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We introduce the concept of a good Saito basis for a plane curve and we explore it to obtain a formula for the minimal Tjurina number in a topological class. In particular, we give a lower bound for the Tjurina number in terms of the Milnor number that allow us to present a positive answer for a question of Dimca and Greuel.

In this paper we present a way to express the dierence µ -τ for a singular irreducible plane curve S when Ω 1 (S) admits a basis {ω 1 , ω 2 } of special kind, that we call a good Saito basis (see Denition 2). More specically, we present a formula (see Theorem 11) to compute the dierence between µ(S) -τ (S) and µ( S) -τ ( S) where S denotes the strict transform of S. If S is generic in L, then, according to [START_REF] Genzmer | Dimension of the moduli space of a curve in the complex plane[END_REF], S admits a good basis and this fact allows us to obtain a formula to compute τ min in L by the sole topological data: the sequence of multiplicities in the canonical resolution or the characteristic exponents for instance. In particular, for irreducible plane curves, we are able to present a lower bound for the minimum Tjurina number in L in terms of the Milnor number that allow us to give an armative answer to a question of Dimca and Greuel [START_REF] Dimca | On 1-forms on isolated complete intersection curve singularities[END_REF] about the inequality 4τ > 3µ and obtained simultaneously by Alberich-Carramiñana et al. in [START_REF] Alberich-Carraminana | The minimal tjurina number of irreducible germs of plane curve singularities[END_REF] published in ArXiv a few days before the rst version of this paper. The paper is organized as follows. In the section 2 we present some general properties of a Saito basis. The concept of a good Saito basis is introduced in the section 3 and its properties as well. The section 4 is devoted to the formula for the minimal Tjurina number, a lower bound for the Tjurina number using the Milnor number and consequently an answer to the Dimca-Greuel question.

The Saito basis.

Let S : {f = 0} be a germ of an analytic plane curve and consider the C{x, y}module Ω 1 (S) of all germs of 1-holomorphic forms ω ∈ C{x, y}dx + C{x, y}dy such that f divides ω ∧ df. It is equivalent to require that the foliation induced by ω lets invariant S. Saito in [START_REF] Saito | Theory of logarithmic dierential forms and logarithmic vector elds[END_REF] shows that Ω 1 (S) is a free module of rank 2 and a basis of Ω 1 (S) is called a Saito basis. It is not trivial to obtain a Saito basis, but there is a simple criterion to verify if {ω 1 , ω 2 } is a basis for Ω 1 (S) (see Theorem, page 270 in [START_REF] Saito | Theory of logarithmic dierential forms and logarithmic vector elds[END_REF]).

Theorem (Saito criterion). The set {ω 1 , ω 2 } is a Saito basis for S : {f = 0} if and only if ω 1 ∧ ω 2 = uf dx ∧ dy, where u is a unit in C{x, y}.

This criterion can be interpreted as follows : {ω 1 , ω 2 } is a basis for Ω 1 (S) if the tangency locus between the two forms reduces to S. Below, we present some examples of Saito basis for S : {f = 0}. All of them will illustrate, in the sequel, various sensitivities of the Saito basis with respect to small perturbations of the curve S. In the whole article, we will keep the same numbering of the examples for the convenience of the reader.

Example [START_REF] Camacho | Topological invariants and equidesingularization for holomorphic vector elds[END_REF]. If f = y 5 -x 6 + x 4 y 3 then S 2 : {f = 0} is topologically quasihomogeneous, that is, S 2 presents characteristic exponents [START_REF] Genzmer | Dimension of the moduli space of a curve in the complex plane[END_REF][START_REF] Laudal | Moduli of plane curve singularities with C * -action[END_REF], but not analytically equivalent to y 5 -x 6 = 0. One can show that the set {ω 1 , ω 2 } where

ω 1 = -6xy + 16 15 x 3 y 2 - 8 5 
xy 5 dx + 5x 2 + 4 3 y 3 + 4 5
x 2 y 4 dy

ω 2 = -6y 2 + 8 5 x 4 - 12 5
x 2 y 3 dx + 5xy + 6 5

x 3 y 2 dy satisfy ω 1 ∧ ω 2 = 8f dx ∧ dy, so {ω 1 , ω 2 } is a Saito basis for Ω 1 (S 2 ).
Example [START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF]. The curve S 3 : {f = 0} with f = y 5 -x 11 + x 6 y 3 is topologically equivalent to the any curve with characteristic exponents [START_REF] Genzmer | Dimension of the moduli space of a curve in the complex plane[END_REF][START_REF] Zariski | Le problème des modules pour les branches planes[END_REF] and its strict transform is S 2 . The set {ω 1 , ω 2 } where ω 1 = 605y 2 + 198xy 3 -88x 6 dx -275xy + 66x 2 y 2 dy ω 2 = 605x 4 y + 150x 5 y 2 dx -40y 3 + 275x 5 + 90x 6 y dy satisfy ω 1 ∧ω 2 = (-24200-7920xy)f dx∧dy, so {ω 1 , ω 2 } is a Saito basis for Ω 1 (S 3 ).

