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Abstract

Real-time ride-sharing has become popular in recent years. However, the underlying optimi-

zation problem for this service is highly complex. One of the most critical challenges when

solving the problem is solution quality and computation time, especially in large-scale prob-

lems where the number of received requests is huge. In this paper, we rely on an exact solv-

ing method to ensure the quality of the solution, while using AI-based techniques to limit the

number of requests that we feed to the solver. More precisely, we propose a clustering

method based on a new shareability function to put the most shareable trips inside separate

clusters. Previous studies only consider Spatio-temporal dependencies to do clustering on

the mobility service requests, which is not efficient in finding the shareable trips. Here, we

define the shareability function to consider all the different sharing states for each pair of

trips. Each cluster is then managed with a proposed heuristic framework in order to solve

the matching problem inside each cluster. As the method favors sharing, we present the

number of sharing constraints to allow the service to choose the number of shared trips. To

validate our proposal, we employ the proposed method on the network of Lyon city in

France, with half-million requests in the morning peak from 6 to 10 AM. The results demon-

strate that the algorithm can provide high-quality solutions in a short time for large-scale

problems. The proposed clustering method can also be used for different mobility service

problems such as car-sharing, bike-sharing, etc.

1 Introduction

The growing pressure on urban transportation systems needs innovative solutions that can

increase their efficiency. In recent years, new mobility services and intelligent transportation

systems have shown the potential to be a part of the solution. Among these services, ride-shar-

ing is becoming popular [1].

Ride-sharing originated as a general concept where individual travelers share a vehicle for a

trip and split travel costs with others that have similar itineraries and time schedules [2].

Besides, transportation, like many other aspects of daily life, is being transformed by the infor-

mation technology (IT) revolution [3]. The spread of mobile devices and the development of
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the Global Positioning System (GPS) make it possible for all the transport operators to adapt

in real-time the transportation supply to travel demand [4]. These new technologies have

made considerable changes in the transportation modes [5]. These options make it possible to

have access to the vehicle’s position and perform the matching process of ride-sharing in real-

time. These possibilities have led to the development and progress of a new type of ride-shar-

ing, which is called real-time ride-sharing, also known as dynamic ride-sharing or ad hoc ride-

sharing.

Dynamic ride-sharing refers to a system that supports an automatic ride-matching process

between participants on very short notice or even en-route [6]. The application serves the pas-

senger requests on the one hand, i.e., the mobility demand. On the other hand, it can impact

the network capacity and can be affected by the network conditions. Thus, to assess the ride-

sharing system, we need to assess both aspects. First, we have to find the best way to serve the

network demand by matching the passengers and the fleet vehicles and solving a fleet manage-

ment problem. Effective and efficient optimization technology that matches drivers and riders

in real-time is one of the necessary components for a successful dynamic ride-share system

[7]. Second, we have to assess the impact of the network condition on the ride-sharing system

performance. Network congestion has impacts on the dynamic ride-sharing service. When the

rides are executed, a gap can exist between the estimated travel times used by the optimization

process and the travel times experienced. In assessing a dynamic ride-sharing system, it is

essential to consider this gap.

Matching users to trips is very challenging in real-time since it must happen very quickly.

In different researches on optimal assignment for ride-sharing, the problem is formulated as

an integer linear programming problem, and then different approaches are taken to solve it

[8]. The target is to reduce the computation time and obtain solutions close to the global opti-

mum. [9] show that the computation time and the quality of the results are serious problems

in the algorithms for optimizing shared mobility.

The underlying optimization problem in a ride-sharing service is a pickup and delivery

problem with time windows (PDPTW) [10]. In [11, 12], the authors propose reviews of

dynamic pickup and delivery problems, bringing up some interesting and unsolved questions,

such as the optimal waiting strategies, the modifications of the objective function on a rolling

basis, to name a few. It is shown that this problem is NP-hard [13]. Even simplified variants of

the problem with a single-driver single-rider setting, single pickup, and drop off, or a single-

objective function are still NP-hard [14]. Although there is vast literature on algorithms and

solution methods for these problems, there is still room for improvement in these methods.

The number of requests for the mobility service at every time is huge in the large-scale

problems. Therefore, the complexity of the solution method for the matching problem

increases exponentially by a small increase in the service demand. It is substantial to consider

that the patterns of demands and the patterns of supplies are spatially and temporally depen-

dent [15]. Considering these dependencies, clustering methods can be applied to scale down

the problems and make the computations faster.

Clustering methods enhance the scalability of matching methods by reducing the search

space, making it possible to parallelize and balance the computing workload, and speeding up

the matching computations.

In this paper, we propose a clustering method based on a “Shareability Function” (SF) that

considers all the trips’ possible matching situations. Two trips can be shared either in parallel

(passengers are in the same vehicle at some point) or in sequence [16].

In the previous studies, the clustering methods usually consider two close origins or two

close destinations (closeness in terms of geographical position or announcement time) to

share a trip, but in the proposed method, we consider all the possible sharing states for every
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two trips. So we can be sure that the matching system can explore all the sharing possibilities

and the solution is close to the global optimum.

The shareability function computes the extra travel time that the vehicle has to spend to ser-

vice each matching situation, compared to the situation where each trip is serviced indepen-

dently without sharing. Then the shareability function for every two trips is the minimum

computed value among the three different situations (parallel, sequence, and independence).

So, when the shareability function is low for two specific requests, they have a high potential to

be shared efficiently. We propose a clustering method to put the most shareable trips in sepa-

rate clusters based on this new function. Then, we propose a heuristic method to solve the

matching problem inside each cluster. The final algorithm can provide high-quality solutions

in a short time for large-scale problems.

