn is invertible as soon as
n ≥ J with a known lower bound on its smallest eigenvalue. Indeed, thanks to the
condition 0 < β < 1/2 and to the property that(

1

p

p∑
m=1

m−β

)
∼ 1

1− β
p−β,

the additive term Rn allows to regularize the smallest eigenvalue of Sn. This is
important for the evolution of the stochastic algorithm: this regularization allows
to show that V̂n converges almost surely to v∗. More precisely, while V̂n+1 − V̂n is
essentially modified in the direction −nαS−1

n ∇vhε(Xn+1, V̂n), it is well known that
too large step sizes are prohibited to obtain a good behavior of stochastic algorithms.
Therefore, taking a sufficiently small β guarantees a suitable upper bound of the
increments of the SGN, that in turn limits the effect of the noise at each iteration of
the algorithm.

12



- the growth of Rn is sublinear for large values of n whereas

n∑
k=1

∇vhε(Xk, V̂k−1)∇vhε(Xk, V̂k−1)T

grows linearly with n so that this last term will become dominant in the decom-
position of Sn, inducing a “learning” of the curvature of the landscape function Hε.
Recalling that Sn = 1

nSn, it will be shown in Section 6 that

lim
n→+∞

Sn = Gε(v
∗) a.s.

with

Gε(v
∗) = E

[
∇vhε(X, v∗)∇vhε(X, v∗)T

]
= diag(ν)− ννT − ε∇2Hε(v

∗),

where the last equality above follows the proof of Proposition 3.1. Hence, when
n −→ +∞, the regularization disappears as long as β > 0. Note that this would not
be the case if β was chosen to be equal to 0.

To sum up, taking β ∈ (0, 1/2) will be a crucial assumption to derive the almost sure
convergence rates that are stated in Theorem 3.2.

4.3 Numerical experiments

In this section, we report numerical results on the performances of stochastic algorithms
for regularized optimal transport when the source measure µ is either discrete or absolutely
continuous. We shall compare the SGD, ADAM, SGN and SN algorithms. For the SGD
algorithm, following the results in [5], we took α = 1/2 and Sn = s−1nIJ with s =
ε/(2 min(ν)). The ADAM algorithm has been implemented following the parametrization
made in the seminal paper [28] except the value of the stepsize (as defined in [28, Algorithm
1]) that is set to 0.005 instead of 0.001, which improves the performances of ADAM in our
numerical experiments. For the SGN algorithm, we set α = 0 and we have taken γ = 10−3

(a small value) and β = 0.49. For the results reported in this paper, we have found that
the performances of the SGN algorithm are not very sensitive to the value of β ∈ (0, 1/2).
Finally, for the SN algorithm, we chose α = 0 and Sn = Sn as defined by (2.8).

In the discrete setting, we shall also compare the performances of these stochastic algo-
rithms to those of the Sinkhorn algorithm [15], which is a deterministic iterative procedure
that uses the full knowledge of the measures µ and ν at each iteration. Let us recall that,
for the SGD and ADAM algorithms, the computational cost of one iteration from n to
n + 1 is of order O(J), while it is of order O(J2) for the SGN algorithm and O(J3) for
the SN algorithm. Each iteration of the Sinkhorn algorithm is of order O(IJ), where I
denotes the size of the support of µ in the discrete setting.

In these numerical experiments, we investigate the numerical behavior of the recursive
estimators Ŵn and V̂n. The performances of the various stochastic algorithms used to
compute these estimators are compared in terms of the expected excess risks E

[∣∣Ŵn −
Wε(µ, ν)

∣∣] and E
[∥∥V̂n − v∗∥∥2]

. For the SGN algorithm, we also analyze the convergence
of the estimator Sn to the matrix Gε(v

∗). The expected value involved in these expected
risks is approximated using 100 Monte-Carlo replications. When the measure µ is discrete,

13



we use the Sinkhorn algorithm [15] to preliminary compute Wε(µ, ν) and v∗. When µ is
absolutely continuous, the regularized OT cost Wε(µ, ν) is preliminary approximated by
running the SN algorithm with a very large value of iterations (e.g. n = 106). To the
best of our knowledge, apart from stochastic approaches as in [23], there is no other
method to evaluate Wε(µ, ν) in the semi-discrete setting. Note that we shall compare the
evolution of these excess risks as a function of the computational time (observed on the

computer) of each algorithm. Moreover, the estimators Ŵn and V̂n obviously depends
on the regularization parameter ε. However, for the sake of simplicity, we have chosen
to denote them as Ŵn and V̂n, although we carry out numerical experiments for different
values of ε. Finally, we also analyze the asymptotic distributions of Ŵn and V̂n to illustrate
the results on asymptotic normality given in Section 3.2.

4.3.1 Discrete setting in dimension d = 2

In this section, the cost function is chosen as the squared Euclidean distance that is
c(x, y) = ‖x− y‖2. We focus our attention when both µ =

∑I
i=1 µiδxi and ν =

∑J
j=1 νjδyj

are uniform discrete measures supported on R2, that is µi = 1
I and νj = 1

J . The points
(xi)16i6I (resp. (yj)16j6J) are drawn randomly (once for all) from a Gaussian mixture with
two components (resp. from the uniform distribution on [0, 1]2). An example of two such
measures is displayed in Figure 1 for I = 104 and J = 100. The number of iterations of the
four stochastic algorithms is fixed to n = 105 except for the experiments on the asymptotic
distribution of Ŵn and V̂n, where n is let being larger. Finally, the Sinkhorn algorithm is
let running until convergence is reached to provide a reference value for Wε(µ, ν) and v∗

considered as the ground truth.

(a) (b) (c)

Figure 1: (a) Discrete measure µ supported on I = 104 points drawn from a
mixture of two Gaussian distributions, and (b) discrete measure ν supported on
J = 100 points randomly drawn from the uniform distribution on [0, 1]2. (c)
Superposition of µ and ν.

Convergence of the excess risks. We first report results for I = 104 (size of the support of
µ) and J ∈ {100, 400} (size of the support of ν), and two small values of the regularization
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parameter ε ∈ {0.01, 0.005}. For different combinations of these hyperparameters, we dis-
play from Figure 2 to Figure 5 the value of the expected excess risks (in logarithmic scale)

E
[∣∣Ŵn−Wε(µ, ν)

∣∣] and E
[∥∥V̂n− v∗∥∥2]

as functions of the averaged (along the 100 Monte
Carlo replications) computational time of each iteration of the stochastic algorithms. We

also draw the evolution of the metrics (in logarithmic scale)
∣∣Wk−Wε(µ, ν)

∣∣ and
∥∥Vk−v∗∥∥2

as functions of the computational time of the iterations of the Sinkhorn algorithm, where
Wk ∈ R and Vk ∈ RJ are the output of the Sinkhorn algorithm at its k-th iteration.

In Figure 2 to Figure 5, the various curves are displayed as functions of the compu-
tational time until the convergence of the Sinkhorn algorithm is reached, that is until
k = kmax (the maximum number of Sinkhorn iterations). Note that for k ≈ kmax then∣∣Wk −Wε(µ, ν)

∣∣ ≈ 0 and
∥∥Vk − v∗∥∥2 ≈ 0. Hence, for such large values of k, these metrics

have necessarily smaller values than those that are used to evaluate the stochastic algo-
rithms. In the discussion that follows, we thus consider that the stochastic algorithms have
reached convergence when the values of either E

[∣∣Ŵn−Wε(µ, ν)
∣∣] or E

[∥∥V̂n−v∗∥∥2]
stabi-

lize, although these metrics may be larger than the metrics used to evaluate the Sinkhorn
algorithm for large values of the computational time. This is due to the randomness
of the stochastic algorithms and their resulting positive variance (even for large values
of n). Then, the following comments can be made from the output of these numerical
experiments.

- For I = 104, J = 100 and ε = 0.01, the four stochastic algorithms reach convergence
faster than the Sinkhorn algorithm. The convergence is much faster for the metric
E
[∥∥V̂n − v∗∥∥2]

than for the metric E
[∣∣Ŵn −Wε(µ, ν)

∣∣].
- For I = 104, J = 100 and ε = 0.005, SGD fails to converge either for the estimator

Ŵn or the estimator V̂n. For this smallest value of ε, SGN and SN have similar
performances for the metric E

[∥∥V̂n−v∗∥∥2]
. The SN algorithm is slightly better than

SGN for the metric E
[∣∣Ŵn−Wε(µ, ν)

∣∣]. We also observe that SN and SGN converge
much faster than Sinkhorn, and that they have better performances than ADAM for
the two metrics.

- For I = 104, J = 400 and ε ∈ {0.01, 0.005}, it can be seen that the SGD algorithm

does not converge. For the metric E
[∥∥V̂n − v∗∥∥2]

, the convergence of the SN and
SGN algorithms is much faster than Sinkhorn, and these two algorithms outperform
ADAM.

Therefore, these numerical experiments suggest that the SGN algorithm has interesting
benefits over the SGD, ADAM and Sinkhorn algorithms for moderate values of J and
for small values of the regularization parameter ε. In these settings, SGN seems to be
particularly relevant for the estimation of v∗, and it reaches performances similar to those
of SN for the metric E

[∥∥V̂n − v∗∥∥2]
. The SGN algorithm may also converge much faster

than the Sinkhorn algorithm for either the estimation of Wε(µ, ν) or v∗ as the size I of
the support of µ is large.

Asymptotic distribution of the stochastic algorithms. Now, we illustrate the results from
Section 3.2 on the asymptotic distributions of Ŵn and V̂n. To this end, we consider the
setting I = 103 and J = 50. Then, we display in Figure 6 for ε = 0.1 and n = 2 × 105
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iterations (resp. Figure 7 for ε = 0.01 and n = 4 × 105 iterations) the histograms of 200
independent realizations of

W̃n =

√
n
(
Ŵn −Wε(µ, ν)

)
σ̂n

using each of the four stochastic algorithms, where

σ̂ 2
n =

1

n

n∑
k=1

h2
ε(Xk, V̂k−1)− Ŵ 2

n ,

is a recursive estimator of the asymptotic variance of Ŵn that has been introduced in [5].

For all the algorithms, it can be seen in Figure 6 and Figure 7 that Ŵn is normally
distributed. For the SGD and the SN algorithms, the histograms of W̃n are very close to
the standard Gaussian distribution, while the SGN is seen to be slightly biased. The bias
is much more important for the ADAM algorithm.

(a) ε = 0.01 (b) ε = 0.005

Figure 2: Discrete setting with I = 104 and J = 100 with n = 105 iterations.
Expected excess risk (in logarithmic scale) log(E

[∣∣Ŵn−Wε(µ, ν)
∣∣]) (resp. metric

log(
∣∣Wk −Wε(µ, ν)

∣∣)) as a function of the averaged computational cost of the
iterations of the four stochastic algorithms (resp. the Sinkhorn algorithm) for
different values of the regularization parameter ε.

In Figure 8 and Figure 9, we also display the histograms of 200 independent realizations
of Ṽn = n

∥∥V̂n − v∗∥∥2
for the four stochastic algorithms. The distribution of Ṽn has the

shape of a χ2-distribution but the “number of degrees of freedom” is highly varying from
one algorithm to the other. It can be seen from Figure 8 and Figure 9, that Ṽn reaches its
smallest variance for the SN algorithm, and that the second smallest variance is obtained
with the SGN algorithm. The SGD and the ADAM algorithms finally have a much larger
variance.
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(a) ε = 0.01 (b) ε = 0.005

Figure 3: Discrete setting with I = 104 and J = 100 with n = 105 iterations.

Expected excess risk (in logarithmic scale) log(E
[∥∥V̂n − v∗

∥∥2]) (resp. metric

log(
∥∥Vk−v∗∥∥2)) as a function of the averaged computational cost of the iterations

of the four stochastic algorithms (resp. the Sinkhorn algorithm) for different
values of the regularization parameter ε.

(a) ε = 0.01 (b) ε = 0.005

Figure 4: Discrete setting with I = 104 and J = 400 with n = 105 iterations.
Expected excess risk (in logarithmic scale) log(E

[∣∣Ŵn−Wε(µ, ν)
∣∣]) (resp. metric

log(
∣∣Wk −Wε(µ, ν)

∣∣)) as a function of the averaged computational cost of the
iterations of the four stochastic algorithms (resp. the Sinkhorn algorithm) for
different values of the regularization parameter ε.
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(a) ε = 0.01 (b) ε = 0.005

Figure 5: Discrete setting with I = 104 and J = 400 with n = 105 iterations.