Example [START_REF] Dimca | On 1-forms on isolated complete intersection curve singularities[END_REF]. The class of curve with characteristic exponents the form (n, n + 1) has been extensively studied by Zariski [START_REF] Zariski | Le problème des modules pour les branches planes[END_REF]. The curve S 4 given by

f = y 7 -x 8 -7x 6 y 2 - 147 8 x 4 y 4
that, belongs to the latter class, will be shown of a peculiar interest. The forms 

ω 1 = 8x
(S 4 ) because ω 1 ∧ ω 2 = -151263 64 f dx ∧ dy.
Given a 1-form ω = Adx + Bdy we denote by ν(ω) = min{ν(A), ν(B)} its algebraic multiplicity, where ν(H) indicates the multiplicity of H ∈ C{x, y} at (0, 0) ∈ C 2 . Among all the possible basis {ω 1 , ω 2 } for Ω 1 (S) we choose some that maximizes the sum ν(ω 1 ) + ν(ω 2 ) that, following the Saito criterion, cannot be bigger than ν = ν(f ) = ν (S). For such basis we denote

ν 1 := ν (ω 1 ) ν 2 := ν (ω 2 ) .
The following result is immediate and identies a new analytical invariant of S.

Proposition 1. The couple (ν 1 , ν 2 ), up to order, is an analytical invariant of S.

Remark that the pair (ν 1 , ν 2 ) is not a topological invariant. For instance, following the examples above, for S 1 with p = 5 and q = 6 we have (ν 1 , ν 2 ) = [START_REF] Alberich-Carraminana | The minimal tjurina number of irreducible germs of plane curve singularities[END_REF][START_REF] Dimca | On 1-forms on isolated complete intersection curve singularities[END_REF]. But the curve S 3 which is topological equivalent to S 1 has corresponding pair of multiplicities [START_REF] Camacho | Topological invariants and equidesingularization for holomorphic vector elds[END_REF][START_REF] Camacho | Topological invariants and equidesingularization for holomorphic vector elds[END_REF].

From now on, we consider S : {f = 0} singular and irreducible (a plane branch) with a Saito basis {ω 1 , ω 2 } such that ω i = A i dx + B i dy In particular, we have (2.1)

A 1 B 2 -A 2 B 1 = uf and A i ∂f ∂y -B i ∂f ∂x = g i f
where u(0, 0) = 0 and g i ∈ C{x, y} is called the cofactor of ω i . Applying a generic linear change of coordinates if necessary, we can suppose that for i = 1, 2, one has ν (A i ) = ν (B i ) = ν i and in this coordinates (x, y) the tangent cone of f , i.e. its ν-jet, is (y + x) ν . From now on, we denote

f ν = (y + x) ν .
Example [START_REF] Alberich-Carraminana | The minimal tjurina number of irreducible germs of plane curve singularities[END_REF]. Consider the irreducible curve S 1 . Suppose by symmetry that p < q,

we have

ν(A 1 ) = ν(B 1 ) = ν 1 = 1 but q -1 = ν(A 2 ) > p -1 = ν(B 2 ) = ν 2 .
Consider the change of coordinates T (x, y) = (x, y -x) with = 0 we obtain f 1 = T * (f ) = (y -x) p -x q and the Saito basis η 1 = T * (ω 1 ) and df 1 η 1 = (q(y -x) + px)dx -pxdy df 1 = (-p(y -x) p-1 -qx q-1 )dx + p(y -x) p-1 dy satisfying the above condition. In addition, η 1 ∧ df 1 = pqf 1 dx ∧ dy, that is, g 1 = pq and g 1 = 0.

Example [START_REF] Camacho | Topological invariants and equidesingularization for holomorphic vector elds[END_REF]. For the curve S 2 , we have

ω 1 ∧ df = (-30x -8xy 4 )f dx ∧ dy and ω 2 ∧ df = (-30y -12x 2 y 2 )f dx ∧ dy, that is, g 1 = -30x -8xy 4 and g 2 = -30y -12x 2 y 2 .
Example [START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF]. Considering the curve S 3 , we have ν(A 1 ) = ν(B 1 ) = 2 but 5 = ν(A 2 ) > ν(B 2 ) = 3. By the change of coordinates T (x, y) = (x, x + y) we obtain

f 1 = T * (f ) = (y + x) 5 -x 11 + x 6 (y + x) 3 and η i = T * (ω i ) = (A i + B i ) dx + B i dy with ν(A 1 + B 1 ) = ν(B 1 ) = 2 and ν(A 2 + B 2 ) = ν(B 2 ) = 3. In addition, η 1 ∧ df = (3025(x + y) + 990x(y + x) 2 )f 1 dx ∧ dy η 2 ∧ df = (3025x 4 + 990x 5 (y + x))f 1 dx ∧ dy, consequently, g 1 = 3025(x + y) + 990x(y + x) 2 and g 2 = 3025x 4 + 990x 5 (y + x).
Example [START_REF] Dimca | On 1-forms on isolated complete intersection curve singularities[END_REF]. Finally, for S 4 we nd

ω 1 ∧ df = 56x 2 - 151263 16 y 3 - 21609 4 x 2 y f dx ∧ dy ω 2 ∧ df = (56xy + 1029x 3 )f dx ∧ dy.
Notice that any generator ω i in a Saito basis {ω 1 , ω 2 } has an isolated singularity, that is, gcd(A i , B i ) = 1. In addition, by (2.1), we have that ν(g i ) ≥ ν i -1.