As discussed above, it is crucial to consider the interactions between the system and the net-

work traffic in dynamic ride-sharing system evaluation. Also, it is important to consider other

vehicles like personal cars besides the ride-sharing service vehicles in the network. In this

paper, we define two different models to simulate the functioning of the proposed dynamic

ride-sharing system: The “plant model”, based on Macroscopic Fundamental Diagram (MFD),

is used to simulate the real traffic conditions and considers both service vehicles and personal

vehicles in the network; The “prediction model”, based on the current mean speed, is used to

calculate the travel times during the assignment process [16, 17].

To validate our approach, we employ the proposed method on the real data of Lyon city in

France with half-million requests in the morning peak from 6 to 10 AM. To demonstrate the

clustering method’s performance, we have compared the proposed method with two other

clustering-based methods from the literature (spatial and temporal clustering). The results

show that the method proposed in this paper can make a significant improvement in the qual-

ity of the solution and the computation time.

Since ride-shares are established on-demand, a ride-sharing system is similar to other on-

demand forms of passenger transit such as taxis and dial-a-ride services like airport shuttles

[2]. The clustering method proposed in this study can be used for other similar systems.

The contributions of this paper are listed below:

• We define three different states for sharing the trips, and a new shareability function is

defined based on the extra travel time the vehicle has to pass to serve the shared trips.

• We present a new clustering method using both hierarchical and partitional clustering

approaches to put the most shareable trips inside separate clusters.

• We apply an exact matching algorithm based on the branch-and-bound concept that consid-

ers both passengers’ and providers’ objectives and constraints.

• We define a new constraint to make the algorithm flexible for the decision-makers to choose

different numbers of sharing.

• We define two different models to consider the network traffic impact on the system perfor-

mance and the gap between the estimated travel times used by the optimization process and

the travel times experienced.

The remainder of this paper is structured as follows. Section 2 is the literature review sec-

tion on ride-sharing and clustering methods. Section 3 details our clustering method for

dynamic ride-sharing. Section 4 defines our travelers matching algorithm. Section 5 describes

the two simulation models used as plant and prediction models respectively. Section 6 provides

the results of our experiments. Section 7 concludes this paper.
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2 Literature review

In this section, we review the latest studies on different solution methods and clustering

approaches for real-time and dynamic ride-sharing.

2.1 Solution methods for the ride-sharing problem

Due to the complexity of the dynamic ride-sharing problem, the exact solution methods are

introduced to solve very small instances. The most frequently cited literature on PDPTW is

[18], where they present a mixed linear integer programming formulation of PDPTW and a

branch and cut solution for it. In another approach, the problem is formulated to a bi-objective

linear programming model to minimize the number of vehicles and the total cost of the collab-

orative operation [19–21]. The authors in [22] later introduce an enhanced branch-and-cut-

and-price solution to improve the solution further. These exact methods are usually used to

solve static problems with deterministic data [18, 23, 24]. In the PDPTW, increasing the num-

ber of vehicles and passengers increases the dimension of solution space and computational

time. The method proposed by [10] takes almost two hours to compute a case with 50 passen-

gers and 15 vehicles (On an Intel Workstation running two Xeon E5-2680 processors clocked

at 2.80 GHz with 20 cores and 192GB RAM running Windows Server 2008 x64 Edition).

There are different heuristic methods in the literature to solve the assignment problem [25,

26]. [27] propose an exact branch-and-cut algorithm for the Dial-a-Ride Problem (DARP) that

can outperform the state-of-the-art solver CPLEX. The exact method is followed by a lean heu-

ristic algorithm based on Large Neighborhood Search (LNS) for larger problem instances. In

[28], the exact method is proposed to solve small instances of the problem. Then a Tabu search

heuristic is proposed for the pick and delivery problems for ride-sharing.

Dynamic ride-sharing problem addresses short-term matching or even en-route matching

[6]. This fact makes the assignment problem more complex. In some studies, researchers try to

narrow the feasible solution space to make the computations faster and be able to assign the

vehicles to the requests that are coming at each time to the system. For example, [29] present a

method to tighten travelers’ time windows and eliminate unnecessary variables and constraints

to narrow the solution space. [30] proposed a branch-and-bound algorithm for solving a real-

time ride-sharing problem. They introduced a kinetic tree algorithm to schedule dynamic

requests and adjust the routes on the fly. [29] proposed a branch-and-cut algorithm to solve a

realistic DARP with multiple trips and request types and a heterogeneous fleet of vehicles. [31]

proposed an online optimization method for the dial-a-ride problem in a multi-company

setting.

Some researches have implemented meta-heuristic methods to solve the assignment prob-

lem [32–35]. [36] first used a genetic algorithm to solve the ride-matching problem and find a

sub-optimal solution, and then they presented an insertion heuristic method to take care of

the newly received requests by modifying the solution of the genetic algorithm when possible.

[37] proposed hybrid-simulated annealing (HSA) method to assign passenger requests to

shared taxis dynamically. [38] propose a hybrid Genetic Algorithm to solve the Heterogeneous

Dial-a-Ride problem (HDARP). [6] introduced a rolling horizon approach that can provide

high-quality solutions for dynamic ride-sharing systems where trip requests continuously

enter the system.

Recently [9] has presented a survey of models and algorithms for optimizing shared mobil-

ity, and they have shown that one of the most critical problems in the solution for these sys-

tems is computation time and the quality of the solution. The critical point in solving a

dynamic ride-sharing assignment problem is finding the potential trips that can be shared in

real-time while the system is receiving the requests continually. The previous methods for
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ride-sharing matching usually devote the quality to save the computation time, as the matching

process should occur very fast. The proposed methods usually miss a lot of sharing opportuni-

ties and get far from the optimal situation. Compared to the previous approaches, this paper

proposes a method that combines the benefits of exact solving in terms of solution quality and

the benefits of heuristics and meta-heuristics in terms of computation time and scalability. On

the one side, we present an algorithm based on branch-and-bound that can provide the opti-

mal solution for small instances of the problem. On the other side, we introduce a method

based on clustering that groups the requests and put the most shareable trips in the same clus-

ters. The exact algorithm is executed with the requests inside each cluster. A rolling horizon

approach is introduced to handle the trip requests in real-time. We show that the clustering

method provides high-quality solutions while reducing the computation time significantly.

