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ON THE SAITO BASIS AND THE TJURINA NUMBER FOR

PLANE BRANCHES

Y. GENZMER AND M. E. HERNANDES

Abstract. We introduce the concept of a good Saito basis for a plane curve
and we explore it to obtain a formula for the minimal Tjurina number in a
topological class. In particular, we give a lower bound for the Tjurina number
in terms of the Milnor number that allow us to present a positive answer for
a question of Dimca and Greuel.

Mathematics Subject Classi�cation: Primary 14H50; Secondary 14B05, 32S05.
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1. Introduction.

Let S : {f = 0} be a germ of an irreducible analytic plane curve. An important

analytic invariant of S is the Tjurina number τ(S) = dimC
C{x,y}

(f)+J(f) where J(f)

denotes the Jacobian ideal of f .
In general, the computation of τ(S) is not easy. For instance, we can obtain
it considering a Gröbner basis for the ideal (f) + J(f), or alternatively, it is

possible to compute τ by the dimension of J(f):(f)
J(f) (see Theorem 1 in [7]) that

is related with the C{x, y}-module Ω1(S) of all germs of 1-holomorphic forms
ω ∈ C{x, y}dx + C{x, y}dy such that f divides ω ∧ df . More precisely, accord-
ing to K. Saito [9], Ω1(S) is freely generated by two elements {ω1, ω2}. It will be
shown that τ(S) can be expressed from, among other invariants, the codimension
of the ideal (g1, g2) where ωi ∧ df = gifdx ∧ dy.
If L denotes a topological class of a plane curve - for instance, given by the char-

acteristic exponents - then the Milnor number µ = dimC
C{x,y}
J(f) is constant for any

S : {f = 0} ∈ L and τmin ≤ τ(S) ≤ µ. Generically, an element S ∈ L is such that
τ(S) = τmin, so τmin can be expressed using the topological data that characterizes
L. Delorme in [3], presented a formula to compute the generic dimension d(β0, β1)
of the moduli space for an irreducible plane curve with characteristic exponents

(β0, β1). As d(2, β1) = 0 and d(β0, β1) = (β0−3)(β1−3)
2 +

[
β0

β1

]
− 1 − µ + τmin (see

[6]) we can compute the minimal Tjurina number for this topological class. On the
other hand, Peraire in [8] developed an algorithm to compute τmin by means of a
�ag of J(f).

This work has been partially supported by the Réseau de Coopération France-Brésil. M. E.
Hernandes was also partially supported by CNPq.
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In this paper we present a way to express the di�erence µ − τ for a singular irre-
ducible plane curve S when Ω1 (S) admits a basis {ω1, ω2} of special kind, that we
call a good Saito basis (see De�nition 2).
More speci�cally, we present a formula (see Theorem 11) to compute the di�erence

between µ(S)− τ(S) and µ(S̃)− τ(S̃) where S̃ denotes the strict transform of S.
If S is generic in L, then, according to [5], S admits a good basis and this fact
allows us to obtain a formula to compute τmin in L by the sole topological data:
the sequence of multiplicities in the canonical resolution or the characteristic ex-
ponents for instance. In particular, for irreducible plane curves, we are able to
present a lower bound for the minimum Tjurina number in L in terms of the Mil-
nor number that allow us to give an a�rmative answer to a question of Dimca and
Greuel [4] about the inequality 4τ > 3µ and obtained simultaneously by Alberich-
Carramiñana et al. in [1] published in ArXiv a few days before the �rst version of
this paper.
The paper is organized as follows. In the section 2 we present some general proper-
ties of a Saito basis. The concept of a good Saito basis is introduced in the section
3 and its properties as well. The section 4 is devoted to the formula for the minimal
Tjurina number, a lower bound for the Tjurina number using the Milnor number
and consequently an answer to the Dimca-Greuel question.

2. The Saito basis.

Let S : {f = 0} be a germ of an analytic plane curve and consider the C{x, y}-
module Ω1(S) of all germs of 1-holomorphic forms ω ∈ C{x, y}dx+C{x, y}dy such
that f divides ω∧df . It is equivalent to require that the foliation induced by ω lets
invariant S. Saito in [9] shows that Ω1(S) is a free module of rank 2 and a basis of
Ω1(S) is called a Saito basis.
It is not trivial to obtain a Saito basis, but there is a simple criterion to verify if
{ω1, ω2} is a basis for Ω1(S) (see Theorem, page 270 in [9]).

Theorem (Saito criterion). The set {ω1, ω2} is a Saito basis for S : {f = 0} if and
only if ω1 ∧ ω2 = ufdx ∧ dy, where u is a unit in C{x, y}.

This criterion can be interpreted as follows : {ω1, ω2} is a basis for Ω1(S) if the
tangency locus between the two forms reduces to S.
Below, we present some examples of Saito basis for S : {f = 0}. All of them will
illustrate, in the sequel, various sensitivities of the Saito basis with respect to small
perturbations of the curve S. In the whole article, we will keep the same numbering
of the examples for the convenience of the reader.

Example (1). The simplest case is when f = yp − xq, that is S1 : {f = 0} is
quasi-homogeneous. In fact, if ω1 = qydx− pxdy and ω2 = df , then

ω1 ∧ ω2 = pqfdx ∧ dy

and {ω1, ω2} is a basis for Ω1(S1).
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Example (2). If f = y5 − x6 + x4y3 then S2 : {f = 0} is topologically quasi-
homogeneous, that is, S2 presents characteristic exponents (5, 6), but not analyti-
cally equivalent to y5 − x6 = 0. One can show that the set {ω1, ω2} where

ω1 =

(
−6xy +

16

15
x3y2 − 8

5
xy5

)
dx+

(
5x2 +

4

3
y3 +

4

5
x2y4

)
dy

ω2 =

(
−6y2 +

8

5
x4 − 12

5
x2y3

)
dx+

(
5xy +

6

5
x3y2

)
dy

satisfy ω1 ∧ ω2 = 8fdx ∧ dy, so {ω1, ω2} is a Saito basis for Ω1(S2).

