
HAL Id: hal-03794772
https://hal.science/hal-03794772v1

Submitted on 3 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Join, Select, and Insert: Efficient Out-of-core
Algorithms for Hierarchical Segmentation Trees
Josselin Lefèvre, Jean Cousty, Benjamin Perret, Harold Phelippeau

To cite this version:
Josselin Lefèvre, Jean Cousty, Benjamin Perret, Harold Phelippeau. Join, Select, and Insert: Efficient
Out-of-core Algorithms for Hierarchical Segmentation Trees. IAPR International Conference on Dis-
crete Geometry and Mathematical Morphology (DGMM), Oct 2022, Strasbourg, France. pp.274-286,
�10.1007/978-3-031-19897-7_22�. �hal-03794772�

https://hal.science/hal-03794772v1
https://hal.archives-ouvertes.fr

Join, select, and insert: efficient out-of-core
algorithms for hierarchical segmentation trees

Josselin Lefèvre1,2, Jean Cousty1, Benjamin Perret1, Harold Phelippeau2

1 LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France
2 Thermo Fisher Scientific, Bordeaux, France

Abstract. Binary Partition Hierarchies (BPH) and minimum spanning
trees are fundamental data structures involved in hierarchical analysis
such as quasi-flat zones or watershed. However, classical BPH construc-
tion algorithms require to have the whole data in memory, which prevent
the processing of large images that cannot fit entirely in the main mem-
ory of the computer. To cope with this problem, an algebraic framework
leading to a high level calculus was introduced allowing an out-of-core
computation of BPHs. This calculus relies on three operations: select,
join, and insert. In this article, we introduce three efficient algorithms to
perform these operations providing pseudo-code and complexity analysis.

1 Introduction

Hierarchies of partitions are versatile representations that have proven useful in
many image analysis and processing problems. In this context, binary partition
hierarchies [14] (BPH) built from altitude ordering and associated minimum
spanning trees are key structures for several (hierarchical) segmentation
methods: in particular it has been shown [2,11] that such hierarchies can be used
to efficiently compute quasi-flat zone (also referred as α-trees) hierarchies [10,2]
and watershed hierarchies [9,2]. Efficient algorithms for building BPHs on
standard size images are well established, but, with the constant improvement
of acquisition systems comes a dramatic increase in image resolutions, which can
reach several terabytes in size. In such case, it becomes impossible to put a single
image in the main memory of a standard workstation and classical algorithms for
BPHs stop working. This creates the need for scalable algorithms to construct
BPHs in an out-of-core manner to handle images that cannot fit in memory.

In [4,6,8], the authors investigate distributed memory algorithms to compute
min and max trees for terabytes images. In [5], computation of minimum
spanning trees of streaming images is considered. A parallel algorithm for the
computation of quasi-flat zones hierarchies has been proposed in [7]. Finally,
the authors of [1] recently proposed massively parallel algorithms for the
computation of max-trees on GPUs. All these work rely on a common idea which
is to work independently on small pieces of the space, “join” the information
found on adjacent pieces, and “insert” this joint information into other pieces.

In a previous work [3], the authors specifically addressed the problem of
computing a BPH under the out-of-core constraint, i.e., when the objective is

2 J. Lefèvre et al.

to minimize the amount of memory required by the algorithms. To do so, they
introduced an algebraic framework formalizing the distribution of a hierarchy
over a partition of the space together with three algebraic operations acting on
BPHs: select, join, and insert. They showed that, when a causal partition of the
space is considered, it is possible to compute the distribution of a BPH using
these three operations by browsing the different regions of the partition only
twice (once in a forward pass and once in a backward pass) and by requiring to
have only the information about two adjacent regions in the main memory at
any step of the algorithm. However, no efficient algorithm has been proposed for
the three operations select, join, and insert.

In this work, we propose efficient implementations for these operations.
The proposed algorithms rely on a particular data structure to represent local
hierarchies which is designed to efficiently search and browse the nodes of the
hierarchy and to store only the necessary and sufficient information required
locally to compute the distribution of the BPH. We give algorithms, with their
pseudo-code, for the three operations whose time complexity is either linear or
linearithmic. In order to ease the presentation, we consider the particular case
of 2d images, modelled as 4-adjacency graphs, but the method can be easily
extended to any regular graph. The implementation of the method in C++ and
Python based on the hierarchical graph processing library Higra [12] is available
online https://github.com/PerretB/Higra-distributed.

