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NORMS OF EMBEDDINGS BETWEEN QUADRATICALLY

WEIGHTED SPACES OF HOLOMORPHIC FUNCTIONS

JOE VIOLA

Abstract. We consider spaces of holomorphic functions which are square-

integrable against a Gaussian weight, which appear in the theory of metaplectic
FBI–Bargmann transforms. We identify the operator norm of embeddings

between two such spaces, by relating these embeddings to Fourier integral

operators with complex phase.

1. Introduction and main result

When performing phase-space analysis using FBI–Bargmann transforms, one is
often led to consider the effect of changing the weight on a weighted space of holo-
morphic functions (see for instance [8]). We use the notation L(dx) = d Rexd Imx
for Lebesgue measure on Cn. With Φ : Cn → R we define the weighted L2 norm

(1) ‖f‖HΦ =

(∫
Cn

|f(x)|2e−4πΦ(x) L(dx)

)1/2

and the weighted space of holomorphic functions

(2) HΦ = {f ∈ Hol(Cn) : ‖f‖HΦ
<∞} .

The weights associated with quadratic phases are real-valued and real-quadratic,
which means that Φ : Cn → R can be written in the form

(3) Φ(x) =
1

2
Lx · x+

1

2
Re(Px · x).

Here L = 2Φ′′xx is a Hermitian matrix (called the Levi matrix) and P = 2Φ′′xx is
symmetric (and gives the pluri-harmonic part of Φ). The weights we consider are
strictly plurisubharmonic, which in this context is equivalent to requiring that L is
a positive definite Hermitian matrix.

It comes as no surprise that the embedding

(4) ι : HΦ1 3 f 7→ f ∈ HΦ2

between two quadratically weighted spaces is bounded if and only if Φ2 ≥ Φ1.
The precise value of the operator norm, however, is far from evident due to the
assumption that the functions considered are holomorphic. These functions cannot
concentrate arbitrarily close to the origin, and the norm ratio therefore represents
a type of uncertainty principle. This is because each unitary FBI–Bargmann trans-
form mapping to an HΦ space corresponds to a wave packet decomposition, and
in fact finding the norm of the embedding when Φj(x) = 1

2 tj |x|
2 is equivalent to

finding the bottom of the spectrum of the quantum harmonic oscillator. (This is
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2 NORMS OF EMBEDDINGS

well-known; see for instance [1, Thm. 4.12].) While the question is elementary,
the author has not been able to find an elementary solution (except, with some
difficulty, in dimension one, [18, Thm. 1.2]).

The question is also relevant to the study of FBI–Bargmann transforms and
Fourier integral operators with complex quadratic phase, particularly when applied
to non-self-adjoint operators. In 1961, V. Bargmann introducted and studied what
we call here HΦ0

, Φ0(x) = 1
2 |x|

2 and the Bargmann transform B̃0 (see (55) below)
[3, Eqs. (1.2), (2.3)]. In the time since these operators have been used in many
applications in partial differential equations (for example, [16, 17, 9]), have been
studied as objects of intrinsic interest (for example, [11, 5, 10]), and have become
part of the standard toolbox in the study of partial differential equations (for ex-
ample, [13, 21, 8]). Motivated in part by applications to non-self-adjoint operators
including subelliptic operators in kinetic theory, these operators and techniques are
still the subject of active research (for example, [6, 7, 14, 4, 2, 15, 20, 12] among
many others). The author’s motivation in studying this problem is to better under-
stand HΦ-spaces and their close links with the metaplectic semigroup (Definition
8).

Viewing the weighted spaces HΦj
, j = 1, 2 as being related by Fourier integral

operators with complex quadratic phase and applying the calculus of these operators
[10] we are able to find the operator norm of the embedding (4) using the spectral
theory of underlying (complex) canonical transformations. In order to state the
main result, we introduce the matrix

(5) AΦ =

(
iL 0
iP 1

)−1(
0 1
1 0

)(
iL 0
iP 1

)
, L = 2Φ′′xx, P = 2Φ′′xx.

(Note that the entries 1 or 0 refer to the identity or zero matrices of size n-by-n.)
This matrix is associated to the adjoint of phase-space shifts on an HΦ space and
to positivity conditions on weighted spaces; see for example [8, Sec. 1.2]. Notice
that AΦ = A−1

Φ . In Section 4 below, we recall some well-known results on AΦ.

Theorem 1. For j = 1, 2 let Φj : Cn → R be real-quadratic with (Φj)
′′
xx positive

definite. Let AΦj
be as in (5). Then the embedding

(6) ι : HΦ1
→ HΦ2

, ιf = f

is bounded if and only if Φ2 ≥ Φ1 on Cn. In this case, there exist µ1, . . . , µn ∈ (0, 1]
such that, counting for multiplicity,

(7) Spec A−1
Φ2

AΦ1
= {µj}nj=1 ∪ {µ−1

j }
n
j=1

and the operator norm of ι is given by

(8) ‖ι‖ =

det(Φ1)′′xx
det(Φ2)′′xx

n∏
j=1

µj

1/4

.

Remark 2. The main difference between Theorem 1 and [19, Thm. 1.3] (reproduced
in Theorem 15 below) is the factor (det(Φ1)′′xx/ det(Φ2)′′xx)1/4. This is essentially
due to the fact that Cn has real dimension 2n, which one sees for instance in
Proposition 9 below. 4
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Remark 3. Another way of writing (7) is to define the stable subspace

(9)

Es =
⊕

j : µj∈(0,1)

ker(A−1
Φ2

AΦ1
− µj)

= {X ∈ C2n : ∃C > 0,∀N ∈ N, ‖(A−1
Φ2

AΦ1)NX‖ ≤ Ce−N/C}.

