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The present study is concerned with large-eddy simulations (LES) of supersonic jet flows.
The work addresses, in particular, the simulation of a perfectly expanded free jet flow with an
exit Mach number of 1.4 and an exit temperature equal to the ambient temperature. Calcula-
tions are performed using a nodal discontinuous Galerkin method. The present effort studies
the effects of mesh and polynomial refinement on the solution. The present calculations con-
sider computational meshes and polynomial orders such that the number of degrees of freedom
(DOFs) in the solution ranges from 50 to 410 million. Mean velocity results and root mean
square (RMS) values of velocity fluctuations indicate a better agreement with experimental
data as the resolution is increased. The generated data provide a good understanding of the
effects of increasing the discretization refinement for LES calculations of jet flows. The present
results can guide future simulations of similar flow configurations.

I. Introduction
With the progress of computing power in the last years, the large-eddy simulation (LES) formulation appears as

an alternative to Reynolds-averaged Navier-Stokes (RANS) methods due to its reasonable cost when compared to the
direct numerical simulation (DNS) of the Navier-Stokes equations or even physical experiments. LES can provide
valuable information on complex configurations such as shear layers [1, 2] and detached flows [3, 4] due to its capability
to generate unsteady data for flow and temperature fields with high-frequency fluctuations, which are necessary for
aerodynamics, acoustics, loads, and heat transfer analyses.

The authors are interested in the LES of jet flows from aircraft and rockets engines [5–9]. More specifically,
on the perfectly expanded configuration, when the jet exit pressure matches the ambient pressure, at 1.4 Mach
number. Recent work highlights [10] the effects of structured second-order finite-difference and unstructured nodal
discontinuous-Galerkin spatial discretizations [11, 12] on the flow of interest at a fixed number of degrees of freedom
(DOF). The results indicate good agreement with experimental and numerical data, where the spatial resolution is
sufficient and with the same order of error in the coarser mesh regions. Therefore, the current study addresses the effects
of refinement on the LES of a supersonic jet flow configuration using the FLEXI framework [13]. The solver applies
an unstructured nodal discontinuous Galerkin spatial discretization that allows evaluating the influence of mesh and
polynomial (hp) refinement.

∗Ph.D. Candidate, Graduate Program in Space Sciences and Technologies, Departamento de Ciência e Tecnologia Aeroespacial, DCTA/ITA;
E-mail: mecabreu@yahoo.com.br.

†Research Engineer, Arts et Métiers Institute of Technology, DynFluid laboratory; E-mail: junior.junqueira@ensam.eu.
‡Ph.D. Candidate, Graduate Program in Space Sciences and Technologies, Departamento de Ciência e Tecnologia Aeroespacial, DCTA/ITA;

E-mail: eron.tiago90@gmail.com.
§Senior Research Engineer, Aerodynamics Division, Departamento de Ciência e Tecnologia Aeroespacial, DCTA/IAE/ALA; E-mail:

joaoluiz.azevedo@gmail.com. Fellow AIAA.

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2022-3327&domain=pdf&date_stamp=2022-06-20


The literature [14–18] does not agree on the mesh requirements for adequately solving the LES formulation due
to employing different numerical methods for solving jet flows. The present paper studies the effects of mesh and
polynomial refinement along with mesh topology to identify the minimum mesh requirements for adequately solving the
problem of interest. The research group improved the baseline grid from Ref. [10] with local mesh refinement in the
vicinity of the lipline and with an increase in the number of elements, ranging from 6.2 × 106 to 15.4 × 106 elements.
The jet flow calculations use second-order and third-order polynomials. The simulations present 50 to 410 million
DOFs when combining grid and polynomial refinement.

The generated data for mean velocity and RMS of velocity fluctuations are investigated and compared with
experimental data [19] at different regions of the domain where the jet is developing. The paper is organized to introduce
the reader to the description of physical and numerical formulation in the second section. Then, one can find details of
the experimental configuration and the numerical setup in sections three and four. Finally, the results and the concluding
remarks close the work in sections five and six, respectively.