This article is organized as follows. Section 2 gives the definition of BPH.
Section 3 recalls the notion of the distribution of a hierarchy and the calculus
method that can be used to compute such distribution over a causal partition
of the space. Section 4 explains the proposed data structures. Section 5 presents
the algorithms for the three operations select, join, and insert. Finally, Section 6
concludes the work and gives some perspectives.

2 Binary partition hierarchy by altitude ordering

In this section, we first remind the definitions of hierarchy of partitions. Then
we define the binary partition hierarchy by altitude ordering using the edge-
addition operator [3] and we recall the bijection existing between the regions of
this hierarchy and the edges of a minimum spanning tree of the graph.

Let V be a set. A partition of V is a set of pairwise disjoint subsets of V .
Any element of a partition is called a region of this partition. The ground of a
partition P, denoted by gr(P), is the union of the regions of P. A partition whose
ground is V is called a complete partition of V . Let P and Q be two partitions
of V . We say that Q is a refinement of P if any region of Q is included in
a region of P. A hierarchy on V is a sequence (P0, . . . ,Pℓ) of partitions of V
such that, for any λ in {0, . . . , ℓ− 1}, the partition Pλ is a refinement of Pλ+1.
Let H = (P0, . . . ,Pℓ) be a hierarchy. The integer ℓ is called the depth of H
and, for any λ in {0, . . . , ℓ}, the partition Pλ is called the λ-scale of H. In the
following, if λ is an integer in {0, . . . , ℓ}, we denote by H[λ] the λ-scale of H. For
any λ in {0, . . . , ℓ}, any region of the λ-scale of H is also called a region of H.

https://github.com/PerretB/Higra-distributed

Join, select, and insert: efficient out-of-core algorithms 3

The hierarchy H is complete if H[0] = {{x} | x ∈ V } and if H[ℓ] = {V }. We
denote by Hℓ(V) the set of all hierarchies on V of depth ℓ, by P(V) the set of
all partitions on V , and by 2|V | the set of all subsets of V .

In the following, the symbol ℓ stands for any strictly positive integer.
We define a graph as a pair G = (V,E) where V is a finite set and E is

composed of unordered pairs of distinct elements in V . Each element of V is
called a vertex of G, and each element of E is called an edge of G. The Binary
Partition Hierarchy (BPH) by altitude ordering relies on a total order on E,
denoted by ≺. Let k in {1, . . . , ℓ}, we denote by u≺

k the k-th element of E for
the order ≺. Let u be an edge in E, the rank of u for ≺, denoted by r≺(u),
is the unique integer k such that u = u≺

k . We then define the update of a
hierarchy H with respect to an edge {x, y}, denoted byH⊕{x, y}: with k the rank
of {x, y}, H⊕ {x, y}[λ] remains unchanged for any λ in{0, k − 1} while, for any
λ in {k, . . . , ℓ}, we have (H⊕{x, y})[λ] = H[λ]\{Rx, Ry}∪{Rx∪Ry} where Rx

(resp. Ry) denotes the region ofH[λ] containing x (resp. y). Let E′ ⊆ E and letH
be a hierarchy. We set H⊞E′ = H⊕u1 ⊕ . . .⊕u|E′| where E

′ = {u1, . . . , u|E′|}.
The binary operation ⊞ is called the edge-addition. Thanks to this operation,
we can define formally the BPH for ≺. Let X be a set, we denote by ⊥X the
hierarchy defined by ⊥X [λ] = {{x} | x ∈ X}, for any λ in {0, . . . ℓ}. The BPH
for ≺, denoted by B≺ is the hierarchy ⊥X ⊞E.

Let B≺ be a binary partition by altitude ordering, R be a region of B≺

and R⋆ be the set of non-leaf regions of B≺. The rank of R, denoted by r(R),
is the lowest integer λ such that R is a region of B≺[λ]. We consider the map µ
fromR⋆ in E such that, for any non-leaf regionR of B≺, we have µ≺(R) = u≺

r(R).