Example (3). The curve S3 : {f = 0} with f = y5 − x11 + x6y3 is topologi-
cally equivalent to the any curve with characteristic exponents (5, 11) and its strict
transform is S2. The set {ω1, ω2} where

ω1 =
(
605y2 + 198xy3 − 88x6

)
dx−

(
275xy + 66x2y2

)
dy

ω2 =
(
605x4y + 150x5y2

)
dx−

(
40y3 + 275x5 + 90x6y

)
dy

satisfy ω1∧ω2 = (−24200−7920xy)fdx∧dy, so {ω1, ω2} is a Saito basis for Ω1(S3).

Example (4). The class of curve with characteristic exponents the form (n, n+ 1)
has been extensively studied by Zariski [11]. The curve S4 given by

f = y7 − x8 − 7x6y2 − 147

8
x4y4

that, belongs to the latter class, will be shown of a peculiar interest. The forms

ω1 =

(
8x2y − 147

8
x4 − 3087

4
x2y2 − 21609

16
y4

)
dx+

+

(
−7x3 +

7

4
xy2 +

64827

64
xy3 +

5145

8
x3y

)
dy

ω2 =

(
8xy2 +

1029

8
x3y

)
dx+

(
−7x2y +

7

4
y3 − 1029

8
x4

)
dy.

produce a Saito basis for Ω1(S4) because ω1 ∧ ω2 = − 151263
64 fdx ∧ dy.

Given a 1-form ω = Adx+Bdy we denote by ν(ω) = min{ν(A), ν(B)} its algebraic
multiplicity, where ν(H) indicates the multiplicity of H ∈ C{x, y} at (0, 0) ∈ C2.
Among all the possible basis {ω1, ω2} for Ω1(S) we choose some that maximizes
the sum ν(ω1) + ν(ω2) that, following the Saito criterion, cannot be bigger than
ν = ν(f) = ν (S). For such basis we denote

ν1 := ν (ω1) ν2 := ν (ω2) .

The following result is immediate and identi�es a new analytical invariant of S.

Proposition 1. The couple (ν1, ν2), up to order, is an analytical invariant of S.

Remark that the pair (ν1, ν2) is not a topological invariant. For instance, following
the examples above, for S1 with p = 5 and q = 6 we have (ν1, ν2) = (1, 4). But the
curve S3 which is topological equivalent to S1 has corresponding pair of multiplic-
ities (2, 2).
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From now on, we consider S : {f = 0} singular and irreducible (a plane branch)
with a Saito basis {ω1, ω2} such that ωi = Aidx+Bidy In particular, we have

(2.1) A1B2 −A2B1 = uf and Ai
∂f

∂y
−Bi

∂f

∂x
= gif

where u(0, 0) 6= 0 and gi ∈ C{x, y} is called the cofactor of ωi.
Applying a generic linear change of coordinates if necessary, we can suppose that
for i = 1, 2, one has ν (Ai) = ν (Bi) = νi and in this coordinates (x, y) the tangent
cone of f , i.e. its ν-jet, is (y + εx)

ν
. From now on, we denote fν = (y + εx)

ν
.

Example (1). Consider the irreducible curve S1. Suppose by symmetry that p < q,
we have ν(A1) = ν(B1) = ν1 = 1 but q − 1 = ν(A2) > p − 1 = ν(B2) = ν2.
Consider the change of coordinates T (x, y) = (x, y − εx) with ε 6= 0 we obtain
f1 = T ∗(f) = (y − εx)p − xq and the Saito basis η1 = T ∗(ω1) and df1

η1 = (q(y − εx) + εpx)dx− pxdy
df1 = (−εp(y − εx)p−1 − qxq−1)dx+ p(y − εx)p−1dy

satisfying the above condition. In addition, η1∧df1 = pqf1dx∧dy, that is, g1 = pq
and g1 = 0.

Example (2). For the curve S2, we have

ω1 ∧ df = (−30x− 8xy4)fdx ∧ dy and ω2 ∧ df = (−30y − 12x2y2)fdx ∧ dy,
that is, g1 = −30x− 8xy4 and g2 = −30y − 12x2y2.

Example (3). Considering the curve S3, we have ν(A1) = ν(B1) = 2 but 5 =
ν(A2) > ν(B2) = 3. By the change of coordinates T (x, y) = (x, x + y) we obtain
f1 = T ∗(f) = (y + x)5 − x11 + x6(y + x)3 and ηi = T ∗(ωi) = (Ai +Bi)dx+ Bidy
with ν(A1 +B1) = ν(B1) = 2 and ν(A2 +B2) = ν(B2) = 3. In addition,

η1 ∧ df = (3025(x+ y) + 990x(y + x)2)f1dx ∧ dy

η2 ∧ df = (3025x4 + 990x5(y + x))f1dx ∧ dy,
consequently, g1 = 3025(x+ y) + 990x(y + x)2 and g2 = 3025x4 + 990x5(y + x).

Example (4). Finally, for S4 we �nd

ω1 ∧ df =

(
56x2 − 151263

16
y3 − 21609

4
x2y

)
fdx ∧ dy

ω2 ∧ df = (56xy + 1029x3)fdx ∧ dy.

