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Abstract 
Measles, Nipah and Hendra viruses are severe human pathogens within the Paramyxoviridae family. 
Their non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the 
nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the viral RNA-dependent-
RNA-polymerase (RpRd) for transcription and replication. The RpRd is a complex made of the large 
protein (L) and of the phosphoprotein (P), the latter serving as an obligate polymerase cofactor and as 
a chaperon for N. Both the N and P proteins are enriched in intrinsically disordered regions (IDRs), i.e. 
regions devoid of stable secondary and tertiary structure. N possesses a C-terminal IDR (NTAIL), while 
P consists of a large, intrinsically disordered N-terminal domain (NTD) and a C-terminal domain (CTD) 
encompassing alternating disordered and ordered regions. The V and W proteins, two non-structural 
proteins that are encoded by the P gene via a mechanism of co-transcriptional edition of the P mRNA, 
are prevalently disordered too, sharing with P the disordered NTD. They are key players in the evasion 
of the host antiviral response and were shown to phase separate and to form amyloid-like fibrils in vitro. 
In this review, we summarize the available information on IDRs within the N, P, V and W proteins from 
these three model paramyxoviruses and describe their molecular partnership. We discuss the functional 
benefit of disorder to virus replication in light of the critical role of IDRs in affording promiscuity, 
multifunctionality, fine regulation of interaction strength, scaffolding functions and in promoting 
liquid-liquid phase separation and fibrillation. 
 
discuss the functional advantage of structural disorder for viral replication. 
 
Highlights  
• Intrinsic disorder is a widespread property in the replicative complex of these three model 

paramyxoviruses  
• Intrinsic disorder affords a way to finely tune the affinity of interactions critical for viral 

transcription and replication  
• Intrinsic disorder confers promiscuity and multifunctionality  
• Intrinsic disorder promotes liquid-liquid phase separation, phase transition and fibrillation 
• Intrinsic disorder enables lessening evolutionary constraints 
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Introduction  
The measles virus (MeV), together with the cognate Nipah and Hendra viruses (NiV and HeV, 

Henipavirus genus) are severe human pathogens belonging to the Paramyxoviridae family within the 
Mononegavirales order. Paramyxoviruses are enveloped viruses with a non-segmented, single-stranded 
RNA genome of negative polarity. Their envelope is composed of a lipid bilayer, derived from the host 
cell plasma membrane, into which are inserted the F and G glycoproteins. The matrix protein (M) forms 
a layer beneath the envelope bridging the cytoplasmic tails of the glycoproteins with the nucleocapsid 
(NC) (Fig. 1A).  

The genome of paramyxoviruses is encapsidated by the nucleoprotein (N) within a helical NC 
[1,2]. The NC, and not naked RNA, is the template used by the RNA-dependent RNA polymerase 
(RdRp) during transcription and replication. The RdRp is a complex made of the large (L) protein, which 
bears all the enzymatic activities, and the phosphoprotein (P). Cryo-electron microscopy (EM) 
structures of L proteins from various Mononegavirales members unveiled a conserved structural 
organization consisting in five globular domains connected by flexible linkers (for reviews see [3,4]). 
The ribonucleoprotein (RNP) complex, made of encapsidated RNA, P and L, constitutes the replicative 
complex and the minimal infectious unit (Fig. 1A). Transcription and replication take place in so-called 
“viral factories”, i.e. cytoplasmic inclusions (referred to as inclusions bodies, IBs) that serve as platforms 
for optimized viral replication, thanks to selective uptake or exclusion of components and shielding 
from the host innate immune defense.  

The P protein is an essential polymerase cofactor: (i) it keeps L in a soluble and active form [5-7], 
(ii) it allows L recruitment onto the nucleocapsid template [7] and (iii) its regulates viral RNA synthesis 
[8] (Fig. 1A). P also serves as a chaperon for N: by forming a soluble complex with monomeric N (N°) 
[9,10] it prevents the self-assembly of N on cellular RNA in the absence of ongoing viral genomic RNA 
synthesis [11,12] (for reviews see [13-20]). 

 
Figure 1. Scheme of the organization of paramyxoviral genome and particle, of the N and P proteins and 
structure of the NTAIL-XD and N°-PNT complexes. (A) Schematic representation of paramyxoviral genome and 
particle. The negative-sense genomic RNA is presented in the 3’ to 5’ orientation. (B) Top: modular organization of 
N and P proteins from MeV, NiV and HeV. Structured and disordered regions are represented as large or narrow 
boxes respectively. NCORE: N structured region; NTAIL: intrinsically C-terminal region of N. NTD: N-terminal region 
of P; PMD: P multimerization domain; XD: X domain of P; D, dynamic region conditionally disordered in MeV 
PMD (aa 358-375 of P). The α-MoREs at the N-terminal region of P and within NTAIL, partly preconfigured in 
solution and adopting a stable α-helical conformation upon binding to N° and XD, respectively, are shown as 
helices. Bottom: schematic representation of the nucleocapsid (NC) with NTAIL exposed at its surface. P is shown as 
a tetramer attached to the NC via XD. The structures of MeV XD (PDB code 1OKS) [21] and of PMD (PDB code 
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4BHV [22]) are shown. XD is shown in rainbow with blue corresponding to the N-terminus and red to the C-
terminus. (C) Top: cartoon representation of the MeV NTAIL-XD complex (PDB code 1T6O) [23] in which the fuzzy 
N- and C-terminal appendages were drawn at scale by extracting the corresponding regions from a representative 
member of the MeV NTAIL conformational ensemble deposited in the Protein Ensemble Database (PED) [24] (PED 
entry code 00020). The structure of XD (aa 459-507 of P) bound to the MoRE of NTAIL (aa 486-504 of N) is also shown 
with XD in surface representation and the MoRE in ribbon. Hydrophobic residues are shown in yellow. Bottom: 
Structure of the NiV N°-PNT complex (PDB code 4CO6) [9] with the same color code as in the top panel. All 
structures were drawn using Pymol [25]. 