We say that µ≺(R) is the building edge of R. Building edges of the binary
partitions hierarchy defines a minimum spanning tree of an edge-weighted graph.
In Figure 1, Y is the BPH built on the 4-adjacency graph B. Non-leaf nodes of Y
correspond to the edges of the minimum spanning tree of B (dashed edges).

3 Distributed hierarchies of partitions on causal partition

In this section, we recall the definition of the distribution of a BPH on a sliced
graph and the principle of its calculus in an out-of-core manner. Intuitively,
distributing a hierarchy consists in splitting it into a set of smaller trees such that:
1) each smaller tree corresponds to a selection of a sub part of whole tree that
intersects a slice of the graph and 2) the initial hierarchy can be reconstructed
by “gluing” those smaller trees.

Let V be a set. The operation sel is the map from 2|V |×P(V) to P(V) which
associates to any subset X of V and to any partition P of V the subset sel(X,P)
of P which contains every region of P that contains an element of X. The
operation select is the map from 2|V | × Hℓ(V) in Hℓ(V) which associates to
any subset X of V and to any hierarchy H on V the hierarchy select (X,H) =
(sel(X,H[0]), . . . , sel(X,H[ℓ])).

We are then able to define the distribution of a hierarchy thanks to select.
Let V a set, let P be a complete partition on V and let H be a hierarchy on V .

4 J. Lefèvre et al.

G X Y

Fig. 1. G a 4-adjacency graph divided into two slices A and B (respectively blue
and green). Each edge of G is associated with a pair (index, weight). The two
slices are separated by their common neighborhood i.e. edges 8 and 2. Hierarchy X
(respectively Y) is the BPH built on A (respectively B). Indices associated with non-
leaf nodes of the BPHs correspond to the indices of their corresponding building edges
represented by dashed edges in G. We can note that MSTs built on slices (dashed
edges) are not sub-trees of the complete MST (shown as shadow). In consequence,
edge 3 is part of the hierarchy X when it should not be.

The distribution of H over P is the set {select (R,H) | R ∈ P} and for any
region R of P, select (R,H) is called a local hierarchy (of H on R).

The calculus introduced in [3] aims to compute the distribution of a BPH
over a partition of the space. In this article, we consider the special case of a
4 adjacency graph representing a 2d image that can be divided into slices, and
we are interested in computing a distribution of the BPH over those slices. It
should be noted that this is not a limiting factor, and the method can easily be
adapted to any regular grid graph.

Let h and w be two integers representing the height and the width of an
image. In the following, the set V is the Cartesian product of {0, · · · , h − 1} ×
{0, · · · , w − 1}. Thus, any element x of V is a pair x = (xi, xj) such that xi

and xj are the coordinates of x. In the 4-adjacency grid, the set of all edges
E is equal to {{x, y} ∈ V | |xi − yi| + |xj − yj | ≤ 1}. Let k be a positive
integer, the causal partition of V is the sequence (S0, . . . , Sk) such that for any t
in {0, · · · , k}, St = {(i, j) ∈ V | t × w

k ≤ i < (t + 1) × w
k }. Each element of

this partition is called a slice. The set of vertices at the interface between two
neighbor slices A and B and belonging to A is noted γ•

B(A). The major advantage
of considering this partition over a regular graph is that each subset of V or E
can be computed on the fly efficiently from a computational and memory point
of view.

Given this causal partition, Algorithm 1 allows computing the local
hierarchies of the BPH of the complete graph on each slice. This algorithm can be
divided in two parts: causal and anti-causal traversal of the slices. Each of these
parts relies on the same idea. First, start with the causal traversal. Given a causal
partition of V into k + 1 slices, for any i in {1, · · · , k} compute the BPH on Si

Join, select, and insert: efficient out-of-core algorithms 5

Algorithm 1: Out-of-core binary partition hierarchy [3].