II. Numerical Formulation

A. Governing Equations
The work has the interest in the solution of the filtered Navier-Stokes equations. The filtering strategy is based on a

spatial filtering process that separates the flow into a resolved part and a non resolved part. Usually the filter size is
obtained from the mesh size. The filtered Navier-Stokes equations in conservative form can be written by

mQ̄
mC
+ ∇ · F(Q̄,∇Q̄) = 0, (1)

where Q̄ = [ d̄, d̄D̃, d̄Ẽ, d̄F̃, d̄�̌]) is the vector of filtered conserved variables and F is the flux vector. The flux vector
can be divided into the Euler fluxes and the viscous flux, F = F4 − FE . The fluxes with the filtered variables may be
written as
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where D̃8 or (D̃, Ẽ, F̃) are the Favre averaged velocity components, d̄ is the filtered density, ?̄ is the filtered pressure and
d̄�̌ is the filtered total energy per unit volume. The terms g<>3
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are the modified viscous stress tensor and

heat flux vector, respectively, and X8 9 is the Kronecker delta. The filtered total energy per unit volume, according to the
definition proposed by Vreman [20] in its "system I", is given by
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The filtered pressure, Favre averaged temperature and filtered density are correlated using the ideal gas equation of
state ?̄ = d̄')̃ , and ' is the gas constant, written as ' = 2? − 2E . The properties 2? and 2E are the specific heat at
constant pressure and volume, respectively. The modified viscous stress tensor may be written as
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where ` is the dynamic viscosity coefficient, calculated by Sutherland’s Law, and `(�( is the SGS dynamic viscosity
coefficient, which is provided by the subgrid-scale model. The strategy of modeling the subgrid-scale contribution as an
additional dynamic viscosity coefficient is based on the Boussinesq hyphotesis. The modified heat flux vector, using the
same modeling strategy, is given by

@<>38 = −(: + :(�()
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where : is the thermal conductivity coefficient of the fluid and :(�( is the SGS thermal conductivity coefficient given by
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and %A(�( is the SGS Prandtl number. The present work employs only the static Smagorinsky model [21] to calculate
the subgrid-scale contribution.

B. Nodal Discontinuous Galerkin Method
The nodal discontinuous Galerkin method used in this work is based on the modeling proposed by Kopriva and

Gassner [11], and Hindenlang et al. [12]. In this discretization, the domain is divided into multiples hexahedral elements.
This choice of elements permits that the interpolating polynomial be defined as a tensor product basis with degree # in
each space direction. The implementation is simpler and improve the computational efficiency of the code.

In this method, the elements from the physical domain are mapped onto a reference unit cube elements � = [−1, 1]3.
The equations, presented in Eq. (1) need also to be mapped to this new reference domain, leading to

�
mQ̄
mC
+ ∇b · F̄ = 0, (7)

where ∇b is the divergence operator with respect to the reference element coordinates, b = (b1, b2, b3)) , � = |mx/mb | is
the Jacobian of the coordinate transformation and F̄ is the contravariant flux vector.

The discontinuous Galerkin formulation is obtained multiplying Eq. (7) by the test function k = k(b) and integrating
over the reference element � ∫

�
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It is possible to obtain the weak form of the scheme by integrating by parts the second term in Eq. (8)
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where ®# is the unit normal vector of the reference element faces. Because the discontinuous Galerkin scheme allows
discontinuities in the interfaces, the surface integral above is ill-defined. In this case, a numerical flux, F̄ ∗, is defined,
and a Riemann solver is used to compute the value of this flux based on the discontinuous solutions given by the
elements sharing the interface.

For the nodal form of the discontinuous Galerkin formulation, the solution in each element is approximated by a
polynomial interpolation of the form
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A , C) is the value of the vector of conserved variables at each interpolation node in the reference

element and q?@A (b) is the interpolating polynomial. For hexahedral elements, the interpolating polynomial is a tensor
product basis with degree N in each space direction
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The definitions presented are applicable to other two directions.
The numerical scheme used in the simulation additionally presents the split formulation presented by Pirozzoli [22],

with the discrete form given by Gassner et al. [23], to enhance the stability of the simulation. The split formulation is
employed to Euler fluxes only. The solution and the fluxes are interpolated and integrated at the nodes of a Gauss-Lobatto
Legende quadrature, which presents the summation-by parts property, that is necessary to employ the split formulation.

