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NUMBER OF MODULI FOR A UNION OF SMOOTH CURVES

IN
(
C2, 0

)
.

YOHANN GENZMER

Abstract. In this article, we provide an algorithm to compute the number
of moduli of a germ of curve which is a union of germs of smooth curves in the
complex plane.

Introduction

The problem of the determination of the number of moduli of a germ of complex
plane curve was addressed by Oscar Zariski in his famous notes [15], where he
focused on the case of a curve with only one irreducible component. The number of
moduli refers to the number of analytical invariants that remain once the topological
class of S is given. The topological classi�cation of an irreducible curve S is well
known and relies on a semi-group of integers extensively studied by Zariski himself
in the 70s. However, at this time, even in the case of an irreducible curve, the
analytical classi�cation was a widely open question. Since then, a lot of progress
has been made, and, up to our knowledge, the initial question can be considered
as mostly solved by the combination of the works of A. Hefez and M. Hernandes
[7, 8, 9] and these of the author [5] : the �rsts provided a family of algorithms that
describes a sharp strati�cation of the moduli space of S, the second a formula to
compute the dimension of its generic stratum, and thus the number of moduli of S.

In this article, we propose to go beyond the irreducible case and to study the case
of a union of smooth curves, one of the simplest situation once the irreducibility
hypothesis is dropped. To do so, we follow some methods introduced in [5]: from
the study the module of vector �elds tangent to a curve S, which we refer to as
the Saito module of S, we propose an algorithm to compute the number of moduli
of S that can be easily implemented. The associated algorithm is built upon the
desingularization process of S, for which we have already at our disposal, some
classical and available routines on many symbolic computation softwares.
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1. Notation

Let S be a germ of curve in the complex plane. According to [14], there exists a
minimal process of desingularization E that consists in a sequence of elementary
blowing-ups of points. We denote it by

E = E1 ◦ E2 ◦ · · · ◦ EN :
(
C̃2, D

)
→
(
C2, 0

)
.
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Here, D = E−1 (0) is the exceptional divisor of E and C̃2 stands for the germ of non
singular neighborhood of D obtained from the successive blowing-ups over

(
C2, 0

)
.

The strict transform of S by any process of blowing-ups F will be referred to as
F ?S. The decomposition of D in irreducible components is written

D =

N⋃
i=1

Di

where Di is the exceptional divisor of the elementary blowing-up Ei.

Let {t2, . . . , tM} ⊂ D1 be the tangency locus between E?1S and D1. For any k =
2, . . . ,M , Sk stands for the germ of the curve E?1S at tk. Doing inductively the
same construction for each curve Sk, we �nally obtain a family of curves

(Sk)k=2,...,N ,

whose numbering is chosen so that Ek is the blowing-up centered at the tangency
locus between Sk and the exceptional divisor. By extension, we set S1 = S. For
k = 2, . . . ,M the desingularization of the curve Sk∪D1 is a composition of blowing-
ups that we denote

Ek1 ◦ Ek2 ◦ · · · ◦ EkNk
.

Each Ekj is a certain elementary blowing-up Eσk(j) appearing in the decomposition

of the initial process E. This correspondence de�nes an injective map σk,

σk : {1, . . . , Nk} → {2, . . . , N} .

Notice that by construction, for any k = 2, . . . ,M , σk (1) = k and the images(
Im
(
σi
))
i=2,...,M

provide a partition of the set {2, . . . , N} .
Subsequently, the notation ν (�) will stand for the standard valuation of the object
� :

• if S is a germ of curve, then ν (S) = ν (f) is the algebraic multiplicity of
any reduced local equation f = 0 of S.

• if X is a germ of vector �eld written in some coordinates X = a∂x + b∂y,
then

ν (X) = min (ν (a) , ν (b)) .

If any confusion is possible, we will precise the point p where the valuation is
evaluated. The associated notation will be νp (�).

Since E?S is smooth and transverse to the exceptional divisor, one can consider for
any component Dk, the number nSk of components of E?S attached to Dk.

We say that Di is in the neighborhood of Dk if i 6= k and Di∩Dk 6= ∅. The set of all
indexes i ∈ {1, . . . , N} such that Di is in the neighborhood of Dk will be denoted
by N (k) .

For i ≥ 2, the component Di is the blowing-up of a point which belongs to, either
a single component Dj or to a couple of components Dj and Dk. The associated
set of indexes {j} or {j, k} is called the set of parents of Di and will be denoted by
P (i) . By extension, we set P (1) = ∅. Notice that for any i = 2, . . .,M, one has

P (i) = {1} .
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Finally, we introduce the following notation : for n ∈ N and a, b ∈ R⌊
a
b

n

=

{
a if n is even ;
b if n is odd.

2. Topological class of S and number of moduli.

We recall the proximity matrix of S as de�ned in [13, p. 52].

De�nition 1. The proximity matrix of S is the N ×N matrix PS whose entries
are (

PS
)
i,j

=

 1 if i = j
−1 if i ∈ P (j)
0 otherwise

.

Given the numbering of the components of the exceptional divisor, the matrix PS

is an upper triangular matrix.

The data of PS (or of the topological type of E) and the integers
(
nSk
)
k=1,...,N

characterize the topological class of S. More precisely, following [14], two curves S
and S′ are topologically equivalent if and only if there exists a permutation φ of
{1, . . . , N} such that

∀i, j ≤ N, PS
′

φ(i)φ(j) = PSij
and

∀i ≤ N, nS
′

φ(i) = nSi .

Now, if S is a union of K smooth germs of curves then S admits a reduced equation
of the form

f1f2 · · · fK = 0

where fK is a germ of analytic function with a non trivial linear part :

fj = f00
j + f01

j x+ f10
j y + f20

j x2 + f11
j xy + · · ·

with f00
j = 0 and f01

j 6= 0 or f10
j 6= 0. Being in a �xed topological class translates

into a �nite set of algebraic conditions depending on a �nite number of complex

variables fklj . Thus, there exists a complex constructible subset1 Σ (S) ⊂
(
CN2

)K
and a surjective map

Σ (S) � Top (S)

where Top (S) stands for the set of germs of curves topologically equivalent to S.
A property is going to be said true for a generic curve in its topological class if it
is true for the image of a Zariski open set in Σ (S) , i.e, the intersection of Σ (S)
with the complementary of the zero locus of a �nite list of polynomial functions on(
CN2

)K
. In the present article, most of the results will assume that the curve S

is generic in its topological class, implying that the stated results will be true only
for a curve generic in its topological class.