Expected excess risk (in logarithmic scale) log(E
[∥∥V̂n − v∗

∥∥2]) (resp. metric

log(
∥∥Vk−v∗∥∥2)) as a function of the averaged computational cost of the iterations

of the four stochastic algorithms (resp. the Sinkhorn algorithm) for different
values of the regularization parameter ε.

(a) SGD - ε = 0.1 (b) SGN - ε = 0.1

(c) SN - ε = 0.1 (d) ADAM - ε = 0.1

Figure 6: Discrete setting with I = 103, J = 50 and ε = 0.1. Histogram of

200 independent realizations of
√
n(Ŵn−Wε(µ,ν))

σ̂n
with n = 2× 105 using each of

the four stochastic algorithms. The orange curve is the density of the standard
Gaussian distribution.
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(a) SGD - ε = 0.01 (b) SGN - ε = 0.01

(c) SN - ε = 0.01 (d) ADAM - ε = 0.01

Figure 7: Discrete setting with I = 103, J = 50 and ε = 0.01. Histogram of 200

independent realizations of
√
n(Ŵn−Wε(µ,ν))

σ̂n
with n = 4 × 105 iterations using

each of the four stochastic algorithms. The orange curve is the density of the
standard Gaussian distribution.

Therefore, these numerical experiments clearly show that using the SGN algorithm has
interesting benefits as it outperforms SGD and ADAM for the estimation of v∗ since it
yields an estimator Ṽn with a smaller variance.

Convergence of the pre-conditionning matrix for the SN algorithm. Finally, we report
in Figure 10 numerical results (with I = 104 and J ∈ {100, 200}) on the convergence of
Sn to Gε(v

∗) as a function the computational time of the SGN algorithm (using n = 105

iterations) for different values of the regularization parameter ε. We observe that the
convergence becomes slower as ε decreases.

4.3.2 Semi-discrete setting

In this section, the cost function is chosen as the following normalized squared Euclidean
distance c(x, y) = 1

d‖x − y‖
2. We now consider the framework where µ is a mixture of

three Gaussian densities in dimension d. In these numerical experiments, the size J = 100
of the support of ν is held fixed, and it is chosen as the uniform discrete probability
measure supported on J points drawn uniformly on the hypercube [0, 1]d. The value
of the dimension d is let growing, and we analyze its influence on the performances of
the stochastic algorithms with either n = 5 × 105 or n = 106 iterations. We also study
the performances of the Sinkhorn algorithm from a full-batch sample, that is using the
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(a) SGD - ε = 0.1 (b) SGN - ε = 0.1

(c) SN - ε = 0.1 (d) ADAM - ε = 0.1

Figure 8: Discrete setting with I = 103, J = 50 and ε = 0.1. Histogram of 200

independent realizations of n
∥∥V̂n − v∗∥∥2 with n = 2× 105 iterations using each

of the four stochastic algorithms.

(a) SGD - ε = 0.01 (b) SGN - ε = 0.01

(c) SN - ε = 0.01 (d) ADAM - ε = 0.01

Figure 9: Discrete setting with I = 103, J = 50 and ε = 0.01. Histogram of 200

independent realizations of n
∥∥V̂n − v∗∥∥2 with n = 4× 105 iterations using each

of the four stochastic algorithms.
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(a) I = 104 and J = 100 (b) I = 104 and J = 200

Figure 10: Discrete setting and convergence of log
(∥∥Sn −Gε(v∗)∥∥2F) as a func-

tion the computational time of the SGN algorithm (using n = 105 iterations)
for different values of the regularization parameter ε.

empirical measure

µ̂n =
1

n

n∑
i=1

δXi , where X1, . . . , Xn ∼iid µ,

to compute a solution of the regularized OT problem Wε(µ̂n, ν) as an approximation of
Wε(µ, ν). At each iteration, the cost of this Sinkhorn algorithm is thus O(nJ) as n is
the size of the support of µ̂n. We have chosen to display results for only one simulation
as averaging over Monte-Carlo replications does not change our main conclusions from
these numerical experiments. All stochastic algorithms (resp. Sinkhorn algorithm) are

compared for the metric
∥∥V̂n− v∗∥∥2

(resp.
∥∥Vk− v∗∥∥2

), where the vector v∗ is preliminary
approximated by running the SN algorithm with a large value of iterations nmax = 106.

In Figure 11 (for n = 5× 105 iterations) and Figure 12 (for n = nmax = 106 iterations)
, we display these metrics (in logarithmic scale) as functions of the computational time of
the stochastic and the Sinkhorn algorithms for different values of dimension d ∈ {5, 10, 50}
and ε ∈ {0.01, 0.005}. First, for either n = 5 × 105 or n = 106, it can be observed that
the SN algorithm has always the best performances, while ADAM has the worst ones.
Moreover, the SGN algorithm has slightly better performances than SGD. In Figure 12,
the very fast decay of the error after 450 seconds for SN is due to the fact that the ground
truth value v∗ has been preliminary computed with the SN algorithm with n = nmax = 106

iterations. For either n = 5 × 105 or n = 106, we also remark that the SGN outperforms
Sinkhorn for ε = 0.005 and d ∈ {5, 10} in the sense that when the SGN stops the value

reached by
∥∥V̂n − v∗

∥∥2
is smaller than

∥∥Vk − v∗
∥∥2

obtained with Sinkhorn. In larger
dimension d = 50, the Sinkhorn algorithm appears to have better performances than SGN
and SGD, but we recall that Sinkhorn uses the full sample at each iteration.

Therefore, these numerical experiments show that SGN has interesting benefits over
Sinkhorn in small dimension d when combined with small values of the regularization
parameter ε and large values of n. Moreover, we observe that the best results are always
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(a) d = 5 and ε = 0.01 (b) d = 5 and ε = 0.005

(c) d = 10 and ε = 0.01 (d) d = 10 and ε = 0.005

(e) d = 50 and ε = 0.01 (f) d = 50 and ε = 0.005

Figure 11: Semi-discrete setting where µ is a mixture of three Gaussian densities,
J = 100 and n = 5× 105 iterations. Excess risk (in logarithmic scale) log(

∥∥V̂n−
v∗
∥∥2) (resp. metric log(

∥∥Vk − v∗∥∥2)) as a function of the computational cost of
the iterations of the four stochastic algorithms (resp. the Sinkhorn algorithm)
for different values of the dimension d and the regularization parameter ε.
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(a) d = 5 and ε = 0.01 (b) d = 5 and ε = 0.005

(c) d = 10 and ε = 0.01 (d) d = 10 and ε = 0.005

(e) d = 50 and ε = 0.01 (f) d = 50 and ε = 0.005

Figure 12: Semi-discrete setting where µ is a mixture of three Gaussian densi-
ties, J = 100 and n = nmax = 106 iterations. Excess risk (in logarithmic scale)

log(
∥∥V̂n−v∗∥∥2) (resp. metric log(

∥∥Vk−v∗∥∥2)) as a function of the computational
cost of the iterations of the four stochastic algorithms (resp. the Sinkhorn algo-
rithm) for different values of the dimension d and the regularization parameter
ε.
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obtained with the SN algorithm.

5 Properties of the objective function Hε

The purpose of this section is to discuss various keystone properties of the objective func-
tion Hε that are needed to establish our main results.

5.1 Gradient properties

Let us first remark that, for any x ∈ X , the function v 7→ hε(x, v), defined by (2.5), is
twice differentiable. For a fixed x ∈ X , the gradient vector and Hessian matrix of the
function hε, with respect to its second argument, are given by

∇vhε(x, v) = π(x, v)− ν, (5.1)

and

∇2
vhε(x, v) =

1

ε

(
diag(π(x, v))− π(x, v)π(x, v)T

)
, (5.2)

where the jth component of the vector π(x, v) ∈ RJ is such that

πj(x, v) =
( J∑
k=1

νk exp
(vk − c(x, yk)

ε

))−1
νj exp

(vj − c(x, yj)
ε

)
.

Consequently, the gradient vector and the Hessian matrix of the function Hε, defined by
(2.3), are as follows

∇Hε(v) = E[∇vhε(X, v)] = E[π(X, v)]− ν, (5.3)

and

∇2Hε(v) = E[∇2
vhε(X, v)] =

1

ε
E
[
diag(π(X, v))− π(X, v)π(X, v)T

]
. (5.4)

Note that the minimizer v∗ satisfies ∇Hε(v
∗) = 0, leading to

E[π(X, v∗)] = ν,

which allows us to simplify the expression for the Hessian of Hε at v∗,

∇2Hε(v
∗) =

1

ε

(
diag(ν)− E

[
π(X, v∗)π(X, v∗)T

])
. (5.5)

We now discuss some properties of the above gradient vectors and Hessian matrices that
will be of interest to study the SGN algorithm.

5.2 Convexity of Hε and related properties

First of all, the baseline remark is that ∇2
vHε(v) is a positive semi-definite matrix for any

v ∈ RJ , which entails the convexity of Hε.
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Minimizers and rank of the Hessian. It is clear from (5.4) that for any v ∈ RJ , the
smallest eigenvalue of the Hessian matrix ∇2

vHε(v) associated to the eigenvector vJ is
equal to zero. Therefore, as indicated in the end of Section 2.1, for any t ∈ R, the vector
v∗+ tvJ is also a minimizer of (2.4). Nevertheless, it is well-known [15] that the minimizer
v∗ of (2.4) is unique up to a scalar translation of its coordinates. We shall thus denote by
v∗ the minimizer of (2.3) satisfying 〈v∗,vJ〉 = 0. It means that v∗ belongs to 〈vJ〉⊥, and
that the function Hε admits a unique minimizer over the J−1 dimensional subspace 〈vJ〉⊥.
However, as already shown in [23] and further discussed in [5, Section 3.3], the objective
function Hε is not strongly convex, even by restricting the maximization problem (2.3)
to the subspace 〈vJ〉⊥ since it may be shown that v 7→ Hε(v) may have some vanishing
curvature, leading to a flat landscape, i.e. to eigenvalues of the Hessian matrix that are
arbitrarily close to 0 for large values of ‖v‖ in 〈vJ〉⊥.

Moreover, for any (x, v) ∈ X × RJ , it follows from [5, Lemma A.1] that the matrices
∇2
vhε(x, v) and ∇2

vHε(v) are of rank J − 1, and therefore, all their eigenvectors associated
to non-zero eigenvalues belong to 〈vJ〉⊥. Finally, one also has that ∇vhε(x, v) ∈ 〈vJ〉⊥ for
any (x, v) ∈ X × RJ .

Useful upper and lower bounds. We conclude this section by stating a few inequalities
that we repeatedly use in the proofs of our main results. Since ν and π(x, v) are vectors
with positive entries that sum up to one, it follows from (5.1) that for any (x, v) ∈ X ×RJ ,

‖∇vhε(x, v)‖ 6 ‖ν‖+ ‖π(x, v)‖ 6 2, (5.6)

and that the gradient of Hε is always bounded for any v ∈ RJ ,

‖∇Hε(v)‖ 6 2. (5.7)

Moreover, thanks to the property that

λmax

(1

ε

(
diag(π(x, v))− π(x, v)π(x, v)T

))
6

1

ε
Tr
(
diag(π(x, v))

)
=

1

ε
,

we obtain that for any (x, v) ∈ X × RJ ,

λmax

(
∇2
vhε(x, v)

)
6

1

ε
and λmax

(
∇2
vHε(v)

)
6

1

ε
. (5.8)

Finally, by [5, Lemma A.1], the second smallest eigenvalue of ∇2Hε(v
∗) is positive, and

one has that

λmin

(
∇2Hε(v

∗)
)

= min
v∈〈vJ 〉⊥

{vT∇2Hε(v
∗)v

‖v‖2
}
>

1

ε
min(ν). (5.9)

5.3 Generalized self-concordance for regularized semi-discrete OT

Let us now introduce the so-called notion of generalized self-concordance proposed in Bach
[2] for the purpose of obtaining fast rates of convergence for stochastic algorithms with
non-strongly convex objective functions. Generalized self-concordance has been shown to
hold for regularized semi-discrete OT in [5], and we discuss below its implications of some
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key properties for the analysis of the SGN algorithm studied in this paper. To this end,
for any v ∈ 〈vJ〉⊥ and for all t in the interval [0, 1], we denote vt = v∗ + t(v− v∗), and we
define the function ϕ, for all t ∈ [0, 1], as

ϕ(t) = Hε(vt).

