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Abstract

Viscothermal acoustic propagation in gases contained in rigid straight or conical tubes is consid-

ered. Under the assumption that the wavelength is much larger than both the boundary layer

thickness and the tube radius, pressure and flow are shown to be solutions of a pair of coupled

1D differential equations, formulated as transmission line equations involving complex loss coef-

ficients. The derivation of these loss coefficients, which is usually accomplished in cylinders, is

generalized here to conical geometries. In the well-kown case of circular cylinders, the Zwikker–

Kosten (ZK) theory is recovered. For circular cones, the expression of the loss coefficients is

derived. It involves complex-order spherical harmonics, instead of Bessel functions for circular

cylinders, and makes the hydraulic radius appear as a natural relevant geometrical parameter.

We show that replacing the classical radius by the hydraulic radius in the ZK theory provides

an affordable and accurate approximation of the analytic model derived for cones. The proposed

formulas are used to compute the input impedance of a cone, and compared with a 3D reference.

In an ideal setting, using the spherical harmonics or the hydraulic radius in the 1D method

accurately approximates the full 3D method, and allows to increase accuracy by approximately

two orders of magnitude compared to the ZK theory.
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Name Symbol Formula Typical values

Static pressure p0 101.3 kPa

Static temperature T0 293.15 K

Static density ρ0 1.2 kg m−3

Sound velocity c0
√
γp0/ρ0 343.4 m s−1

Shear viscosity µ 1.81 × 10−5 kg m−1 s−1

Bulk viscosity ζ 1.3 × 10−5 kg m−1 s−1

Thermal conductivity κ 2.57 × 10−2 J m−1 s−1 K−1

Specific heat w/ constant pressure Cp 1004 J kg−1 K−1

Specific gas constant R0
γ−1
γ
Cp 288 J kg−1 K−1

Half opening angle of the cone Θ 0 to 0.2 rad

Frequency f 20 to 20 × 103 Hz

Angular frequency ω 2πf 102 to 105 rad s−1

Radius of the pipe R 10−3 to 10−1 m

Wavelength λ c0/f 2 × 10−2 to 2 × 101 m

Viscous boundary layer thickness δv
√
µ/(ρ0ω) 10−5 to 10−3 m

Thermal boundary layer thickness δt
√
κ/(ρ0Cpω) 10−5 to 10−3 m

Reduced frequency kR Rω/c0 3 × 10−4 to 30 (no unit)

Shear wave number Sh R
√
ρ0ω/µ 3 to 8000 (no unit)

Prandtl number Pr µCp/κ 0.71 (no unit)

Heat capacity ratio γ Cp/Cv 1.402 (no unit)

Boundary-layer–wavelength ratio kR/ Sh
√
µω/(c20ρ0) 10−4 to 4 × 10−3 (no unit)

Table 1: Notations used throughout this paper. Four characteristic lengths are exhibited. The four significant

unitless coefficients from [1] are highlighted. Values of most physical coefficients are calculated from [2, (5.142)]

for air at 20 °C, and other values are estimated from them. Bulk viscosity is estimated from that of N2 [3, p.9].

.
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1. Introduction

In the context of musical acoustics, virtual instrument prototyping requires accurate models

of sound propagation in tubes with varying cross-section. Such models are commonly formulated

as transmission line equations, a pair of coupled partial differential equations with a single spatial

dimension [4, 5, 6]. In order to account for the presence of boundary layers near the tube walls,

the coefficients of these equations should depend on the viscosity and thermal properties of

the fluid. One possible expression for the transmission line coefficients of cylindrical tubes was

initially proposed by Zwikker and Kosten [7], and is now widely used to model tubes of any shape

[8, 9, 2, 10]. The current work aims to question whether the use of these coefficients is justified

in tubes with varying cross-section in spite of the fact that they are derived for cylinders. This

issue is addressed by considering the special case of conical tubes.