Data: A graph (V,E), a total order ≺ on E, and a causal
partition (S0, . . . , Sk) of V

Result: {B↓
0 , . . . ,B

↓
k}: the distribution of the BPH B≺

V over {S0, . . . , Sk}.
1 B↑

0 := B≺
S0

// call PlayingWithKruskal algorithm

2 foreach i from 1 to k do // Causal traversal of the slices

3 Call PlayingWithKruskal algorithm to compute B≺
Si

4 M↑
i := join

(
select

(
γ•
Si
(Si−1),B↑

i−1

)
, select

(
γ•
Si−1

(Si),B≺
Si

))
5 B↑

i := insert(select
(
γ•
Si−1

(Si),M↑
i

)
,B≺

Si
)

6 B↓
k := B↑

k; M
↓
k := M↑

k

7 foreach i from k − 1 to 0 do // Anticausal traversal of the slices

8 B↓
i := insert(select

(
γ•
Si+1

(Si),M↓
i+1

)
,B↑

i)

9 if i > 0 then M↓
i := insert(select

(
γ•
Si−1

(Si),B↓
i

)
,M↑

i)

with a call to the algorithm presented in [11] hereafter called PlayingWithKruskal
(line 3). Then, select the part of this hierarchy containing the vertices adjacent
to the previous slice and join it with the part of the hierarchy associated to the
previous slice containing the vertices adjacent to the current slice, leading to
the “merged” hierarchy denoted by M↑

i (line 4). The merged hierarchy is then

inserted in the BPH which gives B↑
i (line 5). The hierarchies B↑

i associated to
slice i misses the information located in slices of higher indices, and consequently
only the last local hierarchy B↑

k is correct i.e. B↑
k = select (Sk,H). In order

to compute the valid distribution, and after having spread information in the
causal direction, information must be back propagated in the reverse anti-causal
direction so that each local hierarchy is enriched with the global context (lines
7 to 9).

4 Data structures

In this section, we present the data structures used in the algorithms defined in
the following sections. These data structures are designed to contain only the
necessary and sufficient information so that we never need to have all the data
in the main memory at once. The data structure representing a local hierarchy
assumes that the nodes of the hierarchy are indexed in a particular order and
relies on three “attributes”: 1) a mapping of the indices from the local context
(a given slice) to the global one (the whole graph) noted H.map, 2) the parent
array denoted by H.par encoding the parent relation between the tree nodes,
and 3) an array H.weights giving, for each non-leaf-node of the tree, the weight
of its corresponding building edge.

More precisely, given a binary partition hierarchy H with n regions, every
integer between 0 and n−1 is associated to a unique region of H. Moreover, this

6 J. Lefèvre et al.

indexing of the regions of H follows a topological order such that: 1) any leaf
region is indexed before any non-leaf region; 2) two leaf regions {x} and {y} are
sorted with respect to an arbitrary order on the element V , called the raster scan
order of V . Thus {x} has an index lower than {y} if x is before y with respect to
the raster scan order; and 3) two non-leaf regions are sorted according to their
rank, i.e., the order of their building edges for ≺. This order can be seen as an
extension of the order ≺ on E to the set V ∪ E that enables 1) to efficiently
browse the nodes of a hierarchy according to their scale of appearance in the
hierarchy and 2) to efficiently match regions of V with the leaves of the hierarchy.
By abuse of notation, this extended order is also denoted by ≺ in the following.

To keep track of the global context, a link between the indices in the local
tree and the global indices in the whole graph is stored in the form of an array
map which associates: 1) to the index i of any leaf region R, the vertex x of the
graph G such that R = {x}, i.e. map[i]=x; and 2) to the index i of any non-leaf
region R, its building edge, i.e. map[i]=µ≺(R).

The parent relation of the hierarchy is stored thanks to an array par such
that par[i]=j if the region of index j is the parent of the region of index i.

The binary partition hierarchy is built for a particular ordering ≺ of the
edges of G. In practice, this ordering is induced by weights computed over the
edges of G. To this end, we store an array weights of |R⋆(H)|, i.e. the number
of non-leaf regions, elements such that, for every region R in R⋆(H) of index i,
weights[i] is the weight of the building edge µ≺(R) of region R. The edges can
then be compared according to the following total order induced by the weights:
we set u ≺ v if the weight of u is less than the one of v or if u and v have equal
weights but u comes before v with respect to the raster scan order.

5 Algorithms

Select. In this part, we give an algorithm to compute the result of the select
operation. This operation consists in “selecting” the part of a given hierarchy
intersecting a subset of the space. In Algorithm 1, select takes as input a set of
vertices located at the “border” of a slice and a hierarchy in order to obtain a
smaller “border hierarchy”.