When S is irreducible, Ebey [3] constructed a non Hausdor� complex structure on
the moduli space of S, that is the standard quotient of Top (S) up to analytical

1Here, complex constructible subset means a subset of
(
CN2

)K
that is a �nite union of �nite

intersections of sets of the form {Q = 0 and R 6= 0} where Q and R are polynomial functions.
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equivalence relation. This quotient happens to be the quotient of a complex con-
structible set of �nite dimension by the action of a connected solvable algebraic
group. By de�nition, the generic dimension of this quotient is the number of mod-
uli of S. The extension of this construction to the general non irreducible case is a
work in progress. However, even in the general case, one can still give a suitable
de�nition of the number of moduli by a local approach : a curve S being generic
in its topological class, one can consider a miniversal deformation of S [15], i.e, a
commutative diagramm

(S, 0) (Σ, 0)

{0} (CL, 0)

through which factorizes any germ of deformation of (S, 0). In the parameter space
(CL, 0), there is a smooth stratum along which the topological type is constant and
equal to the one of S. The dimension of this stratum is by de�nition the number
of moduli of S. In the last section of this article, we will mention a cohomological
description of the tangent space to this stratum due to Mattei [11], upon which our
computation is based.

3. Saito vector field.

In this section, S is any germ of curve - not necessarly a union of smooth curves.

3.1. De�nition of a Saito vector �eld for a curve. Let Der (S) be the set of
germs of vector �elds X tangent to S, i.e., such that for a reduced equation f of S,
one has

X · f ∈ (f) .

According to [12], Der (S) is a free O2−module of rank 2 and any basis {X1, X2}
of Der (S) will be said a Saito basis for S. The number of Saito of S is

s (S) = min
X∈Der(S)

ν (X) = min (ν (X1) , ν (X2)) .

A vector �eld X ∈ Der (S) is said to be optimal for S if

ν (X) = s (S) .

If E is any process of blowing-up, we denote by XE the divided pull-back vector �eld
of X by E. It is a family a vector �eld parametrized by the point of the exceptional
divisor : for any c ∈ D,

(
XE
)
c
is written Y

ua (or Y
uavb

) where Y projects onto X
with respect to E and ua is the maximal power of u that divides Y, where u ( or
uv = 0 ) is a local equation of D at c. An alternative way to construct XE is the
following : the vector �eld X induces a saturated foliation F at the origin of C2.
The foliation F can be pulled-back by E in E?F which de�nes a saturated foliation
in the neighborhood of D. The vector �eld

(
XE
)
c
is any generator of the latter at

c.

The vector �eld X is said to be dicritical if XE1 is generically transversal to the
exceptional divisor D1.

Below, we recall some material established in [4].
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Theorem 2. Let S be a curve generic in its topological class. Then there exists a
Saito basis {X1, X2} for S with one of the following forms

• if ν (S) is even

(E) : ν (X1) = ν (X2) = ν(S)
2 , X1 and X2 are non dicritical.

(Ed) : ν (X1) = ν (X2)− 1 = ν(S)
2 − 1, X1 and X2 are dicritical.

• if ν (S) is odd

(O) : ν (X1) = ν (X2)− 1 = ν(S)−1
2 , X1 and X2 are non dicritical.

(Od) : ν (X1) = ν (X2) = ν(S)−1
2 , X1 and X2 are dicritical.

In particular, the Saito number of S is equal to

s (S) =
ν (S)

2
−
⌊

1−∆
1
2

ν(S)

where ∆ =

{
1 if S is of type (O) or (E)
0 else

.

The curve S being of type (Ed) or (Od), there exists a basis of the following form

(E′d) : ν (X1) = ν (X2)− 2 = ν(S)
2 − 1, X1 is dicritical but not X2.

(O′d) : ν (X1) = ν (X2)− 1 = ν(S)−1
2 , X1 is dicritical but not X2.

if and only if S has no free point - see below.

By de�nition, the tangency locus Tan (E?1S,D1) is the set of points

{t2, . . . , tM} ⊂ D1.

Since XE1
1 leaves invariant E?1S, the locus of tangency Tan

(
XE1

1 , D1

)
between the

vector �eld XE1
1 and D1 contains Tan

(
SE1 , D1

)
. Following [4], we recall that S is

said to have no free point if and only if

Tan
(
XE1

1 , D1

)
= Tan

(
SE1 , D1

)
.

The number of free points is, by de�nition, the number of elements of the di�erence

Tan
(
XE1

1 , D1

)
\ Tan

(
SE1 , D1

)
.

The number of free points depends only on the topological type of S. In Table 1, we
present an example of curve for each type of Saito bases. In this table, the notation
]f stands for the vector �eld

∂xf∂y − ∂yf∂x
obviously tangent to f = 0.

A basis of the Saito module of S is said to be adapted if it has one of the �rst four
types described in Theorem 2. An adapted basis behaves well with respect to the
blowing-up : indeed, in any case, if {X1, X2} is an adapted basis for S then for any
c ∈ D1, the family {(

XE1
1

)
c
,
(
XE1

2

)
c

}
is a Saito basis for (E?1S)c or (E?1S ∪D1)c depending on the type of the basis.
Notice that this property does not hold for any Saito basis and that the basis above
may not be adapted.
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S f = x f = xy f = xy (x+ y) f = xy
(
x2 − y2

)
ν (S) 1 2 3 4

X1, X2 ∂x, x∂y x∂x, y∂y x∂x + y∂y, ]f x∂x + y∂y, ]f

ν (X1) , ν (X2) 0, 1 1, 1 1, 2 1, 3

Type (O) (E)
(
O′d
) (

E′d
)

S f = xy
(
x3 − y3 + · · ·

)
f = xy

(
x2 − y2

)
(x+ 2y + · · · ) (x+ 3y + · · · )

ν (S) 5 6

X1, X2
x (x∂x + y∂y) + · · ·
y (x∂x + y∂y) + · · ·

(
x+ 29

15y
)

(x∂x + y∂y) + · · ·
x2 (x∂x + y∂y) + · · ·

ν (X1) , ν (X2) 2, 2 2, 3

Type (Od) - 1 free point (Ed) - 1 free point

Table 1. Examples of di�erent types of Saito bases.