Order and disorder within the N and P proteins 
The N and P proteins from MeV, NiV and HeV possess long intrinsically disordered regions 

(IDRs), i.e. functional regions devoid of stable secondary and tertiary structure [26]. The N protein 
consists of two domains: a structured N-terminal domain (NCORE), responsible for RNA binding and for 
self-assembly, and a C-terminal IDR (NTAIL) that binds to the C-terminal region of P [27-30] (Fig. 1B) and 
that is also disordered in the context of the nucleocapsid [31-33]. The structure of N either in its 
monomeric form bound to P (N°-P) or in its self-assembled state has been solved in a number of 
paramyxoviruses and of closely related pnenumoviruses (for a review see [20]).  

The P protein consists of a long N-terminal intrinsically disordered domain (NTD) and a C-
terminal region that has a modular organization being composed of alternating disordered and 
structured regions (Fig. 1B) [29,34-37]. At the N-terminus of P there is a short order-prone molecular 
recognition element (α-MoRE) that undergoes α-helical folding upon binding to N° (Fig. 1C) and whose 
location at the surface of N° prevent its self-assembly into NC [19,20]. An additional short order-prone 
region establishing weak interactions with N° was identified within the NTD and shown to be crucial 
for MeV transcription and replication [38]. 

The P structured regions are the P multimerization domain (PMD), responsible for P 
oligomerization, and the X domain (XD) that is responsible for NTAIL-mediated attachment of P to the 
NC and for binding to L [7,39]. Although the NTAIL- and L-binding sites are located in two distinct XD 
regions, binding of NTAIL to XD prevents XD from recruiting L [39]. While PMD consists in a coiled-coil 
[22,36,40-43] XD adopts a triple α-helical bundle conformation [21,30,32] (Fig. 1B).  

Interestingly, the folded regions of P exhibit some degree of conformational heterogeneity and 
residual disorder. Native mass spectrometry studies indicated that MeV XD populates at least two 
conformations under native conditions [44], and equilibrium and kinetic measurements, combined with 
molecular dynamic simulations, unveiled the presence of a folding intermediate [45] (Fig. 2A). Likewise, 
NiV XD was found to adopt a two-helix conformation in crystals (Fig. 2B), and to fold into the canonical 
triple helical bundle upon binding to the MoRE of NTAIL [46]. In solution, both NiV XD and HeV XD are 
in conformational equilibrium between the canonical three-helix bundle and a less populated elongated 
two-helix hairpin, although only NiV XD is able to dimerize [46]. A recombinant NiV encoding a 
chimeric P bearing HeV XD is attenuated [46], advocating for a scenario where XD stability and 
conformational diversity could be exploited by the virus to regulate P binding to the NC and/or to L. In 
further support of a conformational heterogeneity of XD, X domains of rubulaviruses (another genus of 
the Paramyxoviridae family) span a structural continuum ranging from stable or transiently populated 
α-helical bundles, to largely disordered conformations in solution [47,48]. 
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Figure 2. Structures of XD and PMD. (A) Replica-averaged meta-dynamic ensemble of MeV XD highlighting the 
presence of a native state and of an intermediate state populated at 70% and 30%, respectively [45]. (B) Ribbon 
representation of the dimeric two-helix conformation of NiV XD as observed in crystals (PDB code 7PON) [46] (top 
panel), and of HeV XD (pink) (PDB code 4HEO) [32] either alone (left bottom panel) or superposed to a monomer 
of NiV XD (right bottom panel). (C) Structural comparison of MeV PMD structures. Left: ribbon representations of 
the crystal structures of the MeV PMD tetramers as observed in the three different MeV PMD forms solved to date. 
Right: superimposition of the three MeV PMD tetramers, with PDB codes 4BHV, 4C5Q, [22] and 3ZDO [41] shown 
in red, yellow, and green, respectively. The conditionally disordered “dynamic” C-terminal region of PMD (D) is 
circled. Data are from [22] and reproduced with permission of the International Union of Crystallography 
(http://journals.iucr.org/). (D) Structural models of the trimeric coiled-coil PMDs of NiV [42] and HeV [43] 
embedded into their SAXS-derived ab initio envelopes. All structures were drawn using Pymol [25]. 

In the same vein, structural comparison among available crystal structures of MeV PMD unveiled 
not only unexpected and significant differences in the quaternary structure of the tetrameric coiled-coil, 
but also in the extent of disorder in its C-terminal region [22] (Fig. 2C). If previous data showed that the 
L-P interaction requires the C-terminal region of PMD, the “linker” region and XD [5,39], the C-terminal 
conditionally disordered region (referred to as “dynamic” region, D) was found to be critical for 
maturation of L, i.e. for maintaining it in a soluble form [7]. 

Likewise, the cohesiveness of the coiled-coil has a profound impact on transcription and 
replication: stabilizing or destabilizing PMD dramatically affects P function, where P works within a 
narrow window of stability and its sequence is naturally optimized for transcription and replication [7] 
(Fig. 3A). Therefore, residual disorder within PMD and variations in cohesiveness of the coiled-coil are 
critical for interaction with L and for transcription and replication. 