The Riemann solver used in the simulations is a Roe scheme with entropy fix [24] to ensure that second law of
thermodynamics is respected, even with the split formulation. To be able to adequately handle the viscous flux in the
boundaries of the elements, the lifting scheme of Bassi and Rebay [25] is used, which is also known as BR2. The time
marching method chosen is the five-stage, fourth-order explicit Runge-Kutta scheme of Carpenter and Kennedy [26].

The shock waves that appear in the simulation are stabilized using the finite-volume sub-cell shock capturing method
of Sonntag and Munz [27]. Even though the methodology used in the simulation solves the discontinuous Galerkin
approach, it only handle discontinuities in the interface of the elements. The shock capturing method permits to stabilize
the simulation with shock waves inside the elements.



III. Experimental Configuration
The focus of this work is to investigate the influence of mesh and polynomial refinement on the perfectly expanded

jet flow, which is present in many applications, such as supersonic military aircraft and large launch vehicles. The
experimental work of Bridges and Wernet [19] provides data flow properties for different jet flow configurations In
this work, the interest is to simulate the fully expanded free jet flow configuration with a Mach number of 1.4. In this
configuration the jet flow has a static pressure in the nozzle exit plane that equals the ambient static pressure with a
supersonic velocity. For such a flow configuration, the shock waves are weaker when compared to other operating
conditions, which reduces the constraints of mesh refinement and, consequently, the computational cost of the simulation.

The experimental apparatus for the analysed configuration is composed of a convergent-divergent nozzle designed
based on the method of characteristics [19]. The nozzle exit diameter is 50.8 mm. The Reynolds number based on nozzle
exit diameter is 1.58 × 106. The experimental data acquisition applies the Time-Resolved Particle Image Velocimetry
(TRPIV) at a 10 kHZ sample rate. The investigation uses two sets of cameras, one captures the flow along the nozzle
centerline, and the other captures the flow of the mixing layer along the nozzle lipline.

IV. Numerical Setup

A. Geometry and Mesh Configuration
The geometry used for the calculations in this work presents a divergent shape and axis length of 40�, where �

is the jet inlet diameter and has external diameters of 16� and 25�. Figure 1 illustrates a 2-D representation of the
computational domain, indicating the inlet surface in red, the farfield region in blue, the lipline in grey, and the centerline
in black. Two different computational grids are used in the present work. The coarser mesh used here, named M-1 mesh,
is the same grid developed in Ref. [10]. The other computational grid, which is termed M-2 mesh here, was developed
specifically for the present effort and it represents a considerable improvement over the M-1 mesh. The modifications in
the M-2 mesh are both topological and the result of an increase in the number of grid cells. These modifications result
in a much higher refinement level around the jet inlet, encompassing both the original jet as well as the strong mixing
region around the jet. Afterwards, this mesh transitions to a uniform grid point distribution as one moves downstream in
the longitudinal direction. The mesh generation uses a multiblock strategy in order to handle hexahedral cells.

Fig. 1 2-D schematic representation of the computational domain used on the jet flow simulations.

The grid design attempts to capture the jet flow until a distance of G/� = 15 from the inlet surface, indicated in red
in Fig. 1. Then, the size of elements increases as an attempt to dissipate frequencies that could destabilize the simulation.
Previous results [6] support the creation of mesh topology, indicating that a surface with one degree of opening angle
would better represent the middle surface of the jet mixing layer. From this surface, two regions rise to increase the
resolution of the domain. They have a geometrical stretching in the section G/� = 0 to enable local refinement in the
shear region of the flow and a uniform distribution in G/� = 15. The internal section of the mixing layer connects to



one hexahedral block that forms the core of the mesh. That hexahedral block has its dimensions defined to keep the size
of the elements equal to the size of the last cells in the region of the mixing layer.