For the sake of simplicity, we will say that S is of class 1 if S admits a Saito basis
{X1, X2} of type (E) or (Od). Otherwise, we will say that S is of class 2. The main
di�erence between the two classes is that the vector �elds of an adapted basis for
a curve of class 1 share the same valuations, whereas they are di�erent for a curve
of class 2.

To keep track of the type of the successive blowing-ups of the curve S, we introduce
the notion of relative strict transform of S.

De�nition 3. The relative strict transform of S by E, denoted by SE , is the
following union of curves

SE = E?S ∪
⋃

i∈J⊂{1,...,N}

Di

where J is inductively de�ned as follows :

i ∈ J ⇐⇒ Si ∪
⋃
j∈P(i)∩JDj is of type (E) or (O) .

A branch of the process E is a sequence of integers (i1, · · · , ij) such that the blowing-
up Eik is centered at a point ck which belongs to exceptional divisor of Eik−1

. We

will denote by Eia,ib the composition

Eia,ib = Eia ◦ Eia+1
◦ · · · ◦ Eib .

Finally, we are able to introduce the main object of interest here.

De�nition 4. A germ of vector �eld is said to be Saito for S if for any branch

(1, · · · , k) of E and k ≤ N, the vector �eld XE1,k

is optimal for SE
1,k

.

In other words, a vector �eld is said Saito for S if it is optimal for S and if this
property propagates all along the process of desingularization of S.
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Figure 3.1. Topology of the leaves of the vector �eld (X1 +X2)
E

The de�nition be given, there is apparently no reason for such a vector �eld to exist
in general. However, we will see that this is actually the case for unions of germs
of smooth curves generic in their topological class.2

Example 5. Let us consider the curve S de�ned by

S =
{
f = x

(
x+ f0y

2 + · · ·
)
y
(
y + f1x

2 + · · ·
)

= 0
}
.

with f0 6= 0 and f1 6= 0. The two latter constructible conditions and the form of
the function f �x the topological type of S. The dots in the above expression stand
for higher order terms. It can be checked that S is of type (E) and that

X1 = x2∂x + 2xy∂y + · · ·
X2 = 2xy∂x + y2∂y + · · ·

is an adapted basis. In particular, the Saito number of S is

s (S) = 2.

Moreover, for α ∈ C \ {0} , after one blowing-up, X1 + αX2 is given, in the chart
(x, t) for which

E1 (x, t) = (x, tx)

by

(X1 + αX2)
E1 = x (2t+ α) ∂x + t (−t+ α) ∂t + · · ·

which, at (x, t) = (0, 0) � the singular point of S2 - is of multiplicity 1 and tangent
to the radial vector �eld at order 1. In the other chart, the same occurs for the
singular point of S3. Therefore, X1 + αX2 is Saito for S. Notice that, the vector

�eld (X1 + αX2)
E1 admits an other singular point whose coordinates are (0, α) in

the coordinates of the chart above. At (0, α), the linear part is not trivial and
has two non vanishing eigenvalues whose quotient is not a non negative rational
number. In particular, according to [2], X1 +αX2 admits a smooth invariant curve
that is neither contained in S nor tangent to a component of S. Finally, although
X1 is optimal for S, X1 is not Saito for S since the vector �eld XE1

1 is written

XE1
1 = 2xt∂x − t2∂t + · · ·

and its multiplicity is 2 at (0, 0) and thus not optimal for S2 ∪D1.

2We conjecture that such vector �eld exists for any curve S generic in its topological class.
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3.2. Numerical properties of a Saito vector �eld. Let us investigate the topo-
logical properties of a Saito vector �eld.

First, let us recall some results from [10].

Let M be the sheaf generated by the global functions h ◦ E with h ∈ O2 and
h (0) = 0. It is a simple matter to get the following decomposition of sheaves

M = O

(
−

N∑
i=1

ρEi Di

)
where the integers ρEi are known as the multiplicities of D. The number ρEi is also
the multiplicity of a curve whose strict transform by E is smooth and attached to
a regular point of Di.

The valence val (Di) of Di is the number of components D attached to Di, i.e, the
cardinal ofN (i) .The integer valX (Di) refers to the non-dicritical valence ofDi with
respect to the vector �eld X, which is the number of XE−invariant components of
D that are in the neighborhood of Di.

The following de�nitions are proposed in [10].

De�nition 6. Let X be a germ of vector �eld at p given by

X = a (x, y) ∂x + b (x, y) ∂y

(1) Let (S, p) be a germ of smooth invariant curve. If, in some coordinates, S
is the curve {x = 0} and p the point (0, 0), then the integer ν (b (0, y)) is
called the indice of X at p with respect to S and it is denoted by

Ind (X,S, p) .

(2) Let (S, p) be a germ of smooth non-invariant curve. If, in some coordinates,
S is the curve {x = 0} and p the point (0, 0), then the integer ν (a (0, y)) is
called the tangency order of X with respect to S and it is denoted by

Tan (X,S, p) .

The equality below is proved in [10] and specializes to a classical result of [1] if XE

leaves invariant D.

Proposition 7. The multiplicity of X satis�es the equality

ν (X) + 1 =

N∑
i=1

ρEi εi (X,E)

where

(1) if Di is invariant by XE,

εi (X,E) = −valX (Di) +
∑
c∈Di

Ind
(
XE , Di, c

)
;

(2) if Di is non invariant by XE,

εi (X,E) = 2− valX (Di) +
∑
c∈Di

Tan
(
XE , Di, c

)
.
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Beyond the integers εi (X,E) which describe partially the topology of the vector
�eld X, we will introduce additional numerical invariants to control its topology.
Besides, when X is Saito for S, we will establish a relation between the latter and
the integers εi (X,E).

The curve S be given, let ∆S =
(
∆S
i

)
i=1,...,N

be any element in {0, 1}N . Denote
by δSk the integer

δSk = card
{
i ∈ P (k)|∆S

i = 1
}
.