Furthermore, it is important to consider the impacts of the network on travel times and ride-

sharing system performance. This point has been neglected in the previous studies. They usu-

ally consider static travel times in the assignment process [39]. A few studies have considered

the impact of traffic conditions on ride-sharing [40]; however, there is no benchmark consid-

ering traffic conditions. In our method, we consider two different models for the dynamic

ride-sharing system to consider the gap between the estimated and the realized travel times.

2.2 Clustering methods

In the literature, there are clustering methods to handle large-scale problems, like dividing the

time into several time slots or dividing the space into several clusters, road segments, or cells

[41, 42].

To address the ride-matching problem in large-scale configurations, [43] propose to parti-

tion the road network into distinct regions which represent certain sub-structures of the road

network. [44] propose a clustering-based request matching and route planning algorithm

whose basic operations are merging requested trips on road networks. [45] propose an algo-

rithm that uses the dataset of taxi get-off points and performs a clustering of taxis on urban

roads. They compare their method with classical clustering methods. However, the taxi clus-

tering data in their study are conducted in a static environment. In [46], all pickup points are

partitioned into several clusters, the vehicles dispatching and the ride-sharing problem are

solved in each cluster. [47] show that an appropriate solution for large-scale problems is clus-

tering the demand nodes and downsizing the network. To speed up the computation, Some

researches try to limit the feasible region with clustering methods. They usually divide the

demand nodes in the network into geographically dense clusters [48, 49]. In a recent study by

[50], an extended insertion algorithm in conjunction with a Tabu search method is proposed,

and a cluster-first-route-second approach is used to find heuristic solutions.

One of the recent researches on the clustering of the trips is done by [51]. They introduce

the notion of a shareability network to quantify the spatial and temporal compatibility of indi-

vidual trips in a dynamic environment. In their method, two trips are shareable if they would

incur a delay of no more than five minutes. Then, [52] enrich the idea to model the sharing of

vehicles instead of rides and address the minimum fleet problem in on-demanded urban

mobility. In these clustering methods, the trips are clustered based solely on the situation of

the origin points. However, in ride-sharing, other combinations of trips should be considered.

In this paper, we propose the concepts of “sequential index” and “Shareability index” to assess

the possibility of serving two trips with the same car in sequence or by sharing the trips. Our

proposal employs a method that reduces the number of required vehicles.

In a recent study, [53] consider the combination of the ride-sharing and public transporta-

tion services and formulate a mixed integer programming model for the multimodal
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transportation planning problem. They propose a heuristic approach (i.e., angle-based cluster-

ing algorithm) and compare its efficiency with the exact solution for different settings. They

show that the clustering algorithm works well both in small and large settings. However, the

impact of the network traffic on the ride-sharing system performance is not considered. In this

paper, we define two distinct models for the dynamic ride-sharing to calculate the travel times

during the assignment and simulate real traffic conditions.

3 Clustering method for dynamic ride-sharing

3.1 Shareability function

To perform the clustering on the requests (Nt) received by the system at time t, we define the

“Shareability Function” (SFi,j) between request i and request j (8i, j 2 Nt). This function com-

putes the difference between the travel time when the two trips are shared and the travel time

to serve each trip individually, for each pair of requests.

In case of sharing, we consider three different situations for each pair of trips (Fig 1). In the

first situation (1), two trips can be shared, and the vehicle first drops off the first passenger, and

then it goes to the second passenger drop off (destination) point. In this situation, the travel

time for the first passenger (Tpi) would be the summation of her/his waiting time (Wsi), the

travel time between her/his origin and the next passenger origin (TOOi,j) and the travel time

between the next passenger origin and her/his destination (TODj,i). Similarly, the travel time

for the second passenger (Tpj) would be the summation of her/his waiting time (Wsj), the travel

time between her/his origin to the first passenger’s destination (TODj,i) and the travel time

from the first passenger’s destination and her/his destination (TDDi,j). So, SFi,j (shareability

function for trips i and j) when two trips have the first situation can be computed as in Eq 1.

Tpi þ Tpj ¼Wsi þ TOOi;j þWsj þ TODj;i þ TDDi;j

8i; j 2 N

SF1
i;j ¼ Tpi þ Tpj � ðTODi;i þ TODj;j þWi þWjÞ

ð1Þ

In situation (2), the second passenger is served by the service vehicle while the first passen-

ger is on board. Thus, the travel time for the second passenger (Tpj) is the same as when served

individually (summation of the waiting time and the time from the origin to the destination)

and the travel time for the first passenger is the travel time of all the links from the first stop

point (Oi) to the last one (Dj):

Tpi þ Tpj ¼Wsi þ TOOi;j þWsj þ TODj;j þ TDDj;i

8i; j 2 N

SF2
i;j ¼ Tpi þ Tpj � ðTODi;i þ TODj;j þWi þWjÞ

ð2Þ

Fig 1. Trip situations.

https://doi.org/10.1371/journal.pone.0262499.g001
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In the third situation (3) that we consider for two trips, the trips are not shared, but the

vehicle can serve two passengers sequentially [16]. This situation must be considered in the

shareability index in order to encourage putting these trips in the same group while solving the

optimization problem. The travel time for both passengers in this situation is the same as

when they are served individually. But the vehicle travel time can decrease if the travel time

between the first destination and the second origin is less than the summation of the travel

time between the first origin and the closest depot and the travel time between the start depot

and the second origin.

