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Abstract
Reducing tire rolling resistance and energy loss is a topic of interest to the tire industry. Understanding and modeling
these phenomena are essential to approach this problem and propose robust solutions. This work investigates
alternative solutions and suggests a reduced-order model based on the Bouc-Wen hysteresis model to simulate
viscoelastic internal variables from viscoelastic constitutive laws. Furthermore, this work aims to identify critical
parameters in the reduced-order model and understand the effect of uncertainties on its responses. Thus, Sobol’s
indices are used to identify influential parameters of the reduced-order model that are later calibrated by Bayesian
inference. Finally, the uncertainties are propagated, and the reduced-order model is validated using data of viscoelastic
internal variables from the finite element approximation of a steady-rolling tire provided by Michelin. Satisfactory results
are obtained, as the reduced-order model can simulate viscoelastic internal variables with a reduced computational
cost for some branches of interest and its responses are in agreement with the experimental data.
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Introduction

It is vital to reduce environmental impacts to improve
sustainable practices in both academic and productive
sectors. Due to the rise of the sustainability mindset in
businesses, state regulations, and consumer requirements,
the automobile industry has sought to develop technologies
that aim to improve vehicle performance and minimize
fuel consumption, as well as reduce pollutant emissions
(Committee for the National Tire Efficiency Study 2006).
Improving the performance of essential parts of vehicles such
as tires is one way to accomplish this task.

In a rolling tire, the mechanisms of energy loss are
the hysteresis within the viscoelastic material, the friction
between tire and road, and the friction of the tire with the
air (Walter and Conant 1974). All these mechanisms of
energy loss contribute to the tire rolling resistance, which
can be considered as a force that opposes the vehicle motion
and is responsible for a significant amount of fuel energy
consumption (Hall and Moreland 2001). Most of the rolling
resistance is due to hysteresis loss, which depends on the
construction of the tire, its material, and external variables
such as vehicle speed, wheel load, inflation pressure, etc.
(Walter and Conant 1974). At the present moment, the
tire industry, particularly Michelin, is still working on
new solutions to reduce the rolling resistance while also
improving other performance of the tire, e.g., improving
handling, grip, comfort, and durability, and reducing wear
noise. To archive this, it is crucial to modify the factors that
affect the rolling resistance, and it is not worth designing

a new tire, doing some tests, and repeating this procedure.
Therefore, a robust tire model can be helpful to investigate
how the uncertainties in tire properties affect the rolling
resistance in the model by increasing or decreasing its value.

In the literature, there are several approaches to model
a tire (Pacejka 2006). Among these approaches, the finite
element method is widely adopted for modeling rolling tires
(Ghoreishy 2008). The article of Le Tallec and Rahler (1994)
is an example of the finite element approximation of a
pneumatic tire in a steady-state rolling motion. In this article,
viscoelasticity is described by a set of constitutive laws,
which are internal variables whose evolution is governed
by nonlinear differential equations. Nowadays, it is still a
challenge to adequately characterize the viscoelastic material
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considering its particularities such as time-varying properties
and energy dissipation. Even with good results, the finite
element method can be time-consuming, and the high
computational cost motivates the investigation of alternative
modeling methods, e.g., the article of Brancati et al. (2011)
develops an analytical model of dissipated energy based on a
hysteresis model.

Alternatively, in the present work, viscoelastic internal
variables are simulated, solving a computationally less-
expensive reduced-order model based on their hysteretic
behavior, saving computational time with minor loss of
information thanks to a dataset provided by Michelin, from
which the parameters of the reduced-order model can be
inferred via Bayesian inference. The great advantage of this
approach is to obtain a simple, but representative model to
describe the hysteresis effect in tires in a Bayesian context.

This paper is organized as follows: first, a statement of
the problem in question is performed. Then, the dataset
containing right Cauchy–Green deformation tensor and
viscoelastic internal variables data from the finite element
approximation of a steady-rolling tire is described. Next,
a reduced-order model is suggested to approximate the
hysteretic behavior of the viscoelastic internal variables
based on the Bouc-Wen model. Then, the methodologies
to infer the parameters of the reduced-order model from
the dataset and to perform a sensitivity analysis are
presented. The results of this work are investigated by
comparing the responses of the reduced-order model to
the viscoelastic internal variables from the dataset. Finally,
conclusions, contributions and perspectives for future inquire
are addressed.