3. Good Saito basis and the Tjurina number for S.

As we mentioned before, given a Saito basis {ω 1 , ω 2 } for Ω 1 (S) we get ν 1 + ν 2 ≤ ν.

In [START_REF] Genzmer | Dimension of the moduli space of a curve in the complex plane[END_REF], the rst author shows the following theorem:

Theorem (Generic Basis Theorem). In a xed topological class L, generically any curve S admits a Saito basis satisfying

ν 1 = ν 2 = ν 2 if ν = ν(S) is even ν 1 = ν 2 -1 = ν-1 2 if ν = ν(S) is odd.
Notice that, generically ν 1 + ν 2 is maximum. Of course, Example 1 shows that we can obtain ν 1 + ν 2 = ν in other cases. This motives the following denition.

Denition 2. We say that S (or Ω 1 (S)) admits a good basis if

ν 1 + ν 2 = ν.
This section is devoted to present some properties of a good basis. One of them is related with the index i (S) we introduce in the sequel.

Let E be the standard blowing-up of the origin in C 2 with coordinates (x, y) and suppose that, in the chart (x 1 , y 1 ) such that E (x 1 , y 1 ) = (x 1 , x 1 y 1 ), the strict transform of S goes through (0, y 1 ).

As before, we consider

f ν = (y + x) ν . Denition 3. For any ω = Adx + Bdy ∈ Ω 1 (S), we denote by i (ω) ∈ N ∪ {∞}
the valuation given by

i (ω) = ν y1=-A (ν(ω)) (1, y 1 ) + y 1 B (ν(ω)) (1, y 1 )
where

ν y1=-(G) denotes de multiplicity of G ∈ C{y 1 } at -∈ C.
Moreover, we denote by i (S) ∈ N the integer

i (S) = min ω∈Ω 1 (S) i (ω) .
The value i (ω) is nothing but the index Ind(F, C, 0) introduced in [START_REF] Camacho | Topological invariants and equidesingularization for holomorphic vector elds[END_REF] for a germ of foliation F having C as a smooth invariant curve. Notice that for a given ω, the index i (ω) is innite if and only if ω is dicritical, that is, A ν(ω) (1, y 1 ) + y 1 B ν(ω) (1, y 1 ) = 0. However, for any curve i (S) is nite. Indeed, if f is a reduced equation for S then df belongs to Ω 1 (S) and it is not dicritical, thus i (S)

≤ i (df ) < ∞. In particular, if ω ∈ Ω 1 (S) is non dicritical, then i(ω) ≤ ν(ω) + 1.
Example [START_REF] Alberich-Carraminana | The minimal tjurina number of irreducible germs of plane curve singularities[END_REF]. For S 1 , with p < q, the considered Saito basis is a good basis.

Moreover, i (ω 1 ) = 1 and i (ω 2 ) = p.
Example [START_REF] Camacho | Topological invariants and equidesingularization for holomorphic vector elds[END_REF]. Having a good basis is a property sensitive to perturbation. Indeed, for instance, the basis {ω 1 , ω 2 } of S 2 computed in the example is not good. Besides that, we have i (ω 1 ) = 1 and i (ω 2 ) = 2. Actually S 2 does not admit any good basis. In fact, if S 2 admits a good basis

{ 1 , 2 }, then we can suppose that 2 = ν( 1 ), 3 = ν( 2 ), ω (2) i = c i (2) 1 where c i ∈ C \ {0} and ω (2) i = A 2 i dx + B 2 i dy . In this way, ω (2) 1 = c2 c1 ω (2)
2 , an absurd.

Example [START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF]. Good basis is not preserved by blowing-up. In fact, S 3 has a good basis, but its strict transform is analytically equivalent to S 2 that does not admit good basis. For S 3 we have i (ω 1 ) = 2 and i (ω 2 ) = 4.

Example [START_REF] Dimca | On 1-forms on isolated complete intersection curve singularities[END_REF]. Finally, S 4 does not have a good basis. We nd i (ω 1 ) = 1 and

i (ω 2 ) = 2.
The next result shows that if S admits a good basis, the index i (S) is achieved for one of its elements.

Proposition 4. If S admits a good basis {ω 1 , ω 2 } then i (S) = min {i (ω 1 ) , i (ω 2 )} .