The grid refinement in the mixing layer is defined based on the literature [5, 7–9, 14]. The grid spacing in the radial
and axial directions along the mixing layer is ΔH0/� = 0.001 and ΔG0/� = 0.005, respectively. The centerline presents
651 elements set in geometrical stretching distribution between G/� = 0 and G/� = 15. Each region of the mixing
layer contains 50 cells, and the Azimuthal direction accommodates 180 elements evenly distributed. Figure 2a presents
the radial mesh refinement in two different longitudinal positions, G/� = 0 and G/� = 15. Figure 2b illustrates the
axial mesh refinement along the jet centerline and Fig. 3 exhibits a cutplane of the mesh generated for the current paper
and the baseline line mesh used in previous work. The M-1 and M-2 grids have a total of 6.2 and 15.4 million cells,
respectively, and they are created with the GMSH [28] mesh generator.

(a) Radial mesh refinement (ΔH/�) in the longitudinal sections G/� = 0
and G/� = 15.

(b) Longitudinal mesh refinement (ΔG/�) along the jet centerline.

Fig. 2 Distribution of grid spacing indicating radial and longitudinal refinement for the M-2 mesh.

(a) M-1 mesh. (b) M-2 mesh.

Fig. 3 Visualization of the half-plane longitudinal cutplanes for the meshes used in the present work.

B. Boundary Conditions
Properties on the jet inflow, (·) 94C , and farfield, (·) 5 5 , surfaces are indicated in Fig. 1 in red and blue, respectively.

A weakly enforced solution of a Riemann problem with a Dirichlet condition is enforced at the boundaries. The flow is
characterized as perfectly expanded and isothermal, i.e. ? 94C/? 5 5 = )94C/) 5 5 = 1, where ? stands for pressure and )

https://arc.aiaa.org/action/showImage?doi=10.2514/6.2022-3327&iName=master.img-002.jpg&w=218&h=164
https://arc.aiaa.org/action/showImage?doi=10.2514/6.2022-3327&iName=master.img-003.jpg&w=219&h=164
https://arc.aiaa.org/action/showImage?doi=10.2514/6.2022-3327&iName=master.img-006.jpg&w=219&h=146


for temperature. The Mach number of the jet at the inlet is " 94C = 1.4 and the Reynolds number based on the diameter
of the nozzle is '4 94C = 1.58 × 106. A small velocity component with " 5 5 = 0.01 in the streamwise direction is
imposed at the farfield to avoid numerical issues. A sponge zone [29] is employed around the farfield boundaries, the
gray area presented in Fig. 1, to damp any oscillations that could be reflected back to the jet.

C. Simulation Settings and DOFs
The current work compares the effects of hp refinement using three different calculations: S1, S2, and S3. The

first simulation uses the M-1 computational grid, while the other two computations apply the M-2 mesh. Both
studies, S1 and S2, employ first-order polynomial reconstructions in order to achieve second-order accuracy in spatial
discretization. Calculation S3 uses second-order polynomial reconstructions in order to achieve a third-order accurate
spatial discretization. The simulations, therefore, consider from 50 to 410 million DOFs. Table 1 indicates the settings
used the three numerical studies performed in the present effort.

Table 1 Summary of simulations settings.

Simulation Meshes Order of DOF/cell Cells Total # of DOF
Accuracy (106) (106)

S1 M-1 2nd order 8 6.2 ≈ 50
S2 M-2 2nd order 8 15.4 ≈ 120
S3 M-2 3rd order 27 15.4 ≈ 410

D. Calculation of Statistical Properties
The simulation procedure involves three steps. The first one is to clean off the domain since the computation starts

with a static flow initial condition. The simulations run three flow-through times (FTT) to develop the jet flow. One
FTT is the time required for one particle with the jet velocity to cross the computational domain. In the sequence, the
simulations run an additional three FTT to produce a statistically steady condition. Then, in the last step, data are
collected for another three FTT to obtain the statistical properties of the flow.