Henipavirus PMDs exhibit an even more pronounced conformational heterogeneity, where NiV 
PMD was found to form tetramers in crystals [36,40] and trimers in solution [42]. SAXS studies revealed 
that HeV PMD is a trimer in solution too [43], although its N-terminal helical region has a different 
orientation with respect to that of NiV PMD in solution (Fig. 2D) [43]. In light of the high sequence 
similarity between NiV and HeV PMDs, these structural differences likely reflect an intrinsic ability of 
Henipavirus PMDs to undergo conformational changes resulting in forms of different lengths and 
compaction, although the triggering factors remain elusive. By analogy with MeV PMD [7], it is 
tempting to speculate that these different forms could regulate binding to L and hence ultimately 
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transcription and replication.  

The NTAIL-XD interaction: molecular mechanisms, fuzziness and functional impact 
In the three viruses NTAIL binds to XD (Fig. 1B, 1C) with a 1:1 stoichiometry and with an 

equilibrium dissociation constant (KD) in the µM range [30,49,50]. Interaction with XD triggers α–helical 
induced folding within an α-MoRE of NTAIL [27,28,30-33,49,51-55]. In its free form, the MoRE is partly 
preconfigured as an a-helix [31-33] yet it folds according to a folding after binding mechanism 
[32,50,56,57]. In the bound form, the MoRE is embedded between helices a2 and a3 of XD to yield a 
pseudo-four helix arrangement mainly stabilized by hydrophobic contacts (Fig. 1C) [21,23,27,30,32]. 
Electrostatic interactions play an additional role in properly orienting the Henipavirus MoRE at the XD 
surface [32,58].  

The MeV NTAIL-XD complex is “fuzzy” [59], i.e. it retains a considerable amount of residual 
disorder, with the regions preceding and following the MoRE being embedded in a long [60] and short 
[61] fuzzy appendage, respectively (Fig. 1C). The fuzziness of the Henipavirus NTAIL-XD complex is even 
more pronounced, with the MoRE undergoing helical fraying at the surface of XD [32,33]. The long, N-
terminal fuzzy appendage was found to act as a natural dampener of the NTAIL-XD interaction and to 
slow down the rate of folding of the MoRE [62] through a combination of entropic and enthalpic effects 
[63]. Increasing the a-helical content of the MoRE results in increased interaction strength towards XD 
and higher folding rates [64] likely through a reduction of the entropic penalty. Conversely, decreasing 
its helicity has the opposite effect [64]. 

According to the so-called cartwheeling mechanism, which posits that the polymerase complex 
cartwheels from one N monomer to another within the NC [65], the NTAIL-XD interaction has to be 
dynamically established and broken to ensure progression of the L-P complex onto the NC to allow 
transcription and replication. If a too weak interaction would result in detachment of the L-P complex 
from the NC, a too much strong interaction is predicted to hinder the polymerase processivity. In the 
course of evolution, the length of the fuzzy region preceding the MoRE has likely been under selective 
pressure so as to ensure a balanced affinity towards XD. In support of this scenario, shortening this 
region results in an unbalance between transcription and replication [66,67]. Mutational studies that 
targeted XD unveiled that an increase in the affinity of the NTAIL-XD pair is associated to a reduction in 
transcript accumulation rate [8], thus further underscoring the role of the NTAIL-XD interaction in tightly 
controlling the viral polymerase progression along the NC template. The corollary of this is that the 
NTAIL-XD interaction strength has to be kept into a precise window to ensure efficient transcription and 
replication. In line with this requirement, random mutagenesis studies showed that the MoRE is poorly 
evolvable in terms of its binding abilities towards XD, suggesting that the sequence of the MoRE has 
been naturally selected to optimally bind XD, hence explaining its conservation in naturally occurring 
MeV strains [68]. This finding mirrors the one pertaining PMD whose sequence appears to be naturally 
optimized to bind L [7].  

Combined biophysical and virological approaches that made use of NTAIL variants bearing 
substitutions within the MoRE enabled deciphering the functional impact of the MeV NTAIL-XD 
interaction and unveiled that the affinity of the binding reaction dictates the efficiency of transcription 
re-initiation by the viral polymerase at each intergenic region (IGR) within the viral genome [69]. When 
the viral polymerase has finished transcribing the first gene, it has to recognize the IGR region as a 
“separator” signal and to start transcribing the downstream gene. At each IGR the polymerase has a 
certain probability to fail re-initiating transcription of the downstream gene, which gives rise to a 
characteristic gradient of relative abundance of each mRNA (Fig. 3B). Our mutational studies showed 
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that the efficiency with which the polymerase re-initiates transcription of the downstream gene depends 
on the affinity between NTAIL and XD (Fig. 3C). The interaction between NTAIL and XD is naturally 
optimized to allow the viral polymerase to synthesize each of the viral messengers in proportions 
ensuring a balanced production of each of the viral proteins. Overall, mutational and deletion studies 
support the conclusion that a disordered appendage length code and an amino acid code of NTAIL have 
shaped the interaction between NTAIL and XD during evolution to ensure a balanced affinity for efficient 
transcription and replication. 