The second-order Taylor expansion of ϕ with integral remainder is given by

ϕ(1) = ϕ(0) + ϕ′(0)−
∫ 1

0
(t− 1)ϕ′′(t) dt. (5.10)

Using that ϕ(1) = Hε(v), ϕ(0) = Hε(v
∗) and ϕ′(0) = 〈v − v∗,∇Hε(v

∗)〉 = 0, it has been
first remarked in [5] that inequality (5.8) implies that

Hε(v)−Hε(v
∗) 6

1

2ε
‖v − v∗‖2 (5.11)

Moreover, it is shown in the proof of [5, Lemma A.2] that the following inequality holds

∣∣ϕ′′′(t)∣∣ 6 √2

ε
ϕ′′(t)‖v − v∗‖. (5.12)

It means that the function ϕ satisfies the so-called generalized self-concordance property
with constant sε =

√
2/ε as defined in Appendix B of [2]. As a consequence of inequality

(5.12) and thanks to the arguments in the proof of [5, Lemma A.2], the error of linearizing
the gradient ∇Hε(v) ≈ ∇2Hε(v

∗)(v − v∗) is controlled as follows,

‖∇Hε(v)−∇2Hε(v
∗)(v − v∗)‖ 6 2sε‖v − v∗‖2. (5.13)

Moreover, generalized self-concordance also implies the following result (which is a conse-
quence of the arguments in the proof of Lemma A.2 in [5]) that may be interpreted as a
local strong convexity property of the function Hε in the neighborhood of v∗.

Lemma 5.1. For any v ∈ 〈vJ〉⊥, we have

〈∇Hε(v), v − v∗〉 > 1− exp(−δ(v))

δ(v)
(v − v∗)T∇2Hε(v

∗)(v − v∗), (5.14)

where δ(v) = sε‖v − v∗‖.

Finally, if we now consider the matrix-valued function Gε(v) introduced in equation (3.1),
we have the following result which can be interpreted as a local Lipschitz property of Gε(v)
around v = v∗. The proof of this lemma is postponed to Appendix A.

Lemma 5.2. For any v ∈ 〈vJ〉⊥, we have that

−4

ε
‖v − v∗‖IJ 6 Gε(v)−Gε(v∗) 6

4

ε
‖v − v∗‖IJ , (5.15)

in the sense of partial ordering between positive semi-definite matrices.
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6 Proofs of the main results

This section contains the proofs of our main results that are stated in Section 3. Our
results are based on previous important contributions on self-concordance functions (see
e.g. [2, 5]), regularization of second order algorithms [6] and on the Kurdyka- Lojasiewicz
inequality adapted to stochastic algorithms [22]. More specifically, almost sure convergence
and almost sure convergence rates crucially depend on the adaptive property (3.4), which

induces a contraction rate of the sequence G
1/2
ε (v∗)

(
V̂n− v∗

)
(see Equation (6.11) below).

The non-asymptotic study is then based on both the self-concordance property, stated in
Lemma 5.1 and on the KL inequality stated in Proposition 6.1. The combination of these
two properties is an essential novelty brought by our work in order to build a key Lyapunov
function in Equation (6.45). We emphasize that to obtain the results stated below, we
have derived quantitative computations that are specific to the regularized OT problem.
In particular, if the use of the KL inequality is borrowed from [22], the exact values of
the constant mε and M used in Proposition 6.1 crucially depend on the self-concordance
property of the regularized OT problem.

6.1 Keystone property

We start with the proof of inequality (3.4) that states the adaptivity of the SGN algorithm
to the local geometry of Hε.

Proof of Proposition 3.1. First of all, one can remark thatGε(v
∗) is a positive semi-definite

matrix whose smallest eigenvalue is equal to zero and associated to the eigenvector vJ .
Thus, all the eigenvectors of Gε(v

∗) associated to non-zero eigenvalues belong to 〈vJ〉⊥.
We already saw from (5.5) that

∇2Hε(v
∗) =

1

ε

(
diag(ν)− E

[
π(X, v∗)π(X, v∗)T

])
.

Consequently, it follows from (3.1) and (5.1) that

Gε(v
∗) = E

[
π(X, v∗)π(X, v∗)T

]
− ννT = diag(ν)− ννT − ε∇2Hε(v

∗),

which implies that
Gε(v

∗) = ∇2Hε(v
∗) + Σ∗ε

where
Σ∗ε = diag(ν)− ννT − (1 + ε)∇2Hε(v

∗).

On the one hand, it is easy to see that vTJΣ∗εvJ = 0. On the other hand, we deduce from
inequality (5.9) that for all v ∈ 〈vJ〉⊥,

vTΣ∗εv 6 max(ν)−
(1 + ε

ε

)
min(ν).

Finally, condition (3.2) on the regularization parameter ε leads to Gε(v
∗) 6 ∇2Hε(v

∗),
which completes the proof of Proposition 3.1.
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6.2 Proofs of the most sure convergence results

Proof of Theorem 3.1. In what follows, we borrow some arguments from the proof
of [6, Theorem 4.1] to establish the almost sure convergence of the regularized versions of
the SGN algorithm as an application of the Robbins-Siegmund Theorem [41].

• We already saw that for all n > 0, V̂n belongs to 〈vJ〉⊥. We clearly have from
(5.1) that for all n > 0, ∇vhε(Xn+1, V̂n) also belong to 〈vJ〉⊥. Hence, we have from (2.6)
that for all n > 0,

V̂n+1 = V̂n − nαPJS−1
n PJ

(
∇Hε(V̂n) + εn+1

)
, (6.1)

where the martingale increment εn+1 is given by

εn+1 = ∇vhε(Xn+1, V̂n)− E[∇(hε(Xn+1, V̂n))|Fn] = ∇vhε(Xn+1, V̂n)−∇Hε(V̂n)

with Fn = σ(X1, . . . , Xn). Moreover, it follows from the Taylor-Lagrange formula that

Hε(V̂n+1) = Hε(V̂n)+∇Hε(V̂n)T (V̂n+1−V̂n)+
1

2
(V̂n+1−V̂n)T∇2Hε(ξn+1)(V̂n+1−V̂n), (6.2)

where ξn+1 = V̂n + t(V̂n+1 − V̂n) with t ∈]0, 1[. Consequently, we deduce from (6.1) and
(6.2) that for all n > 0,

Hε(V̂n+1) = Hε(V̂n)− nα
〈
∇Hε(V̂n), PJS

−1
n PJ

(
∇Hε(V̂n) + εn+1

)〉
+
n2α

2

(
PJS

−1
n PJ

(
∇Hε(V̂n) + εn+1

))T∇2Hε(ξn+1)
(
PJS

−1
n PJ

(
∇Hε(V̂n) + εn+1

))
.

Taking the conditional expectation with respect to Fn on both sides of the previous equal-
ity, we obtain that for all n > 0,

E[Hε(V̂n+1)|Fn] = Hε(V̂n)− nα∇Hε(V̂n)TPJS
−1
n PJ∇Hε(V̂n)

+
n2α

2
E
[
∇vhε(Xn+1, V̂n)TPJS

−1
n PJ∇2Hε(ξn+1)PJS

−1
n PJ∇vhε(Xn+1, V̂n)

∣∣Fn]
= Hε(V̂n)− nα∇Hε(V̂n)TPJS

−1
n PJ∇Hε(V̂n)

+
n2α

2
E
[
∇vhε(Xn+1, V̂n)TS−1

n ∇2Hε(ξn+1)S−1
n ∇vhε(Xn+1, V̂n)

∣∣Fn] (6.3)

using the elementary fact that PJ∇vhε(Xn+1, V̂n) = ∇vhε(Xn+1, V̂n) as well as
∇2Hε(ξn+1)vJ = 0 which implies that PJ∇2Hε(ξn+1)PJ = ∇2Hε(ξn+1). On the one
hand, we have from inequality (5.6) that ‖∇vhε(Xn+1, V̂n)‖ 6 2. On the other hand, it
follows from inequality (5.8) that λmax

(
∇2Hε(ξn+1)

)
6 1/ε. Therefore, we deduce from

(6.3) that for all n > 0,

E[Hε(V̂n+1)|Fn] 6 Hε(V̂n) +An −Bn a.s.

where the two positive random variables An and Bn are given by

An =
2n2α

ε(λmin

(
Sn)
)2
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and Bn = nα∇Hε(V̂n)TPJS
−1
n PJ∇Hε(V̂n). Our purpose is now to show that

∞∑
n=1

An < +∞ a.s.

We already saw from (4.3) that for all n > 1,

Sn = IJ +

n∑
k=1

∇vhε(Xk, V̂k−1)∇vhε(Xk, V̂k−1)T +Rn

where

Rn =

n∑
k=1

γ
(

1 +
⌊ k
J

⌋)−β
ZkZ

T
k .

We clearly have λmin(Sn) > λmin(Rn). Let pn be the largest integer such that pnJ 6 n.
One can remark that

Rn =
( pn∑
m=1

m−β
)
γ diag(ν) +

n∑
k=pn+1

γ
(

1 +
⌊ k
J

⌋)−β
ZkZ

T
k , (6.4)

which implies that

λmin(Sn) > γmin(ν)
( pn∑
m=1

m−β
)
.

However, for any 0 < β < 1/2 and for all pn > 4,

pn∑
m=1

1

mβ
>

p1−β
n

2(1− β)
.

Consequently, using that pn > nJ−1 − 1, we obtain that

∞∑
n=1

An 6
8(1− β)2

ε(γmin(ν))2

∞∑
n=1

n2α

p
2(1−β)
n

6
16(1− β)2J2(1−β)

ε(γmin(ν))2

∞∑
n=1

1

n2(1−α−β)
< +∞ a.s.

since the assumption 0 < α + β < 1/2 implies that 2(1 − α − β) > 1. Therefore, we
can apply the Robbins-Siegmund Theorem [41] to conclude that the sequence (Hε(V̂n))
converges almost surely to a finite random variable and that the series

∞∑
n=1

Bn < +∞ a.s.

leading to

∞∑
n=1

nα
‖∇Hε(V̂n)‖2

λmax(Sn)
< +∞ a.s. (6.5)

One can very from inequality (5.6) and (4.3) that for all n > 1,

λmax(Sn) 6 1 + 4n+ γmax(ν)

n∑
k=1

(
1 +

⌊ k
J

⌋)−β
6 1 + (4 + γmax(ν))n.
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Since α > 0, it implies that

∞∑
n=1

nα

λmax(Sn)
= +∞ a.s. (6.6)

The rest of the proof proceeds from standard arguments combining (6.5) and (6.6). Let

Hε,∞ = lim
n→+∞

Hε(V̂n) a.s.

and assume by contradiction that Hε,∞ > Hε(v
∗) where

Hε(v
∗) = min

v∈〈vJ 〉⊥
Hε(v).

Since Hε is a convex function with a unique minimizer v∗ on 〈vJ〉⊥, we necessarily have

lim
‖v‖→+∞

Hε(v) = +∞.

It means that (V̂n) is almost surely bounded since Hε,∞ is finite. Therefore, we can find

a compact set K such that v∗ = arg minv∈〈vJ 〉⊥ Hε(v) /∈ K and V̂n ∈ K for all n large
enough. Using the continuity of ‖∇Hε‖ and the compactness of K, we conclude that
‖∇Hε‖ attains its lower bound, which is strictly positive on K. It ensures the existence
of a constant c > 0, such that, for all n large enough,

‖∇Hε(V̂n)‖ ≥ c > 0.

The above lower bound associated with (6.5) and (6.6) yields a contradiction. Hence, we
can conclude that

lim
n→+∞

‖∇Hε(V̂n)‖ = 0 a.s.

It clearly implies that equation (3.5) holds true since (V̂n) is a bounded sequence with a
unique adherence point v∗.

• It now remains to investigate the almost sure convergence of the matrix Sn. We
observe from equation (4.3) that Sn can be splitted into two terms,

Sn = Mn + Σn (6.7)

with

Mn =

n∑
k=1

ΦkΦ
T
k −Gε(V̂k−1) and Σn = IJ +

n∑
k=1

Gε(V̂k−1) +Rn,

where the vector Φk stands for Φk = ∇vhε(Xk, V̂k−1). Using the assumption 0 < β < 1/2,
we have from (6.4) that

lim
n→+∞

1

n

(
IJ +Rn

)
= 0.