Proof. By Saito criterion, one has

ω 1 ∧ ω 2 = uf with u(0, 0) = 0. Since ν 1 + ν 2 = ν, one has ω (ν1) 1 ∧ ω (ν2) 2 = 0, where ω (νi) i = A νi i dx + B νi i dy.
In particular, both forms ω 1 and ω 2 cannot be dicritical and therefore min {i (ω 1 ) , i (ω 2 )} < ∞. Now, consider any form ω = P 1 ω 1 + P 2 ω 2 ∈ Ω 1 (S) with P i ∈ C{x, y} and

m i = ν (P i ). Since P (m1) 1 ω (ν1) 1 + P (m2) 2 ω (ν1) 2
cannot vanish identically, it is the homogeneous part of smallest degree of ω. Therefore

i (ω) = ν y1=-P (m1) 1 (1, y 1 ) (A ν1 1 (1, y 1 ) + y 1 B ν1 1 (1, y 1 )) +P (m2) 2 (1, y 1 ) (A ν2 2 (1, y 1 ) + y 1 B ν2 2 (1, y 1 )) ≥ min {i (ω 1 ) , i (ω 2 )} .
In the previous section, we remark that for an element ω i in a Saito basis we get ν(g i ) ≥ ν i -1 and i(ω i ) ≤ ν(ω i ) + 1. For good basis it is possible to obtain the following result. Lemma 

Given a good basis {ω

1 , ω 2 } for S, if ν (g i ) ≥ ν i then i (ω i ) = ν i + 1.
Proof. By symmetry let us consider i = 1 and suppose that ν (g 1 ) ≥ ν 1 . The

(ν 1 -1 + ν)-jet of A 1 ∂f ∂y -B 1 ∂f ∂x = g 1 f is A (ν1) 1 ν (y + x) ν-1 -B (ν1) 1 ν (y + x) ν-1 = 0, thus A (ν1) 1 = B (ν1) 1
. On the other hand the ν-jet of A 1 B 2 -A 2 B 1 = uf where u(0, 0) = 0 reduces to

A (ν1) 1 B (ν2) 2 -A (ν2) 2 B (ν1) 1 = B (ν1) 1 B (ν2) 2 -A (ν2) 2 = u(0, 0) (y + x) ν .
Thus, there exists some constant c = 0 such that B (ν1)

1 = c (y + x)
ν1 . Therefore, ω 1 can be written

ω 1 = c ν 1 + 1 d (y + x) ν1+1 + h.o.t. thus i (ω 1 ) = ν 1 + 1.
Notice that the above proof ensures that the inequality ν (g i ) ≥ ν i cannot hold for both elements in a good basis. Moreover, given a good basis for Ω 1 (S) we can always get a good basis with some nice properties. To do this we present the following lemmas. Lemma 6. If Ω 1 (S) admits a good basis {ω 1 , ω 2 }, then we can suppose that i (ω 1 ) = i (S) and ν (g 1 ) = ν 1 -1.

Proof. By symmetry we can suppose that i (ω 1 ) = i (S) .

Case 1. If i (ω 2 ) = i (ω 1 ), then, as mentioned above, for i = 1 or 2, one has ν (g i ) = ν i -1. Switching maybe the two forms, we can suppose that ω 1 satises the conclusion of the lemma.

Case 2. Suppose now that i (ω 1 ) < i (ω 2 ) . Subcase 2.a if ν 1 ≤ ν 2 , we consider, the family {ω 1 , ω 2 }, where ω 2 = ω 2 +cx ν2-ν1 ω 1 and c ∈ C. For a generic value of c, we still have a good basis for S. Moreover, the ν 2 -jet of ω 2 is

A (ν2) 2 + cx ν2-ν1 A (ν1) 1 dx + B (ν2) 2 + cx ν2-ν1 B (ν1) 1 dy.
Thus, to evaluate its index, one writes

i (ω2) = νy=-A (ν 2 ) 2 (1, y) + cA (ν 1 ) 1 (1, y) + y B (ν 2 ) 2 (1, y) + cB (ν 1 ) 1 (1, y) = νy=-A (ν 2 ) 2 (1, y) + yB (ν 2 ) 2 (1, y) + c A (ν 1 ) 1 (1, y) + yB (ν 1 ) 1 (1, y) = i (ω1) .
Thus we are led to the previous case (1).

Subcase 2.b. Finally, if ν 1 > ν 2 , suppose that ν (g 1 ) ≥ ν 1 , then by Lemma 5

we have i (ω 1 ) = ν 1 + 1. Consequently i (ω 1 ) > ν 2 + 1 and then i (ω 2 ) > ν 2 + 1.
If ω 2 is not dicritical, the inequality above leads to a contradiction, thus ω 2 is dicritical. Therefore, it can be seen that ν (g 2 ) = ν 2 -1. Let us consider now

ω 1 = ω 1 + x ν1-ν2 ω 2 .
Then, the family {ω 1 , ω 2 } is still a good basis and one has

ω 1 ∧ df = g 1 f dx ∧ dy with ν(g 1 ) = ν 1 -1 i (ω 1 ) = i (ω 1 ) = i (S) .
In addition, from a basis for Ω 1 (S) we can get a basis satisfying the following lemma. 