 
Figure 3. Functional impact of variations in MeV PMD coiled-coil cohesiveness and NTAIL-XD affinity. (A) 
Relationship between MeV PMD coiled-coil stability and efficiency of transcription and replication, as determined 
in minireplicon studies [7]. The stability of the wt form (pink) is optimal for transcription and replication, whereas 
more stable (left, blue) or less stable (right, red) PMD forms are associated to a decreased efficiency. (B) Upper 
panel: Schematic representation of the movement of the L-P complex along the NC. Attachment of the L-P complex 
to the NC relies on the NTAIL-XD interaction. Lower panel: schematic organization of the MeV genome with its 6 
genes, separated by inter-gene regions (IGRs). Transcribed mRNAs are shown under each gene in their relative 
abundance. (C) Relationship between affinity of the NTAIL-XD pair and efficiency with which the viral polymerase 
re-initiates transcription at the downstream gene. The transcription re-initiation efficiency of a set of single-site 
variants relative to the wt form, as observed in minireplicon studies with a dual-gene reporter system, are plotted 
as a function of the NTAIL-XD affinity. Data were taken from [69]. All structures were drawn using Pymol [25]. 

The V and W proteins, their functional role and their ability to phase separate and fibrillate 
Like in many paramyxoviruses, including MeV [70], the P gene from HeV and NiV also encodes 

the C, V and W proteins. While the C protein is encoded in an alternative reading frame of the P gene, 
the V and W proteins result from the addition of either one (V) or two (W) non-templated guanosines 
at the editing site of the P mRNA (Fig. 4A). The latter is located at the end of the region encoding the 
NTD of P (Fig. 4A). Consequently, the P, V and W proteins share a common NTD but have distinct C-
terminal domains (Fig. 4A).  

The V and W proteins are key players in the evasion of the host innate immune response. [71-
73]. They counteract the antiviral response by binding or hijacking key cellular proteins (Fig. 4A). They 
antagonize interferon (IFN) signaling by targeting STAT proteins that are key signal transducers of IFN-
induced antiviral response [71]. V and W bind STAT1 through their NTD, with this ability being also 
conserved in NiV P [36]. V inhibits nuclear translocation of STAT1 and promotes its ubiquitination and 
degradation [74]. This latter property of V relies on its ability to bind to DDB1, a component of the 
ubiquitin ligase E3 complex, with the VCTD playing a critical role in DDB1 recruitment [75]. The W 
protein sequesters STAT1 into the nucleus [76] thanks to a nuclear localization signal (NLS) that is 
recognized by importin α3 [77] and accounts for steady-state location of the W protein in the nucleus 
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[78]. In addition to STAT1, the NiV P, V and W proteins, along with the HeV V and W proteins, also 
bind to STAT2 [79] and STAT4 [80], and NiV V also binds to STAT5 [80]. Beyond its antagonist activity 
of IFN signaling, NiV W also prevents IFN-β expression and inhibits TLR3 signaling. In addition, V also 
prevents the detection of viral dsRNA by binding to MDA5, LGP2 [81], and PLK1 [82]. Finally, 
Henipavirus W proteins bind to 14-3-3 proteins, with this interaction resulting in modulation of various 
cellular processes including apoptosis [83] and inhibition of NF-κB-induced proinflammatory response 
[84]. 

The NTD of the NiV and HeV V proteins is disordered not only in isolation [29,36,37] but also 
in the context of the V protein, while the CTD adopts a zinc-finger conformation (Fig. 4) [75]. By contrast, 
the CTD of the W proteins is predicted to be disordered and the W proteins were shown to be 
intrinsically disordered (Fig. 4A) [85].  

IDPs and/or IDRs are known for their involvement in a broad range of phase separation 
behaviors [86-88]. IDRs can drive liquid-liquid phase separation (LLPS), and the resulting biomolecular 
condensates can undergo “maturation” towards a gel or solid state that ultimately can nucleate 
amyloid-like fibrils [87,89-92]. Vice versa, amyloid-like fibers can form highly stable hydrogels [93,94]. 
Although gelation and fibrillation appear to be intertwined, they are not always interconnected: indeed, 
IDRs can form amyloid-like structures not only from hydrogels [95-97] but also from liquid samples [98-
100].  

In agreement with these properties, the HeV V protein jellifies in vitro (Fig. 4B). The minimal 
HeV V region responsible for this ability (referred to as PNT3, aa 200-310 of HeV V) is located within 
the intrinsically disordered NTD (Fig. 4B) [101,102]. Turbidity measurements showed that PNT3 phase 
separates and FRAP studies revealed a solid-like nature of the resulting condensates. Binding assays to 
the amyloid-specific dye Congo red, together with negative-staining transmission electron microscopy 
(TEM) studies, showed that PNT3 forms amyloid-like fibrils (Fig. 4B) [102]. Noteworthy, Congo red 
staining experiments provided hints that these amyloid-like fibrils form not only in vitro but also in 
cellula after transfection or infection of mammalian cells [102]. As predictable from the fact that the 
minimal amyloidogenic region (i.e. PNT3) is also present within the W protein, both NiV and HeV W 
proteins phase separate and form amyloid-like fibrils (Fig. 4C) [85]. Noteworthy, analysis of the Cryptic 
Amyloidogenic Regions Database (CARs DB, http://carsdb.ppmclab.com/) [103] revealed the presence 
of 6 CARs within the intrinsically disordered NTD of the HeV and NiV P proteins. Strikingly, one of 
these CARs (i.e. I208PEYYYG214 in HeV and I208AEHYYG214 in NiV) corresponds to an amyloidogenic 
region that we previously identified and experimentally validated within the NTD common to the HeV 
P, V and W proteins [102]. 
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Figure 4. Coding capacity of the P gene, structural organization of the Henipavirus V and W proteins and their 
ability to jellify and form amyloid-like fibrils. (A) Coding capacity of the P gene and modular organization of the 
Henipavirus V and W proteins. The C protein is not shown for the sake of clarity. Shown is the organization of HeV 
V and W proteins that is very close to that of their NiV counterpart. Structured and disordered regions are 
represented as large or narrow boxes respectively. NTD: N-terminal region common to the P, V and W proteins; 
ZnFD: zinc-finger domain; VCTD and WCTD: C-terminal domain of the V and W proteins; PNT: α-MoRE adopting a 
stable α-helical conformation upon binding of P to N° (i.e. N°-PNT complex) [9] or of V to host cellular transporters 
[104]. Well-described interaction sites with human cell partners involved in the innate immune response are 
shown. For both the V and W proteins, shown is a representative conformer, selected from the corresponding 
conformation ensemble (PED entry codes 00182 and 00204 for HeV V [102] and HeV W [85], respectively). (B) 
Hydrogels formed upon freezing and thawing of purified V, NTD, PNT3 and PNT3-GFP, and negative staining 
TEM micrograph of PNT3. Modified from [102]. (C) Negative staining TEM micrograph of the HeV and NiV W 
proteins. Modified from [85]. Structures were drawn using Pymol [25]. 
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Functional benefits of disorder within N and P/V/W proteins 
As described above, and reviewed in [19], compelling experimental evidence point to the 