Select algorithm proceeds in 3 steps:

1. Lines 3-7. Mark any leaf-node of H that corresponds to an element of X,
i.e. any leaf-region {x} with x ∈ X;

2. Lines 8-9. Traverse the hierarchy from leaves to root and mark any node
that is a parent of a marked node;

3. Lines 11-17. Build the hierarchy S whose nodes are only marked nodes of H.

In Algorithm 2 we assume that X is sorted and that X ⊂ gr(H), which is
always the case in Algorithm 1. For each element X[i] of X, we search for the
index j of a leaf of H mapped to X[i], i.e. such that H.map[j] = X[i]. To this
end, it is necessary to make a traversal of the leaves of H. As mentioned before,
the leaves correspond to the first indices by construction. The first step can then

Join, select, and insert: efficient out-of-core algorithms 7

Algorithm 2: select

Data: H: a hierarchy, X: set of selected nodes st. X ⊂ gr(H)
Result: S: the hierarchy select (X,H)

1 Initialize an array mark to false for every region of H
2 i := 0; j := 0 // i iterates over X and j over the leaves of H
3 while i < |X| and j < |H.leaves| do
4 if X[i] = H.map[j] then
5 mark[j] := true
6 i := i+ 1

7 j := j + 1

8 foreach n from 0 to |H| − 1 do
9 if mark[n] = true then mark[H.par[n]] := true

10 nS := 0
11 foreach n from 0 to |H| − 1 do
12 if mark[n] = true then
13 S.par[nS] := H.par[n]
14 S.map[nS] := H.map[n]
15 if n ∈ R⋆(H) then
16 S.weight[nS − |X|] := H.weight[nS − |H.leaves|]

17 nS := nS + 1

18 return S

be performed in linear time with respect to the number of leaf-regions of H. The
second step consist in traversing the whole hierarchy from leaves to root in order
to mark every region of H which belongs to select (X,H) i.e. regions parent
of a marked one. The complexity of this step is therefore linear with respect
to the number of regions of H. Finally, the last step boils down to extracting
the hierarchy select (X,H) from the marked nodes. For this a new hierarchy is
created by traversing H again. As the traversal is done by increasing order of
index, the properties relating to the weights of the building edges and order of
appearance of regions are preserved. The complexity of this last step is linear
with respect to the number of regions of H. Thus, Algorithm 2 has a linear O(n)
complexity, where n is the number of regions of H.

Join. Formally the join of X and Y, denoted by join(X ,Y), is the hierarchy
defined by join(X ,Y) = (X ⊔ Y) ⊞ F , where F is the common neighborhood
of the grounds of X and of Y, and ⊔ denotes the supremum on hierarchies
(see [13]). Intuitively, this operation merges two hierarchies according to their
common neighborhood, that is the set of edges linking their grounds. In [7], the
authors proposed an algorithm that can be used to successively add edges of
the common neighborhood. Intuitively, to add an edge, the hierarchy is updated
while climbing the branches associated with the edge extremities. The worst-case
complexity is then linear with respect to the size of the hierarchy for adding a
single edge. Thus the overall complexity of such join procedure would be O(k×n)

8 J. Lefèvre et al.

where n is the size of the hierarchies and k is the number of edges in the common
neighborhood. In this section, we drop the multiplicative dependency in the size
of the neighborhood at the cost of introducing a sorting of F and we present
an algorithm whose complexity is quasi-linear with respect to the size n of the
hierarchies and linearithmic with respect to the number k of edges in F .

Algorithm 3: Join

Data: Xand Y: two hierarchies, F common neighborhood of gr(X) and gr(Y).
Result: A collection QD = join (X , Y)

1 foreach node ni of X do QD.MakeSet(i)
2 foreach node ni of Y do QD.MakeSet(i+ |X .leaves|)
3 aDescendent(X , 0)
4 aDescendent(Y, |X .leaves|)
5 F :=sort(F)
6 i1 := |X .leaves|; i2 := |Y.leaves|; i3 := 0
7 while i1 < |X | or i2 < |Y| or i3 < |F | do
8 if F [i3] ≺ X .map[i1] and F [i3] ≺ Y.map[i2] then
9 (x, y) := F [i3]; m := F [i3]; w := weight(F [i3]); i3 += 1

10 else if X .map[i1] ≺ Y.map[i2] then
11 (x, y) := X .desc[i1]; m := X .map[i1]; w := X .weight[i1]; i1 += 1