Notice that any generator ωi in a Saito basis {ω1, ω2} has an isolated singularity,
that is, gcd(Ai, Bi) = 1. In addition, by (2.1), we have that ν(gi) ≥ νi − 1.

3. Good Saito basis and the Tjurina number for S.

As we mentioned before, given a Saito basis {ω1, ω2} for Ω1(S) we get ν1 + ν2 ≤ ν.
In [5], the �rst author shows the following theorem:

Theorem (Generic Basis Theorem). In a �xed topological class L, generically any

curve S admits a Saito basis satisfying
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ν1 = ν2 = ν
2 if ν = ν(S) is even

ν1 = ν2 − 1 = ν−1
2 if ν = ν(S) is odd.

Notice that, generically ν1 + ν2 is maximum. Of course, Example 1 shows that we
can obtain ν1 + ν2 = ν in other cases. This motives the following de�nition.

De�nition 2. We say that S (or Ω1(S)) admits a good basis if ν1 + ν2 = ν.

This section is devoted to present some properties of a good basis. One of them is
related with the index i (S) we introduce in the sequel.
Let E be the standard blowing-up of the origin in C2 with coordinates (x, y) and
suppose that, in the chart (x1, y1) such that E (x1, y1) = (x1, x1y1), the strict
transform of S goes through (0, y1).
As before, we consider fν = (y + εx)

ν
.

De�nition 3. For any ω = Adx + Bdy ∈ Ω1 (S), we denote by i (ω) ∈ N ∪ {∞}
the valuation given by

i (ω) = νy1=−ε

(
A(ν(ω)) (1, y1) + y1B

(ν(ω)) (1, y1)
)

where νy1=−ε(G) denotes de multiplicity of G ∈ C{y1} at −ε ∈ C.
Moreover, we denote by i (S) ∈ N the integer

i (S) = min
ω∈Ω1(S)

i (ω) .

The value i (ω) is nothing but the index Ind(F ,C, 0) introduced in [2] for a germ
of foliation F having C as a smooth invariant curve.
Notice that for a given ω, the index i (ω) is in�nite if and only if ω is dicritical, that
is, Aν(ω) (1, y1) + y1B

ν(ω) (1, y1) = 0.
However, for any curve i (S) is �nite. Indeed, if f is a reduced equation for S then
df belongs to Ω1 (S) and it is not dicritical, thus i (S) ≤ i (df) <∞. In particular,
if ω ∈ Ω1(S) is non dicritical, then i(ω) ≤ ν(ω) + 1.

Example (1). For S1, with p < q, the considered Saito basis is a good basis.
Moreover, i (ω1) = 1 and i (ω2) = p.

Example (2). Having a good basis is a property sensitive to perturbation. Indeed,
for instance, the basis {ω1, ω2} of S2 computed in the example is not good. Besides
that, we have i (ω1) = 1 and i (ω2) = 2.
Actually S2 does not admit any good basis. In fact, if S2 admits a good basis

{$1, $2}, then we can suppose that 2 = ν($1), 3 = ν($2), ω
(2)
i = ci$

(2)
1 where

ci ∈ C \ {0} and ω(2)
i = A2

idx+B2
i dy . In this way, ω

(2)
1 = c2

c1
ω

(2)
2 , an absurd.

Example (3). Good basis is not preserved by blowing-up. In fact, S3 has a good
basis, but its strict transform is analytically equivalent to S2 that does not admit
good basis. For S3 we have i (ω1) = 2 and i (ω2) = 4.

Example (4). Finally, S4 does not have a good basis. We �nd i (ω1) = 1 and
i (ω2) = 2.
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The next result shows that if S admits a good basis, the index i (S) is achieved for
one of its elements.

Proposition 4. If S admits a good basis {ω1, ω2} then
i (S) = min {i (ω1) , i (ω2)} .

Proof. By Saito criterion, one has ω1∧ω2 = uf with u(0, 0) 6= 0. Since ν1 +ν2 = ν,

one has ω
(ν1)
1 ∧ ω(ν2)

2 6= 0, where ω
(νi)
i = Aνii dx+Bνii dy. In particular, both forms

ω1 and ω2 cannot be dicritical and therefore min {i (ω1) , i (ω2)} <∞.
Now, consider any form ω = P1ω1 + P2ω2 ∈ Ω1 (S) with Pi ∈ C{x, y} and

mi = ν (Pi). Since P
(m1)
1 ω

(ν1)
1 + P

(m2)
2 ω

(ν1)
2 cannot vanish identically, it is the

homogeneous part of smallest degree of ω. Therefore

i (ω) = νy1=−ε

(
P

(m1)
1 (1, y1) (Aν11 (1, y1) + y1B

ν1
1 (1, y1))

+P
(m2)
2 (1, y1) (Aν22 (1, y1) + y1B

ν2
2 (1, y1))

)
≥ min {i (ω1) , i (ω2)} .

�

In the previous section, we remark that for an element ωi in a Saito basis we get
ν(gi) ≥ νi − 1 and i(ωi) ≤ ν(ωi) + 1. For good basis it is possible to obtain the
following result.

Lemma 5. Given a good basis {ω1, ω2} for S, if ν (gi) ≥ νi then i (ωi) = νi + 1.

Proof. By symmetry let us consider i = 1 and suppose that ν (g1) ≥ ν1. The
(ν1 − 1 + ν)-jet of

A1
∂f

∂y
−B1

∂f

∂x
= g1f is A

(ν1)
1 ν (y + εx)

ν−1 −B(ν1)
1 νε (y + εx)

ν−1
= 0,

thus A
(ν1)
1 = εB

(ν1)
1 . On the other hand the ν-jet of A1B2 − A2B1 = uf where

u(0, 0) 6= 0 reduces to

A
(ν1)
1 B

(ν2)
2 −A(ν2)

2 B
(ν1)
1 = B

(ν1)
1

(
εB

(ν2)
2 −A(ν2)

2

)
= u(0, 0) (y + εx)

ν
.