abundance of structural disorder in the N and P/V/W proteins of paramyxoviruses. Which is the 
functional benefit that IDRs within the N and P/V/W proteins bring to these viruses that couldn’t be 
afforded by structured counterparts? Below, we discuss the functional advantages of structural 
disorder.  

Disorder as a determinant of nucleocapsid polymorphism 
As mentioned above, NTAIL remains prevalently disordered in the context of the NC [31-33]. Its 

first 50 residues are however conformationally restrained being located in the interstitial space between 
successive turns of the NC [31,32] (Fig. 5A). The intrinsic flexibility of this region explains the increased 
rigidity of NCs in which NTAIL has been cleaved off (Fig. 5B, C) [28]. Its flexibility (and hence its potential 
to undergo conformational changes) is likely also responsible for the observed variations in pitch and 
twist in paramyxoviral NCs (Fig. 5D, left) [105-108]. In turn, these conformational differences may affect 
the recognition of the replication and transcription promoters (Fig. 5D). The replication promoter, 
located at the 3' end of the viral genome, consists of two discontinuous elements that form a functional 
unit when juxtaposed on two successive helical turns [109] (Fig. 5D). Thus, variations in the helical 
conformation of the NC, expectedly triggered by partner-induced NTAIL conformational changes, would 
result in a modification in the number of N monomers per turn, thereby ultimately governing the switch 
between transcription and replication via the disruption of the replication promoter at the expenses of 
the transcription promoter (or vice versa).  

 

Figure 5. Model of MeV nucleocapsid and illustration of the impact of NTAIL on the morphology of the 
nucleocapsid. (A) Model of the MeV nucleocapsid. NCORE monomers are shown in yellow and green. The 
disordered NTAIL region is shown in red. Modified from [31]. (B, C). Negative staining electron microscopy pictures 
of MeV NC before (B) and after (C) incubation with trypsin. Modified from [28]. (D) Reconstruction by cryo-
electron microscopy (left) [107,108] and schematic representation (right) of the MeV nucleocapsid. The bipartite 
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replication promoter is shown encapsidated by N monomers in yellow and red. Background: electron micrographs 
of MeV nucleocapsid (courtesy of D. Bhella, MRC, Glasgow, Scotland). 

Disorder as an exquisitely efficient solution for modulating binding affinities 
Two critical interactions for paramyxovirus transcription and replication, i.e. N0-PNT and NTAIL-

XD, rely on a disordered segment that undergoes α-helical folding upon binding to the structured 
partner. Why have these viruses conserved this peculiar interaction mode? Structural disorder is known 
to allow protein interactions to occur with both high specificity and low affinity [110-118]. The low 
affinity arises from the entropic penalty that is associated to the disorder-to-order transition. However, 
the persistence of residual disorder in IDP complexes (in the form of fuzzy appendages) together with 
the partial pre-configuration of binding motifs prior to binding, afford a way to modulate the binding 
affinity through variation of the entropic penalty (for a review see [119]). Static fuzziness, i.e. dynamic 
binding of the binding motif at the surface of the partner as in Henipavirus NTAIL-XD complexes, brings 
an additional means for regulating the interaction strength.  

Because both the N°-PNT and NTAIL-XD interactions need to be continuously established and 
broken to ensure RNA synthesis, their interaction strength has to be tightly controlled. The involvement 
of IDRs in these complexes provides an exquisite means to modulate the interaction strength: by tuning 
the extent of pre-configuration of the binding motifs and/or the length of neighboring fuzzy appendages 
the virus can achieve an optimal binding strength. Besides, the extreme allostery that typifies IDPs (i.e. 
the long-range nature of the effects of substitutions), affords a supplementary layer of regulation. As a 
result, amino acid substitutions in fuzzy regions located far away from the binding site have the 
potential to affect binding [63,68]. 

Finally, conformational heterogeneity within PMD (i.e. differences in quaternary structure and 
cohesiveness, and ability to form different types of oligomers [22,42,43]), and within XD (i.e. ability to 
sample different conformations [44-46]), as well as residual disorder (i.e. “dynamic” region in PMD [22]) 
in P structured regions provide an additional way of regulating critical P-NC and/or P-L interactions 
[7,46], although the precise underlying molecular mechanisms remain to be elucidated.  