We consider the following vector of integers

SS =

ν (Sk)− δSk
2

+

⌊
∆S
k

1
2

ν(Sk)−δSk


t

k=1,...,N

Below, Theorem 8 will provide some geometric interpretations of the invariants
above : actually, ∆S

k = 1 will indicate that the vector �eld XE leaves invariant the
component Dk and thus, δSk will be the number of XE−invariant parents of Dk in
the process E. In particular, for any k, δSk ∈ {0, 1, 2} .
We introduce the system of equations

(
HS
)
whose unknown variables are the vectors

ES =

 εS1
...
εSN

 ∈ NN and ∆S =
(
∆S
i

)
i=1,...,N

de�ned by

(
HS
)

:
(
PS
)−1 ES = SS

A solution
(
ES ,∆S

)
is admissible if it satis�es the compatibility conditions : for

any k = 1, . . . , N

(3.1) (?) :

{
∆S
k = 1 =⇒ εSk ≥ nSk

∆S
k = 0 =⇒ εSk ≥ 2−

∑
i∈N(k) ∆S

i
.

From Proposition 7, it can be seen that the compatibility conditions are necessary
so that a solution of

(
HS
)
is induced by the numerical data (εi (X,E))i=1,...,N .

Actually, as a consequence of Proposition 7, a Saito vector �eld for S provides an
admissible solution to the system

(
HS
)
.

Theorem 8. If X is a Saito vector �eld for S then setting

ES = (εi (X,E))i=1,...,N

and ∆S =
(
∆S
i

)
i=1,...,N

such that

∆S
i =

{
1 if Di is invariant by X

E

0 else

yields an admissible solution
(
ES ,∆S

)
of
(
HS
)
.

Proof. For k = 1, . . . , N, let E′ be the intermediate process of blowing-ups that
leads to Sk and Ek such that

E = E′ ◦ Ek.
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Let us denote by p the point of attachment of Sk to the exceptional divisor of E′.

The vector �eld XE′ being optimal for
(
SE
′
)
p
, we have

νp

(
XE′

)
+ 1 =

N∑
i=k

ρE
k

i εi

(
XE′ , Ek

)
= s

((
SE
′
)
p

)
+ 1(3.2)

=

ν

((
SE
′
)
p

)
2

+

⌊
∆S
k

1
2

ν
(
(SE′)

p

) .

Now, it can be seen that for i 6= k

εi

(
XE′ , Ek

)
= εi (X,E)

and that

εk

(
XE′ , Ek

)
= εk (X,E) + δSk .

Since ρE
k

k = 1 and ν

((
SE
′
)
p

)
= ν (Sk) + δSk , the relation (3.2) is written

N∑
i=k

ρE
k

i εi (X,E) =
ν (Sk)− δSk

2
+

⌊
∆S
k

1
2

ν(Sk)−δSk

.

Now following [13], the matrix de�ned by(
ρE

k

i

)
N≥i≥k≥1

is an upper triangular invertible matrix and its inverse is the proximity matrix PS .
Thus, the vectors ES and ∆S as de�ned in the statement provide a solution to the
system

(
HS
)
. Moreover, if ∆S

k = 0, then

εk (X,E)− 2 +
∑

i∈N(k)

∆S
i = εk (X,E)− 2 + valX (Dk)

=
∑
c∈Dk

Tan
(
XE , Dk, c

)
≥ 0

and if ∆S
k = 1 then

εk (X,E) = −valX (Dk) +
∑
c∈Dk

Ind
(
XE , Dk, c

)
= −

∑
i∈N(k)

∆S
i +

∑
c=Dk∩Di, i∈N(k)

Ind
(
XE , Dk, c

)
+

∑
c6=Dk∩Di, i∈N(k)

Ind
(
XE , Dk, c

)
It can be seen that if ∆S

i = 1 then Ind
(
XE , Dk, Dk ∩Di

)
≥ 1. Moreover, for any

regular component of SE attached to Dk at c, one has

Ind
(
XE , Dk, c

)
≥ 1.
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Thus, ∑
c6=Dk∩Di, i∈N(k)

Ind
(
XE , Dk, c

)
≥ nSk .

Finally, we are led to

εk (X,E) ≥ nSk .
Therefore, the solution

(
ES ,∆S

)
is admissible. �

If we restrict ourselves to the case where S is a union of germs of smooth curves,
we can prove that an admissible solution exists and is unique. We postpone the
proof of the proposition below in a �nal appendix.

Proposition 9. If S is a union of germs of smooth curves, then there exists a
unique choice of ∆S such that the associated solution of

(
HS
)
is admissible.

Example 10. The proximity matrix of Example (5) is

PS =

 1 −1 −1
0 1 0
0 0 1


and one has

ν (S1) = 4, ν (S2) = 2, ν (S3) = 2, nS1 = 0, nS2 = 2, nS3 = 2.

In addition, we have

εS1 = 1, εS2 = εS3 = 1 ∆S
1 = 1, ∆S

2 = ∆S
3 = 0,

as illustrated in Figure (3.1). Thus, we obtain that δS1 = 0, δS2 = δS3 = 1. Finally,
one can check that(

PS
)−1 ES =

 1 1 1
0 1 0
0 0 1

 1
1
1

 =

 3
1
1

 =

 4−0
2 + 1

2−1
2 + 1

2
2−1

2 + 1
2

 = SS

3.3. Existence of a Saito vector �eld. Below, we establish the existence of a
Saito vector �eld for a union of germs of smooth curves.

Theorem 11. Let S be a union of smooth germs of curves. Suppose that S is
generic in its topological class. Then

(1) there exists a vector �eld X Saito for S.
(2) there exists l a germ of smooth curve such that S ∪ l has no Saito basis of

type (E′d) .

The proof of Theorem 11 relies deeply on the form of a Saito basis for S whose
description is given in Theorem 2 : this description can be only made in a suitable
way for a curve generic in its topological class.

Proof. The proof is by induction on the maximal length of a branch in the desin-
gularization of S.

If this length is zero, then S is a smooth curve. In some coordinates (x, y) such
that S = {x = 0}, the vector �eld X = ∂x is Saito for S. Moreover, if l is the line
{y = 0} , then the family {x∂x, y∂y} is an adapted basis for S which is not of type
(E′d) .
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We suppose now that the maximal length of a branch in the desingularization of S
is strictly positive. Let us consider {X1, X2} an adapted basis for S and

(1, · · · , p0, p0 + 1, · · · , p1, p1 + 1, · · · )

a branch of E such that for each k, the curve
(
SE

1,pk−1
)
cpk

is of type 2 whereas in

the open interval of integers ]pk, pk+1[, it is of type 1 :

c1
1
← · · · ← cp0−1

1

← cp0
2

← cp0+1
1

← · · · ← cp1−1
1

← cp1
2

← cp0+1
1

← · · · .