The motion of air in a thin tube of varying section can be approximated by the following "horn

equation" [4], which relates the spatial evolution of the acoustic pressure p̂ and acoustic volume

flow Û along the instrument’s longitudinal coordinate `, assuming time-harmonic oscillation with

angular frequency ω > 0: 
dp̂
d`

(iω, `) + Zv(iω, `) Û(iω, `) = 0,

dÛ
d`

(iω, `) + Yt(iω, `) p̂(iω, `) = 0.

(1)

This formulation of the equations highlights their "transmission line" form [2, (5.132)]. It is also

possible to write this model as a second order equation on the pressure only, often attributed

to Webster [11] although it can be found in much earlier works [12, 13], as noted in [14]. When

neglecting diffusion phenomena, the lineic impedance Zv and the shunt admittance Yt are purely

imaginary:

Zv,lossless(iω, `) = iω
ρ0

S(`)
, Yt,lossless(iω, `) = iω

S(`)

ρ0c20
,

where S(`) is the cross-section area at abscissa `, ρ0 is the static density of air, and c0 is the

sound velocity, which for ideal gases is expressed as
√
γp0/ρ0 with p0 the static pressure [2,

(5.132), (1.98)].

The main limitations of this model are the following: firstly, the model does not take into

account non-planar modes of propagation, which limits its validity to tubes with slow longitudinal

variation of section, and to wavelengths much longer than the tube diameter; secondly, it does

not take into account energy dissipation due to viscous and thermal effects, and therefore predicts

inaccurately the frequency, the width and the amplitude of the air column resonances.
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Several techniques are available to obtain better predictions in wide tubes or in horns with

abrupt section variation [2, §7.6.3.5] including 3D finite elements [15], multi-modal propagation

[16, 17], and ad hoc methods [18]. The use of a horn equation with a modified effective radius

profile has also shown improved results [6, 19, 20]. This issue is outside the scope of the present

article, which instead focuses on the viscous and thermal phenomena, and in which the waves

are assumed to be only planar or spherical.

In order to take into account viscous and thermal effects, which mainly manifest by forming

boundary layers near the tube wall, the lineic immittances Zv and Yt are modified. Two dimen-

sionless complex numbers Kv(iω, `) and Kt(iω, `) are classically introduced [21, eqns. (3.115-

3.117)], termed loss coefficients throughout the paper, related to the viscous and thermal effects

respectively.

Zv(iω, `) =
1

1−Kv(iω, `)

iωρ0

S(`)
, Yt(iω, `) =

(
1 + (γ − 1)Kt(iω, `)

) iω S(`)

ρ0c20
. (2)

The coefficient Kv describes the perturbation of the lossless lineic impedance due to the viscosity,

and Kt describes the perturbation of the lossless shunt admittance due to thermal effects. The

influence of the boundary layers on the acoustic propagation is contained in the expression of

these coefficients.

Note that from the theory of electrical transmission lines, it is possible to interpret the co-

efficients Zv(iω, `) and Yt(iω, `) as series impedance and shunt admittance per unit length [2]1.

In that case, the definitions Γ(iω, `) =
√
Zv(iω, `)Yt(iω, `) and Zc(iω, `) =

√
Zv(iω, `)/Yt(iω, `)

correspond respectively to a local propagation number (purely imaginary in the absence of dissi-

pation) and a local characteristic impedance (real in the absence of dissipation). In general, their

real and imaginary parts will be nonzero and depend on frequency and space. System (1) can be

solved using the transfer matrix method on intervals where the lineic immittances are constant

with respect to space [2], or using 1D finite element methods in the general case [10, 24].

Other methods exist for computing acoustic propagation with viscous and thermal effects.

The exact solution in a rigid cylinder was derived by Kirchhoff [25]; however, its numerical

computation requires an iterative solving of the implicit dispersion relation. The linearized

Navier–Stokes equations may directly be solved in arbitrary geometries using 3D finite elements

[26]. Disregarding bulk losses leads to a more efficient 3D model called Sequential Linearized

Navier–Stokes (SLNS) [27], with negligible error in the audible range, which is used as a reference

1Their real part should be nonnegative at all frequencies since they represent a passive system [22, 23]
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in the numerical comparisons of section 7. When the boundary layers are thin with respect to the

radius of curvature of the walls, equivalent boundary conditions have been found ; this reduces

the problem to a Helmholtz equation with effective wall admittance [28, 29].