Tpi þ Tpj ¼Wsi þ TODi;i þWsj þ TODj;j

8i; j 2 N

SF3
i;j ¼ Tpi þ Tpj � ðTODi;i þ TODj;j þWi þWjÞ

SF3
i;j ¼Wsi þWsj � ðWi þWjÞ

ð3Þ

The best situation for each two trips is the situation with minimum SF. So the algorithm

chooses the condition that the additional travel time is minimum for sharing each pair of trips:

SFi;j ¼ minfSF1
i;j; SF

2
i;j; SF

3
i;jg ð4Þ

3.2 Clustering based on a dissimilarity function

After computing the shareability function, we have the function value for each pair of requests

that creates a “shareability matrix”. The shareability matrix is a dissimilarity matrix for the

received requests: the higher the value, the least likely the two requests will be served together.

In our approach, this matrix is used in the clustering process. We perform the clustering using

the computed dissimilarity matrix. When we make clusters based on the SF, we put in the

same cluster the trip requests that have more potential to be shared (the trips that have lower

SF). There are two main categories of algorithms for clustering based on the shareability

matrix, both are potentially relevant for our large-scale ride-sharing application:

1. Partitional clustering algorithms [54] cluster the data into k clusters. One of the usual algo-

rithms for partitioned clustering is k-means clustering. K-means clustering is simple, fast,

and flexible.

2. Hierarchical clustering methods in which the clusters are arranged in a tree-like structure.

Hierarchical clustering can be divided into Agglomerative hierarchical clustering (AHC)

and divisive clustering [55].

In [45], the authors have compared the hierarchical clustering and k-means clustering for

urban taxi carpooling in a static environment. They show that compactness and separation are

almost the same for hierarchical and k-means clustering for large cluster sizes. However, in

dynamic large-scale problems, the results might be different. Besides, computation time

becomes the critical criterion in this context. Thus, in our experiments, we implement both

clustering methods and we assess their performance, considering both solutions quality and

computation time.

3.2.1 Multidimentional scaling and k-means clustering. K-Means method is a parti-

tional clustering approach for decomposing the problem into independent subsets. It defines

clusters of data based on their similarity, minimizing within-cluster variances. In the clustering

procedure, the preferred number of clusters (k) should be specified in the algorithm before
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execution. The most common algorithm uses an iterative refinement technique. A common

initialization step associates each observation (data point) with a cluster, and computes the set

of cluster centroids as the mean of the observations of the cluster. Afterward, iterations will

serve to optimize the clusters.

k-means clustering takes place based on the distance between points. Based on the study in

[56], to be able to apply the appropriate k-mean clustering method, we need to convert the dis-

similarity matrix into a distance matrix. Therefore, we use the multidimensional scaling

method and change the shareability matrix into a distance matrix ([57]) (we have implemented

the method using the mathtoolbox in C++).

After extracting the distance matrix, we are able to create the same size clusters for the data

received at every assignment time step and put the most shareable trips in separate clusters

using the modified k-means clustering method. This k-mean clustering is used to obtain clus-

ters in preferred sizes [58]. Accordingly, considering the objective function value, we can find

the best trade-off between cluster size and computation time. Putting the requests in clusters

can also provide the opportunity for parallel computations. So the problem is divided into

multiple sub-problems, and we favor a uniform distribution of requests among clusters to

decrease computation times and facilitate parallel computations of each sub-problem.

3.2.2 Hierarchical clustering. Hierarchical clustering offers a flexible and no-parametric

approach and is an algorithm that builds hierarchy of clusters [59].

We use the agglomerative hierarchical method, which starts with taking singleton clusters

(that contain only one request per cluster) at the bottom level and continue merging two clus-

ters at a time to build a bottom-up hierarchy of the clusters [60].

4 Matching algorithm for dynamic ride-sharing

The matching algorithm aims to identify the travelers who can share their trips and assign

them to a vehicle. In the assignment, it is important to consider both passengers’ and service

provider’s objectives. According to the state-of-the-art, the most important operation objective

for the service provider is to minimize the total travel time, and the total travel distance of vehi-

cles [61, 62]. The passengers also need to get to the destination on time and have the minimum

waiting time [63]. So we define the objective function for the matching algorithm as below

where i is the index of passengers, andm is the index of vehicles,Wi is the waiting time for pas-

senger i, Tpi is the travel time for passenger i, Tvm is the travel time for vehiclem, Dm is the

travel distance for vehiclem and α, β, γ, and δ are the weights of each objective after normaliza-

tion.

min
X

i2P

ða:Wsi þ b:TpiÞ þ
X

m2M

ðg:Tvm þ d:DmÞ ð5Þ

The main constraints for the matching process are assignment constraints, time constraints,

and capacity constraints. Assignment constraints are the very first constraints of the ride-shar-

ing problem. Here, we make sure that the passenger is transported from the pick-up point to

the drop-off point, and the pick-up point should be visited before the destination point. Also,

we make sure that the same vehicle is handling a passenger pick-up and drop-off. We also

have a flow constraint to ensure that the vehicle that enters a service node will also exit from it.

Finally, we have considered a constraint to ensure that a vehicle is empty when it leaves the

depot at the starting of the simulation. The assignment constraints are strict, and the algorithm

should respect them all. In the time constraints, we define the earliest and latest pick-up and

drop-off times for the passengers and ensure that the pick-up and drop-off times are inside

these time windows. In the capacity constraints, we ensure that at each pick-up point, the

PLOS ONE Space-time clustering-based method to optimize shareability in real-time ride-sharing

PLOS ONE | https://doi.org/10.1371/journal.pone.0262499 January 14, 2022 8 / 25

https://doi.org/10.1371/journal.pone.0262499


demand does not exceed the vehicle’s capacity at that point. We also ensure that all the passen-

gers who are picked up at the origin will be dropped off at the corresponding destination. In

addition, we need to make sure that the passengers stay in the vehicle up to their destination.