Disorder as a promoter of LLPS, phase transitions and fibrillation 
LLPS, a phenomenon that underlies the formation of membrane-less organelles (MLOs) and that 

has emerged as a novel mechanism of cell compartmentalization of biomolecules [98], is often driven 
by IDPs/IDRs either alone or in the presence of nucleic acids [86,120,121]. The phenomenon of LLPS is 
also exploited by viruses for their replication through the formation of condensates made of their own 
proteins either alone or in association with nucleic acids [122-127]. Mononegavirales members have 
broadly evolved mechanisms to assemble proteins into liquid-like viral factories [122,124,125,128,129]. 
Their liquid-like nature has been clearly demonstrated for MeV, where maturation of viral inclusions 
from a liquid-like to a gel-like state has been interpreted as a possible regulatory mechanism controlling 
organelle dynamics to optimize the viral replication cycle [130]. Co-expression of N and P proteins from 
a number of paramyxoviruses also leads to the appearance in transfected cells of spherical inclusions 
recapitulating the liquid properties of viral inclusions observed in infected cells. In all cases, the protein 
regions required for the formation of these inclusions are intrinsically disordered, thus illustrating the 
critical role of structural disorder in this functionally important process (for reviews see 
[122,125,128,131]). Purified MeV N and P proteins also phase separate in vitro, with PMD, the linker 
region and XD, together with full-length N in its monomeric form bound to P, being essential for LLPS 
(Fig. 6A,B) [132]. The combination of P1−50N1−525 with P304−507 is the minimal phase-separating system (Fig. 
6A,B). RNA colocalizes within preformed droplets made of P1−50N1−525 and P304−507, where it is readily 
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encapsidated within NC-like particles (Fig. 6C) [132]. Noteworthy, the encapsidation rate within 
droplets is enhanced compared to the dilute phase, providing strong indication that the formation of 
droplets is functionally coupled with virus replication [132]. 

 

 
Figure 6. Phase separating abilities of MeV N and P proteins, RNA colocalization and formation of 
nucleocapsid-like particles. (A) Cartoon representation of the MeV P region encompassing residues 304-507 (left) 
and of the full-length N protein (N1-525) in complex with the P region encompassing residues 1-304 (P1-304) (right). 
PDB codes are 3ZDO for PMD [41], 1OKS for XD [21], and 5E4V for the N°-PNT complex [10]. (B) Fluorescence 
microscopy image of a mixture containing fluorescein-labeled P1-304N1-525 and P304–507 under conditions where LLPS 
occurs. (C) Fluorescence microscopy image showing fluorescently labeled RNA diffusing into droplets preformed 
by mixing P1-50N1-525 and P304–507. RNA colocalizes to N:P droplets and forms nucleocapsid-like particles, as observed 
by negative-staining electron microscopy after 1 hour of incubation at 37°C. Panels B and C reproduced with 
permission from [132]. Structures were drawn using Pymol [25]. 

Henipavirus viral factories have only a suspected liquid-like nature, as inferred from their 
spherical appearance [133], but the formal demonstration has still to be provided. The minimal region 
of HeV V conferring the ability to phase separate (i.e., PNT3), is also part of the P protein. It is therefore 
conceivable that Henipavirus P can phase separate as well, with this ability being functionally coupled 
to the formation of viral factories. On the other hand, Henipavirus P may also phase separate on its own 
even in the absence of N, as recently reported for human metapneunovirus P [134].  

Beyond their role in the formation of viral factories, IDRs within viral proteins also drive the 
formation of viral condensates that interfere with (dis)assembly and regulation of host MLOs and hence 
with host cell functions [122,125]. The formation of fibrillar aggregates by the Henipavirus V and W 
proteins may be functionally coupled to this “LLPS-mediated interference with host cell functions”: 
fibrillation by V and W could be revisited in light of LLPS, where those fibrils might correspond to solid-
like inclusions formed upon the maturation of liquid-like condensates. In light of the critical role of the 
Henipavirus V and W proteins in evading the host innate immune response, and of the biological 
functions described for the few viral amyloids reported so far (for a review see [122]), it is tempting to 
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hypothesize that in infected cells PNT3-mediated fibrillar aggregates could sequester key cellular 
proteins involved in the antiviral response thereby providing examples of LLPS-mediated viral 
interference with host cell functions through interaction with cellular proteins. Specifically, PNT3-
mediated fibrillar aggregates may sequester cellular partners involved in the host innate immune 
response, such as STAT and 14-3-3 proteins, thereby preventing IFN signaling and abrogating NF-κB-
induced proinflammatory response. Likewise, it can be speculated that the ability of NiV W to prevent 
IFN-β expression could be functionally linked to the formation of W amyloids as shown in the case of 
Rift Valley fever virus NSs amyloids [135]. 