Various authors have focused on the special case of infinite right circular cylinders with rigid

and isothermal walls, and have derived approximate models in various regimes of frequency

and/or pipe size [25, 30, 31, 32, 33], often giving rise to fractional-order derivatives. A review

of many such models was done by Tijdeman [1]. The model initially presented by Zwikker

and Kosten [7, 34], which shall be recalled in section 6, is valid for most of the frequencies

and tube sizes considered in musical acoustics. Tijdeman [1] calls this model the “low reduced

frequency solution”, as it is valid as soon as the “reduced frequency” kR = Rω/c0 is small and

the tube is long enough2 (see Table 1 for notations and typical values). Then the transmission

line coefficients only depend on the shear wave number 3 Sh = R
√
ρ0ω/µ. This model, widely

used in the musical acoustics community to describe straight circular pipes, is also used for tubes

with varying radius [35, 10].

The wide spread of this debatable practice led us to question whether the Zwikker–Kosten

model of viscothermal effects remains reliable for arbitrary variations of radius. Indeed, the

influence a nonconstant section would have on the viscothermal effects is unclear. We examine

this question in the particular case of cones.

The current work builds upon a previous generalization of the Zwikker–Kosten model to

straight tubes with arbitrary cross-sectional shape [36], which is now frequently used [37], espe-

cially in the study of porous materials [38, 39].

The article is organized as follows. Section 2 recalls the linearization of the Navier–Stokes

equations of a compressible fluid for small sinusoidal oscillations. The simplifying assumptions

are presented and discussed in section 3. From the simplified equations, the derivation of the

corresponding 1D equation is detailed in section 4. The coefficients of this equation are computed

in section 5 in the case of cylinders, where the classical Zwikker–Kosten model is recovered; the

closed-form solution of system (1) in the whole tube is deduced. Section 6 focuses on the case of

circular cones and leads to the main result: a different expression of the loss coefficients. Several

discussions ensue, firstly on the integration of the transmission line equations, secondly on the

2Although the reduced frequency is denoted k in Tijdeman’s article [1], the choice has been made here to

conform to the literature of acoustics in which k designates the wave number.
3This notation and naming comes from [1] ; some authors prefer to introduce the two wavenumbers of the

viscous and thermal diffusion waves [2] [21, (2.85,2.87)], which have the unit of an inverse length.
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effective loss radius with the proposition of an approximate model. In section 7, impedances

calculated using these different models are then compared numerically with a 3D model. Ap-

pendix A discusses the passivity of the immittance operators of cylinders and cones in the Laplace

domain.

2. Base equations

The Navier–Stokes equations describing the motion of a perfect gas are linearized for sinu-

soidal oscillations around a uniform state of air at rest, with no mean flow and small variations

of temperature, density and pressure relative to their mean value. In the following, computa-

tions are first derived in the frequency domain, classically used in acoustics; the final results are

also recast in the complex Laplace domain to analyze causality and passivity in Appendix A.

Let ω > 0 denote a fixed angular frequency. The time-domain fields of pressure P , air velocity

v, density ρ and temperature T are assumed to be of the form

P (x, t) = p0 + Re(P̂ (x)eiωt), ρ(x, t) = ρ0 + Re(ρ̂(x)eiωt), (3a)

v(x, t) = 0 + Re(v̂(x)eiωt), T (x, t) = T0 + Re(T̂ (x)eiωt). (3b)

with respect to the 3D spatial variable x and time variable t, where the complex unknowns

P̂ (x), v̂(x), ρ̂(x), T̂ (x) express the amplitude and relative phase of variations of pressure, veloc-

ity, density and temperature around the equilibrium. Static pressure, static density and static

temperature are denoted as p0, ρ0 and T0, and static flow is assumed to be zero. In all these

equations, i denotes the imaginary unit such that i2 = −1, and Re(·) the real part of a complex

number. Under these hypotheses and considering air as a perfect gas, the Harmonic Linearized