So long as Φ2 ≥ Φ1, the product of eigenvalues in (7) is equal to the determinant
of A−1

Φ2
AΦ1

restricted to Es, giving

(10) ‖ι‖ =

(
det(Φ1)′′xx
det(Φ2)′′xx

det(A−1
Φ2

AΦ1
|Es

)

)1/4

4

When we have a strict inequality Φ1(x) < Φ2(x) for all x 6= 0, one can identify
the centered Gaussian witnessing the maximum of ‖f‖HΦ2

/‖f‖HΦ1
again using

AΦ1
and AΦ2

. The formula is a straightforward modification of the formula for the
ground state of the Weyl quantization of a positive definite quadratic form (see for
instance [16, Thm. 3.5]). If the inequality Φ1(x) ≤ Φ2(x) is not in general strict,
one can find a sequence of Gaussians maximizing ‖f‖HΦ2,ε

/‖f‖HΦ1
when Φ2,ε(x) =

Φ2(x) + 1
2ε|x|

2. Because ‖f‖HΦ2,ε
→ ‖f‖HΦ2

as ε→ 0+ for f ∈ HΦ2
⊆ HΦ1

by the

monotone convergence theorem, the limit of the norm ratios converges to the norm
of the embedding ι. The sequence of Gaussians will not generally converge to an
integrable Gaussian, however. This is because the case of non-strict positivity can

include operators like multiplication on L2(R) by e−x
2/2, whose operator norm of

1 is not attained for any L2(R)-function.

Theorem 4. For j = 1, 2 let Φj : Cn → R be real-quadratic with (Φj)
′′
xx positive

definite. Let AΦj
be as in (5). Suppose furthermore that Φ1(x) < Φ2(x) for all

x ∈ Cn\{0}. Then Spec A−1
Φ2

AΦ1 ⊆ (0, 1)∪(1,+∞) and there exists T , a symmetric

n-by-n matrix with complex entries, such that the stable subspace (9) of A−1
Φ2

AΦ1

is the graph of T , meaning

(11) {(x, Tx)}x∈Cn =
⊕

j : µj∈(0,1)

ker(A−1
Φ2

AΦ1
− µj).

With ι the embedding from (6), the Gaussian gT (x) = exp(πiTx · x) witnesses the
norm of ι:

(12) ‖ι‖ =
‖gT ‖HΦ2

‖gT ‖HΦ1

.

Remark 5. Using [19], it is straightforward to extend these results to Φ1,Φ2 real-
valued polynomials of degree 2 so long as (Φj)

′′
xx are positive definite and so long as

the quadratic part of Φ2 is strictly larger than the quadratic part of Φ1. To make
this latter condition concrete, one would assume that

(13) lim inf
|x|→+∞

|x|−2(Φ2(x)− Φ1(x)) > 0.

An extension to more general Φj would certainly be interesting, but the author
does not see how to obtain similarly sharp results in a broader setting. 4
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Plan of the paper. In Section 2 which follows, we apply the main result of the paper
to two examples. Sections 3 and 4 summarize generally well-known results: Section
3 concerns the metaplectic group and FBI–Bargmann transforms, while Section 4
concerns adjoints of phase-space shifts on HΦ spaces. Section 5 contains the proof
of Theorem 1, while Section 6 contains the proof of Theorem 4.

Acknowledgements. The author would like to thank Johannes Sjöstrand and Michael
Hitrik for helpful discussions and comments.

Notation. To make certain formulas more readable, we use

(14) e(θ) = e2πiθ

throughout, and we reiterate that

(15) L(dx) = d(Rex) ∧ d(Imx) = (−2i)−ndx ∧ dx

is Lebesgue measure on Cn. We also recall that a real-valued quadratic form Φ :
Cn → R is strictly plurisubharmonic if and only if the Hermitian matrix ∂x∂xΦ > 0
in the sense of positive definite matrices.

We use Mn(C) for the space of n-by-n complex matrices. A matrix plus a scalar
(such as A+i) indicates the matrix plus the scalar times the corresponding identity
matrix; the same principle applies to scalars in block matrices like (36). Bold-faced
names for matrices (like AΦ) are reserved for canonical transformations. We write
x · y =

∑n
j=1 xjyj for the dot product on Rn or Cn; the notation 〈f, g〉 refers to a

sesquilinear inner product. In particular, on HΦ spaces,

(16) 〈f, g〉HΦ
=

∫
Cn

f(x)g(x)e(2iΦ(x))L(dx).

2. Examples

To illustrate the main results of this article, we apply Theorem 1 to two simple
examples treated in previous works.

Example 6. If the pluriharmonic parts of Φ1 and Φ2 vanish, meaning Φj(x) =
1
2Ljx · x for Lj Hermitian, then

(17) A−1
Φ2

AΦ1
=

(
0 iL−1

2

iL2 0

)(
0 iL−1

1

iL1 0

)
=

(
L−1

2 L1 0

0 L2L
−1
1

)
.

By a change of variables, Φ2 ≥ Φ1 if and only if L
−1/2
1 L2L

−1/2
1 ≥ 1 in the sense of

positive semi-definite matrices, which we assume in what follows. In this case,

(18) Spec(L
−1/2
1 L2L

−1/2
1 ) = Spec(L−1

1 L2) ∈ [1,+∞).

The spectrum of A−1
Φ2

AΦ1 lying in (0, 1] is therefore precisely the spectrum of

L−1
2 L1, and the product of these eigenvalues (counted for multiplicity) is det(L−1

2 L1).
By Theorem 1,

(19) ‖ι‖ =

(
detL1

detL2
det(L−1

2 L1)

)1/4

=

√
detL1

detL2
.

This reproduces [1, Cor. 4.13], which used a similar approach to the present work.
Specifically, embeddings between weights with no pluriharmonic part are shown to
be unitarily equivalent to certain quantum harmonic oscillators.
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If we assume the strict inequality Φ2 > Φ1 on Cn\{0}, then SpecL−1
2 L1 ⊆ (0, 1).