Now consider the family {ω

1 = ω 1 + P 1 ω 2 , ω 2 = ω 2 + P 2 ω 1 } where P i ∈ C {x, y} with ν (P i ) 1.
Note that for P i of algebraic multiplicity big enough, the forms

ω 1 = (A 1 + P 1 A 2 ) dx + (B 1 + P 1 B 2 ) dy = A 1 dx + B 1 dy ω 2 = (A 2 + P 2 A 1 ) dx + (B 2 + P 2 B 1 ) dy = A 2 dx + B 2 dy satisfy ν (ω i ) = ν A i = ν B i = ν i , and i(ω 1 ) = i(ω 1 ) ≤ i(ω 2 ).
Moreover, {ω 1 , ω 2 } is a basis for Ω 1 (S). Now the relation (3.1) ensures that for a generic choice of the P i s, i = 1, 2 -in the sense of Krull -, one has

gcd B i , ∂f ∂y = 1.
As a consequence we obtain the following.

Corollary 8. For any basis {ω 1 , ω 2 } for Ω 1 (S) satisfying the previous Lemma we have

gcd(B i , g i ) = gcd ∂f ∂y , g i = 1.
Proof. we must have H = 1.

As A i ∂f ∂y -B i ∂f ∂x = g i f , if 1 = H = gcd(B i , g i ) then H must
In particular, the above lemma allow us to consider a good Saito basis {ω 1 , ω 2 } with i (S) = i(ω 1 ) and gcd B i , ∂f ∂y = gcd(B i , g i ) = gcd ∂f ∂y , g i = 1.

Lemma 9. If S : {f = 0} admits a good basis satisfying the previous conditions, then the intersection of the tangent cone of (1) g 1 and g 2 , (2) B i and g i , for i = 1, 2, (3) B i and ∂f ∂y , for i = 1, 2

is empty or equal to y + x = 0.

Proof. The ν-jet of (2.1) is (3.2)

A (ν1) 1 B (ν2) 2 -A (ν2) 2 B (ν1) 1 = c (y + x) ν .
where c = 0 and ∈ C. Now, for i = 1, 2, both following relations

A (νi) i -B (νi) i = 0
cannot be true all together since it would yield a contradiction with the relation (3.2). Suppose the relation above is not true for at least i = 1, then the cofactor relations ensures that

A (ν1) 1 -B (ν1) 1 = 1 ν g (ν(g1)) 1 (y + x) .
Combining the above relations yields

g (ν(g1)) 1 B (ν2) 2 -g (ν(g2)) 2 B (ν1) 1 = cν (y + x) ν-1 , or g (ν(g1)) 1 B (ν2) 2 = cν (y + x) ν-1
from which is derived (1) and (2). The point [START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF] follows from the fact that the tangent cone of ∂f ∂y and f are the same.

In what follows we denote by I P (G, H) the intersection multiplicity of G, H ∈ C{x, y} at the point P ∈ C 2 . If P = (0, 0) then we write I(G, H) H) . An important topological invariant for S : {f = 0} is the Milnor number µ which can be computed by

:= I P (G, H), that is, I(G, H) = dim C C{x,y} (G,
(3.3) µ := I ∂f ∂y , ∂f ∂x = N i=1 ν (i) (ν (i) -1)
where ν (i) ; i = 1, . . . , N denote the sequence of multiplicities in the canonical resolution of S. In addition, by Zariski (see (2.4) in [START_REF] Zariski | Le problème des modules pour les branches planes[END_REF]), we have (

I ∂f ∂y , f = µ + ν -1. 3.4) 
Combining the Lemma 6 and the above result we can obtain an expression for

I(g 1 , g 2 ).
Lemma 10. If g 1 and g 1 are the cofactors for a good basis for Ω 1 (S), then

I(g 1 , g 2 )
is nite and

I (g 1 , g 2 ) = I ∂f ∂y , B 1 -I (B 1 , g 1 ) -ν + 1.
Proof. By Lemma 6 we have ν(g Hence,

1 ) = ν 1 -1 < ν. As f is irreducible it follows that gcd(f, g 1 ) = 1 and I f ∂f ∂y , g 1 < ∞. So, from (2.1) that 
I(g 1 , g 2 ) = I ∂f ∂y , g 1 -I(B 1 , g 1 ). (3.5) 
The Corollary 8 insures that ∂f ∂y and g 1 are coprime. So, by (3.5) and using (3.4) we obtain

I (g 1 , g 2 ) = I ∂f ∂y , g 1 + I ∂f ∂y , f -I ∂f ∂y , f -I (B 1 , g 1 ) = I ∂f ∂y , g 1 f -I ∂f ∂y , f -I (B 1 , g 1 ) = I ∂f ∂y , A 1 ∂f ∂y -B 1 ∂f ∂x -(µ + ν -1) -I (B 1 , g 1 ) = I ∂f ∂y , B 1 -ν + 1 -I (B 1 , g 1 ) .
Let us consider the Tjurina number τ of a plane curve S : {f = 0}, that is,

τ := dim C C{x, y} f, ∂f ∂y , ∂f ∂x .
Zariski (see Theorem 1 in [START_REF] Zariski | Characterization of plane algebroid curves whose module of dierentials has maxim torsion[END_REF]) considered the torsion submodule