Navier-Stokes system without source is obtained [21, 40]



iωρ̂+ ρ0∇ · v̂ = 0,

ρ0 iωv̂ = −∇P̂ + µ∇2v̂ +
(
ζ +

µ

3

)
∇(∇ · v̂),

ρ0Cp iωT̂ = κ∇2T̂ + iωP̂ ,

P̂

p0
=

ρ̂

ρ0
+
T̂

T0
,

(4a)

(4b)

(4c)

(4d)

where µ is the shear viscosity, ζ is the bulk viscosity, and κ is the thermal conductivity (see

values in table 1). Note that the classical Helmholtz equation of acoustics can be obtained by

neglecting viscous and thermal effects (µ = ζ = 0, κ = 0) and eliminating unknowns v̂ and T̂ .
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The unknowns are defined on a domain Ω ⊂ R3 representing a tube; the boundary is composed

of a wall Σ, and two end surfaces Γ±. The wall is assumed to be rigid with a no-slip condition

for the gas, and isothermal, namely

v̂ = 0 and T̂ = 0 on Σ. (5)

These “perfect wall” conditions mean that the wall is impermeable and conducts heat much better

than air. For porous or flexible materials, or heat insulators, these conditions must be relaxed,

for instance using a wall impedance [6, 4, 41]. Various boundary conditions are possible on end

surfaces Γ±, for instance a Dirichlet condition on pressure [27] or coupling with other systems.

Figure 1: Sketches of the two considered types of 3D domains, with the notations used in each. Left: a straight

tube with arbitrary cross-section ranging from z− to z+. Right: a cone with arbitrary cross-section ranging from

radius r− to r+.

In the current article, the domain Ω is assumed to be either:

• A straight tube of cross-section Ωc ⊂ R2, extending from z− to z+

Ω =
{

(x, y, z) ∈ R3 | (x, y, z) ∈ Ωc × [z−, z+]
}
. (6)

The boundary of the straight tube is composed of the wall Σ = ∂Ωc × [z−, z+], and two

planar end surfaces Γ− = Ωc × {z−} and Γ+ = Ωc × {z+}. The longitudinal variable is

` = z. We define the cross-section at abscissa ` as Ω` = Ωc × {`}.

• A cone with apex at the origin, extending from radius r− to r+:

Ω =
{

Ψ(r, θ, φ) ∈ R3 | (r, θ, φ) ∈ [r−, r+]× Ωc
}
, (7)

7



where Ωc ⊂ [0;π] × [0; 2π) is the set of angles (θ, φ) contained in the cone, and Ψ is the

conversion function from polar to Cartesian coordinates:

Ψ(r, θ, φ) = r
(
sin θ cosφ, sin θ sinφ, cos θ

)T
. (8)

The boundary of the cone is composed of the wall Σ = Ψ
(
[r−, r+]×∂Ωc

)
, and two spherical

end surfaces Γ− = Ψ
(
{r−} × Ωc

)
and Γ+ = Ψ

(
{r+} × Ωc

)
. The longitudinal variable is

` = r. The cross-section at abscissa ` is defined as Ω` := Ψ({`} × Ωc). In the special case

of circular cones, we will set Ωc = [0,Θ] × [0, 2π); however the methods proposed below

can be applied to any smooth shape.

These two types of geometries are represented in figure 1. A parallel is drawn throughout the

article between these two cases.

3. Low reduced frequency approximation

The low reduced frequency approximation consists in simplifying system (4), by separating

the propagative behavior which occurs mainly in the longitudinal direction from the dissipative

behavior which occurs mainly in the transverse direction. The approximation was initially formu-

lated for circular cylinders [7], then generalized to straight tubes with arbitrary cross-section [36].

This section generalizes it to conical tubes with arbitrary cross-section shape. The simplifications

are presented first, then their validity is discussed.

3.1. Simplifying assumptions

(A1) The propagating pressure waves are assumed to be purely planar for straight tubes, or

purely spherical for cones (no higher-order transverse modes). Formally, this means that

the pressure field P̂ can be expressed as a function of one scalar coordinate.