Notice that the index p0 may be equal to 1, so that, the �rst curve S1 is of class 2.
Hence, the above description of a branch covers actually the general case.

Any family
{
XE1,k

1 , XE1,k

2

}
for k ≤ p0− 1 is a Saito basis for

(
SE

1,k
)
ck+1

: indeed,

the curve
(
SE

1,k
)
ck+1

being of class 1 for k ≤ p0−2, the Saito basis
{
XE1,k

1 , XE1,k

2

}
is also adapted. Considering a convenient combination of X1 and X2, we can

suppose that in the basis
{
XE1,p0−1

1 , XE1,p0−1

2

}
, one has

(3.3) νcp0

(
XE1,p0−1

1

)
≤ νcp0

(
XE1,p0−1

2

)
,

and XE1,p0−1

1 is optimal for
(
SE

1,p0−1
)
cp0

. Since, the latter is a curve of class 2,

there exists c ∈ C such that

νcp0

(
XE1,p0−1

1

)
< νcp0

XE1,p0−1

2 + cXE1,p0−1

1︸ ︷︷ ︸
X̃2


making of the basis

{
XE1,p0−1

1 , X̃2

}
an adapted basis for

(
SE

1,p0−1
)
cp0

. Keeping

on blowing-up along the branch until the point cp1 , we get a succession of adapted

bases. Now, at the point cp1 , we have to prove that the vector �eldX
E1,p1−1

1 satis�es
the inequality

(3.4) νcp1

(
XE1,p1−1

1

)
≤ νcp1

(
X̃Ep0,p1−1

2

)
.

Indeed, if the above inequality does not hold then there is no hope to obtain a vector
�eld Y which satis�es both inequalities (3.3) and (3.4), which means optimal for

both curves
(
SE

1,p0−1
)
cp0

and
(
SE

1,p1−1
)
cp1

. However, we can establish the lemma

below adapted to a branch along which the successives blown-up curves have the
following type

cp0
2

← cp0+1
1

← cp0+2
1

← · · · ← cp1−1
1

← cp1
2

.

Lemma 12. There exists a vector �eld Y optimal for
(
SE

1,p0−1
)
cp0

such that

Y E
p0,p1−1

is optimal for
(
SE

1,p1−1
)
cp1

.
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Proof. Applying inductively the property (2) of Theorem 11 to
(
SE

1,p1−1
)
cp1

yields

a germ of smooth curve l such that(
(S ∪ l)E

1,p1−1
)
cp1

is not of type (E′d). Since
(
SE

1,p0−1
)
cp0

is of class 2 then
(

(S ∪ l)E
1,p0−1

)
cp0

is of

classe 1. Let us consider an adapted basis {Y1, Y2} for
(

(S ∪ l)E
1,p0−1

)
cp0

. Since

the latter is of class 1, one has

νcp0 (Y1) = νcp0 (Y2) .

The vector �elds Y1 and Y2 leave invariant the smooth curve lE
1,p0−1

. Thus there
exists a germ of analytic function φ such that the vector �eld

Y1 − φY2

can be divided by a reduced equation L of the curve lE
1,p0−1

. According to the

criterion of Saito [12], {Y1, Y2} being a Saito basis for SE
1,p0−1

, the vector �elds Y1

and Y2 satisfy
det (Y1, Y2) = uF.

where u is a unity and F is a local equation of SE
1,p0−1

. Therefore, one has

det

(
Y1 − φY2

L
, Y2

)
= u

F

L
.

and, still following the criterion of Saito, the curve
(
SE

1,p0−1
)
cp0

admits the family{
Ỹ1 =

Y1 − φY2

L
, Y2

}
as Saito basis. Notice that Y2 is still tangent to lE

1,p0−1

and that

νcp0

(
Ỹ1

)
< νcp0 (Y2) .

In particular, Ỹ1 is optimal for SE
1,p0−1

. Now suppose that

νcp1

(
Ỹ E

p0,p1−1

1

)
≥ νcp1

(
Y E

p0,p1−1

2

)
+ 1.

Then, multiplying by LE
p0,p1−1

leads to

(3.5) νcp1

(
LE

p0,p1−1

Ỹ E
p0,p1−1

1

)
≥ νcp1

(
Y E

p0,p1−1

2

)
+ 2

since νcp1

(
LE

p0,p1−1
)

= 1. The family{
LE

p0,p1−1

Ỹ E
p0,p1−1

1 , Y E
p0,p1−1

2

}
is a Saito basis for

(
(S ∪ l)E

1,p1−1
)
cp1

. However, the inequality (3.5) implies that

the latter curve is of type (E′d), which is a contradiction with the choice of l.
Therefore, one has

νcp1

(
Ỹ E

p0,p1−1

1

)
≤ νcp1

(
Y E

p0,p1−1

2

)
and Ỹ1 satis�es the lemma. �
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The property established in the lemma is also satis�ed by XE1,p1−1

1 since one can
write

XE1,p1−1

1 = aỸ1 + bY2

where a, b ∈ O2 with a a unity. Thus, XE1,p1−1

1 is optimal for
(
SE

1,p1−1
)
cp1

and,

repeating the arguments along the whole branch, we can see that the optimality
property propagates.

Finally, for any branch B, we consider a vector �eld XB optimal along the branch
B and a generic combination of the form∑

αBXB , αB ∈ C

The latter is a Saito vector �eld for S, which �nishes the proof of property (1) .

Now, let us prove the second statement of Theorem 11. The vector �eld X1 being
Saito, Theorem 8 ensures that his topological data provide an admissible solution
of the system

(
HS
)
. Since S is a union of smooth curves, for any i = 2, . . . ,M,

δSi = ∆S
1 .

In particular, the following relation holds

(3.6) εS1 =
nS1
2

+

⌊
∆S

1
1
2
ν1

+
M − 1

2
∆S

1 −
M∑
k=2

⌊
∆S
k

1
2

νk−∆S
1

.