Problem statement
This work aims to simulate viscoelastic internal variables
from a computationally expensive finite element approxima-
tion using a reduced-order model, which is less computa-
tionally expensive to evaluate at first, but with an accuracy
penalty. To do so, data of viscoelastic internal variables
from a finite element approximation of a steady-rolling tire
provided by Michelin is used. To face this problem, the
methodology of this work is structured as follows:

• First, the reduced-order model and an error measure
to evaluate the difference between the reduced-order
model responses and viscoelastic internal variables
data are defined;

• Second, a global sensitivity analysis is performed to
identify the parameters of the reduced-order model
that influence the error measure the most. The
sensitivity analysis is performed using Sobol’ indices
and the parameters whose Sobol’ indices are negligible
are considered as constant quantities;

• Third, a Bayesian inference is performed to calibrate
the parameters of the reduced-order model that
influence the error measure the most;

• Finally, uncertainties are propagated into both error
measure and reduced-order model responses.

The reduced-order model is suppose to be less com-
putationally expensive and obtaining viscoelastic internal
variables becomes simpler than a finite element procedure

in which nonlinear equations are involved. Fig. 1 shows a
schematic of the methodology employed in this work.

Michelin’s dataset
The dataset provided by Michelin for this work is generated
during the computation of a finite element approximation of
a pneumatic tire in a steady rolling motion. A standard finite
element procedure approximates the continuous problem of
the steady rolling tire by coupling the equilibrium equations
governing the steady rolling motion and the constitutive laws
governing the viscoelastic material behavior (Le Tallec and
Rahler 1994). And, because nonlinear differential equations
govern the evolution of internal variables, convenient choices
of internal variables should be made in terms of differential
operators during this standard finite element procedure.
Fancello et al. (2006) provide a general framework for
constitutive viscoelastic models in which the elastic and
viscous potentials derive from a generalized Kelvin-Maxwell
model. Le Tallec and Rahler (1994) describe viscoelasticity
by choosing the specific free energy potential as a function
of three states variables: temperature, right Cauchy-Green
deformation tensor, and viscoelastic internal variables. In
short, Michelin’s dataset gathers data of two of these states
variables: the right Cauchy-Green deformation tensor C
and the viscoelastic internal variables A from a generalized
Maxwell model. The viscoelastic internal variables A are
rank 2 symmetric positive-definite tensors (Le Tallec and
Rahler 1994).

The theoretical representation of the generalized Maxwell
model consists of the parallel association of various Maxwell
branches. Each Maxwell branch consists of the series
association of elastic and viscous elements. Figure 2 is a
representation of the viscoelastic constitutive model in which
C is the right Cauchy-Green tensor and Aj the viscoelastic
internal variables at the Maxwell branch j. The complete
viscoelastic constitutive model has N = 9 branches.

A data selection was performed to approximately
represent the given dataset of C. The selection procedure
was based on the visual identification of patterns and
redundancies. This work is interested in Maxwell branches
from j = 0 to 4 because there is no evolution of C in the
other Maxwell branches.

The reduced-order model
For one of the Maxwell branches of interest in Fig. 2,
the component C = C(t) of the right Cauchy-Green
deformation tensor and its corresponding viscoelastic
internal variable A = A(t) are both time series. Therefore,
C(t) is assumed to be the sum of three terms: a linear elastic
term k A(t) in which k is a elasticity coefficient; a viscous
term c Ȧ(t) in which c is a damping coefficient; and the
hysteresis output Z(t). In this work, Z(t) is represented by
the Bouc-Wen model. A survey on the Bouc-wen model can
be find in Ismail et al. (2009).

The system of first order differential equations in Eq. 1
defines the reduced-order model:Ȧ(t) =

1

c

(
C(t)− k A(t)−Z(A, Ȧ)

)
Ż = α Ȧ− γ |Ȧ||Z|ν−1Z − δ Ȧ|Z|ν ,

(1)
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Figure 1. Methodology adopted to simulate viscoelastic internal variables.

 

 
 

 

 
 

 

 
 

 

Figure 2. Generalized Maxwell model.

where the input C(t) is completely determined from the
dataset. For certain initial conditions A|t=0 = A0 (also from
the dataset) and Z|t=0 = Z0, the output responses A(θ) and
Z depend only on the set of parameter θ = {c, k, α, γ, δ, ν}.
α, γ, δ and ν are the parameters of the Bouc-Wen model.
Eq. 1 can be solved numerically by a classic Runge-Kutta
method.

Parameters of the reduced-order model

Both damping coefficient c and elasticity coefficient k are
strictly positive parameters. Furthermore, from empirical
evaluations that consist of manually changing parameter
values in numerical simulations, the value of k is close to
the unit.