T Ω 1 O/C of the Käh- ler dierential module Ω 1 O/C over O = C{x,y} (f ) 
and he showed that

τ = dim C T Ω 1 O/C .
On the other hand, Michler (Theorem 1 in [START_REF] Michler | On the number of generators of the torsion module of dierentials[END_REF]) proved that

T Ω 1 O/C is isomorphic as O-module, to ( ∂f ∂y , ∂f ∂x ):(f) ( ∂f ∂y , ∂f ∂x ) . As ∂f ∂y , ∂f ∂x : (f ) is precisely the cofactor ideal of S, that is, (g 1 , g 2 ), one has τ = dim C (g 1 , g 2 ) ∂f ∂y , ∂f ∂x = dim C C{x, y} ∂f ∂y , ∂f ∂x -dim C C{x, y} (g 1 , g 2 ) = µ -I(g 1 , g 2 ),
that is,

µ -τ = I(g 1 , g 2 ).
Denoting µ the Milnor number of S, the strict transform of S under a standard blowing up of the origin of C 2 , we provide in the next theorem a precise relation between µ -τ and µ -τ by means of the analytic invariants we have introduced previously for curves that admit a good basis.

Theorem 11. If S admits a good basis, then

µ -τ = µ -τ + (ν 1 -1) (ν 2 -1) + i (S) -1.
Proof. By symmetry, one can suppose i (S) = min {i (ω 1 ) , i (ω 2 )} = i (ω 1 ) . By Lemma 9 and the Max-Noether formula one has,

µ -τ = I(g 1 , g 2 ) = I (0,-) (g 1 , g2 ) + ν (g 1 ) ν (g 2 ) ,
where H := E * (H) and E denotes the standard blowing-up of the origin in C 2 . In addition, the previous lemma and Lemma 9, yield If ωi = E * ωi x ν i , then the Saito criterion yields x ν1 ω1 ∧ x ν2 ω2 = ux ν f xdx ∧ dy. Since we have a good basis, that is,

I
ν 1 + ν 2 = ν, one has ω1 ∧ ω2 = u f xdx ∧ dy. Locally around (0, -) for i = 1, 2 we have ωi = (A νi i (1, y) + yB νi i (1, y) + x (• • • )) dx + x (B νi i (1, y) + (• • • )) dy We notice that the form ω 2 = 1 x ω2 - A ν2 2 (1, y) + yB ν2 2 (1, y) A ν1 1 (1, y) + yB ν1 1 (1, y)
ω1 is holomorphic at (0, -) and {ω 1 , ω 2 } is a Saito basis for S : { f = 0}. A computation shows that the cofactor associated to ω1 is written g 1 = g1 + ν B1 . Moreover, one has ω1 = Ã1 + y B1 dx + x B1 dy = A dx + B dy. Now,

(A ν1 1 (1, y) + yB ν1 1 (1, y) + x (• • • )) ∂ f ∂y -x B1 ∂ f ∂x = g 1 f .
If x divides g 1 then ω1 would be dicritical and this is not possible. Therefore,

I (0,-) x, g 1 f = I (0-) (A ν1 1 (1, y) + yB ν1 1 (1, y) , x) + I (0,-) x, ∂ f ∂y .
and, by Corollary 8, I (0,-) (x, g 1 ) = i (ω 1 ) -1 = i (S) -1.

Notice that B1 and g 1 cannot have a common divisor, since it would be a common divisor of g1 and B1 that is impossible by Lemma 7. So,

I (0,-) B1 , g1 = I (0,-) x B1 , g 1 -i (S) + 1 = I (0,-) B 1 , g 1 -i (S) + 1.
Moreover,

I (0,-) ∂ f ∂y , B1 = I (0,-) ∂ f ∂y , B 1 -I (0,-) ∂ f ∂y , x = I (0,-) ∂ f ∂y , B 1 -I (0,-) f , x + 1.
So, as ∂ f ∂y = ∂f ∂y and combining all the above relation yields

µ -τ = I (0,-) ∂ f ∂y , B 1 -I (0,-) f , x + 1 -I y=-B 1 , g 1 -i (S) + 1 + ν ∂f ∂y ν (B 1 ) -ν (B 1 ) ν (g 1 ) -ν + 1 = I (0,-) (g 1 , g 2 ) + (ν -1) ν 1 -ν 1 ν (g 1 ) -ν + i (S) .
As I (0,-) (g 1 , g 2 ) = µ -τ and ν (g 1 ) = ν 1 -1, we obtain nally

µ -τ = µ -τ + (ν 1 -1) (ν 2 -1) + i (S) -1.
Let us analyze the examples previously considered.

Example [START_REF] Alberich-Carraminana | The minimal tjurina number of irreducible germs of plane curve singularities[END_REF]. For S 1 we have a good basis with ν 1 = 1, ν 2 = p -1 and i (S 1 ) = 1, then µ -τ = 0 as classically known.