Every eigenvector v of L−1
2 L1 corresponds to an eigenvector (v, 0) of A−1

Φ2
AΦ1

.
Therefore in Theorem 4 we have T = 0 and the maximum of the norm of ι occurs
on the constant functions. 4

Example 7. In dimension one, let us write

(20) Φ2(x) =
1

2
a|x|2 + Re(bx2), a > 0, b ∈ C

and Φ1(x) = 1
2 |x|

2 (which, as detailed in Example 11 below, can be obtained by

some simple transformations). Because the argument of bx2 may be changed by
replacing x with e(θ)x for varying θ ∈ R, we see that Φ2 ≥ Φ1 if and only if
a− |b| ≥ 1.

Using that A−1
Φ = AΦ,

(21) A−1
Φ2

AΦ1
=

(
−b/a −i/a

−i(a− |b|2/a) −b/a

)(
0 i
i 0

)
=

1

a

(
1 −ib
−ib a2 − |b|2

)
.

Computing the eigenvalues and inserting into Theorem 1 (where L2 = a and L1 = 1)
gives, when a− |b| ≥ 1,

(22) ‖ι‖ =

(
1

2a2

(
1 + a2 − |b|2 −

√
(1 + a2 − |b|2)2 − 4a2

))1/4

.

One can check that this agrees with the formula in [18, Thm. 1.2], which was
obtained through an elementary calculus argument.

A routine computation reveals that, if a− |b| > 1 and if

(23) τ = − 1

2b
i
(

1− a2 + |b|2 +
√

(1 + a2 − |b|2)2 − 4a2
)
,

then (1, τ) is an eigenvector of A−1
Φ2

AΦ1
with eigenvalue in (0, 1). Therefore it is

(24) gτ (x) = eπiτx2

which maximizes the norm ratio for the embedding ι : HΦ1
→ HΦ2

.
In the limiting case a− |b| = 1 (assuming a > 1), one computes

(25) τ = i
b

|b|
.

Since |τ | = 1, gτ /∈ HΦ1 since Φ1 = 1
2 |x|

2. But one can compute that for δ ∈ [0, 1),

(26)
‖gδτ‖HΦ2

‖gδτ‖HΦ1

=

(
4(2a+ δ − 1)(1− δ)

4(1− δ2)

)−1/4

→ a−1/4, δ → 1−,

and a−1/4 is indeed the norm of the embedding from HΦ1
into HΦ2

in the case
a− |b| = 1. 4

3. Some metaplectic operators on weighted spaces

The proof of the Theorem is a relatively simple consequence of the theory of the
metaplectic semigroup [9, 11, 5, 10]. For the unfamiliar, we try to describe this
theory as concisely as possible.
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3.1. Phase-space shifts and the metaplectic semigroup. For X = (x, ξ), Y =
(y, η) ∈ C2n, define the symplectic form

(27) σ((x, ξ), (y, η)) = ξ · y − η · x,

where ξ ·y =
∑n
j=1 ξjyj is the usual (non-Hermitian) scalar product on Cn. Let SY

denote a shift in phase space defined by (where e(θ) = e2πiθ)

(28) S(y,η)f(x) = e(−1

2
y · η + ηx)f(x− y).

When Y ∈ R2n this operator is unitary on L2(Rn); if Y ∈ C2n\R2n one can define
SY as an unbounded operator defined on a core of wave packets {SXgT }X∈R2n with
gT an integrable Gaussian. Note that, when Dx = (2πi)−1∇x,

(29) SY = e(σ((y, η), (x,Dx))) = exp(2πiη · x− y · ∇x)

in the sense of an evolution equation on functions. Shifts compose via the rule

(30) SXSY = e(
1

2
σ(X,Y ))SX+Y ,

making {e(θ)SY : θ ∈ R, Y ∈ R2n} the Schrödinger representation of the Heisenberg
group (see for example [5, Ch. 1, §3]).

A linear map M : C2n → C2n is said to be canonical if it preserves σ, meaning
σ(MX,MY ) = σ(X,Y ) for all X,Y ∈ C2n. A linear canonical transformation is
said to be positive if

(31) −i(σ(MX,MX)− σ(X,X)) ≥ 0, ∀X ∈ C2n.

We are now able to define the metaplectic semigroup following [10]. In defining
the operators in the metaplectic semigroup, we recall that when gS(x) = e( 1

2Sx ·
x) = eπiSx·x for S ∈ Mn(C) symmetric with ImS positive definite, the family of
shifted Gaussians {SXgS}X∈R2n has dense span in L2(Rn). A bounded operator on
L2(Rn) can therefore be defined via its action on this family.

Definition 8 (The metaplectic semigroup). Let

(32) M =

(
A B
C D

)
,

where A,B,C,D ∈ Mn(C), be a positive complex linear canonical transformation.
An element of the metaplectic semigroup quantizing M is a bounded operator
M : L2(Rn)→ L2(Rn) satisfying

(i) the Egorov relation

(33) MSY = SMYM, ∀Y ∈ C2n,

and
(ii) for every T ∈ Mn(C) symmetric with ImT positive definite, there exists a

choice of sign ε(T ) ∈ {±1} such that, writing gS(x) = e( 1
2Sx · x),

(34) MgT = ε(T ) det(A+BT )−1/2gT ′ , T ′ = (C +DT )(A+BT )−1.

4
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As a special case of (33) and (34) one has the action of M on any wave packet
SXgS for X ∈ R2n. Once one has chosen ε(T ) in (34) for a given T , there is a
unique choice of ε(S) for every other S symmetric with positive definite imaginary
part; it suffices to require that det(A + BS)1/2MgS(0) ∈ {±1} be a continuous
function of S. There are therefore exactly two operators in the metaplectic semi-
group quantizing any given positive complex linear canonical transformation M,
each corresponding to a choice of sign.

The metaplectic semigroup extends the metaplectic group, which is the subset
of the metaplectic semigroup quantizing real canonical transformations. (Equiva-
lently, the metaplectic group is the subset of the metaplectic semigroup consisting
of unitary operators on L2(Rn).)