It is worth noting that the Bouc-Wen model is a
phenomenological model, and its parameters α, γ, δ, and ν
do not necessarily have a physical sense. Ismail et al. (2009)
indicate conditions on the Bouc-Wen model parameters for
physical and mathematical consistency, e.g., the Bouc-Wen
model fulfill the second law of Thermodynamics if and
only if ν > 0, γ > 0 and −γ ≤ δ ≤ γ. The called “class I”
Bouc-Wen model is bounded input-bounded output stable,
consistent with the motion of physical systems, passive, and
consistent with the second law of Thermodynamics if α > 0,

γ + δ > 0 and γ − δ ≥ 0. In addition, Eq. 1 has a unique
solution if ν > 1.

The parameters estimation methodology
An advantage of the Bouc-Wen model is that it accommo-
dates real hysteresis loops by choosing an appropriate set
of parameters (Ismail et al. 2009). For this reason, problems
involving the Bouc-Wen model are typically parameter esti-
mation problems, as the example described in Jiang et al.
(2020).

In this work, groups of Nj selected inputs are considered.
In each group, a selected input C(t) and its corresponding
reduced-order model response A(θ) describes a hysteresis
loop. The selected inputs differ in shape, magnitude level,
etc., and their corresponding reduced-order model responses
also differ from each other. Due to these differences, it is
possible to find a different set of parameters θ for each C(t)
after solving the parameter estimation problem. However, it
is desirable to describe the reduced-order model responses
with just a single or two Bouc-Wen models per Maxwell
branch of interest in Fig. 2. Hence, an error measure that
evaluates these differences is defined.

Equation 2 defines the scale factor where ADS is a
viscoelastic internal variable from the dataset and Nout is the
number of sampling points of the time series:

Ā =
1

Nout − 1

Nout∑
k=2

∣∣∣∣ADS
k −ADS

k−1

∣∣∣∣, (2)

and Eq. 3 defines E, the mean absolute scaled error (MASE)
that measures the difference between the selected outputADS

from the dataset and A(θ):

E(θ) =
1

Nout

Nout∑
k=1

∣∣∣∣ADS
k −Ak(θ)

∣∣∣∣
Ā

. (3)

Hyndman and Koehler (2006) suggests that the MASE is
the best available measure of forecast accuracy in situations
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where there are very different scales, including close to zero
or negative data. Eq. 4 is simply the mean between the
Nj error measures, where each Ej(θ) corresponds to the
evaluation of a reduced-order model response:

Ē(θ) =
1

Nj

Nj∑
j=1

Ej(θ). (4)

Equation 4 also defines the loss function of an opti-
mization problem. The optimal solution of this optimization
problem is indicated in Eq. 5:

Ê = Ē(θ̂), θ̂ = arg min
B
Ē(θ), (5)

where θ̂ is the optimal set of parameter in the set of feasible
solutions B that minimizes the error measure between the
selected viscoelastic internal variables ADS from the dataset
and the reduced-order model responses A(θ). θ̂ can be
determined by an optimization method such the Cross-
Entropy method (Rubinstein and Kroese 2013).

The Cross-Entropy method
The Cross-Entropy (CE) method translates a rare event
simulation problem into an optimization problem, and this
method can be treated as a two-step iterative process:

• First, random samples are generated according to a
given probability distribution is determined feasible
region;

• Then, the statistics, i.e., the mean and variance of a set
composed by the best performing samples, are used to
refine the probability distribution parameters.

Among other applications, the CE method can be
used to solve continuous optimization and combinatorial
optimization problem (De Boer et al. 2005). Additional
information about its theoretical framework and practical
considerations about the optimization method can be found
in Rubinstein and Kroese (2013).

The central idea of the CE method is based on importance
sampling technique and variance minimization. At first,
let X ∼ f be a random variable with probability density
function (PDF) f and let H(X) be a function. The expected
value of H(X) is:

µf = Ef{H(X)} =

∫
B
H(x)f(x)dx, (6)

Let g also be a PDF. The expected value of H(X) f(X)
g(X) is:

µg = Eg
{
H(X)

f(X)

g(X)

}
=

∫
B
H(x)

f(x)

g(x)
g(x)dx, (7)

The importance sampling estimator µ̂g is:

µ̂g =
1

Nk

Nk∑
k=0

H(xk)
f(xk)

g(xk)
, X ∼ g, (8)

Where the term on the right defines W (x) = f(x)
g(x) the

likelihood ratio. The quality of the estimator µ̂g depends on

the PDF g. The optimal importance sampling PDF ĝ∗ is the
one in which the variance of µ̂g is minimal.