Example [START_REF] Camacho | Topological invariants and equidesingularization for holomorphic vector elds[END_REF]. Notice that for S 2 we have i

(S 2 ) = i (ω 1 ) = 1, ν 1 = ν 2 = 2 and S 3
is regular, so µ -τ = 0. In this way,

1 = I(g 1 , g 2 ) = µ -τ = 0 + (2 -1)(2 -1) + 1 -1.
So, the formula in the previous theorem holds although S 2 does not admit any good basis.

Example [START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF]. For S 3 we get i (S 3 ) = i (ω 1 ) = 2, ν 1 = 2, ν 2 = 3 and S 3 is analytically equivalent to S 2 , so µ -τ = 1. In this way,

4 = I(g 1 , g 2 ) = µ -τ = 1 + (2 -1)(3 -1) + 2 -1.
Example (4). As we presented above, S 4 does not have a good basis. We have i (S 4 ) = i (ω 1 ) = 1, ν 1 = ν 2 = 3 and µ -τ = 0, but in this case,

5 = I(g 1 , g 2 ) = µ -τ = 4 = 0 + (3 -1)(3 -1) + 1 -1. i(ω 1 ) = i(ω 2 ).
Now, according to [START_REF] Genzmer | Dimension of the moduli space of a curve in the complex plane[END_REF] -using the notations of the mentioned paper, it refers to the case δ 1 = 0 and δ 2 = 1 -we obtain

ν 1 + 1 = β0 2 + 1 = q∈P 1 Ind( F, C, q) = i(ω 1 ) + p 1 (S), that is, i (S) = i (ω 1 ) = ν 1 + 1 -p 1 (S) = β 0 2 + 1 -p 1 (S) = β 0 2 + 1 -p 1 (S)
where p 1 (S) is described in [START_REF] Genzmer | Dimension of the moduli space of a curve in the complex plane[END_REF]. Now, suppose β 0 is odd and let {ω 1 , ω 2 } be a Saito basis for S ∪ l with l a generic line that without loss of generality can be considered x = 0. As ν(S ∪ l) is even, by the same above argument, we can suppose that

ν(ω 1 ) = ν(ω 2 ) = β 0 + 1 2 = β 0 2 
+ 1 and i(S ∪ l) = i (ω 1 ) = i (ω 2 ) .

Denoting ω i = (a i (y) + x (• • • )) dx + x (• • • ) dy and considering generic α 1 , α 2 ∈ C we obtain a good Saito basis {ω 1 = ω 1 + α 2 ω 2 , ω 2 = ω 2 + α 1 ω 1 } such that ν (a 1 (y) + α 2 a 2 (y)) = ν (a 2 (y) + α 1 a 1 (y)), i (ω 1 ) = i (ω 1 ) = i (ω 2 ) = i (ω 2 ) and ν(ω 1 ) = ν(ω 1 ) = ν(ω 2 ) = ν(ω 2 ). Now the family

ω 1 , 1 x ω 2 - a 2 (y) + α 1 a 1 (y) a 1 (y) + α 2 a 2 (y) ω 1
is a good Saito basis for S. Finally, since i 1

x ω 2 -a2(y)+α1a1(y) a1(y)+α2a2(y) ω 1 ≥ i (ω 1 ), one has i (S) = i (ω 1 ) . By the description of p 1 (S ∪ l) given in [START_REF] Genzmer | Dimension of the moduli space of a curve in the complex plane[END_REF] -using the notations of the article, it refers to the case δ 1 = 1 and δ 2 = 1 -we get i (S) = i (ω 1 ) = ν (S) + 1 2 -p 1 (S) = β 0 2 + 1 -p 1 (S) .

Thus, the proof of the formula is a consequence of Theorem 11 noticing that by the Generic Basis Theorem we have ν 1 = β0 2 and ν 2 = β 0 -β0 2 .

Example [START_REF] Genzmer | Dimension of the moduli space of a curve in the complex plane[END_REF]. In [START_REF] Peraire | Moduli of plane curve singularities with a single characteristic exponent[END_REF], Peraire computed the minimum Tjurina number for the topological class whose characteritic exponents are [START_REF] Saito | Theory of logarithmic dierential forms and logarithmic vector elds[END_REF]12,17). After ve blowing-ups, we obtain a curve with multiplicity 2. The corresponding characteristics exponents of the sequence of blown-up curves are [START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF]14), [START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF][START_REF] Zariski | Le problème des modules pour les branches planes[END_REF], [START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF][START_REF] Peraire | Moduli of plane curve singularities with a single characteristic exponent[END_REF], [START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF][START_REF] Genzmer | Dimension of the moduli space of a curve in the complex plane[END_REF], [START_REF] Camacho | Topological invariants and equidesingularization for holomorphic vector elds[END_REF][START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF].

Applying inductively the formula (4.1), one accumulates contribution to the difference µ -τ min . Actually, it can be seen that the respective contributions are 15, 1, 1, 1, 0, 0. Thus τ min = µ -18 = 98 -18 = 80 which coincides with the computation of Peraire.