The metaplectic semigroup is closed under composition: if M1 and M2 are
elements of the metaplectic semigroup quantizing M1 and M2, then M1M2 is an
element of the metaplectic semigroup quantizing M1M2. (It is a straightforward
exercise to verify (33) and (34) for the composition, modulo an argument from
positivity that the matrix A+BT remains invertible in (34).)

One may also characterize the metaplectic semigroup via its generators which
may be taken to be changes of variables (37), multiplication by Gaussians (35)
where the phase has positive semi-definite imaginary part, and exponentials of
the quantum harmonic oscillator exp(−πt(x2

1 + D2
x1

)) where Dx = (2πi)−1∇x and
Re t ≥ 0. (We remark that this last family includes a partial Fourier transform
when t = πi/2.)

3.2. The action of some operators on weighted spaces. Some metaplectic
operators which allow us to pass from one weight to another are given by multipli-
cation by Gaussians and changes of variables. For T a symmetric matrix, let

(35) WT f(x) = e(
1

2
x · Tx)f(x)

be the operator quantizing

(36) WT =

(
1 0
T 1

)
.

For G ∈Mn(C) invertible, let

(37) VGf(x) = (detG)1/2f(Gx).

(In general, some sign considerations arise in the square root, but our application
will involve G positive definite Hermitian where the usual square root on (0,∞)
can be used.) The operator VG quantizes

(38) VG =

(
G−1 0

0 G>

)
.

We remark that it is straightfoward to verify (33) and (34) from the definitions of
WT and VG.

Writing out the definitions of the relevant norms and a change of variables im-
mediately gives the following description of the spaces on which WiP and VG act;
we also include the action of a phase-space shift on HΦ-spaces. We emphasize that
the factor in front of VG which gives a metaplectic operator is different from the
factor in front of ṼG which gives a unitary operator between HΦ spaces because
the number of (real) variables for an HΦ space is 2n.
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Proposition 9. Let Φ : Cn → R be real-quadratic with Φ′′xx positive definite. Let
G,T ∈Mn(C) with detG 6= 0 and T> = T , and let Y = (y, η) ∈ C2n. Let

(39) ΦT (x) = Φ(x) +
1

2
Re(x · (iT )x),

let

(40) ΦG(x) = Φ(Gx),

and let

(41) ΦY (x) = Φ(x− y) + Im(
1

2
y · η − η · x)

Recall WiP , VG, and SY from (35), (37), and (28). Then

(42) WT : HΦ → HΦT
,

(43) ṼG = (detG)1/2VG : HΦ → HΦG
,

and

(44) SY : HΦ → HΦY

are unitary.

Proof. In each case, we assume that the target weight is some

(45) Φ1(x) =
1

2
(L1x · x+ Re(P1x · x))

to be determined. For the operator K in question we then compute 〈Kf,Kg〉HΦ1

and we find Φ1 such that 〈Kf,Kg〉HΦ1
= 〈f, g〉HΦ

.
First

(46)

〈WT f,WT g〉HΦ1
=

∫
Cn

e(
1

2
Tx · x)f(x)e(

1

2
Tx · x)g(x)e(2iΦ1(x))L(dx)

=

∫
Cn

f(x)g(x)e(2i(Φ1(x)− 1

4
iTx · x+

1

4
iTx · x)L(dx).

We obtain ΦT from the observation

(47) Φ(x) = Φ1(x)− 1

4
iTx · x+

1

4
iTx · x ⇐⇒ Φ1(x) = ΦT (x).

As for ṼG, we make a change of variables x′ = Gx, observing that L(dx) =
|detG|−2L(dx′) because x, x′ ∈ Cn ∼ R2n:

(48)

〈ṼGf, ṼGg〉HΦ1
=

∫
Cn

|detG|2f(Gx)g(Gx)e(2iΦ1(x))L(dx)

=

∫
Cn

f(x′)g(x′)e(2iΦ1(G−1x′))L(dx′).

We obtain ΦG from the observation

(49) Φ1(G−1x) = Φ(x) ⇐⇒ Φ1(x) = ΦG(x).
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Finally, a similar exercise for SY (with the change of variables x′ = x− y) gives
(50)
〈SY f,SY g〉HΦ1

=

∫
Cn

e(−1

2
y · η + η · x)f(x− y)e(−1

2
y · η + η · x)g(x− y)e(2iΦ1(x))L(dx)

=

∫
Cn

f(x′)g(x′)e(2i(Im(
1

2
y · η + η · x′) + Φ1(x′ + y)))L(dx′).

As in the previous two cases, we obtain ΦY by checking that

(51) Im(
1

2
y · η + η · x) + Φ1(x+ y) = Φ(x) ⇐⇒ Φ1(x) = ΦY (x).

�

Corollary 10. Let Φ : Cn → R be real-quadratic with Φ′′xx positive definite. For
any Y = (y, η) ∈ C2n let ΦY be as in (41). Then ΦY = Φ if and only if Y is of the
form

(52) Y = (y,−2iΦ′x(y)), y ∈ Cn.

Proof. Let L = 2Φ′′xx and P = 2Φ′′xx, so

(53) −2iΦ′x(y) = −i(Py + Ly).

Expanding out ΦY gives

(54) ΦY (x) = Φ(x)− 1

2
(x− 1

2
y) · (Ly + Py − iη)− 1

2
(x− 1

2
y) · (Ly + Py + iη).

The claim in the corollary is then obvious. �

3.3. Some FBI–Bargmann transforms. Finally, we recall a standard FBI–
Bargmann transform

(55) B̃0f(x) = 23n/4

∫
Cn

e(
1

2
ix2 − i

√
2xy +

1

2
iy2)f(y) dy,

which is a unitary map

(56) B̃0 : L2(Rn)→ HΦ0 , Φ0(x) =
1

2
|x|2.

The FBI–Bargmann transform B̃0 quantizes, as in (33), the complex canonical
transformation

(57) B0 =
1√
2

(
1 −i
−i 1

)
.