The procedure for developing S3 simulation is slightly different. The simulation is a restart from the finished S2
calculation. The numerical framework FLEXI allows using one solution with different order of accuracy as initialization.
Once the second-order solution was already available, its usage was a short come to initialize the S3 simulation. Hence,
the S3 numerical study runs 0.5 FFT to allow the solution to adapt from second-order accuracy to third-order accuracy.
Then it runs an additional 2 FTT to collect data. Different frequencies of data acquisition were employed in each
simulation. The S1 case applies 160 kHz, while S2 and S3 cases use 205 and 225 kHz, respectively.

The mean and the root mean square (RMS) fluctuations of properties of the flow are calculated along the centerline,
lipline, and different domain surfaces in the streamwise direction. The centerline is defined as the line in the center of
the geometry H/� = 0, whereas the lipline is a surface parallel to the centerline and located at the nozzle diameter,
H/� = 0.5. The results from the lipline are an azimuthal mean from six equally spaced positions. The four surfaces in
the streamwise positions are G/� = 2.5, G/� = 5.0, G/� = 10.0, and G/� = 15.0. Surface properties are averaged
using six equally spaced positions in the azimuthal direction. Figure 4 illustrates a Mach number contours snapshot of
the jet flow with the lines and surfaces of data extraction.

V. Results
The results from S1, S2, and S3 simulations are presented in this section and compared to experimental data [19].

The focus of this work is to assess the resolution requirements for the correct prediction of supersonic jet flows. S1
and S2 calculations are performed with the same polynomial order of accuracy, while S3 simulation uses third-order
accuracy polynomials. The S1 Numerical study is performed with mesh M-1, with 6.2 × 106 elements, and S2 and S3
calculations are performed with mesh M-2, with 15.4 × 106 elements. The simulations have approximately 50, 120, and
410 million DOFs.



Fig. 4 Snapshot of the jet simulation with the two longitudinal lines and three crossflow lines along which data
is extracted. Mach number contours are shown.

A. Velocity and Density Contours
Initially, the contours of the mean longitudinal velocity component, RMS of longitudinal velocity fluctuation, and

mean density are presented for the three simulations. Figure 5 presents the contours of the mean longitudinal velocity
component on a cut plane at I/� = 0. The contours indicate qualitatively improvement in results when increasing the
number of DOFs. One can notice the size of the jet core is bigger in Fig. 5c than in Figs. 5b and 5a. Moreover, the
development of the mixing layer start closer to the jet inlet in S3 simulation than in S2 and S1 calculations. Furthermore,
it is difficult to notice the existence of shock waves in Fig. 5a, which are more clearly visible in Figs. 5b and 5c.

Figure 6 presents the contours of RMS of longitudinal velocity fluctuations on a cut plane at I/� = 0. One can
notice the early development of the mixing layer when increasing the number of DOFs in the calculations. In Fig. 6c the
increase in the RMS values for longitudinal velocity fluctuation occurs right after the boundary condition. The same
physical phenomenon occurs farther when decreasing the simulation resolution, which is noticeable when comparing
Fig.s 6b and 6a. The contours of RMS of longitudinal velocity fluctuation also show that the fluctuation levels get
smaller with earlier development of the mixing layer. In Fig. 6c the region of high velocity fluctuation is thinner and
presents smaller values than in Fig. 6b. In Fig. 6a, the region with a high level of velocity fluctuation is the largest, and
it presents the highest values when compared to the other two results.

The last contours presented in this section, Fig. 7, compare the mean density results from the three simulations on a
cut plane at I/� = 0. It is possible to observe that each simulation presents different characteristics. In Fig. 7a the
shock waves are weak, being hardly visible with adequate range scales for all simulations. Moreover, one can notice
a few shock waves and expansion waves reflections. The appearance of the first shock waves occurs far from the jet
inlet boundary condition. Figure 7b presents a different behavior of the flow with shock waves and expansion waves
significantly different from those observed in Fig. 7a. The first shock waves appear closer to the jet inlet boundary
conditions, and they are visible, which indicates that they are significantly stronger than those from the S1 simulation.
Another interesting observation is the number of shock waves and expansion waves reflection, which is much larger than
the presented in Fig. 7a. The final density results are presented in Fig. 7c, which is the result from S3 simulation. It is
possible to observe that the shock and expansion waves are better defined, presenting smaller thickness, which is also
evidence of the improvements when increasing the number of DOFs in the simulation. When comparing the results from
Fig. 7c with Fig. 7b, it is possible to observe that the intensity of the shock waves is stronger in S2 simulation than in S3,
even with the larger thickness. This is in agreement with results presented in Figs. 5b and 5c, in which the shock waves
from S2 calculation where more visible. The quantity of shock waves reflections in the S2 and S3 test cases are similar.