Thus, there exists some constant c 6= 0 such that B
(ν1)
1 = c (y + εx)

ν1 . Therefore,
ω1 can be written

ω1 =
c

ν1 + 1
d
(

(y + εx)
ν1+1

)
+ h.o.t.

thus i (ω1) = ν1 + 1. �

Notice that the above proof ensures that the inequality ν (gi) ≥ νi cannot hold
for both elements in a good basis. Moreover, given a good basis for Ω1(S) we
can always get a good basis with some nice properties. To do this we present the
following lemmas.

Lemma 6. If Ω1(S) admits a good basis {ω1, ω2}, then we can suppose that

i (ω1) = i (S) and ν (g1) = ν1 − 1.
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Proof. By symmetry we can suppose that i (ω1) = i (S) .
Case 1. If i (ω2) = i (ω1), then, as mentioned above, for i = 1 or 2, one has
ν (gi) = νi − 1. Switching maybe the two forms, we can suppose that ω1 satis�es
the conclusion of the lemma.
Case 2. Suppose now that i (ω1) < i (ω2) .
Subcase 2.a if ν1 ≤ ν2, we consider, the family {ω1, ω2}, where ω2 = ω2+cxν2−ν1ω1

and c ∈ C. For a generic value of c, we still have a good basis for S. Moreover, the
ν2-jet of ω2 is(

A
(ν2)
2 + cxν2−ν1A

(ν1)
1

)
dx+

(
B

(ν2)
2 + cxν2−ν1B

(ν1)
1

)
dy.

Thus, to evaluate its index, one writes

i (ω2) = νy=−ε

(
A

(ν2)
2 (1, y) + cA

(ν1)
1 (1, y) + y

(
B

(ν2)
2 (1, y) + cB

(ν1)
1 (1, y)

))
= νy=−ε

(
A

(ν2)
2 (1, y) + yB

(ν2)
2 (1, y) + c

(
A

(ν1)
1 (1, y) + yB

(ν1)
1 (1, y)

))
= i (ω1) .

Thus we are led to the previous case (1).
Subcase 2.b. Finally, if ν1 > ν2, suppose that ν (g1) ≥ ν1, then by Lemma 5
we have i (ω1) = ν1 + 1. Consequently i (ω1) > ν2 + 1 and then i (ω2) > ν2 + 1.
If ω2 is not dicritical, the inequality above leads to a contradiction, thus ω2 is
dicritical. Therefore, it can be seen that ν (g2) = ν2 − 1. Let us consider now
ω1 = ω1 + xν1−ν2ω2. Then, the family {ω1, ω2} is still a good basis and one has

ω1 ∧ df = g1fdx ∧ dy with ν(g1) = ν1 − 1

i (ω1) = i (ω1) = i (S) .

�

In addition, from a basis for Ω1(S) we can get a basis satisfying the following lemma.

Lemma 7. Given a basis {ω1, ω2} for Ω1(S) with i(ω1) ≤ i(ω2) we can suppose

that

gcd

(
Bi,

∂f

∂y

)
= 1, for i = 1, 2.

Proof. Suppose that H = gcd
(
B1, B2,

∂f
∂y

)
. Since by (2.1) A1B2 − A2B1 = uf, H

would divide f . As ∂f
∂y and f are relatively prime, we get

(3.1) gcd

(
B1, B2,

∂f

∂y

)
= 1.

Now consider the family {ω1 = ω1 + P1ω2, ω2 = ω2 + P2ω1} where Pi ∈ C {x, y}
with ν (Pi)� 1. Note that for Pi of algebraic multiplicity big enough, the forms

ω1 = (A1 + P1A2) dx+ (B1 + P1B2) dy = A1dx+B1dy

ω2 = (A2 + P2A1) dx+ (B2 + P2B1) dy = A2dx+B2dy

satisfy ν (ωi) = ν
(
Ai
)

= ν
(
Bi
)

= νi, and i(ω1) = i(ω1) ≤ i(ω2).

Moreover, {ω1, ω2} is a basis for Ω1(S). Now the relation (3.1) ensures that for a
generic choice of the P ′is, i = 1, 2 - in the sense of Krull -, one has

gcd

(
Bi,

∂f

∂y

)
= 1.
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�

As a consequence we obtain the following.

Corollary 8. For any basis {ω1, ω2} for Ω1(S) satisfying the previous Lemma we

have

gcd(Bi, gi) = gcd

(
∂f

∂y
, gi

)
= 1.

Proof. As Ai
∂f
∂y − Bi

∂f
∂x = gif , if 1 6= H = gcd(Bi, gi) then H must divide Ai

∂f
∂y .

By the previous lemma, gcd(Bi,
∂f
∂y ) = 1 so H divides Ai, a contradiction because

ωi has an isolated singularity.

SupposeH ′ = gcd
(
∂f
∂y , gi

)
, soH ′ dividesBi

∂f
∂x . As gcd

(
∂f
∂y ,

∂f
∂x

)
= gcd(Bi, gi) = 1,

we must have H ′ = 1. �

In particular, the above lemma allow us to consider a good Saito basis {ω1, ω2}
with i (S) = i(ω1) and gcd

(
Bi,

∂f
∂y

)
= gcd(Bi, gi) = gcd

(
∂f
∂y , gi

)
= 1.