The inclusion of a tilde above the B is to emphasize that B̃0 is not metaplectic in
the sense of (34), similarly to (43). Indeed, we check that when gT (x) = e( 1

2Tx ·x)

for T symmetric with ImT > 0, writing w = i
√

2(i + T )−1x,
(58)

B̃0gT (x) = 23n/4

∫
Cn

e(
1

2
ix2 +

1

2
(i + T )(y − w) · (y − w) + (i + T )−1x · x) dy

= 23n/4 det(i + T )−1/2e(
1

2
(1 + iT )(i + T )−1x · x)
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When A = D = 1√
2

and B = C = − 1√
2
i, it is true that T ′ in (34) is (1+iT )(i+T )−1.

On the other hand, det(A+BT )−1/2 = 2n/4 det(i + T )−1/2. It is therefore

(59) B0 = 2−n/2B̃0

which respects the metaplectic rule (34).
Given any Φ : Cn → R real-quadratic with Φ′′xx positive definite, we can construct

a unitary FBI–Bargmann transform taking L2(Rn) to HΦ(Cn). If Φ is in the form
(3), then

(60) B̃ =W−iP ṼL1/2B0 : L2(Rn)→ HΦ(Cn)

is unitary by Proposition 9. We emphasize again that B̃ does not satisfy (34), and
it is instead (recalling that L is positive definite)

(61) B =W−iPVL1/2B0 = 2−n/2(detL)−1/4B̃

which does so.

Example 11. To simplify computations, it is sometimes practical to reduce one
weight to the standard weight Φ0(x) = 1

2 |x|
2. If Φj = 1

2 (Ljx · x+ Re(Pjx · x)) for
j = 1, 2 with Lj Hermitian positive definite and Pj symmetric, then

(62) U = Ṽ
L
−1/2
1
WiP1

: HΦ1
→ HΦ0

is unitary by Proposition 9. Similarly, when

(63) Φ(x) =
1

2

(
L
−1/2
1 L2L

−1/2
1 x · x+ Re(L

−1/2

1 (P2 − P1)L
−1/2
1 x · x)

)
,

the transformation

(64) U : HΦ2
→ HΦ

is also unitary. Therefore for any holomorphic function f , f ∈ HΦ1
if and only if

g = Uf ∈ HΦ0
and

(65)
‖f‖HΦ2

‖f‖HΦ1

=
‖g‖HΦ

‖g‖HΦ0

.

Note that in both cases we are replacing Φj with

(66) Φj(L
−1/2
1 x)− 1

2
Re(L

−1/2

1 P1L
−1/2
1 x · x),

so

(67) Φ2 ≥ Φ1 ⇐⇒ Φ ≥ Φ0.

4

4. Adjoints on HΦ spaces

We turn to the study of AΦ from (5) from the point of view of adjoints of shift
operators on HΦ-spaces. We remark that the decomposition in (5) is not necessarily
the most practical for every situation. One could certainly multiply out to obtain

(68) AΦ =

(
−L−1P iL−1

i(L− PL−1P ) −PL−1

)
.
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Or one could maximize the use of the matrices in (36) and (38): if R(y, η) = i(η, y)
(the factor of i makes R canonical), then

(69)
AΦ = WiPRV−1

L WiP

= WiPVLRWiP .

Proposition 12. Let Φ : Cn → R be real-quadratic with Φ′′xx positive definite. Let
AΦ be as in (5). Then the adjoint of a phase-space shift (28) by Y ∈ C2n, as an
operator on HΦ, is

(70) S∗Y = S−AΦY
.

Proof. As usual, let L = 2Φ′′xx and let P = 2Φ′′xx. Let

(71) Ψ(x, y) =
1

2
Lx · y +

1

4
Px · x+

1

4
Py · y

so that Φ(x) = Ψ(x, x) and

(72) 〈f, g〉Φ =

∫
Cn

f(x)g(x)e(2iΨ(x, x))L(dx).

Since L(dx) = (−2i)−ndx ∧ dx, we can analyze the integral giving the HΦ in-
ner product in holomorphic and anti-holomorphic coordinates. Formally, changes
of variables are accomplished via contour deformation on dense sets of functions
corresponding to rapidly decaying integrals.

As an example, let Φ(x) = Φ0(x) = 1
2 |x|

2 and Ψ0(x, y) = 1
2x · y. Fix y ∈ Cn

and let f, g be polynomials; we define g by taking the complex conjugate of the
coefficients of g so that g(z) = g(z). When x = x1 + ix2 for (x1, x2) ∈ R2n, we
may use a contour deformation to make the change of variables (z1, z2) = (x1 −
y/2, x2 + iy/2). We therefore have
(73)∫

Cn

f(x− y)g(x)e(2iΨ0(x, x))L(dx)

=

∫∫
R2n

f(x1 +
1

2
y + i(x2 −

1

2
iy))g(x1 − ix2)e−2π(x2

1+x2
2) dx1 dx2

=

∫∫
R2n

f(z1 + iz2)g(z1 +
1

2
y − i(z2 −

1

2
iy))e−2π((z1+ 1

2y)2+(z2− 1
2 iy)2) dz1 dz2

=

∫∫
R2n

f(z1 + iz2)g(z1 − iz2)e−2π(z2
1+z2

2+(z1−ix2)·y) dx1 dx2

=

∫
Cn

f(x)g(x)e(2iΨ0(z + y, z)).

We return to an arbitrary shift on an HΦ space, applying this type of change of
variables. If Y = (y, η),
(74)

〈SY f, g〉HΦ
=

∫
Cn

e(−1

2
y · η + η · x)f(x− y)g(x)e(2iΨ(x, x)) (−2i)−ndx ∧ dx

=

∫
Cn

e(
1

2
y · η + η · x+ 2iΨ(x+ y, x))f(x)g(x)(−2i)−ndx ∧ dx.