The Kullback-Leibler divergence denotedD(g, h) offers a
measure of how different a chosen PDF h is with respect to
the reference PDF g. It is defined as follows in Eq. 9:

D(g, h) = Eg
{

ln
g(X)

h(X)

}
, (9)

The PDF f(·;v) determined by the hyper-parameters
vector v is chosen. As it is shown in Kroese et al. (2013),
the minimization of D(ĝ∗, f(·,v)) leads to Eq. 10, with
ĝ∗ ∝ Hf(·;u):

v∗ = arg max
w

Ew
{
H(x)W (x;u,w) ln f(x;v)

}
, (10)

Finally, for Xs ∼ f(·;w) and W (xs;u,w) = f(·;u)
f(·;w) , v̂ is

the hyper-parameter vector that approximates to the optimal
importance estimator (minimal variance):

v̂ = arg max
w

1

Nk

Nk∑
k=0

H(xk)W (xk;u,w) ln f(xk;v),

(11)
Some assumptions are made in the sequence about the

function H(x). For rare event simulation and optimization
problems, H(x) = 1J(x)≥ε where 1J(x)≥ε is the indicator
function and J(x) is an objetive function. Specifically, in this
work:

H(θ) = 1Ē(θ)≥ε =

{
1 if Ē(θ) ≥ ε
0 if Ē(θ) < ε,

(12)

The expected value of the indicator function is the
probability of the event Ē(θ) ≥ ε to occur.

µ = E
{

1Ē(θ)≥ε
}

= P{Ē(θ) ≥ ε}, (13)

And its importance sampling estimator µ̂g is:

µ̂g =
1

Nk

Nk∑
k=0

1Ē(θ(k)))≥ε. (14)

The computational algorithm of the CE method is
described as follows:

1. Initialize: Choose initial hyper-parameters values µ̂0

and σ̂2
0 , and v̂0 = {µ̂0, σ̂

2
0}. Set level counter l = 1;

2. Sampling: Generate Nk independent and identically
distributed (iid) samples from the standard multivari-
ate Gaussian distribution:

θ(1), . . . ,θ(Nk) ∼ N
(
µ̂l−1, σ̂

2
l−1

)
;

3. Select: Evaluate the objective function for each sample
and sort the Nk results in order:

Ē(θ(·)) ≤ · · · ≤ Ē(θ(·)).

The called elite sample set E gathers the NE < Nk
samples that better performed;

Prepared using sagej.cls



Raqueti et al. 5

4. Update: Compute estimators:

µ̃l =
1

NE

NE∑
s=1

θ(s) (15)

σ̂2
l =

1

NE

NE∑
s=1

(
θ(s) − µ̃l

)2
(16)

5. Smooth: Apply the smooth updating schema:

µ̂l := a · µ̃l + (1− a) · µ̂l−1; (17)

6. Return θ̂ = µ̂l if the stopping criteria σ̂2
l < εmax is

reached. Otherwise, increase level counter by 1 and
return to the second step.

Operationally, the hyper-parameters vector v̂ in Eq. 11 can
be estimated via maximum likelihood estimation method.
The use of the standard multivariate Gaussian distribution
(Botev 2016) on the sampling step of the CE method
simplifies the estimation of v̂ and the hyper-parameters can
be computed directly by Eqs. 15 and 16.

Despite its mathematical formulation, the CE method can
be easily implemented, and only few parameters that are
pretty intuitive are needed: given the PDF f(·;v), the total
number of samples Ns, the number of samples NE in the
elite sample set, a stopping criterion εmax and the maximum
of iteration level lmax.

To the sequence, Ê can be computed using Eq. 5 and
the parameters of the reduced-order model are considered
as random quantities. Their distributions are inferred via
Bayesian inference.

Bayesian inference
Bayesian inference approach is a straightforward strategy
to quantify uncertainties (Gelman et al. 2013). A set of
parameter is considered as a random input vector x and the
methodology to infer its distribution is based on the Bayes’
theorem in Eq. 18:

π(x|Ê) =
π(Ê|x)π(x)

π(Ê)
, (18)

Where π(x) is the prior distribution of the set of
parameters x; π(Ê|x) is the likelihood function of Ê
given a set of parameters x at hand; and π(x|Ê) is the
posterior distribution of the set of parameters x given Ê.
The denominator π(Ê) is the marginal likelihood: it is a
normalized constant so the posterior distribution defines a
probability density function with integral equal to the unity.
In this case, Eq. 18 can be simplified into:

π(x|Ê) ∝ π(Ê|x)π(x), (19)