B. Velocity Profiles
One can better understand the effects of the hp refinement on the numerical solution when comparing the results

to the experimental data. Figure 8 presents the mean longitudinal velocity component and the RMS values of the
velocity fluctuation distributions along the jet centerline (H/� = 0) and the jet lipline (H/� = 0.5). Analyzing the results
presented in Fig. 8a, the improvement in the capacity to capture flow features when increasing the numerical resolution
of the calculations is prominent. One can notice the numerical solution progression of the mean longitudinal velocity
component towards the experimental data in Fig. 8a. The potential core is longer in S3 than in the other cases, which is
presented in detail in Tab. 2. Moreover, the most refined numerical study presents the intensity of the shock waves
and the slope of the decay of velocity comparable to the ones of the reference data. One can observe that the profiles
calculated in S2 and S3 simulation are closer than the ones computed in S1 and S2, even with a higher ratio of degrees



(a) S1 simulation.

(b) S2 simulation.

(c) S3 simulation.

Fig. 5 Contours of mean longitudinal velocity component along cutplanes in I/� = 0 for the three simulations
performed.

of freedom, �$�(3/�$�(2 ≈ 3.42 and �$�(2/�$�(1 ≈ 2.4. The slight improvement, even with a higher DOF
ratio, can also indicate that the simulation S3 is very close to provide the converged solution for the chosen modeling
approach.

The results presented in Fig. 8b agree well with the results of Fig. 8a. The increase in the simulation resolution
improves the calculation of RMS velocity fluctuation towards the experimental data. Analyzing the results close to the
jet inlet, the increase in the velocity fluctuation occurs further upstream in S3 simulation, which is in agreement with the
contours in Figs. 5 where the shock waves of S3 numerical study appear closer to jet inlet when compared to the S2 and
S1 calculations. However, even with an early increase in the fluctuation levels in S3 computations, the slope of its profile
in Fig. 8b is smoother and closer to the reference than the one calculated in S2 and S1 numerical studies. In the same
image, S3 simulation presents two peaks of velocity fluctuation, with the second one close to the peak indicated in the
experiment. However, its RMS fluctuations are higher than experimental data and S2 simulation solution. The presence



(a) S1 simulation.

(b) S2 simulation.

(c) S3 simulation.

Fig. 6 Contours of RMS values of longitudinal velocity component fluctuations along cutplanes in I/� = 0 for
the three simulations performed.

of small values of velocity fluctuation close to the jet inlet could be related to imposed jet entrance boundary conditions. 
Figures 8c and 8d illustrate the profiles of mean and RMS fluctuations of the longitudinal velocity component along 

the lipline, respectively. One can notice the improvements in the simulation resolution with S3 and S2 simulations 
providing mean profiles closer to the experimental one than the results from the S1 c alculation. The mean velocity 
oscillations in the vicinity of the inlet jet may be correlated with shock waves. They are also present in the experimental 
profile along the l ipline. The S1 and S2 simulations present an early reduction of mean velocity when comparing to the 
reference profile. The most refined calculation has a mean velocity profile in good agreement with the experimental 
data along the lipline. Such behavior is also noticeable along the centerline. The calculations performed in the present 
paper have generated fluctuation profiles of the longitudinal velocity fluctuation along the lipline, Fig. 8d, that indicate a 
different trend from what is stated in Figs. 8a to 8c. One can notice that, when increasing the simulation resolution, the 
peak of velocity fluctuation moves towards the jet inlet, at G /� = 2.5 for S1 simulation and ≈ G /� = 1 for S2 and S3



(a) S1 simulation.

(b) S2 simulation.