For z ∈ Cn fixed, as in the case of polynomials we can define g by g(x− z) = g(x−
z). This is a function of the antiholomorphic variable x, so a similar computation
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gives, for Z = (z, ζ) ∈ C2n,

(75)

〈f,SZg〉HΦ
=

∫
Cn

f(x)e(−1

2
z · ζ + ζ · x)g(x− z)e(2iΨ(x, x)) (−2i)−ndx ∧ dx

=

∫
Cn

e(−1

2
z · ζ − ζ · x+ 2iΨ(x, x+ z))f(x)g(x)(−2i)−ndx ∧ dx.

One computes directly

(76) 2iΨ(x+ y, x) = 2iΨ(x, x) + iLy · x+ iPy · x+
1

2
iPy · y

and

(77) 2iΨ(x, x+ z) = 2iΨ(x, x) + iLz · x+ iPz · x+
1

2
iPz · z.

Therefore 〈SY f, g〉HΦ = 〈f,SZg〉HΦ if and only if (equating coefficients of (x, x))

(78)

(
iP 1
iL 0

)(
y
η

)
=

(
iL 0
iP −1

)(
z

ζ

)
and (equating constant terms)

(79)
1

2
y · η +

1

2
iPy · y = −1

2
z · ζ +

1

2
iPz · z.

Equation (78) is equivalent to Z = −AΦY . Equation (79) is equivalent to

(80) y · (η + iPy) = z · (iPz − ζ).

When (78) holds, this is simply y · iLz = z · iLy, which is automatic because L is
Hermitian. Therefore Z = −AΦY implies 〈SY f, g〉 = 〈f,SZg〉 as claimed. �

Using Proposition 12, we recall some well-known facts about AΦ.

Proposition 13. Let Φ : Cn → R be real-quadratic with Φ′′xx positive definite, and
recall AΦ from (5). Let

(81) ΛΦ = {(x,−2iΦ′x(x)) : x ∈ Cn}.

Finally, let B̃ : L2(Rn)→ HΦ be any unitary FBI–Bargmann transform quantizing
B a complex linear canonical transformation. (Such a transformation exists by
(60); a metaplectic transformation like (61) would work as well.)

Then B(R2n) = ΛΦ, AΦ = BB−1, and X 7→ AΦX is the unique antilinear
involution preserving ΛΦ.

Proof. For Y ∈ C2n, the shift SY is unitary on HΦ if and only if B̃−1SY B̃ = SB−1Y

is unitary on L2(Rn). The unitary shifts on L2(Rn) correspond to real phase-space
vectors, therefore SY is unitary on HΦ if and only if B−1Y ∈ R2n. In other words,
the set of unitary shifts on HΦ is B(R2n). By Corollary 10 and Proposition 12,
ΛΦ ⊆ B(R2n). Since −2iΦ′x(x) is a real-linear function of x ∈ Cn, ΛΦ as a vector
space over R has real dimension 2n, as does B(R2n). Therefore ΛΦ = B(R2n).

As for the relation between AΦ and B, note that, as an operator on HΦ,

(82) SX = B̃B̃−1SXB̃B̃−1 = B̃SB−1XB̃−1,

where S−B−1X acts on L2(Rn). It is elementary that when SY acts on L2(Rn),
S∗Y = S−Y . Therefore the adjoint of SX on HΦ can be computed as

(83) B̃S−B−1X
B̃−1 = S−BB−1X

.



NORMS OF EMBEDDINGS 13

Comparing with Proposition 12 gives −AΦX = −BB−1X for all X ∈ C2n, so
AΦ = BB−1.

The map X 7→ AΦX is transparently antilinear, and we see that it is an involu-
tion using Proposition 12 and the fact that (as an operator on HΦ) (S∗X)∗ = SX .
Uniqueness of the antilinear involution comes from the fact that ΛΦ has real dimen-
sion 2n and ΛΦ∩ iΛΦ = {0} (which in turn comes from Φ′x(x)+iΦ′x(ix) = Lx which
vanishes only when x = 0). The fact that ΛΦ is invariant under this involution
follows from the fact that X = AΦX if and only S∗X = S−X = S−1

X by Propostion
12. But we began by showing that the set of unitary shifts on HΦ is precisely
the set of shifts by elements of ΛΦ. Therefore X 7→ AΦX is the unique antilinear
involution of Cn preserving ΛΦ, completing the proof of the proposition. �

Following [4, Thm. 1.1], we have that Φ2 ≥ Φ1 if and only if we have the positivity
condition

(84) −i
(
σ(AΦ2

X,X)− σ(AΦ1
X,X)

)
≥ 0, ∀X ∈ C2n.

For completeness, we adapt their proof in a specific case.

Proposition 14. For j = 1, 2, let Φj : Cn → R be real-quadratic with Φ′′xx positive
definite, and let AΦj be as in (5). Then (84) holds if and only if Φ2 ≥ Φ1. If
Φ2 > Φ1 on Cn\{0}, then the inequality in (84) is strict when X 6= 0.

Proof. It suffices to prove the proposition in the case Φ2 > Φ1 on Cn\{0}, because
having proved this case we can take the limit as ε→ 0+ of the proposition applied
to Φ2(x) + 1

2ε|x0|2 in the place of Φ2.
To simplify notation, as we have seen in Example 11, we can suppose that

(85) Φ2(x) = Φ(x) =
1

2
(Lx · x+ Re(Px · x))

as in (3) and Φ1(x) = Φ0(x) = 1
2 |x|

2.
If Φ > Φ0 on Cn\{0}, then L > 1 in the sense of positive definite matrices. This

is because if there is some x0 ∈ Cn\{0} such that Lx0 · x0 ≤ |x0|2, then for an
appropriate choice of θ ∈ R,

(86) Φ(e(θ)x0) =
1

2
(Lx0 · x0 − |Px0 · x0|) ≤ Φ0(e(θ)x0),

contradicting our assumption that Φ(x) > Φ0(x) for all x 6= 0.
Using (68),

(87) −iσ(AΦX,X) =

(
L− PL−1P iPL−1

iL−1P −L−1

)
X ·X.