12 else
13 (x, y) := Y.desc[i2]; m := Y.map[i2]; w := Y.weight[i2]; i2 += 1

14 cx := QD.FindCanonical(x); cy := QD.FindCanonical(y)
15 if cx! = cy then
16 n := QD.Union(cx, cy); QD.map[n] := m
17 QD.weight[n− (|X .leaves|+ |Y.leaves|)] := w

A detailed presentation of the proposed algorithm is given in Algorithm 3
which calls auxiliary functions presented in Algorithm 4. Intuitively, in order
to compute the join of two hierarchies X and Y, Algorithm 3 consists in
“emulating” PlayingWithKruskal algorithm on the graph obtained from (i) the
edges associated to the non-leaf nodes of X and of Y and (ii) the edges in the
common neighborhood F of X and Y. Therefore, all these edges are considered
in increasing order with respect to ≺ and, for each edge, it is decided if this
edge must be considered or not in the creation process of the join hierarchy.
The decision is made based on the potential creation of a cycle if this edge were
added during the minimum spanning tree creation process. We can thus see on
the Figure 2 that the node 3 has been added to X by construction but that
it is then discarded during the construction of the joined hierarchy. Potential-
cycles creation is efficiently checked with Tarjan Union-Find data structures
as in Kruskal’s algorithm. A main observation can be made to highlight the
difference between the situation encountered in the contexts of join algorithm
and PlayingWithKruskal algorithms: in the context of join, some edges, which

Join, select, and insert: efficient out-of-core algorithms 9

are associated to the nodes of the hierarchies X and Y, are made of vertices
that do not belong to the underlying space (i.e., the common neighborhood
of the slices supporting the grounds of X and Y). When such edge is found,
the standard algorithm can be shortcut leading to a modified version of the
PlayingWithKruskal auxiliary functions presented in Algorithm 4. Compared to
original functions, the only change is the insertion of the if test at line 9. This
test detects the edges for which a shortcut must occur based on an attribute
called desc. This attribute is pre-computed for every node of X and of Y by the
auxiliary function aDescendent. Overall, the following steps are performed in
Algorithm 3:

– Lines 1-2. Initialize the Union-find data structures;
– Lines 3-4. Compute the attribute desc for both X and Y;
– Lines 5 to 13. Browse the edges in increasing order. Observe that it implies

sorting the edges in the common neighborhood F of X and Y in increasing
order for ≺ (non-leaf-nodes of X and Y are already sorted by construction);

– Lines 15-17 Apply PlayingWithKruskal steps, calling the modified version
of the auxiliary functions.

X ′ Y ′ J = join (X ′, Y ′) I = insert(J ′,Y)

Fig. 2. The hierarchy J is build by computing the join over X ′ = select ({c, h},X)
and Y ′ = select ({d, i},Y) (border trees computed from BPHs of Figure 1). We can
see that the node 3 of X ′ not longer appear in the joint tree in the favor of nodes
corresponding to the common neighborhood of the grounds of X and Y i.e. nodes 2
and 8. That is to say, that by taking into account the topological order on the edges of
the MSTs associated with the border trees and the common neighborhood, 3 does not
belongs to the BPH. I is then build by inserting the hierarchy J ′ = select ({c, g},J)
into the hierarchy Y. Given the Definition 16 of 1, I is a “correct” local hierarchy for
the tile B.

The first step complexity is linear with respect to the number of elements
of gr(X) ∪ gr(Y). The second step uses the auxiliary function aDescendent

to compute attributes desc for both X and Y. It should be noted that this
last function takes a parameter shift which allows to index the leaves of the
second hierarchy after those of the first. For each node of the two hierarchies,

10 J. Lefèvre et al.

Algorithm 4: Auxiliary functions for join algorithm
// The functions called hereafter on QT and QBT are those described in [11]

1 Procedure QD.MakeSet(q)
2 QD.Root[q] := q; QBT .MakeSet(q); QT .MakeSet(q)
3

4 Function QD.F indCanonical(q)
5 return QT .F indCanonical(q)
6

7 Function QD.Union(cx, cy)
8 tu := QD.Root[cx]; QBT .par[tu] := QBT.size
9 if cy = −1 then QD.Root[cx] := QBT .size

10 else
11 tv := QD.Root[cy]; QBT .par[tv] := QD.size
12 c := QT .Union(cx, cy); QD.Root[c] := QBT .size

13 end
14 QBT .MakeSet(QBT .size)
15 return QD.size− 1

16

17 Function aDescendent(H: a hierarchy, s: shift)
// set the attribute H.desc: an array that maps to each node n of H two leaves

that are descendants of the two children of n.

