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Consider a system of one dimensional hard rods of variable length in the dynamics considered in [START_REF] Ferrari | Generalized hydrodynamics for size inhomogeneous hard rods[END_REF]: when two rods collide they exchange positions. The equilibrium dynamics is constructed as follows. We start with X ε = (x, v, r) the Poisson process on R×R×R + with intensity ε -1 ρ dx dµ(v, r), with µ a positive probability measure on R 2 with finite second moments. The usual hard rods case is given by dµ(v, r) = δ a (dr)dµ(v), a > 0. We define

σ = ρ rdµ(v, r), volume density π = ρ rvdµ(v, r), momentum density. (1) 
and

m b a (X ε ) = (x,v,r)∈X ε ,x∈[a,b] εr b > a -(x,v,r)∈X ε ,x∈[b,a] εr b < a. (2)
By the law of large numbers we have

(3) m b a (X ε ) -→ ε→0 (b -a)σ, a.s. as
To each configuration X ε there is a dilated configuration of the rods

Y ε = {(y = x + m x 0 (X ε ), v, r) : (x, v, r) ∈ X ε } For a given test function ϕ(y, v, r) we have the law of large numbers ε (y,v,r)∈Y ε rϕ(y, v, r) = ε (x,v,r)∈X ε rϕ(x + m x 0 (X ε ), v, r) -→ ε→0 ρ rϕ(x(1 + σ), v, r)dx dµ(v, r) = ρ 1 + σ rϕ(y, v, r)dy dµ(v, r) = 1 1 + σ ϕ . (4) 
i.e. ρ = ρ 1+σ is the density of the hard rods. The fluctuation field for the rods is defined by

(5) ξ Y,ε (ϕ) = ε -1/2   ε (y,v,r)∈Y ε rϕ(y, v, r) -E   ε (y,v,r)∈Y ε rϕ(y, v, r)     .
It is not hard to prove, using the underlying CLT of the Poisson process, that

(6) ξ Y,ε (ϕ) law -→ ε→0 ξ Y (ϕ)
where ξ Y is the centered gaussian field with covariance

< ξ Y (ϕ)ξ Y (ψ) >= ρ r 2 Cϕ(y, v, r)Cψ(y, v, r)dydµ(v, r). ( 7 
)
1 where C = I -σ 1+σ P and P is the projection operator

(8) P ϕ(x) = ρ σ rϕ(x, v , r ) dµ(v , r ).
In the dynamics that we consider, in the Euler scaling, the position at time t of the hard rod (y, v, r) that at initial time is at the position y that is the dilated image (wrt 0) of the point x is given by ( 9)

y t = x + m x 0 (X ε ) + vt + j X ε (x, v, t). The flux j X ε (x, v, t) is defined by j X ε (x, v, t) = ε (x ,v ,r )∈X ε r 1 [v <v] 1 [x<x <x+(v-v )t] -1 [v >v] 1 [x+(v-v )t<x <x] . (10) 
By the law of large numbers, for any tagged rod (y, v, r) ∈ Y ε we have that [START_REF] Presutti | Macroscopic Stochastic Fluctuations in a One-Dimensional Mechanical System[END_REF] (

y t -y) -→ ε→0 v eff (v)t, a.s.
where the effective velocity is given by

(12) v eff (v) := v + ρ r(v -w)dµ(w, r) = v(1 + σ) -π.
The fluctuation field in the Euler scaling is defined by

ξ Y,ε t (ϕ) = ε -1/2   ε (y,v,r)∈Y ε rϕ(y t , v, r) - 1 1 + σ ϕ   . (13) 
It is proven in [START_REF] Boldrighini | Wick Fluctuations in a One-Dimensional Mechanical System. I. The Euler Limit[END_REF] 

that ξ Y,ε t converges in law to (14) ξ Y t (ϕ) = ξ Y 0 (ϕ t ), ϕ t (y, v, r) = ϕ(y + v eff t, v, r). i.e. ( 15 
) ∂ t ξ Y t (ϕ) = ξ Y 0 (v eff ∂ x ϕ t ) = ξ Y t (v eff ∂ x ϕ)
, that in the hard rods with deterministic length correspond to the linerized equation of the Euler hydrodynamics proven in [START_REF] Boldrighini | Hydrodynamical limit for a degenerate model of classical statistical mechanics[END_REF][START_REF] Boldrighini | One dimensional hard rod caricature of hydrodynamics[END_REF]. Our work concerns the fluctuation field recentered on the effective velocities under a diffusive rescaling:

Ξ Y,ε t (ϕ) = ε -1/2   ε (y,v,r)∈Y ε rϕ y ε -1 t -v eff (v)ε -1 t, v, r - 1 1 + σ ϕ   . (16) 
We prove the following convergence in law:

(17) Ξ Y,ε t (ϕ) law -→ ε→0 Ξ Y t (ϕ) = Ξ Y ϕ(• + √ DW t ) .
This means that an initial fluctuation of rods of velocity v, after recentering around the effective velocity, evolves in the diffusive scale by random rigid translations driven by a Brownian motion with diffusivity D(v) explicitely defined by

(18) D(v) = ρ r 2 |v -v|dµ(v, r).
In the case of the usual hard rods with deterministic length this coincide with the diffusivity that appears in the Navier-Stokes corrections of the hydrodynamics [START_REF] Boldrighini | One-Dimensional Hard-Rod Caricature of Hydrodynamics: Navier-Stokes Correction[END_REF][START_REF] Boldrighini | One-Dimensional Hard-Rod Caricature of Hydrodynamics: "Navier-Stokes Correction" for Local Equilibrium Initial States[END_REF] (see also more recent [START_REF] Doyon | Dynamics of hard rods with initial domain wall state[END_REF]). This rigidity in the evolution of the fluctuations in the diffusive scaling is in contrast with expected results for chaotic systems where fluctuation hydrodynamics predict an evolution driven by an additive space-time white noise [START_REF] Spohn | Large Scale Dynamics of Interacting Particles Systems[END_REF]. On the other hand, in the case of the ususal hard rods with fixed size, it is in agreement with previous calculations of the space-time covariance [START_REF] Jl Lebowitz | Time evolution of the Total Distribution Function of a One-Dimensional System of Hard Rods[END_REF][START_REF] Spohn | Hydrodynamical Theory for Equilibrium Time Correlation Functions of Hard Rods[END_REF]. We expect this rigid evolution of the fluctuations in other completely integrable system such as the Ball-Box dynamics [START_REF] Croydon | Generalized Hydrodynamic Limit for the Box-Ball System[END_REF][START_REF] Ferrari | BBS invariant measures with independent soliton components[END_REF] or the Toda lattice [START_REF] Spohn | Hydrodynamic Equations for the Toda Lattice[END_REF].

The basic argument behind the proof of ( 17) is that the fluxes j X ε (x, v, ε -1 t) and j X ε (x, v, ε -1 t) corresponding to two particles at initial macroscopic distance x -x are completely correlated in the limit as ε → 0.
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