Lemma 9. If S : {f = 0} admits a good basis satisfying the previous conditions,

then the intersection of the tangent cone of

(1) g1 and g2,

(2) Bi and gi, for i = 1, 2,

(3) Bi and
∂f
∂y , for i = 1, 2

is empty or equal to y + εx = 0.

Proof. The ν-jet of (2.1) is

(3.2) A
(ν1)
1 B

(ν2)
2 −A(ν2)

2 B
(ν1)
1 = c (y + εx)

ν
.

where c 6= 0 and ε ∈ C. Now, for i = 1, 2, both following relations A
(νi)
i −εB(νi)

i = 0
cannot be true all together since it would yield a contradiction with the relation
(3.2). Suppose the relation above is not true for at least i = 1, then the cofactor
relations ensures that

A
(ν1)
1 − εB(ν1)

1 =
1

ν
g

(ν(g1))
1 (y + εx) .

Combining the above relations yields

g
(ν(g1))
1 B

(ν2)
2 − g(ν(g2))

2 B
(ν1)
1 = cν (y + εx)

ν−1
, or g

(ν(g1))
1 B

(ν2)
2 = cν (y + εx)

ν−1

from which is derived (1) and (2). The point (3) follows from the fact that the

tangent cone of ∂f∂y and f are the same. �
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In what follows we denote by IP (G,H) the intersection multiplicity of G,H ∈
C{x, y} at the point P ∈ C2. If P = (0, 0) then we write I(G,H) := IP (G,H),

that is, I(G,H) = dimC
C{x,y}
(G,H) .

An important topological invariant for S : {f = 0} is the Milnor number µ which
can be computed by

(3.3) µ := I

(
∂f

∂y
,
∂f

∂x

)
=

N∑
i=1

ν(i)(ν(i) − 1)

where ν(i); i = 1, . . . , N denote the sequence of multiplicities in the canonical
resolution of S. In addition, by Zariski (see (2.4) in [11]), we have

(3.4) I

(
∂f

∂y
, f

)
= µ+ ν − 1.

Combining the Lemma 6 and the above result we can obtain an expression for
I(g1, g2).

Lemma 10. If g1 and g1 are the cofactors for a good basis for Ω1(S), then I(g1, g2)
is �nite and

I (g1, g2) = I

(
∂f

∂y
,B1

)
− I (B1, g1)− ν + 1.

Proof. By Lemma 6 we have ν(g1) = ν1 − 1 < ν. As f is irreducible it follows that

gcd(f, g1) = 1 and I
(
f ∂f∂y , g1

)
<∞. So, from (2.1) that

I

(
f
∂f

∂y
, g1

)
= I

(
A1B2

∂f

∂y
−A2B1

∂f

∂y
, g1

)
= I

(
B1B2

∂f

∂x
−A2B1

∂f

∂y
, g1

)
= I (B1g2f, g1) .

Hence,

(3.5) I(g1, g2) = I

(
∂f

∂y
, g1

)
− I(B1, g1).

The Corollary 8 insures that ∂f
∂y and g1 are coprime. So, by (3.5) and using (3.4)

we obtain

I (g1, g2) = I

(
∂f

∂y
, g1

)
+ I

(
∂f

∂y
, f

)
− I

(
∂f

∂y
, f

)
− I (B1, g1)

= I

(
∂f

∂y
, g1f

)
− I

(
∂f

∂y
, f

)
− I (B1, g1)

= I

(
∂f

∂y
,A1

∂f

∂y
−B1

∂f

∂x

)
− (µ+ ν − 1)− I (B1, g1)

= I

(
∂f

∂y
,B1

)
− ν + 1− I (B1, g1) .

�

Let us consider the Tjurina number τ of a plane curve S : {f = 0}, that is,

τ := dimC
C{x, y}(
f, ∂f∂y ,

∂f
∂x

) .
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Zariski (see Theorem 1 in [10]) considered the torsion submodule TΩ1
O/C of the Käh-

ler di�erential module Ω1
O/C over O = C{x,y}

(f) and he showed that τ = dimC TΩ1
O/C.

On the other hand, Michler (Theorem 1 in [7]) proved that TΩ1
O/C is isomorphic

as O-module, to
( ∂f∂y ,

∂f
∂x ):(f)

( ∂f∂y ,
∂f
∂x )

. As
(
∂f
∂y ,

∂f
∂x

)
: (f) is precisely the cofactor ideal of S,

that is, (g1, g2), one has

τ = dimC
(g1, g2)(
∂f
∂y ,

∂f
∂x

) = dimC
C{x, y}(
∂f
∂y ,

∂f
∂x

) − dimC
C{x, y}
(g1, g2)

= µ− I(g1, g2),

that is,

µ− τ = I(g1, g2).

Denoting µ̃ the Milnor number of S̃, the strict transform of S under a standard
blowing up of the origin of C2, we provide in the next theorem a precise relation
between µ − τ and µ̃ − τ̃ by means of the analytic invariants we have introduced
previously for curves that admit a good basis.

Theorem 11. If S admits a good basis, then

µ− τ = µ̃− τ̃ + (ν1 − 1) (ν2 − 1) + i (S)− 1.

Proof. By symmetry, one can suppose i (S) = min {i (ω1) , i (ω2)} = i (ω1) . By
Lemma 9 and the Max-Noether formula one has,

µ− τ = I(g1, g2) = I(0,−ε) (g̃1, g̃2) + ν (g1) ν (g2) ,

where H̃ := E∗(H) and E denotes the standard blowing-up of the origin in C2.
In addition, the previous lemma and Lemma 9, yield

I(g1, g2) = I

(
∂f

∂y
,B1

)
− I (B1, g1)− ν + 1

= I(0,−ε)

(
∂̃f

∂y
, B̃1

)
− I(0,−ε)

(
B̃1, g̃1

)
+ ν

(
∂f

∂y

)
ν (B1)− ν (B1) ν (g1)− ν + 1.