Moreover, it follows from (5.3) that Gε is a continuous function from RJ to RJ×J . Con-
sequently, we deduce from convergence (3.5) together with the Cesaro mean convergence
theorem that

lim
n→+∞

1

n

n∑
k=1

Gε(V̂k−1) = Gε(v
∗) a.s.
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which implies that

lim
n→+∞

1

n
Σn = Gε(v

∗) a.s. (6.8)

Hereafter, we focus our attention on the first term Mn in the right-hand side of (6.7). For
any u ∈ RJ , let

Mn(u) = uTMnu =
n∑
k=1

ξk(u)

where, for all n > 1, ξn(u) = uT
(
ΦnΦT

n − Gε(V̂n−1)
)
u. It follows from (3.1) that for all

n > 1, E[Φn+1ΦT
n+1|Fn] = Gε(V̂n). Hence, for all n > 1, E[ξn+1(u)|Fn] = 0. Furthermore,

we obtain from (5.6) and (3.1) that for all n > 1, E[ξ2
n+1(u)|Fn] 6 16||u||2. Consequently,

(Mn(u)) is a locally square-integrable martingale with predictable quadratic variation
satisfying

〈M(u)〉n =

n∑
k=1

E[ξ2
k(u)|Fk−1] 6 16n||u||4.

We deduce from the strong law of large numbers for martingales given (e.g. by Theorem
1.3.24 in [18]) that

lim
n→+∞

1

n
Mn(u) = 0 a.s.

which may be translated immediately into the matricial form

lim
n→+∞

1

n
Mn = 0 a.s. (6.9)

Finally, the convergence (3.6) follows from the decomposition (6.7) together with (6.8) and
(6.9), which completes the proof of Theorem 3.1.

It is straightforward to obtain the almost sure convergence of Ŵn as follows.

Proof of Corollary 3.1. By Theorem 3.1 one has that V̂n converges a.s. to v∗ under the
assumption that α+β < 1/2. Then, the almost sure convergence of Ŵn to Wε(µ, ν) follows
from assumption (3.7) and the arguments in the proof of [5, Theorem 3.5].

6.3 Proofs of the almost sure rates of convergence

We now establish the almost sure rates of convergence rates for the SGN algorithm. In
contrast with the previous results, we emphasize that the regularization parameter ε must
now be small enough, in the sense of condition (3.2). This entails the key inequality (3.4)
deduced from Proposition 3.1.

Proof of Theorem 3.2. To alleviate the notation, we denote by ‖A‖ either the operator
norm ‖A‖2 or the Frobenius norm ‖A‖F all along the proof. Since these two norms are
equivalent and verify that ‖.‖22 6 ‖.‖2F 6 J‖.‖22, the upper bounds derived below might
hold up to multiplicative constant depending on J , which will not affect the results that
are purely asymptotic.
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• Our starting point when α = 0 is equation (2.6) written with Sn = nSn. We recall that
the martingale increment is εn+1 = ∇vhε(Xn+1, V̂n)−∇Hε(V̂n), so that for all n > 0,

V̂n+1 − v∗ = V̂n − v∗ − PJS−1
n PJ

(
∇Hε(V̂n) + εn+1

)
= V̂n − v∗ −

1

n

(
PJ
(
S
−1
n −G−ε (v∗)

)
PJ
)(
∇Hε(V̂n) + εn+1

)
(6.10)

− 1

n
G−ε (v∗)

(
∇Hε(V̂n) + εn+1

)
where we decomposed S−1

n = n−1S
−1
n = n−1G−ε (v∗)+n−1(S

−1
n −G−ε (v∗)) and PJGε(v

∗) =
Gε(v

∗) which implies that PJG
−
ε (v∗)PJ = G−ε (v∗). The rest of the proof then consists in

a linearization of ∇Hε(V̂n) around v∗. For that purpose, denote

Dn =
(
PJ
(
S
−1
n −G−ε (v∗)

)
PJ
)

and δn = ∇Hε(V̂n)−∇2Hε(v
∗)(V̂n − v∗).

We obtain from (6.10) that for all n > 0,

V̂n+1 − v∗ =
(
PJ −

1

n
G−ε (v∗)∇2Hε(v

∗)
)(
V̂n − v∗

)
− 1

n
PJS

−1
n PJεn+1

− 1

n
PJS

−1
n PJδn −

1

n
Dn∇2Hε(v

∗)
(
V̂n − v∗

)
.

Hence, by setting Ûn = G
1/2
ε (v∗)

(
V̂n − v∗

)
, we obtain that for all n > 0,

Ûn+1 =
(
PJ −

1

n
Γε(v

∗)
)
Ûn −

1

n
Anεn+1 −

1

n
Tn (6.11)

where Γε(v
∗) = G

−1/2
ε (v∗)∇2Hε(v

∗)G
−1/2
ε (v∗) and Tn = Anδn +Bn

(
V̂n − v∗

)
with

An = G1/2
ε (v∗)PJS

−1
n PJ , (6.12)

Bn = G1/2
ε (v∗)Dn∇2Hε(v

∗). (6.13)

Thanks to inequality (3.4), we have that λ
〈vJ 〉⊥
min (Γε(v

∗)) > 1. For all 0 6 k 6 n, let

Pnk =

n∏
i=k+1

(
PJ −

1

i
Γε(v

∗)
)

(6.14)

with the usual convention that Pnn = PJ . We deduce from (6.11) that for all n > 0,

Ûn+1 = Pn0 Û1 −
n∑
k=1

1

k
Pnk Akεk+1 −

n∑
k=1

1

k
Pnk Tk. (6.15)

The first term of (6.15) is easy to handle. If ρ stands for to the minimal eigenvalue of
Γε(v

∗) when restricted to act on the subspace 〈vJ〉⊥, a simple diagonalization of the matrix
Γε(v

∗) leads, for all 0 6 k 6 n, to

‖Pnk ‖ 6 κ

(
k

n

)ρ
(6.16)
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where κ > 0. Concerning the middle term of (6.15), let (Mn) be the multidimensional
martingale defined by M1 = 0 and, for all n > 1,

Mn+1 =

n∑
k=1

Akεk+1.

We infer from (5.3) and (3.1) that ‖εn+1‖ 6 4, E[εn+1|Fn] = 0 and

E[εn+1ε
T
n+1|Fn] = Gε(V̂n)−∇Hε(V̂n)∇Hε(V̂n)T .

Moreover, it follows from (3.5)

lim
n→+∞

∇Hε(V̂n) = ∇Hε(v
∗) = 0 and lim

n→+∞
Gε(V̂n) = Gε(v

∗) a.s.

which ensures via (3.6) and (6.12) that

lim
n→+∞

AnE[εn+1ε
T
n+1|Fn]ATn = PJ a.s.

Consequently, we have from the Cesaro mean convergence theorem that the predictable
quadratic variation of the multidimensional martingale (Mn) satisfies

lim
n→+∞

1

n
〈M〉n = lim

n→+∞

1

n

n∑
k=2

Ak−1E[εkε
T
k |Fk−1]Ak−1 = PJ a.s.

Hence, we deduce from the strong law of large numbers for multidimensional martingales
given by Theorem 4.3.16 in [18] that

‖Mn‖2 = O(n log n) a.s.

Therefore, there exists a finite positive random variable C such that for all n > 1,

‖Mn+1‖ 6 C
√
n log n a.s. (6.17)

Hereafter, denote by Qn+1 the middle term of (6.15). We obtain from a simple Abel
transform that

Qn+1 =

n∑
k=1

1

k
Pnk (Mk+1 −Mk) =

1

n
Mn+1 +

n−1∑
k=1

1

k
PnkMk+1 −

n∑
k=2

1

k
PnkMk

=
1

n
Mn+1 +

n−1∑
k=1

(1

k
Pnk −

1

k + 1
Pnk+1

)
Mk+1

=
1

n
Mn+1 +

n−1∑
k=1

1

k(k + 1)

(
PJ − Γε(v

∗)
)
Pnk+1Mk+1 (6.18)

It follows from (6.16), (6.17), (6.18) that for all n > 1,

‖Qn+1‖ 6 C
(√n log n

n
+

κ

nρ

n−1∑
k=1

(k + 1)ρ

k(k + 1)

√
k log k

)
a.s.

6 C
(( log n

n

)1/2
+
κ
√

log n

nρ

n∑
k=1

1

ka

)
a.s.

33



where a = 3/2− ρ < 1. Consequently, we deduce that for all n > 1,

‖Qn+1‖ 6 C
(( log n

n

)1/2
+
κn1−a√log n

(1− a)nρ

)
6 D

( log n

n

)1/2
a.s. (6.19)

where

D =
C(1− a+ κ)

1− a
.

The last term of (6.15) is much more difficult to handle. Denote for all n > 1,

∆n =
n∑
k=1

1

k
Pnk Tk (6.20)

We recall that Tn = Anδn +Bn
(
V̂n− v∗

)
where An and Bn are given by (6.12) and (6.13).

We already saw from (5.13) that

‖δn‖ 6
2
√

2

ε
‖V̂n − v∗‖2

which implies that

‖Tn‖ 6
2
√

2

ε
‖An‖ ‖V̂n − v∗‖2 + ‖Bn‖ ‖V̂n − v∗‖. (6.21)

Moreover, it follows from (3.5) and (3.6) that

lim
n→+∞

‖An‖ = ‖G−1/2
ε (v∗)‖ and lim

n→+∞
‖Bn‖ = 0 a.s.

Consequently, we obtain from (3.5) and (6.21) that it exists a positive constant b = (4κ)−1

where κ is introduced in (6.16), such that for n large enough,

‖Tn‖ 6 b‖V̂n − v∗‖ a.s. (6.22)

Define for all n > 1,

Ln =
1

n

n∑
k=1

‖V̂k − v∗‖. (6.23)

We deduce from (6.20) together with (6.16) and (6.22) that for all n > 1,

‖∆n‖ 6
κ

nρ

n∑
k=1

kρ

k
‖Tk‖ 6

E

nρ
+
κb

nρ

n∑
k=1

kρ

k
‖V̂k − v∗‖ 6

E

nρ
+ κbLn a.s. (6.24)

where E is a finite positive random variable. Putting together the three contributions
(6.16), (6.19) and (6.24), we obtain from (6.15) that for all n > 1,

‖Ûn+1‖ 6
τ‖Û1‖+ E

nρ
+D

( log n

n

)1/2
+ κbLn a.s.

which implies that a finite positive random variable F exists and a constant 0 < c < 1/2
such that for all n > 1,

‖V̂n+1 − v∗‖ 6 F
( log n

n

)1/2
+ cLn a.s. (6.25)
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Herafter, we have from (6.23) and (6.25) that or all n > 1,

Ln+1 =
(

1− 1

n+ 1

)
Ln +

1

n+ 1
‖V̂n+1 − v∗‖,

6
(

1− 1

n+ 1

)
Ln +

1

n+ 1

(
F
( log n

n

)1/2
+ cLn

)
a.s

6
(

1− d

n+ 1

)
Ln +

F

(n+ 1)

( log n

n

)1/2
a.s

where d = 1− c. A straightforward induction yields that for all n > 1,

Ln 6
n∏
k=2

(
1− d

k

)
L1 +

n∑
k=2

n∏
i=k+1

(
1− d

i

) F

(k + 1)

( log k

k

)1/2
a.s (6.26)

However, it is well-known that

n∏
k=2

(
1− d

k

)
6
( 2

n+ 1

)d
and

n∏
i=k+1

(
1− d

i

)
6
(k + 1

n+ 1

)d
.