To make the algorithm flexible to choose different numbers of sharing, we have considered

limitations on the number of sharing. The number of sharing for each passenger defines the

allowed number of other passengers that can share their trip with this current passenger. So

when the number of sharing is zero, it means that the service is not able to share, and we con-

sider the in-sequence trips in the clustering function. But when we increase the number of

sharing to one, it means that the service can serve two passengers simultaneously. Thus, the

number of sharing constraint can make it possible to use the proposed algorithm for similar

problems like ride-sourcing and dial-a-ride problems. In the end, we made sure that there was

a sufficient number of vehicles in the fleet to serve all the requests.

The vehicle can be in two different situations. It is either circulating in the network to serve

the on-board passengers (en-route vehicle) or waiting at a stop location for the new passengers

(idle vehicle). Our proposed algorithm considers both situations. When the system receives a

new request, it first checks the en-route vehicles that have not yet reached their maximal occu-

pancy. So, the first part of the algorithm assigns the new requests in priority to en-route vehi-

cles. The algorithm works to minimize the total travel time for both vehicles and passengers

while respecting the capacity of the vehicle’s constraint and passengers’ time window con-

straint. The second part of the algorithm checks the idle vehicles waiting in depots to assign

the passengers for the remaining requests. For this step, we introduce an exact method based

on the branch-and-cut concept. The method creates branches of routes and then chooses the

optimal solution among the feasible routes. Fig 2 shows this part of the algorithm. The blue

boxes show the part of the algorithm that checks the constraints, and the green boxes show the

part where we compute the objective function. The algorithm starts creating branches from

the origin points and continues by adding the remaining origin points (in “create initial routes

from remained origins”) and the related destinations. In “find the set of points that can be

added to the routes”, we check the assignment constraints. So a destination point can be added

to the route if and only if the related origin point has been already added to the route. Also, we

check the capacity constraints, the time window constraints, and the number of sharing con-

straints. In the end, the algorithm computes the objective function for the feasible routes (if

the number of origins and destinations are the same, and we are sure that all the destinations

are visited) and chooses the route that has a minimum objective function. Then, we introduce

a rolling horizon method to solve the problem dynamically. The requests that are assumed to

be known are the only ones over the next rolling horizon (20 minutes). We also use an “assign-

ment time horizon” of 10 minutes. That means that every 10 minutes, we execute our optimi-

zation algorithm while considering the requests of the next 20 minutes.

We present a small example with four requests to show the execution of the algorithm.

Table 1 presents the requests. Each request has an associated number of requested seats, a max-

imum number of accepted sharing, an earliest pick-up time and a latest arrival time.

The algorithm starts by creating branches of routes to serve the requests. It sends a car from

the closest stop location to pick the passengers up at the origin point, and then it continues by

adding the feasible points to the branches. First, the algorithm finds feasible branches. Fig 3

shows the final feasible solutions for the problem. The algorithm can find four feasible solu-

tions for the problem.

Table 2 shows the total passengers’ waiting time, total vehicles’ travel distance, and the

number of vehicles for these solutions (note that the waiting time for passengers is the differ-

ence between the passengers’ pick up time and the passengers’ desired departure time). Solu-

tion A is when a car serves each passenger separately without sharing. In this solution, the
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waiting time is minimum, and the passengers wait for 28 seconds to be picked up. Solution B
serves passengers 1 and 4 with one car and passengers 2 and 3 with another car. It should be

mentioned that in this solution, the trips are not shared. The first car serves passenger 1, and

after dropping off this passenger, it goes to pick up passenger 4 at his destination. This solution

increases the waiting time to 51 seconds, but it can reduce the travel distance from 3,030

Fig 2. Final assignment algorithm.

https://doi.org/10.1371/journal.pone.0262499.g002
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meters to 2,085. Solution C serves the four requests with two cars like solution B. However, it

shares the trip for passengers 2 and 3, and it can make more significant progress in reducing

the travel distance to 1,785 meters. The waiting time with this solution is 53 seconds. Solution

D increases the waiting time just 1 second compared to solution A. It serves requests 3 and 4

with a car in sequence (without sharing) and requests 1 and 2 with two cars separately. If the

weights for all the objective functions are equal, after normalizing the objective functions, the

optimal solution will be solution C.

5 Simulation models for dynamic ride-sharing

The ride-sharing service’s optimization system uses estimates for the predicted travel time

obtained from a so-called “prediction model”. When the fleet management plan is executed, a

gap usually exists between the estimation and the real traffic condition. The so-called “plant

model” requires dynamic adjustment of the initial assignment to fit with the conditions

observed, and we use it to represent the real traffic condition.

To provide a realistic service, in the proposed simulation component of the dynamic ride-

sharing system, we accurately distinguish the prediction and the plant models.

The trip-based MFD is used as the plant model to consider individual trips while keeping a

very simple description of traffic dynamics. [17, 64, 65]. The general principle is to derive the

inflow and outflow curves. When n(t) is the number of en-route vehicles at time t and the

Table 1. Example with 4 requests (configuration).

Request Travel distance demand nshare EPT LDT

1 19 1 3 8:00 8:45

2 11 2 2 8:00 8:25

3 24 2 1 8:15 9:00

4 18 2 3 8:30 9:20

https://doi.org/10.1371/journal.pone.0262499.t001

Fig 3. Feasible routes for the example.

https://doi.org/10.1371/journal.pone.0262499.g003
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mean speed of travelers is V(n(t)) at every time t, the travel distance Li by a car i entering at

time t − T(t) must satisfy the following equation:

Li ¼
Z t

t� TðtÞ
VðnðsÞÞds ð6Þ

The function V(n(t)) is the speed macroscopic fundamental diagram and can be derived

from common observations for a transportation network [66]. For more details on the func-

tioning of trip-based MFD, readers can refer to [67].

The prediction model estimates the traffic situation for the next assignment time horizon

(every 10 minutes) to carry out travel time prediction during optimization. In our method, we

assign the passengers to the cars based on this prediction. The prediction model is based on

the direct travel time from each point i to j based on the current mean speed and the associated

shortest path between the two points for the next 10 minutes. Then the optimization algorithm

assigns all the requests for the next 10 minutes to the en-route cars or empty waiting cars.