Obtaining the same formula for Φ0 instead of Φ by setting L = 1 and P = 0 gives
the following expression for the left-hand side of (84):

(88) −i(σ(AΦ −AΦ0
)X,X) =

(
L− 1− PL−1P iPL−1

−iL−1P 1− L−1

)
X ·X.

For this form to be positive definite (as claimed in the case of a strict inequality),

it is necessary that (1 − L−1)ξ · ξ > 0 for every ξ ∈ Cn\{0}. This is equivalent to
L > 1 in the sense of positive definite matrices. We have therefore shown that if
either Φ > Φ0 on Cn\{0} or if (84) holds strictly for X 6= 0, then L > 1.
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Invertibility of 1 − L−1 allows us to complete the square in (88): if X = (x, ξ)
and if

(89) η = −i(L− 1)−1Px

then

(90)
−i(σ((AΦ −AΦ0)X,X) = (1− L−1

)(ξ + η) · (ξ + η)

+ (L− 1− PL−1P − P (L− 1)−1L−1P )x · x.

Positivity of (88) is therefore equivalent to positivity of

(91)
(L− 1− P (1 + (L− 1)−1)L−1P )x · x

= (L− 1)x · x− (L− 1)−1Px · Px.

To simplify notation a little, we let

(92) y = (L− 1)1/2x, P̃ = (L− 1)−1/2P (L− 1)−1/2,

so strict positivity for X 6= 0 of (88) is equivalent to strict positivity for y 6= 0 of

(93) |y|2 − |P̃ y|2.

On the other hand,

(94)
4(Φ(x)− Φ0(x)) = (L− 1)x · x+ Re(Px · x)

= |y|2 + Re(P̃ y · y)

when y and P̃ are as in (92).
The reasoning of [4, Eq. (2.21)–(2.23)] shows that this is equivalent to positivity

of (93) as follows. Positivity of (93) implies positivity of (94) by the Cauchy-
Schwarz inequality. Conversely, if Φ > Φ0 on Cn\{0}, then multipliying y by e(θ)
in (94) gives that there exists c ∈ [0, 1) such that

(95) |P̃ y · y| ≤ c|y|2, ∀y ∈ Cn.

Therefore for all z ∈ Cn,

(96)
|P̃ y · z| = 1

4
|P̃ (y + z) · (y + z)− P̃ (y − z) · (y − z)|

≤ 1

4
c(|y + z|2 + |y − z|2) =

1

2
c(|y|2 + |z|2).

If neither y nor z is zero, we may replace y by y
√
|z|/|y| and z by z

√
|y|/|z| to

obtain

(97) |P̃ y · z| ≤ c|y| |z|

for all y, z ∈ Cn (the case y = 0 or z = 0 being trivial). Therefore ‖P‖ ≤ c in
operator norm which implies strict positivity of (93).

This completes the proof that strict positivity of (94) and of (93) are equivalent.
Up to changes of variables and completing the square, this is equivalent to the
statement of the proposition in the case of a strict inequality. As mentioned at the
beginning, the non-strict inequality can be obtained by taking the limit as ε→ 0+

of Φ2(x) + 1
2ε|x|

2, and the proof is therefore complete. �
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5. Proof of Theorem 1

We will now prove Theorem 1. Our main tool is [19, Thm. 1.3], which as men-
tioned therein is a straightforward consequence of [10, Prop. 5.9, Prop. 5.10]. A
version suitable for our purposes is the following.

Theorem 15. Let K be an element of the metaplectic semigroup (Definition 8)
quantizing a positive linear canonical transformation K. Then there there exist
µ1, . . . , µn ∈ (0, 1] such that, counting for multiplicity,

(98) Spec K−1K = {µj}nj=1 ∪ {µ−1
j }

n
j=1

and, as an operator on L2(Rn),

(99) ‖K‖ =

 n∏
j=1

µj

1/4

.

Suppose that Φ2 ≥ Φ1. For j = 1, 2, let B̃j : L2(Rn) → HΦj (Cn) be unitary
FBI–Bargmann transforms as in (60). Then for any f ∈ HΦ1

\{0},

(100)
‖f‖HΦ2

‖f‖HΦ1

=
‖B̃−1

2 f‖L2(Rn)

‖B̃−1
1 f‖L2(Rn)

=
‖B̃−1

2 B̃1g‖L2(Rn)

‖g‖L2(Rn)
,

where g = B̃−1
1 f can be, by varying f , any element of L2(Rn)\{0}.

By (61), the metaplectic version

(101) B−1
2 B1 =

(
detL1

detL2

)−1/4

B̃−1
2 B̃1

satisfies (34) and (33) for the complex linear canonical transformation B−1
2 B1.

Moreover, this canonical transformation is positive by Proposition 14 (which again
is just a special case of [4, Thm. 1]). Therefore B−1

2 B1 belongs to the metaplectic
semigroup (Definition 8), and by Theorem 15, there exist µ1, . . . , µn ∈ (0, 1] such
that

(102) Spec (B−1
2 B1)−1B−1

2 B1 = {µj}nj=1 ∪ {µ−1
j }

n
j=1

and

(103) ‖B−1
2 B1‖ =

 n∏
j=1

µj

1/4

.

The spectrum of a matrix is unchanged by a similarity transform, so using Propo-
sition 13,

(104) Spec (B−1
2 B1)−1B−1

2 B1 = Spec B1B
−1
1 B−1

2 B−1
2 = Spec A−1

Φ1
AΦ2 .

Inserting into (103) and using (100) and (101) gives the result of Theorem 1 when
Φ2 ≥ Φ1.

Suppose now that there exists some x0 ∈ Cn\{0} such that Φ1(x0) > Φ2(x0). By
Example 11 we may assume without loss of generality that Φ1(x) = Φ0(x) = 1

2 |x|
2,

and furthermore by scaling we may assume that |x0| = 1. Consider

(105) hδ(x) = e(−1

2
iδ(x0 · x)2), δ ∈ [0, 1).
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Notice that

(106) |hδ(x)|2e(2iΦ0(x)) = e(2i(Φ0(x)− 1

2
δRe((x0 ·x)2)) = e−2π(|x|2−δRe((x0·x)2)).