Suppose that ν (S1) is even, then for any smooth curve l, the valuation ν (S1 ∪ l)
is odd, thus S ∪ l cannot be of type (E′d) . Hence, we may suppose ν (S1) odd. If S
is of type (Od) then for any generic smooth curve S ∪ l is of type (Ed) and not of
type (E′d) . If S is of type (O) then S ∪ l is of type (E) . Thus, we can also suppose
that S is of type (O′d). It remains a couple of cases to investigate

Case 1. nS1 > 0. Let l1 be some irreducible component of S such that lE1 is

attached to D1. Let l be any germ of smooth curve such that lE and lE1
1

are transverse but attached to the same point of D1. Notice that S and
S ∪ l are not in the same topological class, but both can be supposed as
generic as necessary in their own topological class. We assert that S ∪ l
cannot be of type (E′d). Indeed, if it was so, then the multiplicity of its
Saito vector �eld XS∪l

1 would be equal to

(3.7) ν
(
XS∪l

1

)
=
ν (S1) + 1

2
− 1 =

ν (S1)− 1

2
= ν (X1)

which is exactly the multiplicity of a Saito vector �eld for S. However,
one can obtain the topology of XS∪l

1 from the one of X1 provided that
S is of type (O′d) and S ∪ l is of type (E′d). As depicted in Figure 3.2
it consists in replacing the invariant smooth curve l1 by two tangent
smooth curves l and l1 that are transverse after the �rst blowing-up. In
the process, it can be seen that the valuation of the associated vector
�eld increases by one, which contradicts the equality (3.7).

Case 2. nS1 = 0. Since S is of type (O′d), it follows from [4] that one has

εS1 = 2−
M∑
k=2

∆S
k .
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Figure 3.2. Topology of the Saito vector �elds of S and S ∪ l.

Combining with the relation (3.6) yields

(3.8)

M∑
k=2

⌊
0

∆S
k − 1

2
νk

=
3

2
.

Let us consider l a generic germ of smooth curve such that lE1 is attached
to S2 and suppose that S∪l is of type (E′d). Applying the same arguments
as above leads to

M∑
k=3

⌊
0

∆S∪l
k − 1

2
νk

+

⌊
0

∆S∪l
2 − 1

2
ν2+1

= 2.

Since l is attached to S2, the curve S ∪ l satis�es

∀k 6= 2, (S ∪ l)k = Sk.

Now Proposition 8 ensures the unicity of the family of integer
(
∆S
k

)
,

which provides a compatible solution to
(
HS
)
. Therefore, for any k 6= 2,

one has

∆S∪l
k = ∆S

k .

Combining the two relations above yields⌊
0

∆S∪l
2 − 1

2
ν2+1

− 1

2
=

⌊
0

∆S
2 − 1

2
ν2

.

In particular, if ν2 is odd, then ∆S
2 = 0. Thus, if for any generic germ of

smooth curve l such that lE1 is attached to Si for i = 2, . . . , k, the curve
S ∪ l is of type (E′d), then we have the following alternative : either νi is
even or ∆S

i = 0. But the latter contradicts (3.8).

�

4. Number of moduli of S.

According to [11], if S is any curve generic in its topological class, its number of
moduli, denoted by MS , is equal to

MS = dimCH
1 (D, XS |D)

where XS is the sheaf of germs of vector �elds on C̃2 tangent to the total transform
E−1 (S) of S by E. Indeed, the �rst group of cohomology of the sheaf XS |D can be
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identi�ed as the tangent space to the space of parameters of any miniversal deforma-
tion of S. This dimension can be inductively computed along the desingularization
of S following the result below.

Theorem ([5]). For any germ of curve S, the number of moduli MS is written

MS = dimCH
1
(
D1, X

1
S

∣∣
D1

)
+

M∑
k=2

MSk∪D1

where X1
S is the sheaf of germs of vector �elds on the total space of E1 tangent to

the total transform E−1
1 (S).

This theorem is the one upon which our whole strategy is based.

Following [4] and setting

σ (S) = dimCH
1
(
D1, X

1
S

∣∣
D1

)
,

one has : if S is generic in its topological class then

(4.1) σ (S) =



(ν (S)− 2) (ν (S)− 4)

4
if S is of type (E)

(ν (S)− 3)
2

4
if S is of type (O)

(ν (S)− 2) (ν (S)− 4)

4
− 1 + εS1 +

M∑
k=2

∆S
k if S is of type (Ed)

(ν (S)− 3)
2

4
− 2 + εS1 +

M∑
k=2

∆S
k if S is of type (Od)

Thus the expression of σ (S) depends �rstly, on the type of the curve S, secondly,
on some topological data associated to S and its Saito vector �eld. When S is a
union of germs of smooth curves, these data can be obtained from an admissible
solution of

(
HS
)
since Proposition 5 and Theorem 8 assert that this solution is

unique and given precisely by the topological data of a Saito foliation for S.

The formula (4.1) recovers the number of moduli computed by Granger for the
curve Σn : xn + yn = 0 in [6], n ≥ 2. Indeed, this curve is desingularized by one
blowing-up and it can be seen that for n ≥ 5, it is of type (Ed) or (Od) with

εΣn
1 =

⌊
n
2

n+1
2

.

n

Therefore, one has

MΣn = σ (Σn) =

{
(n−2)2

4 if n is even
(n−1)(n−3)

4 if n is odd
,

which is in accordance with the results of Granger.

Algorithm 1 computes an admissible solution of
(
HS
)
. The proof of Algorithm 1

is given in Appendix. Algorithm 2 computes the number of moduli of S.
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Algorithm 1 Algorithm to compute an admissible solution of
(
HS
)
.

INPUT : PS ,
(
nS1 , · · · , nSN

)
IF PS = (1) :

IF nS1 = 1 : RETURN (1, 1).
IF nS2 = 2 : RETURN (2, 1).

IF nS3 ≥ 3 : RETURN

nS
1
2

+

⌊
0
1
2

nS
1

, 0

.
IF PS 6= (1) :

FOR k = 2, . . . ,M :

Extract from PS the proximity matrix of PSk .
Apply Algorithm 1 to the input(

PSk ,
(
n
Sk

σk(1)
, · · · , nSk

σk(Nk)

))
to get a family of admissible solutions

{(
ESk ,∆Sk

)}
k=2,...,M

.

SET

∆S,0
k =

{
0 if k = 1

∆Si
j if k = σi (j) .

and the associated vector SS,0.