18 foreach node n of H do H.desc[n]:= (−1,−1)
19 foreach leaf node n of H do H.desc[n].first:= n+ s
20 foreach non-root non-leaf node n of H in increasing order for ≺ do
21 p := H.par[n]
22 if H.desc[p].first= −1 then H.desc[p].first:= H.desc[n].first
23 else H.desc[p].second:= H.desc[n].first

24 end

an attribute is computed during a leaves to root traversal which gives a linear
complexity with respect to the number of regions of each hierarchy. Third step
requires to sort the edges of F with respect to ≺ before browsing the edges
which implies a complexity of O(k × log(k) + |X | + |Y|) with k the number of
edges in F . The fourth step is equivalent to PlayingWithKruskal algorithm in
terms of complexity. Then, its complexity is O(m×α(n)) where m is sum of the
number of edges in F and the number of non-leaf nodes of X and Y, where n is
the number of leaf nodes in X and Y and where α() is the inverse Ackermann
function which grows sub-logarithmically.

Insert. In this part, we present an algorithm to compute the hierarchy Z =
insert(X ,Y). We assume that X is insertable in Y i.e. for any λ in {0, . . . , ℓ},
for any region Y of Y[λ], Y is either included in a region of X [λ] or is
included in V \ gr(X [λ]). This assumption holds true at each call to insert
in Algorithm 1. The insertion of X into Y is the hierarchy Z, such that, for
any λ in {0, . . . , ℓ}, Z[λ] = X [λ] ∪ {R ∈ Y[λ] | R ∩ gr(X [λ]) = ∅}. Algorithm 5,
presented hereafter, computes the insertion Z of X into Y. From a high level
point of view, it proceeds in two main steps:

Join, select, and insert: efficient out-of-core algorithms 11

Algorithm 5: Insert

Data: X and Y: two hierarchies such that X insertable in Y.
Result: Z: the hierarchy insert(X ,Y)

1 x := 0; y := 0; z := 0; // indices for the nodes/regions of X, Y, and Z

2 Initialize an array InZ of |Y| Booleans to true (resp. to false) for every
leaf (resp. non-leaf) region of Y

3 while x < |X | or y < |Y| do
4 if x < |X | and y < |Y| and X .map[x] = Y.map[y] then

// Duplicate region (x, y) found in X and Y, keep (and renumber) it in Z

5 CX→Z [x] := z; CY→Z [y] := z; CZ→X ,Y [z] := (x, y)
6 x += 1; y += 1; z += 1

7 else if Y.map[y] ≺ X .map[x] then
8 if InZ[y] = true then // Keep (en renumber) region y in Z

9 InZ[Y.par[y]] := true
10 CY→Z [y] := z; CZ→X ,Y [z] := (−1, y)
11 y += 1; z += 1

12 else y += 1 // Discard region y from Z

13 else // Keep (and renumber) region x in Z

14 CX→Z [x] := z; CZ→X ,Y [z] := (x,−1)
15 x += 1; z += 1

16 Z := initialize a tree structure with nZ = z nodes
17 foreach z from 0 to nZ do
18 (x, y) := CZ→X ,Y [r]
19 if x ̸= −1 then
20 Z.map[z] := X .map[x]
21 if [x] = X .root then Z.par[z] := x
22 else Z.par[z] := CX→Z [X .par[x]]
23 if z ≥ |X .leaves| then

Z.weight[z − |X .leaves|] := X .weight[x− |X .leaves|]
24 else
25 Z.map[z] := Y.map[y]
26 if y = Y.root then Z.par[z] := y
27 else Z.par[z] := CY→Z [Y.par[y]]
28 if z ≥ |Y.leaves| then

Z.weight[z − |Y.leaves|] := Y.weight[x− |Y.leaves|]