(c) S3 simulation.

Fig. 7 Contours of mean density along cutplanes in I/� = 0 for all three simulations.

calculations. This outcome is present in the contours indicated in Fig. 5, where the initial spreading of the mixing layer
in S2 and S3 simulations starts earlier than in the S1 calculation. Such behavior is different from the experimental
RMS profiles along the lipline in which the increase in the velocity fluctuation occurs slowly before reaching a plateau
between G/� = 5 to G/� = 15. Using a flat hat velocity profile at the jet entrance for the numerical calculations can
explain the divergence between the fluctuations obtained from the numerical approach and the experiments near the inlet
domain. Such boundary condition neglects the turbulent boundary layer effects carried from the nozzle to the jet flow.



(a) Centerline, mean. (b) Centerline, RMS values.

(c) Lipline, mean. (d) Lipline, RMS values.

Fig. 8 Results for the mean streamwise velocity component distributions (left) and RMS values of streamwise
velocity component fluctuations (right) in the jet centerline, H/� = 0 (top), and lipline, H/� = 0.5 (bottom).

Table 2 Summary of potential core length for all simulations.

Simulation Potential core Error to
length (G/�) experimental data (%)

S1 6.3 30.0
S2 7.8 13.3
S3 8.5 5.5
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Figure 9 displays different statistical properties of the flow in four streamwise positions, G/� = 2.5, G/� = 5,
G/� = 10 and G/� = 15. Figures 9a to 9d present the mean longitudinal velocity component, Figs. 9e to 9h illustrate
the RMS of the longitudinal velocity fluctuation, Figs. 9i to 9l introduces the RMS of the radial velocity fluctuation, and
Figs. 9m to 9p indicate the mean shear stress tensor.

The first set of results, in Figs. 9a to 9d, explicit some aspects of the numerical results not investigated by the
comparison of 2-D field of properties. In the first longitudinal position, Fig. 9a, S1 calculations generated mean profiles
that are in better agreement with the experimental data than the ones from S2 and S3 numerical studies, which indicate a
larger spreading of velocity at this position. The early development of the mixing layer from S2 and S3 simulations
reinforces the influence of the choice of boundary conditions imposed. Analyzing the profiles from downstream
positions, Figs. 9b to 9d, it is possible to verify the large spreading of velocity from the S1 simulation, with a reduction
of longitudinal velocity in the jet centerline when compared to the other numerical solutions. Calculations with higher
resolution can better capture the experimental trends, with the simulation S3 getting closer to experimental data.

The profiles of RMS values of streamwise velocity fluctuation are indicated in Figs. 9e to 9h. The numerical results
at G/� = 2.5 present a similar profile to the one from the reference. However, the peaks generated by the calculations
are higher than the experimental ones, with the results from the S3 simulation being the closest to experimental data.
The same conclusion can be drawn for G/� = 5.0, Fig. 9f. In Figs. 9g and 9h, the all numerical results present a shape
similar to experimental data, with a nearly constant value of velocity fluctuation. In Fig. 9g the experimental data still
present a small level of fluctuation close to the centerline, which is not seen in the numerical profiles.

Profiles of RMS values of radial velocity component fluctuation are presented in Figs. 9i to 9l. In the first two
longitudinal positions, Figs. 9i and 9j, the numerical results present a larger peak of fluctuation than the one from the
experimental data, with the profiles from the S3 simulation getting closer to reference. In Figs. 9k and 9l the RMS
profiles from the calculations are very similar, with the centerline of the experimental data presenting small values of
fluctuation in Fig. 9k.

Mean shear-stress tensor component profiles are presented in Figs. 9m to 9p. In the first two positions, G/� = 0.5
and G/� = 2.5, the peak of the shear-stress tensor from numerical calculations is larger than the experimental one.
Moreover, the peak region is wider than the one observed in the experiments. In Fig. 9n the peaks are still larger than
those observed in the reference. The differences between the simulations are smaller and closer to experimental data.
However, the region of the peaks is still wider than the one visualized in the experimental data. In Figs. 9o and 9p, the
differences between numerical results and the experimental data are reduced, and once more, all profiles are nearly
matching.