In the rolling horizon method, the assignment procedure rolls over a specific horizon for

the requests announced of a particular optimization step. As stated earlier, the rolling horizon

in this paper is 20 minutes, and the optimization time step is 10 minutes. So, the requests of

the next 20 minutes that have not yet been assigned are optimized every 10 minutes. Some

requests are re-optimized every 10 minutes. If a trip has been assigned to a vehicle which has

left the depot, the algorithm does not assign it again, but if a trip is in the schedule of a waiting

vehicle, the algorithm places it in the set of optimized trips in the particular horizon and re-

optimizes it.

In this method, every TH
2

time step, we stop the simulations and solve a new assignment

problem for the requests over a new full rolling horizon (TH). Some requests may arrive just

after the end of a simulation period, and this method prevents the system from being myopic

to the new demand.

6 Experiments

6.1 Case study

In this paper, we use data from the network of Lyon city (the second-largest urban area of

France) to evaluate the impact of proposed clustering method. The data set is available online

at [68](https://research-data.ifsttar.fr/dataset.xhtml?persistentId=doi:10.25578/MLIDRM) The

network area is more than 80 km2 and the origins/destinations (ODs) set contains 11,314

points. Fig 4 shows the network of the city.

The network is loaded with travelers of all ODs with a given departure time to represent the

morning peak hour from 6 AM to 10 AM. The number of trips during this period is 484,690.

We have 279,382 personal trips in the network and 205,308 demand for the service cars in the

system.

Table 2. Example with 4 requests (solutions).

Solution Total waiting time (s) Total travel distance (m) Number of cars

A 28 3030 4

B 51 2085 2

C 53 1785 2

D 29 2265 3

https://doi.org/10.1371/journal.pone.0262499.t002
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The service provider has a fleet of vehicles in a ride-sharing system to serve the service

requests. Participating service vehicles start up from a number of known locations or depots

and after serving the assigned requests, they stop at this allowed locations to wait for the next

passengers.

In our research, we define two kinds of depots: local depots and a central depot. The central

depot in the network can feed all the local depots. On the one hand, distributing vehicles over

the depots will decrease the waiting time for passengers. However, on the other hand, in the

peak hour, if many vehicles are moving in the network, the congestion will increase, leading to

more travel time for vehicles and passengers. We analyze the number of vehicles in depots

over the network to decide about the best distribution for the vehicles.

To locate the cars at the beginning of the simulations, we use the historical data for the net-

work demand to estimate the demand distribution over the network. Then we specify the

Fig 4. Network of Lyon.

https://doi.org/10.1371/journal.pone.0262499.g004

Fig 5. Central depot and local depots in a part of Lyon network.

https://doi.org/10.1371/journal.pone.0262499.g005

PLOS ONE Space-time clustering-based method to optimize shareability in real-time ride-sharing

PLOS ONE | https://doi.org/10.1371/journal.pone.0262499 January 14, 2022 13 / 25

https://doi.org/10.1371/journal.pone.0262499.g004
https://doi.org/10.1371/journal.pone.0262499.g005
https://doi.org/10.1371/journal.pone.0262499


number of cars at each location based on the demand for the depot. So if the demand is high,

we consider more cars on the depot, and if the demand is low, we put fewer vehicles at that

location.

In the network of Lyon city, we have defined nine central depots that are uniformly located

in the network. The number of allowed stop locations is 2,272 points on the network. Fig 5

shows the location of one of the central depots and some local depots in the network of Lyon.

6.2 Sensitivity analyses on the optimization time step

As explained in section 4, considering all the requests over the full-time horizon can provide

the global optimum solution for the ride-sharing problem. However, this greatly increases the

number of variables and is not reasonable in practice. Also, in the dynamic ride-sharing sys-

tem, the requests are announced in real-time, and the matching should take place en-route. To

reduce the number of variables and bring the expression of the problem more in line with

common practice, we implement a rolling horizon. The requests are assumed known only

over the next rolling horizon. To choose the best trade-off between the simulation time and

the objective function, we provide sensitivity analyses on different optimization and rolling

horizon time steps. First, we optimized the problem without considering the rolling horizon

approach using the exact solution method for 1092 requests. As the problem is NP-hard, the

computation time is very high, even for small instances of the problem. However, we can have

a reference to compare different optimization time steps having the optimal solution. Then we

did the analyses with 120, 60, 40, 20, 10, and 4 minutes optimization time step (we choose the

rolling horizon two times bigger than the optimization time step to avoid being myopic to the

requests that may arrive exactly after the optimization time step). Table 3 presents the values

for optimization time steps and rolling horizon. Figs 6 and 7 show the objective function and

the simulation time for different rolling horizons (the first scenario is the optimal solution by

solving the exact solution method over all the simulation horizon without considering rolling

horizon approach).

The results show that decreasing the optimization time step can increase the objective func-

tion, but on the other hand, it reduces the simulation time significantly. The best trade-off

between the computation time and the objective function is when the optimization time step is

10 minutes, and the rolling horizon is 20 minutes. We do the rest of the experiments using

these values for the optimization time step and the rolling horizon.

6.3 Sensitivity analyses on the number of depots

The system sends a vehicle from the closest depot to the first origin. When the vehicle finishes

all the assigned passengers’ trips, it goes back to the closest depot to wait for the next passen-

gers. The location of local depots (allowed stop points for the service vehicles) can be selected

Table 3. Optimization time steps and rolling horizon values.