If ω̃i = E∗ωi
xνi , then the Saito criterion yields xν1 ω̃1 ∧ xν2 ω̃2 = ũxν f̃xdx ∧ dy. Since

we have a good basis, that is, ν1 + ν2 = ν, one has ω̃1 ∧ ω̃2 = uf̃xdx ∧ dy. Locally
around (0,−ε) for i = 1, 2 we have

ω̃i = (Aνii (1, y) + yBνii (1, y) + x (· · · )) dx+ x (Bνii (1, y) + (· · · )) dy

We notice that the form

ω2 =
1

x

(
ω̃2 −

Aν22 (1, y) + yBν22 (1, y)

Aν11 (1, y) + yBν11 (1, y)
ω̃1

)
is holomorphic at (0,−ε) and {ω̃1, ω2} is a Saito basis for S̃ : {f̃ = 0}. A computa-

tion shows that the cofactor associated to ω̃1 is written g
′

1 = g̃1 + νB̃1. Moreover,

one has ω̃1 =
(
Ã1 + yB̃1

)
dx+ xB̃1dy = A′dx+B′dy. Now,

(Aν11 (1, y) + yBν11 (1, y) + x (· · · )) ∂f̃
∂y
− xB̃1

∂f̃

∂x
= g′1f̃ .
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If x divides g′1 then ω̃1 would be dicritical and this is not possible. Therefore,

I(0,−ε)

(
x, g′1f̃

)
= I(0−ε) (Aν11 (1, y) + yBν11 (1, y) , x) + I(0,−ε)

(
x,
∂f̃

∂y

)
.

and, by Corollary 8, I(0,−ε) (x, g′1) = i (ω1)− 1 = i (S)− 1.

Notice that B̃1 and g′1 cannot have a common divisor, since it would be a common

divisor of g̃1 and B̃1 that is impossible by Lemma 7. So,

I(0,−ε)

(
B̃1, g̃1

)
= I(0,−ε)

(
xB̃1, g

′
1

)
− i (S) + 1 = I(0,−ε)

(
B
′

1, g
′
1

)
− i (S) + 1.

Moreover,

I(0,−ε)

(
∂f̃

∂y
, B̃1

)
= I(0,−ε)

(
∂f̃

∂y
,B
′

1

)
− I(0,−ε)

(
∂f̃

∂y
, x

)

= I(0,−ε)

(
∂f̃

∂y
,B
′

1

)
− I(0,−ε)

(
f̃ , x

)
+ 1.

So, as ∂f̃
∂y = ∂̃f

∂y and combining all the above relation yields

µ− τ = I(0,−ε)

(
∂f̃

∂y
,B
′

1

)
− I(0,−ε)

(
f̃ , x

)
+ 1−

(
Iy=−ε

(
B
′

1, g
′
1

)
− i (S) + 1

)
+ ν

(
∂f

∂y

)
ν (B1)− ν (B1) ν (g1)− ν + 1

= I(0,−ε) (g′1, g
′
2) + (ν − 1) ν1 − ν1ν (g1)− ν + i (S) .

As I(0,−ε) (g′1, g
′
2) = µ̃− τ̃ and ν (g1) = ν1 − 1, we obtain �nally

µ− τ = µ̃− τ̃ + (ν1 − 1) (ν2 − 1) + i (S)− 1.

�

Let us analyze the examples previously considered.

Example (1). For S1 we have a good basis with ν1 = 1, ν2 = p− 1 and i (S1) = 1,
then µ− τ = 0 as classically known.

Example (2). Notice that for S2 we have i (S2) = i (ω1) = 1, ν1 = ν2 = 2 and S̃3

is regular, so µ̃− τ̃ = 0. In this way,

1 = I(g1, g2) = µ− τ = 0 + (2− 1)(2− 1) + 1− 1.

So, the formula in the previous theorem holds although S2 does not admit any good
basis.

Example (3). For S3 we get i (S3) = i (ω1) = 2, ν1 = 2, ν2 = 3 and S̃3 is analyti-
cally equivalent to S2, so µ̃− τ̃ = 1. In this way,

4 = I(g1, g2) = µ− τ = 1 + (2− 1)(3− 1) + 2− 1.

Example (4). As we presented above, S4 does not have a good basis. We have
i (S4) = i (ω1) = 1, ν1 = ν2 = 3 and µ̃− τ̃ = 0, but in this case,

5 = I(g1, g2) = µ− τ 6= 4 = 0 + (3− 1)(3− 1) + 1− 1.
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A more detailed analysis shows that Lemma 9 is not valid in this case because the
intersection of the tangent cone of g1 and g1 is x = 0 that is distinct to the tangent
cone y = 0 of S4.

4. The minimal Tjurina number and the Dimca-Greuel question for

plane branches.

Given a curve S, we denote by L = L(S) its topological class. Although the Milnor
number is constant in L, the same is not true for the Tjurina number τ(S). On the
other hand, as τ(S) is upper semicontinuous, the minimum value τmin for curves
in L is achieved generically and it should be computed by the sole topological data
(see Chapitre III, Appendice of [11] by Teissier).
For a topological class L given by characteristic exponents (β0, β1), Delorme in [3]
presented a formula for the dimension of the generic component of the Moduli space
that allow us to compute τmin. For an arbitrary topological class, Peraire (see [8])
presented an algorithm to compute the τmin using the �ag of the Jacobian ideal.
In this section, using the last theorem and results of [5], we give an alternative
method to compute τmin in a �xed topological class L and as a bonus we are able
to answer a question of Dimca-Greuel for the irreducible plane curves.