Apply Algorithm 1 to the input(
PSk ,

(
n
Sk

σk(1)
+ 1, · · · , nSk

σk(Nk)

))
to get a family of admissible solutions

{(
ESk∪D1 ,∆Sk∪D1

)}
k=2,...,M

.

SET

∆S,1
k =

{
1 if k = 1

∆Si
j if k = σi (j) .

and the associated vector SS,1.

RETURN : Exactly one solution of
(
HS
)
de�ned by

((
PS
)−1

SS,0,∆S,0
)
and((

PS
)−1

SS,1,∆S,1
)
is admissible.

Algorithm 2 Algorithm to compute the number of moduli of S.

INPUT : PS ,
(
nS1 , · · · , nSN

)
IF PS = (1) :

RETURN :

 (nS
1−2)2

4
if nS1 is even

(nS
1−1)(nS

1−3)
4

if nS1 is odd
.

IF PS 6= (1) :
Compute an admissible solution for

(
HS
)
by Algorithm 1.

Determine the type of the curve S and the values of εS1 and
(
∆S
k

)
k=2,...,M

.

Compute σ (S) .
FOR k = 2, . . . ,M :

Compute inductively the number MSk∪D1 .

RETURN : MS = σ (S) +
∑M
k=2 M

Sk∪D1 .
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S1 S2 ∪D1 S3 ∪D2

Type (Ed) (Od) (Od)

Saito Picture

PS

 1 −1 0
0 1 −1
0 0 1

 (
1 −1
0 1

)
(1)

ν (Sk) 10, 6, 4 7, 4 5

nS
i 4, 2, 4 3, 4 5

∆S
i (0, 1, 0) (0, 0) (0)

δSi (0, 0, 1) (0, 0) (0)

SS

 5
4
2

 (
4
2

)
(3)

ES
 1

2
2

 (
2
2

)
(3)

σ (S) 13 4 2

Table 2. Number of moduli of S4,2,4.

Example 13. Let us consider the curve S4,2,4 de�ned by the proximity matrix

PS4,2,4 =

 1 −1 0
0 1 −1
0 0 1


and the integers nS1 = 4, nS2 = 2, nS3 = 4. The curve S4,2,4 is topologically equiva-
lent to the one given in some coordinates (x, y) by

y (y + x) (y + 2x) (y + 3x)× · · ·
x
(
x+ y2

)
× · · ·(

x− y2
) (
x− y2 + y3

) (
x− y2 + 2y3

) (
x− y2 + 3y3

)
= 0

Then we get the data summarized in Table 2. Therefore, the number of moduli of
S4,2,4 is equal to 13 + 4 + 2 = 19.

We implemented, among other procedures, the Algorithm 1 and Algorithm 2 on
Sage 9.* to compute the number of moduli. See the routine Courbes.Planes follow-
ing the link

https://perso.math.univ-toulouse.fr/genzmer/

5. Appendix

Once a proximity matrix PS and a family of integers
(
nS1 , · · · , nSk

)
are given, one

can choose an arbitrary vector ∆S , compute the associated integers δSk and obtain
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the vector SS . Then, the invertible system
(
HS
)

(
HS
)

:
(
PS
)−1 ES = SS

provides a unique corresponding solution ES . However, there is no reason for this
solution

(
ES ,∆S

)
to be admissible. Nevertheless, we will prove that for any union

of germs of smooth curves - not necessarly generic in its topological class - we have
the following proposition.

Proposition. If S is a union of germs of smooth curves, there exists a unique
choice of ∆S such that the associated solution of

(
HS
)
is admissible.

To prove the above proposition, �rst, let us establish a lemma that describes the
behaviour of the system

(
HS
)
when one goes from S to S ∪ l where l is somehow

a generic smooth curve.

Lemma 14. Let l be a smooth curve such that the strict transform E?1 l is attached
at D1 at no point of attachment of any component of E?1S.

• If there exists ∆S with ∆S
1 = 0, such that the solution of

(
HS
)
is admissible,

then the same ∆S provides an admissible solution for the system
(
HS∪l

)
.

• If ν (S) is odd and there exists ∆S with ∆S
1 = 1, such that the solution of(

HS
)
is admissible, then the same ∆S provides an admissible solution for

the system
(
HS∪l

)
.

Proof. The lemma above can be seen on the behaviour of the system
(
HS
)
when

nS1 is increased by 1 : indeed the hypothesis on l ensures that E is still the desin-
gularization process of S ∪ l and that{

nS∪l1 = nS1 + 1
nS∪lk = nSk ∀k 6= 1

Since S is a union of smooth curves, its proximity matrix PS is written

PS =

(
1 −1 · · · −1 0 · · · 0
...

...
...

)
with the number −1 repeated M times on the �rst line. Therefore, one can expand
the expression of εS1 as below

(5.1) εS1 =
ν (S1)− δS1

2
+

⌊
∆S

1
1
2

ν(S1)−δS1

−
M∑
k=2

ν (Sk)− δSk
2

+

⌊
∆S
k

1
2

ν(Sk)−δSk


By construction, δS1 = 0. Now, if ∆S

1 = 0, since the solution
(
ES ,∆S

)
is admissible,

one has εS1 ≥ 2 −
∑M
i=2 ∆S

i . If n
S
1 is increased by one, it does not a�ect ν (Sk) for

k ≥ 2 but it changes ν (S1) into ν (S1) + 1. However, if ν (S1) is even then

ν (S1 ∪ l)
2

+

⌊
0
1
2

ν(S1∪l)

=
ν (S1)

2
+

⌊
0
1
2

ν(S1)

+ 1
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and if ν (S1) is odd then

ν (S1 ∪ l)
2

+

⌊
0
1
2

ν(S1∪l)

=
ν (S1)

2
+

⌊
0
1
2

ν(S1)

Thus setting εS∪l1 = εS1 or εS1 + 1 depending on ν (S1) being odd or even and{
∆S∪l
i = ∆S

i i = 1, . . . , N

εS∪li = εSi i 6= 1

yields an admissible solution of the system
(
HS∪l

)
.

Now, if ν (S1) is odd and ∆S
1 = 1, then one has

εS1 =
ν (S1) + 1

2
−

M∑
k=2

ν (Sk)− δSk
2

+

⌊
∆S
k

1
2

ν(Sk)−δSk


and εS1 ≥ nS1 . The multiplicity ν (S1) being odd, one has

ν (S1 ∪ l)
2

+

⌊
1
1
2

ν(S1∪l)

=
ν (S1) + 1

2
+ 1.