1. Lines 3-15. Identify and renumber the regions of X and Y that belong to Z
and store the correspondences between the new number of the regions in Z
and the indices of the initial regions in X and Y. It can be observed that
this step is necessary since a region of Z can be duplicated in both X and Y
and that some regions of Y are discarded from Z. In order to perform this
step, the regions of X and Y are simultaneously browsed in increasing order

12 J. Lefèvre et al.

for ≺. The correspondences between the regions of the hierarchies are stored
in three arrays: CX→Z , CY→Z , and CZ→X ,Y ;

2. Lines 17-28. Build the parenthood relation (par) of the hierarchy Z using
the parenthood relation of the hierarchies X and Y and the correspondences
between the regions of the hierarchies. At the same time, we also build the
attributes map and weight associated to Z.

During the first step, each region of the two hierarchies X and Y is considered
once and processed with a limited number of constant-time instructions. Thus,
the overall time complexity of Lines 3-15 is linear with respect to the number of
nodes of X and Y. The worst-case complexity of the second step is also linear
with respect to the number of nodes of X and Y since Z contains at most
all regions of each of hierarchy. Thus, the overall complexity of Algorithm 5
is O(|X |+ |Y|).

6 Conclusion

In this article, we proposed efficient and easily implementable algorithms for the
three algebraic operations on hierarchies select, join, and insert. These algorithms
rely on a particular data structure to represent local hierarchies in order to
achieve linear or linearithmic time complexity while limiting the amount of
information required in the main memory. Thanks to these contributions it is
now possible to efficiently implement the calculus scheme proposed in [3] for the
out-of-core computation of BPHs. In future works, we plan to study the time
and memory consumption of the proposed algorithms in practice and to develop
efficient algorithms to process the distribution of a BPH in order to obtain a
completely out-of-core pipeline for seeded watershed segmentation.

Acknowledgements This work was supported by the French ANR grant ANR-
20-CE23-0019.

References

1. Carlinet, E., Blin, N., Lemaitre, F., Lacassagne, L., Geraud, T.: Max-tree
computation on GPUs. IEEE TPDS (2022)

2. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological
hierarchies on edge-weighted graphs. In: ISMM. pp. 86–97 (2013)

3. Cousty, J., Perret, B., Phelippeau, H., Carneiro, S., Kamlay, P., Buzer, L.:
An algebraic framework for out-of-core hierarchical segmentation algorithms. In:
DGMM. pp. 378–390 (2021)

4. Gazagnes, S., Wilkinson, M.H.F.: Distributed connected component filtering and
analysis in 2d and 3d tera-scale data sets. IEEE Transactions on Image Processing
30, 3664–3675 (2021)

5. Gigli, L., Velasco-Forero, S., Marcotegui, B.: On minimum spanning tree streaming
for hierarchical segmentation. PRL 138, 155–162 (2020)

Join, select, and insert: efficient out-of-core algorithms 13

6. Götz, M., Cavallaro, G., Geraud, T., Book, M., Riedel, M.: Parallel computation
of component trees on distributed memory machines. TPDS 29(11), 2582–2598
(2018)

7. Havel, J., Merciol, F., Lefèvre, S.: Efficient tree construction for multiscale image
representation and processing. JRTIP 16(4), 1129–1146 (2019)

8. Kazemier, J.J., Ouzounis, G.K., Wilkinson, M.H.: Connected morphological
attribute filters on distributed memory parallel machines. In: ISMM. pp. 357–368
(2017)

9. Meyer, F.: The dynamics of minima and contours. In: ISMM. pp. 329–336 (1996)
10. Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In:

International Conference on Scale-Space Theories in Computer Vision. pp. 187–198
(1999)

11. Najman, L., Cousty, J., Perret, B.: Playing with Kruskal: algorithms for
morphological trees in edge-weighted graphs. In: ISMM. pp. 135–146 (2013)

12. Perret, B., Chierchia, G., Cousty, J., Guimarães, S.J.F., Kenmochi, Y., Najman,
L.: Higra: Hierarchical graph analysis. SoftwareX 10, 100335 (2019)

13. Ronse, C.: Partial partitions, partial connections and connective segmentation.
JMIV 32(2), 97–125 (2008)

14. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation
for image processing, segmentation, and information retrieval. TIP 9(4), 561–576
(2000)

	Join, select, and insert: efficient out-of-core algorithms for hierarchical segmentation trees