If S admits a good basis we can not insure that the same is valid for S̃ (see Example
(3)). However, this property is true generically.

Theorem 12. Let L the topological class of plane branch given by the characteristic

exponents (β0, β1, . . . , βs), τmin the minimal Tjurina number in L and τ̃min the

minimal Tjurina number in L̃. If S is generic in L, then

(4.1) µ− τmin = µ̃− τ̃min +

([
β0

2

]
− 1

)(
β0 −

[
β0

2

]
− 1

)
+ i (S)− 1.

Moreover, if n =
⌈

β1

β1−β0

⌉
, then i (S) =

[
β0

2

]
+ 1 − p1(S), where p1(S) can be

computed in the following way:

• if β0 is even then p1 (S) =



1 if n = 2

1 if β1 is even

n− 1

2
if β1 is odd and n odd

n− 2

2
if β1 is odd and n is even

• if β0 is odd then p1 (S) =



0 if n = 2

1 if β1 is odd

n− 3

2
if β1 is even and n odd

n− 2

2
if β1 is even and n is even.

Proof. Suppose that β0 = ν(S) is even. According to the Generic Basis Theorem,

S admits a good basis {ω′1, ω′2} with ν(ω′1) = ν(ω′2) = β0

2 . For generic α1, α2 ∈ C
{ω1 = ω′1 + α2ω

′
2, ω2 = ω′2 + α1ω

′
1} remain a good basis with ν1 = ν2 = β0

2 and
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i(ω1) = i(ω2).
Now, according to [5] - using the notations of the mentioned paper, it refers to

the case δ1 = 0 and δ2 = 1 - we obtain ν1 + 1 = β0

2 + 1 =
∑
q∈P1 Ind(F̃ , C, q) =

i(ω1) + p1(S), that is,

i (S) = i (ω1) = ν1 + 1− p1 (S) =
β0

2
+ 1− p1 (S) =

[
β0

2

]
+ 1− p1(S)

where p1 (S) is described in [5].
Now, suppose β0 is odd and let {ω′1, ω′2} be a Saito basis for S ∪ l with l a generic
line that without loss of generality can be considered x = 0. As ν(S ∪ l) is even, by
the same above argument, we can suppose that

ν(ω′1) = ν(ω′2) =
β0 + 1

2
=

[
β0

2

]
+ 1 and i(S ∪ l) = i (ω′1) = i (ω′2) .

Denoting ω′i = (ai (y) + x (· · · )) dx + x (· · · ) dy and considering generic α1, α2 ∈
C we obtain a good Saito basis {ω1 = ω′1 + α2ω

′
2, ω2 = ω′2 + α1ω

′
1} such that

ν (a1(y) + α2a2(y)) = ν (a2(y) + α1a1(y)),

i (ω1) = i (ω′1) = i (ω′2) = i (ω2) and ν(ω1) = ν(ω′1) = ν(ω′2) = ν(ω2).

Now the family {
ω1,

1

x

(
ω2 −

a2(y) + α1a1(y)

a1(y) + α2a2(y)
ω1

)}
is a good Saito basis for S. Finally, since i

(
1
x

(
ω2 − a2(y)+α1a1(y)

a1(y)+α2a2(y)ω1

))
≥ i (ω1), one

has i (S) = i (ω1) . By the description of p1(S ∪ l) given in [5] - using the notations
of the article, it refers to the case δ1 = 1 and δ2 = 1 - we get

i (S) = i (ω1) =
ν (S) + 1

2
− p1 (S) =

[
β0

2

]
+ 1− p1 (S) .

Thus, the proof of the formula is a consequence of Theorem 11 noticing that by the

Generic Basis Theorem we have ν1 =
[
β0

2

]
and ν2 = β0 −

[
β0

2

]
. �

Example (5). In [8], Peraire computed the minimum Tjurina number for the topo-
logical class whose characteritic exponents are (9, 12, 17). After �ve blowing-ups,
we obtain a curve with multiplicity 2. The corresponding characteristics expo-
nents of the sequence of blown-up curves are (3, 14), (3, 11), (3, 8), (3, 5), (2, 3).
Applying inductively the formula (4.1), one accumulates contribution to the dif-
ference µ − τmin. Actually, it can be seen that the respective contributions are
15, 1, 1, 1, 0, 0. Thus τmin = µ − 18 = 98 − 18 = 80 which coincides with the
computation of Peraire.

The last theorem allow us obtain a formula to compute the minimum Tjurina
number in a topological class using the multiplicity sequence.

Corollary 13. Let L a topological class of a singular plane branch determined by

the multiplicity sequence ν(1), ν(2), . . . , ν(N), ν(N+1) = 1, . . .. The minimal Tjurina

number achieved in L is

τmin =

N∑
i=1

(
ν2

(i) +
[ν(i)

2

] ([ν(i)

2

]
− ν(i) − 1

)
− 1 + p1(S(i))

)
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where S(i) denote the curve with multiplicity ν(i) in the canonical resolution process

for a generic curve in L.

Proof. Applying inductively the formula presented in the last theorem and using
that i

(
S(i)

)
=
[ν(i)

2

]
+ 1− p1(S(i)) yields

τmin = µ−
N∑
i=1

(([ν(i)

2

]
− 1
)(

ν(i) −
[ν(i)

2

]
− 1
)
− (i

(
S(i)

)
− 1)

)

(4.2) = µ+

N∑
i=1

([ν(i)

2

] ([ν(i)

2

]
− ν(i) − 1

)
+ ν(i) − 1 + p1(S(i))

)
.