Disorder as a determinant of interactivity 
Structural disorder is a well-known determinant of protein interactivity, whereby the increased 

plasticity typical of IDPs/IDRs enables them to engage in a broad molecular partnership [136-138]. In 
line with this, and owing to its exposure at the surface of the NC [31], MeV NTAIL binds to numerous 
partners. Indeed, beyond XD [21,23,27,28,139], NTAIL interacts with the matrix protein [140], and with 
various cellular proteins including hsp70 [141-143], a nuclear export protein [144], the interferon 
regulatory factor 3 [145,146], a yet unidentified protein cell receptor involved in MeV-induced 
immunosuppression [147,148], and peroxiredoxin 1 [149]. In addition, MeV N, likely via NTAIL, interacts 
with cell cytoskeleton components [150,151]. In the case of NTAIL from NiV and HeV, an even broader 
molecular partnership can be expected thanks to the presence of an additional MoRE that could be 
involved in binding to yet unidentified partners [30,49]. Analysis of the interactome of Henipavirus N 
proteins, as obtained using the INTACT data base [152] and from literature data mining, revealed that 
while NiV N has as many as 16 protein partners, the HeV N protein has no known interactors except P 
(Fig. 7). This discrepancy likely merely reflects the fact that NiV has been much more intensively studied 
than HeV. Partners of NiV N are mainly host enzymes with broad functions in metabolism or 
chaperoning (Fig. 7). The high sequence similarity between HeV and NiV N (97%) advocates for a 
conserved interaction network between the two proteins. Fewer and distinct interactors were retrieved 
for MeV N compared to NiV N (Fig. 7), possibly reflecting the presence of the additional MoRE in NiV 
NTAIL [30,49]. Although MeV and NiV N have a distinct molecular partnership, they share the ability to 
bind to chaperones like Hsp40 and Hsp70 (Fig. 7). 

Similarly to NTAIL, MeV PNTD interacts with multiple partners, including N in both assembled and 
unassembled forms [9,10,67,153] and cellular proteins such as STAT1 [154]. As mentioned above and 
detailed in [85], the Henipavirus V and W proteins have a very broad interaction network. To which 
extent is this promiscuity mediated by IDRs? While a few interactions rely on the structured CTD of V, 
the interaction with 14-3-3 proteins and with importins a1 and a3 rely on the disordered CTD of W 
[77,83,84] and binding to STAT1, STAT4 and PLK1 rely on an IDR within the NTD [80,82] (Fig. 4A). The 
ascertain to which extent the promiscuity of the Henipavirus V and W proteins is mediated by their 
intrinsically disordered NTD, we analyzed the interactome of the Henipavirus P, V and W proteins and 
considered the subset of interactions common to the three. We reasoned that the latter likely correspond 
to interactions relying on their common NTD (Fig. 7). Although their interaction network suffers from 
a bias (i.e. only two partners were retrieved for HeV P and much fewer partners were retrieved for HeV 
V compared to NiV V), a few observations can nevertheless be done: (1) the V and W proteins interact 
with the largest number of host proteins), (2) NiV P, V and W share 7 partners, including STAT-1, STAT-
2 and STAT-4 proteins. Interestingly, their common protein partners are mainly nuclear, particularly 
found in the nucleolus of cells. The same consideration holds true for the shared partners between the 
NiV V and W proteins (29 in total), which may also interact with NiV P. (3) A common set of proteins, 
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consisting of histones (most recurrent) and of STATs and 14-3-3 proteins, are targeted by the NiV V and 
W proteins and by the HeV W protein, thereby constituting the largest consensus partner set in the 
Henipavirus interactome. This interaction network hints to a role for the shared large disordered region 
of the Henipavirus V and W proteins in binding nuclear components of the host cell. Because the V 
protein shuttles between the nucleus and the cytoplasm, its ability to bind nuclear proteins might be 
functionally linked to the export of the latter to the cytoplasm where they might favor virus replication. 
Beyond sharing protein targets with V and W, the P protein bridges the interaction network of N and 
that of V/W, which designates P as an expectedly valuable target for antiviral approaches.  

Figure 7. Interaction network of MeV, NiV and HeV N, P, V and W proteins. Proteins interacting only with a 
given viral protein are colored in orange (NiV), green (HeV) and blue (MeV). Shared host partners are shown as 
pink nodes. Gene names are indicated in nodes and the size of nodes is proportional to the number of protein 
partners. The figure was drawn using the open source Cytoscape 3.9.1 platform. For additional information see 
Supplementary Table S1.  

Disorder as a determinant of scaffolding and tethering 
The typically elongated conformation of IDRs, combined to their very large size (especially for 

Henipavirus PNTD), to the multimeric nature of P and to the additional flexibility brought by the “spacer” 
and “linker” regions of P (Fig. 1B), could confer a considerable reach to the elements of the replication 
machinery enabling them to act as scaffolds for partner tethering. It could also enable the L-P complex 
to simultaneously bind to successive turns of the helical nucleocapsid (one turn being ~6 nm high [1,155] 
(Fig. 1B). It is tempting to speculate that during replication the extended conformation of PNTD and NTAIL 
would allow the establishment of contacts between the assembly substrate (N°-P) and the polymerase 
complex (L-P), leading to a tripartite N°-P-L complex. Indeed, since the N°-binding site of P does not 
overlap with the L-binding site, a P molecule engaged in the N°-P complex could simultaneously 
interact with L. This tripartite complex could bring N° close to the site of RNA synthesis, where L could 
promote transfer of N° from P to the nascent RNA chain [156]. Alternatively, a monomer of P within 
the P oligomer may bind to L while another monomer may interact with N° thereby bringing the latter 
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to the encapsidation site [157]. Besides, the flexibility of the “linker” region connecting PMD and XD 
might serve as a tethering anchor for the recruitment of Hsp90 onto the tripartite complex, thereby 
enabling L to be maintained in a mature and replication-competent form [5]. 

Disorder as a lessener of evolutionary constraints  
IDRs are known to be more tolerant of insertions or major rearrangements as compared to 

ordered regions. In line with this property, the extra-length of Henipavirus P proteins with respect to 
MeV and other paramyxoviruses is accounted for by the larger dimension of their NTD (Fig. 1B) [29]. 
Furthermore, the disordered nature of PNTD, whose coding region partially overlaps with the one 
encoding the C protein, together with the disorderedness of the "spacer" region, whose coding region 
partially overlaps with the one encoding VCTD [35] (Fig. 4A), provides a means for alleviating 
evolutionary constraints within overlapping open reading frames (OORFs) [158-161].  