Thus setting εS∪l1 = εS1 +1 yields an admissible solution of the system for S∪ l since

εS∪l1 = εS1 + 1 ≥ nS1 + 1 = nS∪l1 .

�

Proof of the proposition. The proof is by induction on the length of the desingular-
ization of S. First, let us prove the proposition for a curve S desingularized after
one blowing-up. The system

(
HS
)
reduces to the sole equation

(5.2) εS1 =
ν (S1)

2
+

⌊
∆S

1
1
2

ν(S1)

If ν (S1) = nS1 = 1 or 2 then ∆S
1 = 1 is the unique admissible choice since εS1 is

respectively equal to 1 and 2, which are all bigger than the respective nS1 , whereas
if ∆S

1 = 0 one �nds always 1 which is smaller than 2 = 2−
∑
i∈N(1) ∆S

i . If ν (S1) =

nS1 ≥ 3 then εS1 < nS1 thus ∆S
1 = 1 is excluded. However, ∆S

1 = 0 brings an
admissible solution to the equation (5.2) since εS1 ≥ 2.

For the inductive step, let us consider the unique choice
(

∆Si,0
k

)
k=1,...,Ni

provided

by the inductive application of the proposition to each Si. In the same way, consider

the unique choice
(

∆Si,1
k

)
k=1,...,Ni

obtained when the proposition is applied to each

Si ∪D1. Then we set

∆S,0: ∆S,0
k =

{
0 if k = 1

∆Si,0
j if k = σi (j) .

and

∆S,1: ∆S,1
k =

{
1 if k = 1

∆Si,1
j if k = σi (j) .
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Notice that the above values of ∆Si,?
k are well de�ned since for any k 6= l, one has

Imσk ∩ Imσl = ∅.

From these data, we can compute the integers δS,?k , ? = 0, 1 and the vectors of
integers SS,?, ? = 0, 1 respectively associated to ∆S,0 and ∆S,1. Then, we can
consider the associated solutions

(5.3)
(
ES,?,∆S,?

)
of the invertible system

(
HS
)
.

For any k = 2, . . . ,M, δS,0k = 0. Thus, the vectors SS,0 and SSk satisfy(
SS,0

)
k

=
(
SSk

)
1
, k = 2, . . . ,M.

Moreover, for any k = 2, . . . ,M, δS,1k = 1 and therefore(
SSk∪D1

)
1

=
ν (Sk ∪D1)

2
+

⌊
∆Sk∪D1

1
1
2

ν(Sk∪D1)

=
ν (Sk)− 1

2
+

⌊
∆S,1
k
1
2

ν(Sk)−1

+1 =
(
SS,1

)
k

+1.

In particular, for k = 2, . . . ,M, one has

εSk∪D1
1 =

(
ESk∪D1

)
1

=
(
ES,1

)
k

+ 1 = εS,1k + 1.

Since

nSk∪D1
1 = nSk + 1,

we conclude that both solutions (5.3) for ? = 0, 1 satisfy the compatibility conditions
(3.1) for any k = 2, . . . ,M and also for any k ≥M + 1, since for k ≥M + 1,(

SS,0
)
k

=
(
SS,1

)
k

=
(
SSi

)
j

nS,0k = nS,1k = nSi
j

where k = σi (j) .

To �nish the proof, we are going to see that exactly one of the solutions (5.3)
satis�es the compatibility condition for k = 1.

Following (5.1) one has

εS,11 + εS,01 = ν (S1) +

⌊
1
1
2

ν(S1)

+

⌊
0
1
2

ν(S1)︸ ︷︷ ︸
=1

−
M∑
i=2

ν (Si)− 1

2
+

⌊
∆S,1
i
1
2

ν(Si)−1

− M∑
i=2

ν (Si)

2
+

⌊
∆S,0
i
1
2

ν(Si)

 .

Observe that ν (S1)−
∑M
i=2 ν (Si) = nS1 . Thus, the relation above reduces to

εS,11 + εS,01 = nS1 + 1−
M∑
i=2

−1

2
+

⌊
∆S,1
i
1
2

ν(Si)−1

+

⌊
∆S,0
i
1
2

ν(Si)


= nS1 + 1−

M∑
i=2

⌊
∆S,0
i

∆S,1
i

.

ν(Si)
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If ν (Si) is even then

⌊
∆S,0
i

∆S,1
i

ν(Si)

= ∆S,0
i . If ν (Si) is odd, then

⌊
∆S,0
i

∆S,1
i

ν(Si)

= ∆S,1
i .

But Lemma 14 ensures that

∆S,0
i = 0 =⇒ ∆S,1

i = 0

ν (S) odd and ∆S,0
i = 1 =⇒ ∆S,1

i = 1

Thus whether ν (Si) is odd or even, one has

⌊
∆S,0
i

∆S,1
i

ν(Si)

= ∆S,0
i .

Finally, we are led to the relation

(5.4) εS,11 + εS,01 = nS1 + 1−
M∑
i=2

∆S,0
i .

Hence, one of the following inequalities holds

εS,11 ≥ nS1

or

εS,01 ≥ 2−
M∑
i=2

∆S,0
i

the two being mutually exclusive according to (5.4). By induction, this concludes
the proof. �

Example 15. Suppose that S is desingularized after two successive blowing-ups,
then its proximity matrix is written

PS =

(
1 −1
0 1

)
.

Below, we present the unique choice of ∆S = (?, ?) ∈ {0, 1}2 depending on nS1 and
nS2 that leads to an admissible solution of

(
HS
)
.
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Figure 5.1. Unique admissible choice of ∆S =
(
∆S

1 ,∆
S
2

)
.

For instance, if nS1 = 3 and nS2 = 5 then ν (S1) = 8 and ν (S2) = 5. Setting
∆S = (1, 0) yields

ES =

(
3
2

)
.

One can check that(
PS
)−1 ES =

(
1 1
0 1

)(
3
2

)
=

(
5
2

)
=

(
8−0

2 + 1
5−1

2

)
= SS

and

εS1 = 3 ≥ nS1 = 3 εS2 = 2 ≥ 2− 0

so the solution
(
ES ,∆S

)
is admissible.
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