Hence, we obtain from (6.26) that for all n > 1,

Ln 6
( 2

n+ 1

)d
L1 + F

( 1

n+ 1

)d n∑
k=2

(k + 1)d

(k + 1)

( log k

k

)1/2
a.s

Since 1/2 < d < 1, it implies that

Ln 6
2dL1

nd
+
F
(
log n

)1/2
nd

n∑
k=1

1

k3/2−d 6
2dL1

nd
+

2F

2d− 1

( log n

n

)1/2
a.s

leading to

Ln = O
(( log n

n

)1/2 )
a.s (6.27)

Finally, it follows from (6.25) and (6.27) that

‖V̂n − v∗‖2 = O
( log n

n

)
a.s.

which completes the proof of (3.8).
• We now focus our attention on (3.9). We have from (6.7) that

Sn −Gε(v∗) =
1

n
Mn +

1

n

(
IJ +Rn

)
+

1

n

n∑
k=1

(
Gε(V̂k−1)−Gε(v∗)

)
. (6.28)

On the one hand, let Mn(u) = uTMnu where u ∈ RJ . We already saw that (Mn(u)) is
a locally square-integrable martingale with increments bounded by 8‖u‖2. Moreover, its
predictable quadratic variation satisfies 〈M(u)〉n 6 16n‖u‖4. Therefore, we obtain from
the third part of Theorem 1.3.24 in [18] that

|Mn(u)|2 = O(n log n) a.s.
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which implies that

1

n
‖Mn‖ = O

(( log n

n

)1/2 )
a.s. (6.29)

On the other hand, we already saw from Lemma 5.2 that

1

n

n∑
k=1

‖Gε(V̂k−1)−Gε(v∗)‖ 6
4Ln
ε

which ensures via (6.27) that

1

n

n∑
k=1

‖Gε(V̂k−1)−Gε(v∗)‖ = O(
(( log n

n

)1/2 )
a.s. (6.30)

Furthermore, we also have

1

n
‖Rn‖ 6

(γmax(ν)

1− β

) 1

nβ
(6.31)

where β < 1/2. Consequently, we deduce the almost sure rate of convergence (3.9) for Sn
from the conjunction of (6.28), (6.29), (6.30) and (6.31). Finally, we obtain the almost

sure rate of convergence (3.9) for S
−1
n from the identity

S
−1
n −G−ε (v∗) = S

−1
n

(
Gε(v

∗)− Sn
)
G−ε (v∗),

which completes the proof of Theorem 3.2.

6.4 Proofs of the asymptotic normality results

Proof of Theorem 3.3. We now prove the asymptotic normality for the SGN algorithm.
• We recall from (6.15) that for all n > 1,

√
n
(
V̂n+1 − v∗

)
= −
√
nG−1/2

ε (v∗)Qn+1 +Rn (6.32)

where Rn =
√
nG
−1/2
ε (v∗)

(
Pn0 Û1 −∆n

)
with Û1 = G

1/2
ε (v∗)

(
V̂1 − v∗

)
,

Qn+1 =

n∑
k=1

1

k
Pnk Akεk+1,

∆n =
n∑
k=1

1

k
Pnk Tk,

On the one hand, we claim that the remainder Rn vanishes almost surely,

lim
n→∞

Rn = 0 a.s. (6.33)

As a matter of fact, we obviously have from (6.16) that

lim
n→∞

√
nPn0 Û1 = 0 a.s.
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Moreover, we deduce from the proof of Theorem 3.2 together with (6.21) that

‖Tn‖ = O
( log n

n

)
+O

( 1

nβ

( log n

n

)1/2 )
= O

( 1

nβ

( log n

n

)1/2 )
a.s. (6.34)

since 0 < β < 1/2 and

‖Bn‖ = O
( 1

nβ

)
a.s.

where Bn is defined by (6.13). Therefore, we obtain from (6.34) that there exists a finite
positive random variable C such that for all n > 1

‖Tn‖ 6
C

nβ

( log n

n

)1/2
a.s. (6.35)

Consequently, it follows from (6.16) and (6.35) that for all n > 1,

‖∆n‖ 6
Cκ

nρ

n∑
k=1

kρ

k1+β

( log k

k

)1/2
6
Cκ
√

log n

nρ

n∑
k=1

1

ka
a.s.

where a = 3/2 + β − ρ, leading to

‖∆n‖ 6
D

nβ

( log n

n

)1/2
a.s. (6.36)

with D = κC/(1− a). Hence, as β > 0, we infer from (6.36) that

lim
n→∞

√
n∆n = 0 a.s

which clearly implies that (6.33) is satisfied. On the other hand, Qn+1 is a sum of weighted
martingale differences. We deduce from the first part of Proposition B.2 in [50] that

√
nQn+1

L−→ N
(
0,Σ

)
(6.37)

where the asymptotic covariance matrix Σ is given by the integral form

Σ =

∫ ∞
0

(
exp
(
−
(

Γε(v
∗)− 1

2
PJ

)
s
))2

ds

=

∫ ∞
0

(
exp
(
−2s

(
Γε(v

∗)− 1

2
PJ

))
ds

=
1

2

∫ ∞
0

(
exp
(
−t
(
Γε(v

∗)− 1

2
PJ
))
dt

=
1

2

[
−
(

Γε(v
∗)− 1

2
PJ

)−
exp
(
−t
(

Γε(v
∗)− 1

2
PJ

)]∞
0

=
(

2Γε(v
∗)− PJ

)−
.

Therefore, we obtain from (6.37) that

√
nG−1/2

ε (v∗)Qn+1
L−→ N

(
0, G−1/2

ε (v∗)
(
2Γε(v

∗)− PJ
)−
G−1/2
ε (v∗)

)
. (6.38)
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Finally, it follows from (6.32) together with (6.33) and (6.38) that

√
n
(
V̂n − v∗

) L−→ N(0, G−1/2
ε (v∗)

(
2Γε(v

∗)− PJ
)−
G−1/2
ε (v∗)

)
,

which is exactly what we wanted to prove.

• It only remains to prove the asymptotic normality (3.14). We already saw from
inequality (5.11) that for all v ∈ RJ ,

Hε(v)−Hε(v
∗) 6

1

2ε
‖v − v∗‖2.

Moreover, we have from (2.7) that Ŵn −Wε(µ, ν) can be splitted into two terms,

√
n
(
Ŵn −Wε(µ, ν)

)
=

1√
n

n∑
k=1

(
Hε(v

∗)− hε(Xk, V̂k−1)
)
,

=
1√
n

n∑
k=1

(
Hε(V̂k−1)− hε(Xk, V̂k−1)

)
− 1√

n

n∑
k=1

(
Hε(V̂k−1)−Hε(v

∗)
)
.

(6.39)

The second term in equation (6.39) goes to 0 a.s. thanks to the almost sure rate of con-
vergence (3.8),

1√
n

n∑
k=1

(
Hε(V̂k−1)−Hε(v

∗)
)
6

1

2ε
√
n

n∑
k=1

‖V̂k−1 − v∗‖2 = O
( log2(n)√

n

)
a.s.

Finally, the first term in equation (6.39) is dealt using argument from the proof of Theorem
3.5 in [5], allowing to prove that it satisfies the asymptotic normality (3.14). This completes
the proof of Theorem 3.3.

6.5 Proofs of the non-asymptotic rates of convergence

We first detail some keystone results related to the use of the Kurdyka- Lojasiewicz func-
tional inequality that is at the heart of the proof of Theorem 3.4.

6.5.1 Kurdyka- Lojasiewicz inequality.

The analysis that we carry out is essentially based on the so-called Kurdyka- Lojasiewicz
functional inequality. We refer to the initial works [31,32] and to [10,11] for the use of such
inequality in deterministic optimization. To this end, let H̃ε be the positive and convex
function defined, for all v ∈ 〈vJ〉⊥, by

H̃ε(u) = Hε(G
−1/2
∗ u)−Hε(G

−1/2
∗ u∗),

where G
−1/2
∗ stands for the square root of the Moore-Penrose inverse of G∗ = Gε(v

∗), and

u∗ = G
1/2
∗ v∗. Since G

−1/2
∗ is symmetric, we notice that ∇H̃ε(u) = G

−1/2
∗ ∇Hε(G

−1/2
∗ u) and
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∇2H̃ε(u) = G
−1/2
∗ ∇2Hε(G

−1/2
∗ u)G

−1/2
∗ . Hence, we obtain from the upper bounds (5.7)

and (5.8) that for all u ∈ 〈vJ〉⊥,

‖∇H̃ε(u)‖ 6 2λmax(G
−1/2
∗ ), (6.40)

and

λmax

(
∇2H̃ε(u)

)
6

1

ε
λmax(G−∗ ). (6.41)

Consequently, it follows from the Taylor-Lagrange formula that for all u ∈ 〈vJ〉⊥,

H̃ε(u) 6
1

2ε
λmax(G−∗ )‖u− u∗‖2. (6.42)

First of all, we verify that the function H̃ε satisfies a Kurdyka- Lojasiewciz inequality as
stated in the next proposition. We refer the reader to [22] and the references therein for
further details on this topic.

Proposition 6.1. There exist two positive constants mε < M such that, for all u ∈ 〈vJ〉⊥
with u 6= u∗,

0 < mε 6 ‖∇H̃ε(u)‖2 +
‖∇H̃ε(u)‖2

H̃ε(u)
6M < +∞. (6.43)

Moreover, the constant mε can be chosen as

mε = ελmin(Gε(v
∗)) min

(
1,
ε

4

)
. (6.44)

The proof of this key inequality is postponned to Appendix B. From equation (6.44),
we clearly observe that the magnitude of the constant mε depends on ε. Nevertheless, in
the analysis carried out in this paper, the regularization parameter ε is held fixed, and we
will not be interested in deriving sharp upper bounds depending on ε for the mean square
error of V̂n. We believe that a careful analysis of the role of ε on the convergence of the
SGN algorithm is a difficult issue that is left open for future investigation.

6.5.2 Choice of a Lyapunov function

Hereafter, a key step in our analysis is based on the Lyapunov function Φ defined, for all
u ∈ 〈vJ〉⊥, by

Φ(u) = H̃ε(u) exp(H̃ε(u)). (6.45)

On the one hand, it follows from the elementary inequality exp(x) 6 1 + x exp(x) that for
all u 6= u∗,

Φ(u)

H̃ε(u)
6 1 + Φ(u). (6.46)

We shall repeatedly use inequality (6.46) in all the sequel. On the other hand, we can
easily compute for all u 6= u∗,

∇Φ(u) =
(

1 +
1

H̃ε(u)

)
Φ(u)∇H̃ε(u),
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which implies that

〈∇Φ(u),∇H̃ε(u)〉 =
(

1 +
1

H̃ε(u)

)
Φ(u)‖∇H̃ε(u)‖2.

Consequently, we deduce from Proposition 6.1 thatmεΦ(u) 6 〈∇Φ(u),∇H̃ε(u)〉 ≤MΦ(u).
Moreover, if Σ denotes a positive semi-definite matrix, by an application of Proposition
6.1, we also obtain the following key lower bound〈

∇Φ(u),Σ∇H̃ε(u)
〉
≥ mελmin(Σ)Φ(u), (6.47)

that will be useful to control the non-asymptotic rate of convergence of the SGN algorithm.
Finally, as remarked in [22], a straightforward computation leads, for all u 6= u∗, to

∇2Φ(u) = Φ(u)
((

1 +
2

H̃ε(u)

)
∇H̃ε(u)∇H̃ε(u)T +

(
1 +

1

H̃ε(u)

)
∇2H̃ε(u)

)
.

Hence, using the fact that λmax

(
∇H̃ε(u)∇H̃ε(u)T

)
= ‖∇H̃ε(u)‖2, we obtain that for all

u 6= u∗,

λmax(∇2Φ(u)) 6 Φ(u)
((

1 +
2

H̃ε(u)

)
‖∇H̃ε(u)‖2 +

(
1 +

1

H̃ε(u)

)
λmax

(
∇2H̃ε(u)

))
.

Therefore, using inequality (6.46) together with the upper bounds (6.40) and (6.41), we
obtain that for all u ∈ 〈vJ〉⊥ with u 6= u∗,

λmax(∇2Φ(u)) 6 δελmax(G−∗ )(1 + Φ(u)) (6.48)

where δε = 2(6 + ε−1). Inequality (6.48) will also be crucial to derive the non-asymptotic
rate of convergence of the SGN algorithm. Finally, thanks to the following result, we will
be able to relate the study of the Lyapunov function Φ to the quadratic risk of V̂n and Sn.

Proposition 6.2. There exists a positive constant dε such that for all u ∈ 〈vJ〉⊥,

‖u− u∗‖2 6 dεΦ(u). (6.49)

Proof. First, one can verify that for all u ∈ 〈vJ〉⊥ in a neighborhood of u∗ with u 6= u∗, the
function ‖u−u∗‖−2H̃ε(u) is lower bounded. Moreover, using that H̃ε is a convex function
on 〈vJ〉⊥ that attains its minimal value at u∗ with a non-degenerate minimum, we also
have

lim inf
‖u‖→+∞

H̃ε(u)

‖u‖
> 0.

It implies that for any positive t,

lim
‖u‖→+∞

exp
(
tH̃ε(u)

)
‖u− u∗‖2

= +∞.