The prior distribution π(x) can be interpreted as the
knowledge degree about x before any evidence. It is
classified based on its influence on the posterior distribution,
and an example of a diffuse – or non-informative – prior is
a Uniform prior distribution. In this case, Eq. 19 can also be
simplified into:

π(x|Ê) ∝ π(Ê|x); (20)

One assumes that Ê is the MASE measure Ē(θ) from the
reduced-order model plus a discrepancy term ε that is the
source of uncertainty:

Ê = Ē(θ) + ε, (21)

It is supposed an additive Gaussian discrepancy with mean
µε = 0 and unknown variance σ2

ε . Thus, ε ∼ N (0, σ2
ε ) and:

π
(
Ê|x = {θ, σ2

ε }
)
∼ N

(
Ê| Ē(θ), σ2

ε

)
, (22)

In the case of independent and identically distributed (iid)
observations, the likelihood function is defined as:

π
(
Ê|x

)
=

N∏
i=1

π
(
Êi|x

)
=

1√
2πσ2

ε

exp

(
− 1

2

N∑
i=1

(
Êi − Ē(θ)

)2
σ2
ε

)
;

(23)

After Eqs. 20 and 23, the posterior distribution can be
finally defined as follows:

π(x|Ê) ∝ 1√
σ2
ε

exp

(
− 1

2

N∑
i=1

(
Êi − Ē(θ)

)2
σ2
ε

)
. (24)

Markov chain Monte Carlo
To determine the posterior distribution π(x|Ê) of parameters
x given Ê is not always trivial. Usually, Monte Carlo
simulation is used to approximate the solutions. This book
is a review on Monte Carlo methods (Kroese et al. 2011).

The Metropolis-Hastings algorithm is a Markov chain
Monte Carlo (MCMC) method based on the construction
of a Markov chain such that the future state x(k+1) of the
chain depends only on its current state x(k) and a transition
probability distribution T

(
x(k+1)| x(k)

)
. In the presence of

a sufficient number of unbiased samples, the sequence of
random variables X = {x(0),x(1),x(2), ...} represents the
posterior distribution π(x|Ê).

π
(
x(k+1)|Ê

)
π
(
x(k)|Ê

) =
T
(
x(k+1)|x(k)

)
T
(
x(k)|x(k+1)

) (25)

The procedure for generating the future state x(k+1) is a
two-stage process: the first stage is to generate a candidate
x(∗) that depends only on the current state x(k) of the
Markov chain; the second stage is to accept or reject x(∗).
To this end, it is necessary to compute the acceptance
probability a according to Eq. 26 where K

(
x(∗)|x(k)

)
is the

proposed probability distribution.

a = min

{
1,
π
(
x(∗)|Ê

)
K
(
x(∗)|x(k)

)
π
(
x(k)|Ê

)
K
(
x(k)|x(∗)

)} (26)

Then, a random number u ∼ U(0, 1) is generated from a
Uniform distribution with parameters 0 and 1. If u < a, the
candidate x(∗) is accepted and x(k+1) = x(∗). Otherwise, if
u ≥ a, x(∗) is rejected and x(k+1) = x(k).

The random walk Metropolis algorithm is a particular
case of the Metropolis-Hastings algorithm. In it, a symmetric
Gaussian distribution with variance σ2 is proposed to
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generate the candidate x(∗) (Saadi et al. 2011) yielding:

a = min

{
1,
π(x(∗)|Ê)

π(x(k)|Ê)

}
(27)

The following steps summarizes the random walk
Metropolis algorithm:

1. Initialize the counter and assign initial value x(0);
2. Generate a candidate x(∗) ∼ N (x(k), σ2);
3. Compute the acceptance probability a

(
x(∗),x(k)

)
and

generate a random number u ∼ U(0, 1);
4. Does u < a? If positive, accept the candidate and
x(k+1) = x(∗). If negative, reject and x(k+1) = x(k);

5. Increment the counter and return to the second step.

This article adopted some strategies while implementing
the Metropolis-Hastings algorithm to accelerate the con-
vergence of the Markov chain (Saadi et al. 2011). A first
feature is the total number of generated samples: the Markov
chain must be large enough to adequately represent the
distributions of the parameters respecting the law of large
numbers. The second one is the acceptance probability rate
ā = Na

Nk
that is the ratio between the number of accepted

samplesNa and the total number of generated samplesNk. ā
is controlled by the random walk step σ: on the one hand, if
the jump from one sample to the other is too large, ā is small,
and the chain keeps static; on the other hand, if the jump from
one sample to the other is too small, ā is big, and the chain
needs more time to go through the parameters space. Saadi
et al. (2011) consider an optimal ā between 40% – 50%. The
last feature is the burn-in: eliminating a defined number of
initials samples from the final result. This feature is essential
to eliminate biased results.