C. Summary of Discussions
Results from the S2 simulation present significant improvements when compared to the solution from the S1

calculation. The increase in polynomial order of accuracy in the S3 study brings the results to a good agreement with
the reference experimental data. The most significant point that does not present improvements when increasing the
discretization resolution is related to the mean and fluctuating longitudinal velocity close to jet lipline, Figs. 8c and8d.
Grid refinement yields a velocity fluctuation peak that occurs closer to the jet inlet when compared to the experimental
data. This behavior may be related to the hypothesis used to impose the inlet boundary condition, which neglects the
effects of the jet boundary layer and leads to a not realistic turbulence transition in the vicinity of the nozzle.

The current work provides intel on the resolution requirements to perform large-eddy simulations of supersonic jet
flows. The next step concerns the exploration of alternatives to improve the jet simulation in the lipline close to the jet
inlet condition. A solution to improve the simulation in this region is a better characterization of the flow leaving the
nozzle. The choice of a uniform velocity profile is preliminary, and it does not represent the physics of the flow. The
continuity of the work will focus on options to produce an experiment-like condition in the jet inlet condition.



(a) G/� = 2.5 (b) G/� = 5 (c) G/� = 10 (d) G/� = 15

(e) G/� = 2.5 (f) G/� = 5 (g) G/� = 10 (h) G/� = 15

(i) G/� = 2.5 (j) G/� = 5 (k) G/� = 10 (l) G/� = 15

(m) G/� = 2.5 (n) G/� = 5 (o) G/� = 10 (p) G/� = 15

Fig. 9 Profiles of mean streamwise velocity component, RMS of streamwise velocity fluctuation, RMS of radial
velocity fluctuation, and mean shear-stress tensor component (from top to bottom) at four streamwise positions
G/� = 2.5, G/� = 5, G/� = 10 and G/� = 15 (from left to right).
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VI. Concluding Remarks
The current work assesses the effects of mesh and polynomial (hp) refinement using a nodal discontinuous Galerkin

methodology to evaluate the resolution requirements for large eddy simulations of compressible jet flows. The problem
of interest is a perfectly expanded supersonic jet flow with a Mach number of 1.4 and Reynolds number based on the
jet exit diameter of 1.58 × 106. Initially, a mesh with 6.2 × 106 elements is used with interpolation polynomials that
yield second-order spatial accuracy, in order to produce a starting point for the comparisons. Such calculations use,
therefore, the equivalent to approximately 50 × 106 degrees of freedom (DOFs). Afterwards, a new mesh is developed
with some topological improvements and additional refinement, leading to 15.4 × 106 elements. The new mesh is
applied in simulations using second-order and third-order spatial accuracy, resulting in 120 × 106 and 410 × 106 DOFs,
respectively. The results for the simulations are compared to experimental data.

The paper initially investigates the contours of mean velocity, mean pressure, and velocity fluctuations. The
comparison indicates that the mesh/polynomial refinement improves the jet calculations by enhancing the prediction
of the mixing layer and of the series of shock and expansion waves in the jet core. Therefore, as one should expect,
more refined computations lead to an improved ability to predict flow features, as one can see in the present paper by
the comparison of the numerical solutions and the experimental data. Therefore, it is correct to state that the present
paper indicates mesh and discretization parameters for LES-based calculations, using a nodal discontinuous Galerkin
formulation, that provide supersonic jet flow results in good agreement with experiments.

One important aspect that becomes clear in the present calculation results is that the jet inlet boundary condition,
used in the current work, has a significant impact on the ability of representing the very early stages of jet mixing. In
particular, this observation becomes evident by looking at the behavior of RMS values of fluctuating properties near the
jet exit, along the jet lipline. All three simulations have failed to capture the correct mixing behavior, as evidenced by
the comparison with the experimental data. Moreover, the increased numerical resolution, although providing much
better comparisons for the overall solution, does not improve the behavior of fluctuating properties near the jet exit.
Hence, the continuation of the present effort will address possible improvements in the jet inlet boundary conditions.
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