Since H̃ε(u) > 0, one always has Φ(u) > H̃ε(u). Consequently, for all u 6= u∗,

Φ(u)

‖u− u∗‖2
=

Φ(u)

‖u− u∗‖2
11‖u−u∗‖61 +

Φ(u)

‖u− u∗‖2
11‖u−u∗‖>1,

>
H̃ε(u)

‖u− u∗‖2
11‖u−u∗‖61 + min

‖u−u∗‖≥1

H̃ε(u) exp
(
H̃ε(u)

)
‖u− u∗‖2

>
1

dε
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for some positive constant dε, where we used the local behavior around u∗ of H̃ε to derive
a lower bound for the first term and the asymptotic behavior of H̃ε for the second one
with t = 1, which is exactly what we wanted to prove.

6.5.3 A recursive inequality and proof of Theorem 3.4

We first describe the one-step evolution of the sequence (Φ(G
1/2
∗ V̂n)) where (V̂n) is the

recursive sequence defined by (2.6) corresponding to the SGN algorithm. From this anal-
ysis, we shall also deduce the rate of convergence of the expected quadratic risk associated

with V̂n and Sn. Denote Ũn = G
1/2
∗ V̂n.

Proposition 6.3. Assume that α ∈ [0, 1/2[ and that α + β < 1/2. Then, there exist an
integer n0 > J and a positive constant cε > 0 such that, for all n > n0,

E
[
Φ(Ũn+1)|Fn

]
6
(

1− mεn
αλmin(G∗)λmin(S−1

n )

2

)
Φ(Ũn) + cεn

2αλ2
max(S−1

n ). (6.50)

The proof of Proposition 6.3 is postponed to Appendix B. We are now in position to
establish the non-asymptotic rates of convergence for the SGN algorithm.

Proof of Theorem 3.4. In the proof, we use the notation cε to denote a positive constant
(depending on ε and possibly on α and β) that is independent from n and whose value
may change from line to line. We only consider the situation where α ∈]0, 1/2[ and our
analysis is based on the function Φ. We will establish that for all n > 1,

E[Φ(Ũn)] 6
cε
n1−α . (6.51)

Step 1: Preliminary rate. Our starting point is inequality (6.50) that we combine with
(B.6) and (B.7) to obtain that there exists an integer n0 such that, for all n ≥ n0,

E
[
Φ(Ũn+1)|Fn

]
6 (1− c1(n)n−1+α)Φ(Ũn) + c2(n)n2(α+β−1) (6.52)

where nJ = n/J ,

c1(n) =
mελmin(G∗)

8 + 4γmax(ν) + 2n−1
,

c2(n) =
cε

J2(β−1)
(
γmin(ν)(1− n−1

J )1−β + (1− 2γmin(ν))n−1
J

)2 .
By taking the expectation on both sides of (6.52), we obtain that for all n > n0,

E[Φ(Ũn+1)] 6
(
1− c1(n)n−1+α

)
E[Φ(Ũn)] + c2(n)n−2(1−α−β).

Hereafter, it is not hard to see that for n large enough, there exist two positive constants
c1 and c2, depending on ε, such that c1(n) > c1 and c2(n) 6 c2. Hence, there exists an
integer n0 such that, for all n > n0,

E[Φ(Ũn+1)] 6
(
1− c1n

−1+α
)
E[Φ(Ũn)] + c2n

−2(1−α−β).

Therefore, it follows from the proof of Lemma A.3 in [5] that there exist a positive constant
cε and an integer n0 such that, for all n > n0,

E[Φ(Ũn)] 6
cε

n1−2(α+β)
.
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We emphasize that at this stage, we do not obtain the announced result that necessi-
tates further work with a plug-in strategy. The rest of the proof details this additional step.

Step 2: Plug-in. Let us now explain how one may improve the above result from

n−(1−2(α+β)) to n−(1−2α). First of all, thanks to Proposition 6.2, we obtain via Step 1
that

E[‖Ũn − u∗‖2] 6
cε

n1−2(α+β)
. (6.53)

Next, we shall consider the study of the convergence rate of Sn to improve the pessimistic
bounds (B.6) and (B.7). If pn denotes the largest integer such that pnJ 6 n, we already
saw from (4.3) and (6.4) that for all n > 1,

Sn = Σn +Rn

where

Σn =
1

n

n∑
k=1

∇vhε(Xk, V̂k−1)∇vhε(Xk, V̂k−1)T ,

Rn =
1

n
IJ +

1

n

( pn∑
m=1

m−β
)
γ diag(ν) +

1

n

n∑
k=pn+1

γ
(

1 +
⌊ k
J

⌋)−β
ZkZ

T
k .

On the one hand, it is not hard to see that it exists a positive constant c3 such that

‖Rn‖2F 6
c3

n2β
. (6.54)

On the other hand, starting from the fact that

Σn+1 = Σn +
1

n+ 1

(
∇vhε(Xn+1, V̂n)∇vhε(Xn+1, V̂n)T − Σn

)
,

we obtain that

‖Σn+1 −G∗‖2F = ‖Σn −G∗‖2F +
1

(n+ 1)2
‖∇vhε(Xn+1, V̂n)∇vhε(Xn+1, V̂n)T − Σn‖2F

+
2

n+ 1
〈S̃n −G∗,∇vhε(Xn+1, V̂n)∇vhε(Xn+1, V̂n)T − Σn〉F .

Therefore, by taking the conditional expectation on both sides of the above equality, we
obtain that

E
[
‖Σn+1 −G∗‖2F |Fn

]
= ‖Σn −G∗‖2F +

2

n+ 1
〈Σn −G∗, Gε(V̂n)− Σn〉F

+
1

(n+ 1)2
E
[
‖∇vhε(Xn+1, V̂n)∇vhε(Xn+1, V̂n)T − Σn‖2F |Fn

]
,

= ‖Σn −G∗‖2F −
2

n+ 1
‖Σn −G∗‖2F +

2

n+ 1
〈Σn −G∗, Gε(V̂n)−G∗〉F

+
1

(n+ 1)2
E
[
‖∇vhε(Xn+1, V̂n)∇vhε(Xn+1, V̂n)T − Σn‖2F |Fn

]
,

6 ‖Σn −G∗‖2F
(

1− 1

n+ 1

)
+

1

n+ 1
‖Gε(V̂n)−G∗‖2F

+
1

(n+ 1)2
E
[
‖∇vhε(Xn+1, V̂n)∇vhε(Xn+1, V̂n)T − Σn‖2F |Fn

]
(6.55)
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where the last line follows from Cauchy-Schwarz and Young inequalities. Moreover, we
deduce from inequality (5.6) that

E
[
‖∇vhε(Xn+1, V̂n)∇vhε(Xn+1, V̂n)T − Σn‖2F |Fn

]
6 2E

[
‖∇vhε(Xn+1, V̂n)∇vhε(Xn+1, V̂n)T ‖2F |Fn

]
+ 2‖Σn‖2F 6 2× 42 + 2× 4 = 40.

Furthermore, we obtain from (5.15) that

‖Gε(V̂n)−G∗‖2F 6
16J

ε2
‖V̂n − v∗‖2.

Using the previous bounds in (6.55) leads to the recursive inequality

E
[
‖Σn+1 −G∗‖2F

]
6
(

1− 1

n+ 1

)
E
[
‖Σn −G∗‖2F

]
+

40

(n+ 1)2
+

16J

(n+ 1)ε2
E
[
‖V̂n − v∗‖2

]
.

Since Ũn − u∗ = G
1/2
∗
(
V̂n − v∗

)
, inequality (6.53) ensures that

E
[
‖Σn+1 −G∗‖2F

]
6
(

1− 1

n+ 1

)
E
[
‖Σn −G∗‖2F

]
+

40

(n+ 1)2
+

16Jcελmax(G−∗ )

n2(1−α−β)ε2
.

By applying Lemma A.3 in [5], we obtain that for n large enough,

E
[
‖Σn −G∗‖2F

]
6

cε

n(1−2(α+β))
.

From this last inequality and (6.54), we conclude that for n large enough,

E
[
‖Sn −G∗‖2F

]
6

cε

n(1−2(α+β))
+

c3

n2β
. (6.56)

Since 4β < 1 − 2α, it follows that 1 − 2(α + β) > 2β, which means that n−(1−2(α+β))

decays faster than n−2β and the second inequality in (3.18) holds true.

• From now on, we focus our attention on the first inequality in (3.18). It follows
from (6.50) and the previous calculation that for n large enough,

E[Φ(Ũn+1)] 6 (1− c1(n)n−1+α)E[Φ(Ũn)] + cεn
2α−2E

[
λ2

max(S
−1
n )
]
, (6.57)

using that S
−1
n = nS−1

n . The identity S
−1
n −G−∗ = G−∗ (G∗ − Sn)S

−1
n implies that

λmax(S
−1
n ) 6 ‖S−1

n −G−∗ ‖2 + ‖G−∗ ‖2 6 λmax(G−∗ )λmax(S
−1
n )‖Sn −G∗‖2 + ‖G−∗ ‖2.

It follows from inequality (B.6) that for n large enough, λmax(S
−1
n ) = nλmax(S−1

n ) 6 c4n
β

where c4 is a positive constant. It ensures that for n large enough,

λ2
max(S

−1
n ) 6 2c2

4λ
2
max(G−∗ )n2β‖Sn −G∗‖22 + 2‖G−∗ ‖22.

Since ‖Sn−G∗‖22 6 ‖Sn−G∗‖2F , we obtain from inequality (6.56) that for n large enough,

E
[
λ2

max(S
−1
n )
]
6 cε

(
1 +

n4β

n1−2α

)
+ 2‖G−∗ ‖22.
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Consequently, we deduce from the condition 4β < 1 − 2α that there exists a positive
constant Cε such that for all n > 1,

E
[
λ2

max(S
−1
n )
]
6 Cε. (6.58)

It follows from (6.57) and (6.58) that there exist two postive constants c1 and cε such that
for n large enough,

E[Φ(Ũn+1)] 6 (1− c1n
−1+α)E[Φ(Ũn)] + cεn

2α−2.

Hereafter, using once again Lemma A.3 in [5], we obtain that for all n > 1,

E[Φ(Ũn)] 6
cε
n1−α

which is exactly the announced inequality (6.51). Finally, as V̂n − v∗ = G
−1/2
∗

(
Ũn − u∗

)
,

the first inequality in (3.18) clearly follows from (6.51) together with Proposition 6.2.

• It only remains to prove the inequalities (3.19) and (3.20). We already saw the
decomposition

Ŵn −Wε(µ, ν) =
1

n

n∑
k=1

(
Hε(v

∗)− hε(Xk, V̂k−1)
)
,

=
1

n

n∑
k=1

ξk −
1

n

n∑
k=1

(
Hε(V̂k−1)−Hε(v

∗)
)
, (6.59)

where the martingale increment ξk = −hε(Xk, V̂k−1) + Hε(V̂k−1). As E[ξk+1 |Fk] = 0, it
follows from (6.59) together with inequality (5.11) and the first inequality in (3.18) that
for all n > 1,∣∣∣E[Ŵn

]
−Wε(µ, ν)

∣∣∣ =
∣∣∣ 1
n

n∑
k=1

E
[
Hε(V̂k−1)−Hε(v

∗)
]∣∣∣ 6 cε

n

n∑
k=1

1

k1−α 6
cε,α
n1−α ,

which proves inequality (3.19).