Global sensitivity analysis and Sobol’
indices
Global sensitivity analysis (GSA) refers to a set of
mathematical techniques that quantifies the influence of
the input parameters on the response of interest of a
system. Among other techniques, the GSA can be defined
by the variance decomposition method, which aims to
decompose the output variance as the sum of each input
variable’s contributions or combinations. Sobol’ indices is
a variance decomposition method defined in Sobol (1993)
that engineers have recently explored. Its central idea is to
determine the expansion of a computational model into the
sum of terms of increasing dimensions and the rapport of the
partial variances of these terms concerning the model’s total
variance.

Generally speaking, letM be a mathematical model and
X a random input vector gathering k independent input
parameters. M describes a scalar output of interest Y of a
physical system:

Y =M(X) , X = {X1, X2, . . . , Xk} , (28)

According to Sobol (1993), Y can be defined by the
decomposition into sums of different dimensions. For
simplification purposes, the following equations will assume
that the input parameters are uniformly distributed and the

support of X is DX = [0, 1]k. Therefore, Y can be also
written as:

Y =M0 +

k∑
i=1

Mi (Xi) +

k∑
i<j

Mij (Xi, Xj) + . . .

+M1...k (X1 . . . Xk) ,

(29)

All terms of this expansion can be computed through
integrals. The first term M0 is a constant equal to the
expected value:

M0 =

∫
DX

M (X) dX (30)

The other terms Mi(Xi) and Mij(Xi, Xj) are the
conditional mean values for the parameters i and ij (i 6= j),
respectively:

Mi(Xi) =

∫ 1

0

· · ·
∫ 1

0

M (X) dX∼i −M0, (31)

Mij(Xi, Xj) =

∫ 1

0

· · ·
∫ 1

0

M (X) dX∼ij −M0−

Mi(Xi)−Mj(Xj).

(32)

The notation ∼ i indicates that parameter Xi is excluded.
Eq. 29 has the property of orthogonality in terms of
conditional means as defined by Homma (1996), and it
is possible to define the Sobol decomposition in terms of
conditional variances (Sobol 1993). Thus, one can compute
the first-order Sobol’ indices that quantify the additive effect
of each input parameter separately concerning the total
variance:

Si =
V ar[Mi(Xi)]

V ar[M(X)]
, (33)

And the second-order Sobol’ indices that quantify the
interaction effects between two input parameters:

Sij =
V ar[Mij(Xi, Xj)]

V ar[M(X)]
. (34)

Higher-order Sobol’ indices are equally defined, and they
take into account the interaction effects of various input
parameters.

PCE-based Sobol’ indices
Monte Carlo simulation can compute Sobol’s indices,
although it has a high computational cost due to the
low convergence rate. An alternative way to calculate
Sobol’s indices is constructing a surrogate model based on
Polynomial Chaos Expansion (PCE). Surrogate modeling
consists of techniques to approximate a model to reduce
processing time and computational cost while maintaining
model accuracy. Crestaux et al. (2009) and Palar et al. (2018)
compute Sobol’ indices using PCE.

PCE was developed by Wiener (1938). In the engineering
field, Ghanem and Spanos (1991) applied it in the spectral
analysis of stochastic finite elements. Recently, PCE has
been used in a wide variety of domains, e.g., in structural
dynamics and uncertainty quantification . It is a non-intrusive
method. It represents an uncertain quantity of interest
through an expansion composed of deterministic coefficients
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and orthogonal polynomials defined concerning the input
probability density function. Sudret (2008) is a review on
GSA using PCE.

Based on PCE expression, the scalar output of interest Y
can be rewritten as:

Y ≈
∑
α∈A

yαψα(X), (35)

In Eq. 35, ψα are multivariate polynomials that are
orthonormal in relation to the joint probability density
function fX , yα are unknown deterministic coefficients
and A is a truncation criterion, where A ⊂ NM is the
set of selected multi-indices of multivariate polynomials.
The coefficients can be determined through the least angle
regression method.

The statistics of an uncertain output response Y can be
determined using PCE. Therefore, the mean and the variance
are defined, respectively, by:

M0 = y0 and V̂ ar(Y ) =
∑
α∈A

y2
α. (36)

Therefore, the Sobol indices can be directly determined
with minor computational effort through the PCE coeffi-
cients. Thus, the first and second-order Sobol’ indices are,
respectively:

SPCEi =
∑
α∈Ai
α6=0

y2
α

/∑
α∈A

y2
α. (37)

SPCEij =
∑
α∈Aij
α6=0

y2
α

/∑
α∈A

y2
α. (38)

In this work, a global sensitivity analysis is performed.
The Sobol indices are computed via a PCE-based surrogate
model to verify the influence of the reduced-order model
parameters on the error measure.