Number Optimization time step Rolling horizon

1 - -

2 120 60

3 60 30

4 40 20

5 20 10

6 10 5

7 4 2

https://doi.org/10.1371/journal.pone.0262499.t003
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from a set of feasible points on the network, such as taxi stations, some public parkings, and

public transport stops. First, we select the locations of depots considering the Spatio-temporal

distribution of demand. Then we analyze the demand for each depot to define the primary

number of vehicles waiting on each depot at the beginning of the simulation. We define differ-

ent scenarios to assess the impact of the number of local depots and the number of vehicles

waiting in these locations. Considering these analyses, we choose the best number of depots

and the distribution of vehicles over these depots at the beginning of the simulation horizon

(early morning). The number of vehicles waiting at each point depends on the Spatio-temporal

Fig 6. Objective function for different optimization times steps.

https://doi.org/10.1371/journal.pone.0262499.g006

Fig 7. Simulation time for different optimization times steps.

https://doi.org/10.1371/journal.pone.0262499.g007
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demand distribution around the stop location and the location capacity. It can vary from 0 to

5 vehicles. We have five different scenarios with 996, 1,450, 1,864, 2,272 and 2540 allowed stop

locations. Table 4 shows the vehicles’ total travel time and distance and the passengers’ waiting

time for different scenarios. The results show that increasing the number of depots can

decrease the passengers’ waiting time and vehicles’ travel distance. But in the last scenario, as

more vehicles are circulating in the network, the average speed decreases, so the vehicles’ total

travel time increases.

6.4 Determining the proper clustering method

As we said in section 3.2, we can use either the k-means clustering method or the hierarchical

method to cluster the requests based on the presented shareability matrix. In our method, both

the quality of the clustering method and the computation time are very important. The time

complexity of k-means is linear, while that of hierarchical clustering is quadratic. Besides, k-

means clustering requires prior knowledge of number k of clusters and also needs to use muti-

dimensional scaling to convert the similarity matrix into the distance matrix. On the other

side, we can stop at whatever number of clusters we find appropriate in hierarchical clustering

by interpreting the dendrogram. As we use the agglomerative hierarchical method, we can

have larger clusters faster with the hierarchical method.

To choose the best clustering method, we have compared both methods considering the

quality of objective function and the computation time for different sizes of problems.

Table 5 shows the objective function and computation time with k-means clustering and

hierarchical clustering method for different sizes of problems.

Table 4. Simulation results for different number of depots.

Number of

depots

Total passengers’ waiting time

(h)

Total vehicles’ travel distance

(km)

Total vehicles’ travel time

(h)

996 1592.5 952447.0 30075.0

1450 1580.7 952305.0 30034.0

1864 1572.2 952220.0 30034.0

2272 1564.4 952139.0 30035.0

2540 1560.1 952039.0 30175.0

https://doi.org/10.1371/journal.pone.0262499.t004

Table 5. Clustering methods comparison.

Method Number of requests Objective function (normalized value) Computation time (s)

Exact

112 29.99 12966.00

1092 1924.00 288000.00

K-means clustering

112 30.96 100.10

1092 1994.18 1134.00

4482 7761.03 5340.00

11160 20773.70 20981.10

Hierarchical clustering

112 30.96 99.03

1092 1994.59 1131.10

4482 7791.90 5187.50

11160 20905.87 19950.00

https://doi.org/10.1371/journal.pone.0262499.t005
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To have a baseline for the comparisons, we have computed the optimal objective function

(solution method without clustering) for 112 and 1,092 requests. In both clustering methods,

we try to have clusters with 50 requests to ensure potential trips to be shared inside the clusters

for both test cases with 50 requests and 1092 requests.

K-means clustering and hierarchical clustering methods increase the objective function by

3.22% for 112 requests and 3.64% and 3.66% for 1,092 requests, compared to the optimal solu-

tion. Both clustering methods can decrease the computation time from 216 minutes to less

than 2 minutes. This shows that both clustering methods are very effective in terms of reducing

the computation time while keeping the quality of the solution acceptable. Then, by increasing

the number of requests, the computation time for both methods exponentially increases (the

major part of the k-means method computation time is dedicated to the multidimensional

scaling method, which exponentially increases by increasing the size of the problem).

K-means can give smaller objective function while hierarchical computation can result in a

lower time. For 11,160 requests, the objective function is 0.64% lower for the k-means method,

while the computation time is 5% more.

In our Lyon6 + Villeurbanne test case, the maximum number of requests is 11,235. So we

can use k-means clustering for this test case to have better solutions. However, for the Lyon

network, we have more than 200,000 service requests. So the hierarchical method is a better

solution for this network, since it is faster as it works directly with the similarity matrix, and it

can provide high-quality solutions.

6.5 The size of clusters

We try to have the same size clusters (to avoid too big or too small clusters) to keep the compu-

tation time low and have the opportunity for sharing in all the clusters.

There are different methods in the literature to choose the optimal size of clusters. Here, the

quality of the clusters (how similar are points within a cluster) is very important. Furthermore,

we have to be sure that the clusters are separated from each others, and the possibility of shar-

ing two trips from two different clusters is minimum. Thus the best way to find the optimal

size of clusters is to use the Sum of Squares method (SS) [69]. It is a clustering validation

method that chooses the optimal size of clusters by minimizing the Within-cluster Sum of

Squares (WSS) (a measure of how tight each cluster is) and maximizing the Between-cluster

Sum of Squares (BSS) (a measure of how separated each cluster is from the others). We com-

pute the WSS and BSS for all the clusters in different periods to evaluate the optimal size of

clusters in different demand situations.

6.5.1 K-means clustering. We compute the sum of squares for k-means clustering with

cluster sizes from 10 to 50, presented in Table 6. Fig 8 shows that when the size of clusters is

30, we can find the best trade-off between WSS and BSS. So, we choose 30 as the size of clusters

when we want to cluster the service requests with k-means clustering.

Table 6. Sum of Squares method for k-means clustering.