As µ =
∑N
i=1 ν(i)

(
ν(i) − 1

)
, we get the proof. �

In [4], Dimca and Greuel present an interesting question about the Tjurina number
for curves in a given topological class L. More speci�cally, they ask if 4τ(S) > 3µ(S)
for any curve in L.
As the Tjurina number is semicontinuous in L and we have obtained a formula for
the τmin, we are able to given a lower bound for the Tjurina number in terms of the
Milnor number and it answered positively the previous question for the irreducible
case.

Corollary 14. Let S be a singular irreducible plane curve. Then

τ (S) ≥ 3

4
µ (S) +

√
1 + 4µ(S)− 1

8
.

In particular, 4τ(S) > 3µ(S).

Proof. We denote µ = µ(S). It is su�cient to show the inequality for the τmin.
By (4.2), the relation below holds

4τmin − 3µ = µ+ 4

N∑
i=1

([ν(i)

2

] ([ν(i)

2

]
− ν(i) − 1

)
+ ν(i) − 1 + p1(ν(i))

)
.

Now, using that µ =
∑N
i=1 ν(i)

(
ν(i) − 1

)
and 4

[ν(i)
2

] ([ν(i)
2

]
− ν(i) − 1

)
= −ν2

(i) −
2ν(i) + δi with δi = 0 if ν(i) is even and δi = 3 if ν(i) is odd, we obtain

4τmin − 3µ =

N∑
i=1

(
ν(i) + δi + 4(p1(S(i))− 1)

)
.

Now, by Theorem 12 we have that:

• if ν(i) is even, then p1(S) ≥ 1 and ν(i) + 0 + 4(p1(ν(i))− 1) ≥ ν(i),
• if ν(i) is odd, then p1(S) ≥ 0 and ν(i) + 3 + 4(p1(ν(i))− 1) ≥ ν(i) − 1.
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So, the following inequality follows

(4.3) 4τmin − 3µ ≥
N∑
i=1

(ν(i) − 1).

As µ =
∑N
i=1(ν(i) − 1)2 +

∑N
i=1

(
ν(i) − 1

)
we get 4τmin − 3µ ≥ µ−

∑N
i=1(ν(i) − 1)2.

Using (4.3), that is, −(4τmin − 3µ)2 ≤ −
(∑N

i=1(ν(i) − 1)
)2

≤ −
∑N
i=1(ν(i) − 1)2,

we obtain 4τmin − 3µ ≥ µ− (4τmin − 3µ)2 and consequently

τ (S) ≥ τmin ≥
3

4
µ+

(
−1 +

√
1 + 4µ

8

)
.

�

Example (6). Let us consider the topological class L determined by the char-
acteristic exponents (141, 142). The Milnor number for any curve in L is µ =
(141− 1)(142− 1) = 19740. Using the lower bound presented in the last result we
obtain τmin ≥ 14840. For this topological class it follows by the Delorme result (cf.
[3]) that τmin = 14910.

While we submit the �rst version of this paper to Arxiv, we discover that, at
the same time, a positive answer for the Dimca-Greuel question was obtained by
Alberich-Carramiñana et al. and published in Arxiv [1] a few days before. Although
the methods are a bit di�erent, the key ingredient is still the formula for the generic
dimension of the moduli space obtained in [5].

Acknowledgment. The authors are grateful to the anonymous referee for the
suggestions that improved this work.

References

[1] M. Alberich-Carraminana, P. Almiron, G. Blanco, and A. Melle-Hernandez. The minimal
tjurina number of irreducible germs of plane curve singularities. arXiv:1904.02652, 2019.

[2] C. Camacho, A. Lins Neto, and P. Sad. Topological invariants and equidesingularization for
holomorphic vector �elds. J. Di�erential Geom., 20(1):143�174, 1984.

[3] C. Delorme. Sur les modules des singularités des courbes planes. Bulletin de la Société Math-

ématique de France, 106:417�446, 1978.
[4] A. Dimca and G.-M. Greuel. On 1-forms on isolated complete intersection curve singularities.

J. Singul., 18:114�118, 2018.
[5] Y. Genzmer. Dimension of the moduli space of a curve in the complex plane. arXiv:

1610.05998v3, 2017.
[6] O. A. Laudal, B. Martin, and G. P�ster. Moduli of plane curve singularities with C∗-action.

Singularities, Banach Cent. Publ. 20, 255-278., 1988.
[7] R.I. Michler. On the number of generators of the torsion module of di�erentials. Proc. Am.

Math. Soc., 129(3):639�646, 2001.
[8] R. Peraire. Moduli of plane curve singularities with a single characteristic exponent. Proc.

Amer. Math. Soc., 126(1):25�34, 1998.
[9] K. Saito. Theory of logarithmic di�erential forms and logarithmic vector �elds. J. Fac. Sci.

Univ. Tokyo Sect. IA Math., 27(2):265�291, 1980.
[10] O. Zariski. Characterization of plane algebroid curves whose module of di�erentials has maxim

torsion. Proc. Natl. Acad. Sci. USA 56, 781-786; Erratum. Ibid. 1927., 1966.
[11] O. Zariski. Le problème des modules pour les branches planes. University Lecture Series.

AMS, 2006.



16 Y. GENZMER AND M. E. HERNANDES

Genzmer, Y. Hernandes, M. E.
yohann.genzmer@math.univ-toulouse.fr mehernandes@uem.br