Results and Discussion
At first, the results in this section refer to the first Maxwell
branch in Fig. 2. Later, the same procedure to infer the
reduced-order model parameters is adopted to other Maxwell
branches.

Initially, it is assumed that each reduced-order model
parameter follows an Uniform distribution U(a, b) with a its
minimum and b its maximum and they are chosen so that
the Bouc-Wen model is “class I” defined. Their value are
indicated in Tab. 1.

A prior global sensitivity analysis is performed in order to
verify which reduced-order model parameter is influential.
To do so, a PCE-based surrogate model Ẽ(θ) is first built
and the PCE coefficients were computed using UQLab
metamodeling module based on sparse least angle regression
(Marelli and Sudret 2021). A comparison between responses
Ē(θ) and Ẽ(θ) can be seen in Fig. 3: the closer to the black
diagonal line, the more reliable the PCE-based surrogate
model is. In Fig. 3, both Ē(θ) and Ẽ(θ) were evaluated at
100 cross-validation sample points. It is worth mentioning
that the reduced-order model is not yet calibrated and it is

Figure 3. Comparison between responses Ē(θ) and Ẽ(θ).
The disposition of the 100 cross-validation samples + indicates
that the PCE-based surrogate model is adequate.

natural to observe in Fig. 3 high error measure values, e.g.,
Ē(θ) > 1. Tab. 2 contains additional information about the
validation of the PCE-based surrogate model.

Once the PCE-based surrogate model is built and
validated, the Sobol indices are computed with minor
computational effort using the UQLab sensitivity analysis
module (Marelli et al. 2021). This procedure allows drawing
some conclusions about the reduced-order model parameters
before inferring their distributions. Fig. 4 shows the total
and first-order Sobol’ indices. On the one side, these results
indicate that parameters γ and δ have little influence on
the error measure of the reduced-order model, i.e., having
less or more variability on these parameters does not mean
that the reduced-order model simulates viscoelastic internal
variables more accurately. For this reason, thy are considered
as completely determined quantities and their values are set
to γ = 1, 000 and δ = 1, 000 so γ

γ+δ = 0.5. On the other
side, parameters c, α, k, and ν have considerable influences,
their variability requires attention and they are considered as
unknowns.

Figure 4. Prior global sensitivity analysis. Total and first order
Sobol’ indices of parameters γ and δ are negligible. Therefore,
they can be considered as determined quantities.

In the sequence, the optimization problem defined in Eq. 5
is solved through the CE method. The CE method parameters
used in this step are Ns = 100 samples, NE = 4 samples,
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Table 1. Uniform prior distribution U(a, b) of the reduced-order model parameters for global sensitivity analysis.

Support c k α γ [×103] δ [×103] ν
a 0 0.999 0 1 -1 1
b 0.01 1.001 1 10 1 3

Table 2. Validation of the PCE-based surrogate model.

PCE degree Exp. Design LOO error
14 2, 000 5.7 · 10−3

lmax = 500 iterations and εmax = 10−6. In addition, a smooth
updating schema of 0.8 is also used. Tab. 3 contains the
optimal reduced-order model parameters values and they can
be used for deterministic simulation of viscoelastic internal
variables. In this condition, Ê = 0.3168.

Table 3. Reduced-order model optimal parameters values
given by the CE method.

ĉ k̂ α̂ ν̂
0.0018 1.0000 0.1152 1.0220

However, it is desirable to verify how the uncertainties
propagate in the reduced-order model response. For this,
parameters c, k, α, ν and the discrepancy variance σ2

ε

are calibrated through Bayesian inference, according to the
following procedure:

• Minimum and maximum values a and b of the Uniform
prior distribution U(a, b) were redefined because it
was empirically verified that the ranges of values were
too wide. The new bounds are indicated in Tab. 4;

• A MCMC sample was generated with Nk = 105

samples. The random walk step σ was manually
adjusted, so the acceptance rate is ā ≈ 40− 50%;

• No MCMC sample was eliminated in the burn-in.

Fig. 5 shows the trace plot of parameters c, k,α,ν and σ2
ε .