Because structural disorder is encoded by a much wider portion of sequence space as compared 
to order, encoding disorder in one of the alternative reading frames may represent a strategy by which 
genes encoding OORFs can lessen evolutionary constraints imposed on their sequence by the overlap, 
enabling the encoded overlapping proteins to sample a broader sequence space without losing function. 

Conclusions  
Following seminal observations that unveiled the abundance of disorder in paramyxoviral N and 

P proteins [28,35,162,163], several subsequent studies have documented the prevalence of disorder in 
many viral proteins [164] and especially in the proteome of RNA viruses (for a review see [165]). As 
discussed above, structural disorder confers an expanded coding capacity, where a single gene would 
encode more than one product by means of OORFs. In addition, disorder confers pleiotropy to viral 
genomes, where a single encoded protein product is able to exert multiple concomitant biological effects 
thanks to its promiscuity and to the ability of highjacking host proteins through broad mimicry of host 
protein short linear motifs (SLiMs) [166]. Beyond affording a broad and versatile partnership, and 
enabling a wide range of phase separation behaviors, the prevalence of IDRs in viral proteins could also 
be related to the typical high mutation rates of RNA viruses, i.e. it could represent a strategy for 
buffering the deleterious effects of mutations [167,168]. Indeed, IDRs are much less sensitive to 
mutations compared to structured regions as they have “little to lose”. The mutational tolerance of IDRs 
is therefore ideally suited to attenuate the potentially detrimental effects of mutations which typically 
occur at higher rates in viruses [167]. 

Are there only advantages in being disordered? IDPs/IDRs have an increased vulnerability 
compared to structured proteins as they are more susceptible to proteolysis [26] and their level needs 
to be tightly controlled to preserve their specificity and avoid miss-regulation of cellular processes [169-
171]. Reflecting this requirement, paramyxoviruses have evolved strategies to finely control the 
expression level of their own disorder-enriched proteins. Indeed, as already discussed, in the course of 
evolution the NTAIL-XD affinity, which dictates the efficiency of transcription re-initiation and hence 
ultimately the relative abundance of the different viral proteins, has been shaped to fall into a relatively 
narrow window [69]. Likewise, evolution has shaped the PMD sequence to endow it with a precise 
extent of cohesiveness, the latter having been shown to critically affect the efficiency of viral 
transcription and replication [7]. 

How does the abundance of structural disorder in viral proteomes translate into therapeutic 
approaches? The abundance of structural disorder in viral proteins and the complexity of their 
partnership in infected cells open up new and innovative antiviral strategies relying on the targeting of 
protein-protein interactions (PPIs) involving IDRs. Targeting PPIs is very attractive since protein 
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interaction surfaces are much less conserved than catalytic pockets of enzymes thus offering potential 
for highly specific inhibition. The inhibition of PPIs has thus emerged during the last two decades as a 
new way to modulate the activity of proteins. That PPIs mediated by IDRs are valuable targets has been 
already proven [172-179]. Drug-like compounds that target the HIV-1 Nef-SH3 binding surface 
provided the first “proof of concept” for antiviral discoveries relying on PPI inhibition, thus paving the 
way towards a new class of antiviral molecules [172]. The relevance of such an approach in antiviral 
therapies against paramyxoviruses is well illustrated by the antiviral activity of peptides targeting the 
N°-PNT interaction from either NiV [9] or RSV [180]. The NTAIL–XD interaction is a similarly attractive 
target as, beyond involving a disordered partner, it is endowed with a number of features that support 
its potential druggability. Firstly, the rather weak binding affinity of the NTAIL–XD interaction (KD in the 
µM range) [30,49,50] is expected to allow tighter competitive binding by small molecule drugs to the 
structured partner. Secondly, the relatively small size of the NTAIL–XD interface area in the three viruses 
[23,46,181] presages an interaction that is prone to destabilization, in agreement with the commonly 
accepted relationship between interface buried surface area and complex stability. Thirdly, in spite of 
the additional role of electrostatics in complex formation [58], the NTAIL–XD interface in the three viruses 
mainly relies on hydrophobic contacts and protein–protein interfaces with known inhibitors are more 
hydrophobic than general PPI interfaces [182]. Last, but not least, since Henipavirus NTAIL domains are 
functionally interchangeable with respect to their ability to bind XD [49], a single inhibitor could 
probably target both interactions thus paving the way towards a new set of broad-range antivirals. 

Finally, and most interestingly, the discovery that a peptide abrogating LLPS by the SARS-CoV2 
nucleoprotein leads to increased innate antiviral responses in vitro and in mice [183] highlights the 
potential of targeting LLPS to treat viral infections. In the same vein, LLPS during the replication of 
human respiratory syncytial virus (RSV, a pneumovirus member within the Mononegavirales order) was 
proven to be a valuable target for antiviral therapy: cyclopamine and its chemical analogue (A3E) were 
found to inhibit RSV replication in a mouse model of infection by disorganizing and hardening viral IBs 
that readily lose their liquid-like behavior [184]. The ability of a condensate-hardening drug to inhibit 
the replication of RSV holds promise for new antiviral approaches based on the pharmacological 
modulation of the material properties of biocondensates through the targeting of PPIs hitherto 
considered as undruggable [124].  
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