Regarding the L1 risk E
[∣∣Ŵn −Wε(µ, ν)

∣∣], we still use the decomposition (6.59). The
triangle inequality and inequality (5.11) imply that

E
[∣∣Ŵn −Wε(µ, ν)

∣∣] 6
1

n
E
[∣∣∣ n∑
k=1

ξk

∣∣∣]+
1

n

n∑
k=1

E
[∣∣Hε(V̂k−1)−Hε(v

∗)
∣∣],

6
1

n

(
E
( n∑
k=1

ξk

)2)1/2
+

1

2εn

n∑
k=1

E[‖V̂k−1 − v∗‖2],

where the last line comes from the Cauchy-Schwarz inequality. Let us now prove that
supk≥1 E[ξ2

k] < +∞. To this end, we observe that

E[ξ2
k] = E

(
E
[(
hε(Xk, V̂k−1)−Hε(V̂k−1)

)2
|Fk
])

6 E[h2
ε(Xk, V̂k−1)],
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thanks to the property that E
[
hε(Xk, V̂k−1) |Fk

]
= Hε(V̂k−1). Using that ‖∂vhε(x, v)‖ =

‖π(x, v)− ν‖ 6 2, it follows by integration that hε(x, v) 6 hε(x, v
∗) + 2‖v − v∗‖. We then

deduce that
E[ξ2

k] 6 2E[h2
ε(X, v

∗)] + 4E[‖V̂k−1 − v∗‖2]

Using the first inequality in (3.18), it follows that (E[‖V̂k−1 − v∗‖2])k≥1 is a bounded
sequence. Moreover, arguing as in the proof of [5, Theorem 3.5], the condition∫
X c

2(x, yj)dµ(x) < +∞, for any 1 6 j 6 J , implies that E[h2
ε(X, v

∗)] is finite. Therefore,
we conclude that supk≥1 E[ξ2

k] < +∞. Hence, using once again the first inequality in (3.18)
together with a conditional expectation argument, we obtain that

E
[∣∣Ŵn −Wε(µ, ν)

∣∣] 6 cε
n

√
n+

cε
2εn

n∑
k=1

1

k1−α 6
cε√
n
,

which proves inequality (3.20). This achieves the proof of Theorem 3.4.

A Appendix - Proofs of auxiliary results

This appendix contains the proofs of some auxiliary results of the paper.

A.1 Proof of Lemma 5.2

Since ∇vhε(X, v) = π(X, v)− ν, we first remark that

Gε(v) = L(v) + ννT − νE
[
π(X, v)

]T − E
[
π(X, v)

]
νT ,

= L(v)− ννT − ν∇Hε(v)T −∇Hε(v)νT , (A.1)

where L(v) = E
[
π(X, v)π(X, v)T

]
. For u ∈ 〈vJ〉⊥ and t ∈ [0, 1], we define the real-valued

function φu(t) = uTGε(vt)u with vt = v∗ + t(v − v∗). It follows from the decomposition
(A.1) that

φu(t) = uTL(vt)u− 〈u, ν〉2 − 2〈u, ν〉〈Φ(t), u〉

where Φ(t) = ∇Hε(vt) is a vector-valued function satisfying

Φ′(t) = ∇2Hε(vt)(v − v∗) and Φ′′(t) = ∇3Hε(vt)[v − v∗, v − v∗],

where ∇3Hε stands for the third-order tensor derivative of Hε. Now, since Φ(1) = ∇Hε(v)
and Φ(0) = ∇Hε(v

∗) = 0, and using the property that φu(1) − φu(0) =
∫ 1

0 φ
′
u(t)dt, we

obtain that

uT (L(v)− L(v∗))u− 2〈u, ν〉〈∇Hε(v), u〉 =

∫ 1

0
φ′u(t)dt. (A.2)

We clearly have

φ′u(t) =
∂

∂t
uTL(vt)u− 2〈u, ν〉〈Φ′(t), u〉

where
∂

∂t
uTL(vt)u = 〈∇vψu(vt), v − v∗〉 with ψu(v) = uTL(v)u.
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In addition, we also have 〈Φ′(t), u〉 = uT∇2Hε(vt)(v − v∗). Since

uTL(v)u = E
[
〈u, π(X, v)〉2

]
and

∇vπ(x, v) =
1

ε

(
diag(π(x, v))− π(x, v)π(x, v)T

)
,

one obtains that

∇vψu(vt) =
2

ε
E
[
〈u, π(X, vt)〉 (diag(π(X, vt))u− 〈u, π(X, vt)〉π(X, vt))

]
.

Consequently,

φ′u(t) =
2

ε
E
[
〈u, π(X, vt)〉

(
uT diag(π(X, vt))(v − v∗)− 〈u, π(X, vt)〉〈π(X, vt), v − v∗〉

)]
− 2〈u, ν〉uT∇2Hε(vt)(v − v∗).

Then, we deduce from equality (5.4) that

φ′u(t) =
2

ε
E
[
〈u, π(X, vt)− ν〉uTAε(X, vt)(v − v∗)

]
,

with Aε(x, v) = diag(π(x, v))−π(x, v)π(x, v)T . It follows from Cauchy-Schwarz inequality
and the upper bound (5.6) that

|〈u, π(X, vt)− ν〉| 6 2‖u‖,

which together with the fact that λmax(Aε(x, v)) 6 1 yields

|φ′u(t)| 6 4

ε
‖v − v∗‖‖u‖2.

Hence, inserting the above upper bound in (A.2), we obtain that∣∣uT (L(v)− L(v∗))u− 2〈u, ν〉〈∇Hε(v), u〉
∣∣ 6 4

ε
‖v − v∗‖‖u‖2.

Therefore, in the sense of partial ordering between positive semi-definite matrices, we have
shown that

−4

ε
‖v − v∗‖IJ 6 L(v)− L(v∗)−∇Hε(v)νT − ν∇Hε(v)T 6

4

ε
‖v − v∗‖IJ .

Inequality (5.15) thus follows from the decomposition (A.1) since

Gε(v)−Gε(v∗) = L(v)− L(v∗)− ν∇Hε(v)T −∇Hε(v)νT ,

which completes the proof of Lemma 5.2.
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A.2 A recursive formula to compute the inverse of Sn for the stochastic Newton
algorithm

In this section, we discuss the construction of a recursive formula to compute, from the
knowledge of S−1

n−1, the inverse of the matrix Sn defined by the recursive equation (2.8)
that corresponds to the use of the stochastic Newton (SN) algorithm. To this end, let us
first recall the following matrix inversion lemma classically referred to as the Sherman-
Morrison-Woodbury (SMW) formula [27], also known as Woodbury’s formula or Riccati’s
matrix identity.

Lemma A.1 (SMW formula). Suppose that A and C are invertible matrices of size d × d
and q × q respectively. Let U and V be d × q and q × d matrices. Then, A + UCV is
invertible iff C−1 + V A−1U is invertible. In that case, we have

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. (A.3)

A repeated use of the SMW formula allows to prove the following result.

Proposition A.1. Let PJ = IJ − vJv
T
J be the projection matrix onto 〈vJ〉⊥. Suppose that

Sn = IJ +
n∑
k=1

∇2
vhε(Xk, V̂k−1) = Hn + vJv

T
J ,

where

Hn = PJ +
n∑
k=1

∇2
vhε(Xk, V̂k−1),

with H0 = PJ . Then, for all n > 1, one has S−1
n = H−n + vJv

T
J with H−n that satisfies the

recursive formula

H−n = PJ

(
Hn−1 +

1

ε
diag

(
πn

))−1
PJ , (A.4)

= H−n−1 −H−n−1

(
H−n−1 + εdiag

(
π−1
n

))−1 H−n−1, (A.5)

where π−1
n stands for the vector whose entries are the inverse of those of πn = π(Xn, V̂n−1).

Proof. For n > 1, we define

S̃n = IJ +
n∑
k=1

(
∇2
vhε(Xk, V̂k−1) + vJv

T
J

)
= S̃n−1 + Σn = Hn + (n+ 1)vJv

T
J , (A.6)

where Σn = ∇2
vhε(Xn, V̂n−1)+vJv

T
J and S̃0 = IJ = PJ +vJv

T
J . As discussed in Section 5,

the eigenvectors of the matrix ∇2
vhε(Xk, V̂k−1) associated to non-zero eigenvalues belong

to 〈vJ〉⊥ for any k > 1, which implies that Hn is a matrix of rank J − 1 and that vJ is
its only eigenvector associated to the eigenvalue λ1 = 0. Hence, for all n > 0, Hn is also a
matrix such that all its eigenvectors associated to non-zero eigenvalues belong to 〈vJ〉⊥.
Therefore, for any n > 0, the inverse of the matrix S̃n (which is of full rank J) satisfies
the identity

S̃−1
n = H−n +

1

n+ 1
vJv

T
J . (A.7)
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Moreover, given that Sn = Hn + vJv
T
J one has that

S−1
n = H−n + vJv

T
J = S̃−1

n +
n

n+ 1
vJv

T
J . (A.8)

The computation of S̃−1
n can be done recursively as follows. By applying the SMW formula

(A.3) with U = V = IJ we obtain that

S̃−1
n = S̃−1

n−1 − S̃
−1
n−1

(
Σ−1
n + S̃−1

n−1

)−1
S̃−1
n−1. (A.9)

Now, introducing the notation πn = π(Xn, V̂n−1), we remark that

∇2
vhε(Xn, V̂n−1) =

1

ε

(
diag(πn)− πnπTn

)
is proportional to a multinomial matrix (up to a minus sign and the multiplicative factor
ε−1). Consequently, from the pseudo inverse formula of multinomial matrices [47], we
obtain that the inverse of the matrix Σn is given by

Σ−1
n = εPJ diag(π−1

n )PJ + vJv
T
J , (A.10)

where π−1
n stands for the vector whose entries are the inverse of those of πn. Now, in-

troducing the notation Tn−1 = S̃−1
n−1 + vJv

T
J and Qn−1 = Σ−1

n + S̃−1
n−1, we deduce from

equation (A.10) that
Qn−1 = Tn−1 + εPJ diag(π−1

n )PJ .

Consequently, by the SMW formula (A.3), it follows that

Q−1
n−1 = T−1

n−1 − T
−1
n−1PJ

(
PJT

−1
n−1PJ +

1

ε
diag(πn)

)−1
PJT

−1
n−1.

Then, applying once again the SMW formula and equality (A.6), one has that

T−1
n−1 = S̃n−1 −

1

vTJ S̃n−1vJ + 1
S̃n−1vJv

T
J S̃n−1 = S̃n−1 −

n2

n+ 1
vJv

T
J ,

= Hn−1 +
n

n+ 1
vJv

T
J .

Hence, by the fact that Hn maps the subspace 〈vJ〉⊥ onto itself and since PJ is the
projection matrix onto 〈vJ〉⊥, we thus obtain that

Q−1
n−1 = T−1

n−1 −Hn−1

(
Hn−1 +

1

ε
diag(πn)

)−1
Hn−1.

Consequently, we have shown that

Q−1
n−1 =

(
Σ−1
n + S̃−1

n−1

)−1
= Hn−1 +

n

n+ 1
vJv

T
J −Hn−1

(
Hn−1 +

1

ε
diag(πn)

)−1
Hn−1.

Therefore, combining the above equality with (A.7), one obtains that

S̃−1
n−1

(
Σ−1
n + S̃−1

n−1

)−1
S̃−1
n−1 = H−n−1 +

1

n(n+ 1)
vJv

T
J

−H−n−1Hn−1

(
Hn−1 +

1

ε
diag(πn)

)−1
Hn−1H−n−1.
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Inserting the above equality into (A.9) and using again (A.7), one infers that

S̃−1
n = S̃−1

n−1 −H−n−1 −
1

n(n+ 1)
vJv

T
J + H−n−1Hn−1

(
Hn−1 +

1

ε
diag(πn)

)−1
Hn−1H−n−1,

=
1

n+ 1
vJv

T
J + H−n−1Hn−1

(
Hn−1 +

1

ε
diag(πn)

)−1
Hn−1H−n−1,

=
1

n+ 1
vJv

T
J + PJ

(
Hn−1 +

1

ε
diag(πn)

)−1
PJ ,

by noticing that H−n−1Hn−1 = Hn−1H−n−1 = PJ . Herafter, we immediately deduce (A.4)
from the above identity together with (A.7). Finally, (A.5) follows from an application
of a generalization of the SMW formula [17] to the setting of the Moore-Penrose inverse
to handle the situation where the matrix A in equation (A.3) is not invertible, which
completes the proof of Proposition A.1.