It is clear in this figure that there is no need to eliminate
burn-in samples. Moreover, Fig. 6 shows the densities and
cumulative densities of each one of these parameters, where
the continuous black line is the probability density estimates
(EPDF) based on a normal kernel function, the black dashed
line is the Uniform prior distribution, and the marked red line
is the empirical cumulative distribution function (ECDF).

• It is possible to notice that the samples are centered
around 0.002 and 1 for parameters c and k,
respectively;

• There is a higher tendency for parameter α to get
values between 0 and 0.2;

• There is a higher tendency for parameter ν to get
values close to 1.

Similarly, Fig. 7 shows the density and cumulative density
function of the error measure from Eq. 4, where the
continuous black line is the probability density estimates
(EPDF) based on a normal kernel function and the marked
red line is the empirical cumulative distribution function
(ECDF). In addition, the vertical dashed magenta line is
the optimal error measure value Ē determined by the CE

method. Two cases are presented in Fig. 7: the first one
refers to the error measure evaluated at the first Maxwell
branch (Branch 1) in Fig. 2; and the second one to the
fourth Maxwell branch (Branch 4). On the one hand, from
their ECDF, there is a high probability of having E(θ) ≤ 1
in Branch 1. On the other hand, Branch 4 optimal error
measure value Ê is already higher than 1, and, adopting
this criterion, the reduced-order model is not suitable for
simulating viscoelastic internal variables from Branch 4.

Finally, Fig. 8 shows some Branch 1 responses of the
reduced-order model with uncertainties. The inputs C(t)
and initial conditions A|t=0 used to validate in Fig. 8 are
not the same that was used during the reduced-order model
calibration procedure.

Conclusions
This work suggested a reduced-order model simulating
viscoelastic internal variables from the constitutive model of
a viscoelastic material used in the finite element formulation
of a steady-rolling tire. To carry out this work, Michelin
furnished data of right Cauchy-Green deformation and
viscoelastic internal variables from a generalized Maxwell
model composed of various Maxwell branches.

The suggested reduced-order model is based on the
Bouc-Wen model due to the hysteretic behavior of the
right Cauchy-Green deformation and viscoelastic internal
variables. The reduced-order model gets selected data of
right Cauchy-Green deformation, initial conditions, and a set
of parameters, and it returns the response of the viscoelastic
internal variable. An advantage of the reduced-order model
is that it can be computed by numerically solving a less
computationally expensive nonlinear system of first-order
differential equations rather than a finite element model.

An error measure based on the mean absolute scaled
error (MASE) is defined to evaluate the discrepancy between
the reduced-order model responses and the data. Then,
a global sensitivity analysis is performed by computing
Sobol’ indices after a PCE-based surrogate model to quantify
the influence of the reduced-order model parameters into
the error measure. Some of the parameters have a small
influence, and they are considered as completely determined
quantities. The distribution of the parameters that have
non-negligible influence is inferred thanks to the Bayesian
inference procedure. The distribution of the error measure is
also estimated, and uncertainties are propagated through the
viscoelastic internal variable responses.

The main efforts on this process were to calibrate the
reduced-order model and, after this process, the reduced-
order model was capable of simulating the components
of viscoelastic internal variable considering uncertainties
with reduced computational cost. By evaluating the error
measure, the reduced-order model is adequate for simulating
viscoelastic internal variables for the three initial Maxwell
branches, and its responses are in accordance with the
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Table 4. Uniform prior distribution U(a, b) of the reduced-order model parameters and discrepancy variance for Bayesian inference.

Support c k α ν σ2
ε

a 0 0.9995 0 1 0
b 0.005 1.0005 1 3 0.1

data. Obtaining a robust and cheaper computational model
facilitates simulations and research to obtain a more robust
tire. In this sense, the results of this paper contribute to the
advancement of research on computational models that are
more robust and with a reduced computational cost.

Availability of data and material
The MATLAB scripts used in the numerical simu-
lations are available in the following GitHub reposi-
tory: https://github.com/rafaelraqueti/UQ_
Bouc-Wen_calibration.git. The dataset used in this
work belongs to Michelin and is not available in this reposi-
tory.
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Figure 6. Reduced-order model parameters and discrepancy variance estimated probability density functions (EPDF), Uniform
prior distributions and empirical cumulative distribution functions (ECDF).
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Figure 7. Error measure estimated probability density function
(EPDF) and empirical cumulative distribution function (ECDF).
The minimum error measure value Ê given by the CE method is
indicated.
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Figure 8. Reduced-order model responses related to different inputs C(t) and initial conditions A|t=0, where � is the 95%
confidence interval (CI), −− the reduced-order model mean and − the viscoelastic internal variable from the dataset.
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