Number Size of clusters

1 10

2 20

3 30

4 40

5 50

https://doi.org/10.1371/journal.pone.0262499.t006
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6.5.2 Hierarchical clustering. In the hierarchical method, we can keep the first cluster of

the desired size at the bottom of the dendrogram to have the same size clusters [70]. The cru-

cial point here is to find an approximation for the size of clusters in the hierarchical method.

As we have explained earlier, we use the hierarchical clustering when the number of demand is

huge. So, we analyze the size of clusters from 75 to 300, presented in Table 7. Also, in large-

scale networks with high levels of traffic congestion, the demand density is different in differ-

ent times of a day (during the on-set and off-set of congestion). So we perform the analysis for

the hierarchical clustering in four different times of the morning peak to be able to decide

about the clusters size considering different conditions.

Fig 9 shows the SS method at different times of the simulations. Increasing the size of clus-

ters decreases the BSS. It means that more number of clusters can ensure that the clusters are

separate from each others. We have determined the cluster sizes that minimize the WSS and

maximize the BSS. At 6 and 7 AM, the cluster sizes 100 and 125 can make this trade-off

Fig 8. Sum of squares method for finding the optimal size of clusters in k-means clustering.

https://doi.org/10.1371/journal.pone.0262499.g008

Table 7. Sum of squares method for hierarchical clustering.

Number Size of clusters

1 75

2 100

3 125

4 150

5 175

6 200

7 225

8 250

9 275

10 300

https://doi.org/10.1371/journal.pone.0262499.t007
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between WSS and BSS. At 8 and 9 AM, the best cluster sizes are 125 and 150. Therefore, the

best cluster size to do the simulations for this scale is 125.

6.5.3 Comparing the shareability clustering method with spatial and temporal meth-

ods. Some researches on ride-sharing use clustering methods to scale-down the matching

problem and compute the assignment for the service vehicles faster. They usually divide the

space geographically and use a spatial clustering to downsize the problem [46]. The important

factor in spatial clustering is the distance between the trips’ origins. So two corresponding

trips can be in the same cluster if the distance between their origins is small. Another approach

is to cluster the trips based on the time in a temporal clustering method. In the temporal clus-

tering, we put two trips is the same cluster based on their departure time and their position.

Here, we compare the proposed clustering based on shareability function with spatial cluster-

ing and temporal clustering methods to show the quality of our proposal.

We compare the objective function and the computation time for the existing methods in

the literature and our proposed shareability clustering method. Figs 10 and 11 show the com-

parison for five different cluster sizes when the market-share is 50% (market-share is the

Fig 9. Sum of squares method for finding the optimal size of clusters in hierarchical clustering.

https://doi.org/10.1371/journal.pone.0262499.g009
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percentage of the total network demand that can be served by the ride-sharing service). Our

proposed shareability function with k-means clustering method can provide the best objective

function (when the size of clusters is 50 for this market-share). So the objective function for

the shareability function and k-mean clustering is considered as a base, and the percentage of

Fig 10. Comparing clustering methods’ objective function (market-share = 50%).

https://doi.org/10.1371/journal.pone.0262499.g010

Fig 11. Comparing clustering methods’ computation time (market-share = 50%).

https://doi.org/10.1371/journal.pone.0262499.g011
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difference for other methods is computed considering this basic scenario in the first figure.

The performance of spatial clustering is poor compared to the other methods. Even in the best

situation, the spatial clustering’s objective function is 4.04% more than the shareability method

with k-means clustering. The temporal clustering can perform better than spatial clustering,

but it can not outperform our (space-time) shareability clustering method. The objective func-

tion for temporal clustering is 1.99% more than k-means clustering when the size of clusters is

50. As we have to convert the shareability matrix into a distance matrix using multidimen-

sional scaling method to be able to use the k-means clustering, for big clusters (like cluster size

of 50 here) the computation time increases exponentially. However, with the cluster size of 30,

the algorithm can give a high-quality solution in a short time. As we can apply the hierarchical

clustering directly on the shareability matrix to put the shareable trips in different clusters, the

computation time for shareability function with hiearchical clustering is small. But the k-mean

clustering can perform better in terms of quality of the clusters with our proposed shareability

function. Choosing the proper clustering method for the shareability function highly depends

on the scale of the problem and the demand density.

7 Conclusion

This paper presents a method to speed up the computations for the real-time ride-sharing

assignment problem. The goal is to keep the solution’s quality and consider the impact of net-

work traffic on the solution method performance. To this aim, we propose a new clustering

method that, contrary to the existing clustering methods, considers all possible sharing situa-

tions. The clustering method is based on a space-time shareability function for large-scale real-

time ride-sharing. We define three different states for sharing the trips, and the shareability

function is computed based on the extra travel time the vehicle has to pass to serve the shared

trips. The method puts the most shareable trips together inside the same clusters. We imple-

mented both partitioned clustering (k-means clustering) and hierarchical clustering methods

on the shareability matrix to cluster the requests. Then, we described an algorithm to solve the

matching problem inside each cluster. The algorithm is based on the branch-and-bound con-

cept that considers both passengers’ and providers’ objectives and constraints. In addition, we

define two different models to consider the network traffic impact on the system performance

and the gap between the estimated travel times used by the optimization process and the travel

times experienced.

To evaluate the method, we employed the proposed method on the network of Lyon city in

France with half-million requests in the morning peak from 6 to 10 AM. The results showed

that the proposed clustering method produces high-quality solutions close to the optimal situa-

tion while significantly reducing computation time and can overcome the existing clustering

methods.

Since ride-shares are established on-demand, a ride-sharing system is similar to other on-

demand forms of passenger transit such as taxis and dial-a-ride services like airport shuttles.

Thus, the clustering method proposed in this study can be used for other similar systems.

We have used earlier versions of this method to assess the impact of real-time ride-sharing

on transportation networks [71]. In our future works, we plan to assess its impact on large-

scale multi-modal networks, i.e., considering all available modes of transportation and not

only private cars.
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