The last theorem allow us obtain a formula to compute the minimum Tjurina number in a topological class using the multiplicity sequence.

Corollary 13. Let L a topological class of a singular plane branch determined by the multiplicity sequence ν (1) , ν (2) , . . . , ν (N ) , ν (N +1) = 1, . . .. The minimal Tjurina number achieved in L is

τ min = N i=1 ν 2 (i) + ν (i) 2 
ν (i) 2 -ν (i) -1 -1 + p 1 (S (i) )
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  I (B1g2f, g1) .

1 =

 1 (g1, g2) = I ∂f ∂y , B1 -I (B1, g1) -ν + I (0,-) ∂f ∂y , B1 -I (0,-) B1, g1 + ν ∂f ∂y ν (B1) -ν (B1) ν (g1) -ν + 1.

  divide A i ∂f ∂y . By the previous lemma, gcd(B i , ∂f ∂y ) = 1 so H divides A i , a contradiction because ω i has an isolated singularity. Suppose H = gcd ∂f ∂y , g i , so H divides B i

	∂f ∂x . As gcd ∂f ∂y , ∂f ∂x = gcd(B

i , g i ) = 1,
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A more detailed analysis shows that Lemma 9 is not valid in this case because the intersection of the tangent cone of g 1 and g 1 is x = 0 that is distinct to the tangent cone y = 0 of S 4 .

4.

The minimal Tjurina number and the Dimca-Greuel question for plane branches.

Given a curve S, we denote by L = L(S) its topological class. Although the Milnor number is constant in L, the same is not true for the Tjurina number τ (S). On the other hand, as τ (S) is upper semicontinuous, the minimum value τ min for curves in L is achieved generically and it should be computed by the sole topological data (see Chapitre III, Appendice of [START_REF] Zariski | Le problème des modules pour les branches planes[END_REF] by Teissier). For a topological class L given by characteristic exponents (β 0 , β 1 ), Delorme in [START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF] presented a formula for the dimension of the generic component of the Moduli space that allow us to compute τ min . For an arbitrary topological class, Peraire (see [START_REF] Peraire | Moduli of plane curve singularities with a single characteristic exponent[END_REF]) presented an algorithm to compute the τ min using the ag of the Jacobian ideal. In this section, using the last theorem and results of [START_REF] Genzmer | Dimension of the moduli space of a curve in the complex plane[END_REF], we give an alternative method to compute τ min in a xed topological class L and as a bonus we are able to answer a question of Dimca-Greuel for the irreducible plane curves. If S admits a good basis we can not insure that the same is valid for S (see Example (3)). However, this property is true generically.

Theorem 12. Let L the topological class of plane branch given by the characteristic exponents (β 0 , β 1 , . . . , β s ), τ min the minimal Tjurina number in L and τ min the minimal Tjurina number in L. If S is generic in L, then (4.1)

, where p 1 (S) can be computed in the following way:

if β 1 is odd and n is even

if β 1 is even and n is even.

Proof. Suppose that β 0 = ν(S) is even. According to the Generic Basis Theorem, S admits a good basis

where S (i) denote the curve with multiplicity ν (i) in the canonical resolution process for a generic curve in L.

Proof. Applying inductively the formula presented in the last theorem and using that i

As µ = N i=1 ν (i) ν (i) -1 , we get the proof.

In [START_REF] Dimca | On 1-forms on isolated complete intersection curve singularities[END_REF], Dimca and Greuel present an interesting question about the Tjurina number for curves in a given topological class L. More specically, they ask if 4τ (S) > 3µ(S) for any curve in L.

As the Tjurina number is semicontinuous in L and we have obtained a formula for the τ min , we are able to given a lower bound for the Tjurina number in terms of the Milnor number and it answered positively the previous question for the irreducible case.

Corollary 14. Let S be a singular irreducible plane curve. Then

In particular, 4τ (S) > 3µ(S).

Proof. We denote µ = µ(S). It is sucient to show the inequality for the τ min . By (4.2), the relation below holds

Now, by Theorem 12 we have that:

So, the following inequality follows (4.3)

Using (4.3), that is,

Example [START_REF] Laudal | Moduli of plane curve singularities with C * -action[END_REF]. Let us consider the topological class L determined by the characteristic exponents (141, 142). The Milnor number for any curve in L is µ = (141 -1)(142 -1) = 19740. Using the lower bound presented in the last result we obtain τ min ≥ 14840. For this topological class it follows by the Delorme result (cf. [START_REF] Delorme | Sur les modules des singularités des courbes planes[END_REF]) that τ min = 14910.

While we submit the rst version of this paper to Arxiv, we discover that, at the same time, a positive answer for the Dimca-Greuel question was obtained by Alberich-Carramiñana et al. and published in Arxiv [START_REF] Alberich-Carraminana | The minimal tjurina number of irreducible germs of plane curve singularities[END_REF] a few days before. Although the methods are a bit dierent, the key ingredient is still the formula for the generic dimension of the moduli space obtained in [START_REF] Genzmer | Dimension of the moduli space of a curve in the complex plane[END_REF].