Since

(107) δRe((x0 · x)2) ≤ δ|x0|2|x|2 = δ|x|2,

when δ ∈ [0, 1) we have that |hδ(x)|2e(2iΦ0(x)) is the exponential of a negative
definite quadratic form which is therefore integrable. This shows that hδ ∈ HΦ0

.
On the other hand,

(108) |hδ(x0)|2e(2iΦ2(x0)) = e(2i(Φ2(x0)− 1

2
δ|x0|2)) = e4π(δΦ0(x0)−Φ2(x0)).

Therefore |hδ(x)|2e(2iΦ2(x)) is again the exponential of a quadratic form, but for δ
sufficiently close to 1 this quadratic form is not even negative semidefinite. There-
fore, for δ near 1, hδ /∈ HΦ2

. We have exhibited (up to changes of variables in
Example 11 taking Φ1 to Φ0) an explicit element of HΦ1

for which ‖hδ‖HΦ2
= ∞,

meaning that the embedding between these two spaces cannot be bounded.
This shows that Φ2 ≥ Φ1 is a necessary condition for ι : HΦ1

→ HΦ2
to be

bounded. Above, we proved the formula for the norm in the case Φ2 ≥ Φ1, and the
proof of Theorem 1 is therefore complete.

6. The Gaussian witnessing the maximum norm ratio

We now prove Theorem 4.
A straightforward consequence of [10, Prop. 5.9, Prop. 5.10] is that if K :

L2(Rn) → L2(Rn) is an element of the metaplectic semigroup quantizing K a

strictly positive complex linear canonical transformation, thenK∗K quantizes K−1K
and, for some q(x, ξ) a real-valued positive definite quadratic form on R2n,

(109) K∗K = exp(−2πqw(x,Dx)).

(Here qw(x,Dx) is the Weyl quantization of q.)
It is well-known that the ground state of qw(x,Dx) is gT0(x) = e( 1

2T0x ·x) where
the symmetric matrix (with positive definite imaginary part) T0 is defined by

(110) {(x, T0x)}x∈Cn =
⊕
−iλ>0

ker(Hq − λ).

Here, Hq is the Hamilton map of q, the unique matrix antisymmetric with respect
to the symplectic form σ such that q(X) = σ(X,HqX). (See for instance [16,
Thm. 3.5].)

By the exact classical-quantum correspondence [10, Thm. 5.12], exp(−2πqw) =
e(iqw) is an element of the metaplectic semigroup quantizing exp(H−iq) = exp(−iHq).

Having chosen q such that K∗K = exp(−qw) and checking that K∗ quantizes K−1,
we conclude that

(111) exp(H−iq) = K−1K.
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Equivalently, exp(iHq) = K−1K. We insert this fact into the definition of T0, using
the notation µ = exp(iλ):

(112)

{(x, T0x)}x∈Cn =
⊕
−iλ>0

ker(iHq − (iλ))

=
⊕
−iλ>0

ker(exp(iHq)− eiλ) =
⊕
µ<1

ker(K−1K− µ).

We obtained the norm of the embedding from HΦ1 to HΦ2 via the observation

that, when B̃j : L2(Rn) → HΦj
are unitary FBI–Bargmann transforms and when

g = B̃−1
1 f ,

(113)
‖f‖HΦ2

‖f‖HΦ1

=
‖B̃−1

2 B̃1g‖L2

‖g‖L2

,

when g = B−1
1 f . When Φ2(x) > Φ1(x) for all x 6= 0, B̃−1

2 B̃1 quantizes a strictly
positive transformation following Proposition 14. Then we may find gT0

optimizing
the right-hand side of (113) by applying the preceding discussion to K = B−1

2 B1.
The link between {(x, T0x)} and gT0(x) = e( 1

2T0x · x) comes from

(114) g ∈ Span{gT0
} ⇐⇒ ∀x ∈ Cn, (S(x,T0x) − 1)g = 0.

We can identify gT = B̃1gT0 up to a constant by applying B̃1 to both sides and
using the Egorov relation (33):

(115) (S(x,T0x) − 1)g = 0 ⇐⇒ (SB1(x,T0x) − 1)B̃1g = 0.

Therefore we are looking for T such that

(116) {(x, Tx)}x∈Cn = {B1(x, T0x)}x∈Cn .

It is not automatic that {B1(x, T0x)} will take the form of a graph, but exam-
ining (58) we see that the standard FBI–Bargmann transform takes Gaussians
gT0

(x) = e( 1
2T0x·x) with ImT0 > 0 to Gaussians gT (x) where ImT is not necessarily

positive definite. Examining (60), this continues to be true for any FBI–Bargmann
transform we are considering.

We observe that

(117) (K−1K− µ)X = 0 ⇐⇒ (B1K−1KB−1
1 − µ)B1X = 0.

Explicitly, since K = B−1
2 B1,

(118) B1K
−1KB−1

1 = B1B
−1
1 B2B

−1
2 B1B

−1
1 = A−1

Φ2
AΦ1

by Proposition 13.
Therefore

(119) {(x, Tx)}x∈Cn = {B1(x, T0x)}x∈Cn =
⊕
µ<1

ker(A−1
Φ2

AΦ1 − µ).

Since B̃1gT0
= cgT for some c ∈ C, from

(120) ‖B̃−1
2 B̃1‖ =

‖B̃−1
2 B̃1gT0

‖L2

‖gT0‖L2

we get

(121) ‖B̃−1
2 B̃1‖ =

‖gT ‖HΦ2

‖gT ‖HΦ1

.
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By (100), ‖B̃−1
2 B̃1‖ (as an operator on L2(Rn)) is equal to the norm of the em-

bedding from HΦ1 to HΦ2 . The proof of Theorem 4 is therefore complete.
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