B Proofs of auxiliary results related to the KL inequality

Proof of Proposition 6.1. The proof consists in a study of H̃ε(u) when a vector u ∈ 〈vJ〉⊥ is

either near u∗ or such that ‖u‖ −→ +∞. First, we observe that u 7→ ‖∇H̃ε(u)‖2+ ‖∇H̃ε(u)‖2

H̃ε(u)

is a continuous function except at u∗. Then, since H̃ε(u
∗) = 0, a local approximation of

H̃ε using a Taylor expansion shows that, for all h ∈ 〈vJ〉⊥,

H̃ε(u
∗ + h) =

1

2
hT∇2H̃ε(u

∗)h+ o(‖h‖2),

and
∇H̃ε(u

∗ + h) = ∇2H̃ε(u
∗)h+ o(‖h‖).

with ∇2H̃ε(u
∗) = G

−1/2
∗ ∇2Hε(v

∗)G
−1/2
∗ . Since the matrices G

−1/2
∗ and ∇2Hε(v

∗) are of
rank J−1 with all eigenvectors corresponding to positive eigenvalues that belong to 〈vJ〉⊥,
the Courant-Fischer minmax Theorem yields:

0 <λmin(∇2H̃ε(u
∗)) = lim inf

u−→u∗,u∈〈vJ 〉⊥
‖∇H̃ε(u)‖2

H̃ε(u)

6 lim sup
u−→u∗,u∈〈vJ 〉⊥

‖∇H̃ε(u)‖2

H̃ε(u)
= λmax(∇2H̃ε(u

∗)), (B.1)

where λmin(∇2H̃ε(u
∗)) denotes the second smallest eigenvalue of the matrix ∇2H̃ε(u

∗),
and the notation u −→ u∗ corresponds to the convergence of u ∈ 〈vJ〉⊥. Inequality

(B.1) thus implies that the continuous function u 7→ ‖∇H̃ε(u)‖2 + ‖∇H̃ε(u)‖2

H̃ε(u)
is upper and

lower bounded by positive constants in a neighborhood of u∗. Finally, we observe that
‖∇H̃ε‖ is bounded thanks to inequality (5.7), and it can be checked that the function H̃ε

is coercive (over the finite dimensional vector space 〈vJ〉⊥) since it has a unique minimizer

at u∗. These facts together with the boundedness of u 7→ ‖∇H̃ε(u)‖2 + ‖∇H̃ε(u)‖2

H̃ε(u)
in a

neighborhood of u∗ of implies that inequality (6.43) holds.
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Now, let us show that the constant m appearing in inequality (6.43) can be made

more explicit thanks to Lemma 5.1. Indeed, since ∇H̃ε(u) = G
−1/2
∗ ∇Hε(G

−1/2
∗ u), we

immediately obtain from inequality (5.14) that

〈∇H̃ε(u), u− u∗〉 >
1− exp(−δ(u))

δ(u)
(u− u∗)TG−1/2

∗ ∇2Hε(v
∗)G

−1/2
∗ (u− u∗),

>
1− exp(−δ(u))

δ(u)
‖u− u∗‖2, (B.2)

where δ(u) =
√

2
ε λmax(G

−1/2
∗ )‖u − u∗‖ and the second inequality above follows from the

fact that
λ
〈vJ 〉⊥
min

(
G
−1/2
∗ ∇2Hε(v

∗)G
−1/2
∗

)
> 1,

by inequality (3.4). Note that inequality (B.2) corresponds to a local strong convex prop-
erty of the function H̃ε in the neighborhood of u∗. Then, by the Cauchy-Schwarz inequality,
one has that

〈∇H̃ε(u), u− u∗〉 6 ‖∇H̃ε(u)‖‖u− u∗‖.

Thus, we obtain by inequality (B.2) that, for any u ∈ 〈vJ〉⊥,

‖∇H̃ε(u)‖ > 1− exp(−δ(u))

δ(u)
‖u− u∗‖. (B.3)

We then consider two cases. If ‖u − u∗‖ 6 ε

λmax(G
−1/2
∗ )

, then, using that the function

δ 7→ 1
δ (1− exp(−δ)) is decreasing, it follows from (6.42) and (B.3) that,

‖∇H̃ε(u)‖2 +
‖∇H̃ε(u)‖2

H̃ε(u)
>
‖∇H̃ε(u)‖2

H̃ε(u)
>

2ε

λmax(G−∗ )

(
1− exp

(
−
√

2
))2

. (B.4)

To the contrary, if ‖u− u∗‖ > ε

λmax(G
−1/2
∗ )

, then

‖∇H̃ε(u)‖2 +
‖∇H̃ε(u)‖2

H̃ε(u)
> ‖∇H̃ε(u)‖2 >

ε2

2λmax(G−∗ )

(
1− exp

(
−
√

2
))2

. (B.5)

using the inequality 1 − exp
(
−δ(u)

)
> 1 − exp

(
−
√

2
)

that holds for δ(u) >
√

2. Con-

sequently, since
(

1− exp
(
−
√

2
))2

> 1/2 and combining inequalities (B.4) and (B.5), it

follows that the constant m appearing in inequality (6.43) can be chosen as m = mε with
mε defined by (6.44). This concludes the proof of Proposition 6.1.

We then show the proof of the one-step evolution of the SGN algorithm.

Proof of Proposition 6.3 . First, by using the arguments from the proof of (i) of Theorem
3.1, we remark that the matrix Sn defined by (2.9) satisfies:

λmin(Sn) > 1 + γmin(ν)

(
pn∑
m=1

m−β

)
and λmax(Sn) 6 1 + 4n+ γmax(ν)

pn+1∑
m=1

m−β,
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where pn > 1 denotes the largest integer such that pnJ 6 n. Consequently, using the fact

that 1
1−β
(
p1−β
n − 1

)
6

pn∑
m=1

m−β 6 1
1−βp

1−β
n the above inequalities imply that:

λmax(S−1
n ) 6

1− β

1− β + γmin(ν)
(

(nJ − 1)1−β − 1
)

6
1

1− 2γmin(ν) + γmin(ν)(nJ − 1)1−β , (B.6)

where nJ = n/J , and

λmin(S−1
n ) >

1

1− β + 4(1− β)n+ γmax(ν) (n/J)1−β >
1

1 + (4 + 2γmax(ν))n
. (B.7)

Step 1: Taylor expansion. First, we introduce the notation Ũn = G
1/2
∗ V̂n, and in the proof

we repeatedly the property that the eigenvectors of G∗ associated to non-zero eigenvalues
belong to 〈vJ〉⊥. Using equation (2.6) and the fact that PJG∗ = G∗, a second order Taylor
expansion yields

Φ(Ũn+1) = Φ
(
Ũn − nαG1/2

∗ S−1
n ∇vhε(Xn+1, V̂n)

)
= Φ(Ũn)− nα

〈
∇Φ(Ũn), G

1/2
∗ S−1

n ∇vhε(Xn+1, V̂n)
〉

+
n2α

2
∇2Φ(ξn+1)

(
G

1/2
∗ S−1

n ∇vhε(Xn+1, V̂n)
)⊗2

, (B.8)

where ξn+1 is such that ξn+1 = Ũn + tn+1(Ũn+1 − Ũn) with tn+1 ∈ (0, 1). Now, applying
inequalities (5.6) and (6.48), the second order term in equation (B.8) can be bounded as
follows:

‖∇2Φ(ξn+1)
(
G

1/2
∗ S−1

n ∇vhε(Xn+1, V̂n)
)⊗2
‖ 6 δελmax(G−∗ )(1 + Φ(ξn+1))×∥∥∥G1/2

∗ S−1
n ∇vhε(Xn+1, V̂n)

∥∥∥2

6 4δελmax(G−∗ )λ2
max(G

1/2
∗ S−1

n )(1 + Φ(ξn+1)),

which yields the inequality:

Φ(Ũn+1) 6 Φ(Ũn)− nα
〈
∇Φ(Ũn), G

1/2
∗ S−1

n ∇vhε(Xn+1, V̂n)
〉

+2δε
λmax(G∗)

λmin(G∗)
n2αλ2

max(S−1
n )(1 + Φ(ξn+1)). (B.9)

Step 2: An auxiliary inequality. We now establish a technical bound to relate Φ(ξn+1) and

Φ(Ũn). To this end, by a first order Taylor expansion of the function s 7→ H̃ε(Ũn+s(Ũn+1−
Ũn)) where Ũ sn = Ũn + s(Ũn+1 − Ũn), one has that:

H̃ε(Ũn+1) = H̃ε(Ũn) +

∫ 1

0
∇H̃ε(Ũ

s
n)(Ũn+1 − Ũn) ds,
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and thus, combining the Cauchy-Schwarz inequality with the upper bounds (5.6) and
(6.40), we obtain that:

H̃ε(ξn) 6 H̃ε(Ũn) + sup
t∈[0,1]

‖∇H̃ε(Ũ
T
n )‖‖Ũn+1 − Ũn‖

6 H̃ε(Ũn) + sup
t∈[0,1]

‖∇H̃ε(Ũ
T
n )‖‖nαG1/2

∗ S−1
n ∇vhε(Xn+1, V̂n)‖

6 H̃ε(Ũn) + 4λmax(G
−1/2
∗ )λmax(G

1/2
∗ )nαλmax(S−1

n ). (B.10)

Note that, under the condition α + β < 1/2, it follows from inequality (B.6) that
nαλmax(S−1

n ) 6 c0 for some constant c0 > 1 for all n > J . Hence, inserting the up-
per bound (B.10) into the definition of Φ and using inequality (6.46), we obtain that

Φ(ξn+1) 6

(
H̃ε(Ũn) + 4

λmax(G
1/2
∗ )

λmin(G
1/2
∗ )

nαλmax(S−1
n )

)
×

exp

(
H̃ε(Ũn) + 4

λmax(G
1/2
∗ )

λmin(G
1/2
∗ )

nαλmax(S−1
n )

)

6 exp

(
4
λmax(G

1/2
∗ )

λmin(G
1/2
∗ )

nαλmax(S−1
n )

)
×(

H̃ε(Ũn) + 4
λmax(G

1/2
∗ )

λmin(G
1/2
∗ )

nαλmax(S−1
n )

)
exp

(
H̃ε(Ũn)

)
6 exp

(
4c0

λmax(G
1/2
∗ )

λmin(G
1/2
∗ )

) (
Φ(Ũn) + 4c0

λmax(G
1/2
∗ )

λmin(G
1/2
∗ )

(1 + Φ(Ũn))

)
6 c̃0

(
1 + Φ(Ũn)

)
, (B.11)

where c̃0 = max

(
1, 4c0

λmax(G
1/2
∗ )

λmin(G
1/2
∗ )

)
exp

(
4c0

λmax(G
1/2
∗ )

λmin(G
1/2
∗ )

)
.

Step 3: Derivation of a recursive inequality. Inserting inequality (B.11) into (B.9), and
taking the conditional expectation with respect to Fn, we obtain that:

E
[
Φ(Ũn+1) |Fn

]
6 Φ(Ũn)− nα

〈
∇Φ(Ũn), G

1/2
∗ S−1

n G
1/2
∗ ∇H̃ε(Ũn)

〉
+ 2δε

λmax(G∗)

λmin(G∗)
n2αλ2

max(S−1
n )

(
1 + c̃0

(
1 + Φ(Ũn)

))
,

where we used the property that ∇Hε(V̂n) = G
1/2
∗ ∇H̃ε(Ũn).

Consequently, using inequality (6.47) and introducing cε = 2c̃0δε
λmax(G∗)
λmin(G∗)

, we have:

E
[
Φ(Ũn+1) |Fn

]
6

(
1−mεn

αλmin(G∗)λmin(S−1
n ) + cεn

2αλ2
max(S−1

n )
)

Φ(Ũn)

+cεn
2αλ2

max(S−1
n ) (B.12)

Now, thanks to inequalities (B.6) and (B.7), and the condition 0 < α+β < 1/2, it follows
that there exists an integer n0 such that, for all n > n0,

mεn
αλmin(G∗)λmin(S−1

n ) ≥ 2cεn
2αλ2

max(S−1
n ). (B.13)

52



Hence, by combining inequalities (B.12) and (B.13) we obtain inequality (6.50) which
concludes the proof of i).
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[23] Genevay, A., Cuturi, M., Peyré, G., and Bach, F. Stochastic optimization for
large-scale optimal transport. In Advances in Neural Information Processing Systems
29. 2016, pp. 3440–3448.

[24] Genevay, A., Peyre, G., and Cuturi, M. Learning generative models with
sinkhorn divergences. In Proceedings of the Twenty-First International Conference
on Artificial Intelligence and Statistics (Playa Blanca, Lanzarote, Canary Islands, 09–
11 Apr 2018), A. Storkey and F. Perez-Cruz, Eds., vol. 84 of Proceedings of Machine
Learning Research, PMLR, pp. 1608–1617.

54



[25] Gordaliza, P., Del Barrio, E., Gamboa, F., and Loubes, J.-M. Obtaining
fairness using optimal transport theory. In Proceedings of the 36th International
Conference on Machine Learning (2019), pp. 2357–2365.
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Dérivées Partielles (1963), 87–89.
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