For straight tubes: P̂ (x) = p̂(z) ∇P̂ =
dp̂
dz

ez. (9)

For cones: P̂ (x) = p̂(r), ∇P̂ =
dp̂
dr

er, (10)

where r = ||x|| =
√
x2 + y2 + z2 is the radial component in spherical coordinates, and

er = x/||x|| is the radial unit vector. In the following, symbol ` is used to denote z or r in

each case respectively.
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(A2) The Laplacian operator ∇2 governing viscous and thermal effects in (4b) & (4c) is approx-

imated by the Laplacian along the cross-section ∇2
c :

∇2 = ∇2
c +

∂2

∂`2
≈ ∇2

c . (11)

This corresponds to neglecting the longitudinal diffusion process involved in the dissipation

phenomena.

(A3) The term involving the gradient-of-divergence of v̂ is set to zero:∣∣∣(ζ +
µ

3

)
∇(∇ · v̂)

∣∣∣� |∇p̂| . (12)

This corresponds to neglecting losses due to dilation.

After these approximations, system (4) simplifies into:



iωρ̂+ ρ0∇ · v̂ = 0,

ρ0 iωv̂ = −dp̂
d`

+ µ∇2
c v̂,

ρ0Cp iωT̂ = κ∇2
c T̂ + iωp̂,

p̂

p0
=

ρ̂

ρ0
+
T̂

T0
,

(13a)

(13b)

(13c)

(13d)

where the pressure now depends only on `, and we have isolated the longitudinal velocity

v̂(x) = v̂(x) · e`. (14)

In section 4, solutions of equation (13) are shown to satisfy a one-dimensional partial differential

equation.

3.2. Discussion of the simplifications (A1)-(A3)

Several characteristic lengths appear in system (4):

• λ = 2πc0/ω the wavelength in the absence of losses, where c0 =
√
γp0/ρ0 is the speed of

sound in the absence of losses,

• δv =
√
µ/ρ0ω the characteristic length of viscous effects, i.e. viscous boundary layer

thickness,

• δt =
√
κ/ρ0Cpω the thermal boundary layer thickness.
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• a characteristic length R of the domain in the transverse direction (e.g. the radius for a

cylinder)

The ratios of these lengths are natural dimensionless parameters related to the qualitative be-

havior of system (4):

• kR = 2πR/λ = Rω/c0 is called the reduced frequency,

• Sh = R/δv = R
√
ρ0ω/µ is called the shear wave number, and

• Pr = δ2
v/δ

2
t = µCp/κ is called the Prandtl number.

Together with the heat capacity ratio γ, they fully characterize viscothermal propagation in

cylinders. This nondimensionalization allows to compare different models [1, 42]. For a given

gas, coefficients Pr and γ can be considered constant (see Table 1), whereas kR and Sh depend

on both pipe radius and frequency.

Note that for brevity, the dependency of k, λ, Sh, δv and δt on the angular frequency ω is

omitted except when needed.

The validity of simplifications (A1)-(A3) can also be expressed using kR and Sh.

Figure 2: Range of validity of the low reduced frequency model (grayed), compared to the range of tube radii

and frequencies of interest in musical acoustics (rectangle). Iso-lines of the ratios of radius R, wavelength λ and

boundary layer thickness δv are shown. The low reduced frequency model assumes R� λ and δv � λ, but does

not assume R� δv .

• The assumption of planar or spherical waves (A1) is often adopted when studying wind

instruments using a one-dimensional approach [9, 2, 10]. It has been shown to be asymp-

totically valid when the tube radius is much smaller than the wavelength [4]; or in other
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words, when the reduced frequency is small:

R� λ i.e. kR� 1.

As illustrated in figure 2, this assumption is invalidated for wide tubes or at high frequencies.

• One possible justification [36] of simplification (A2) is based on the comparison of the

relative magnitudes of the different terms of (4b) and (4c). The variation of v̂ along

direction ` is expected to be mostly due to acoustic propagation, and thus to vary with

wavenumber k; thus the amplitude of term µd2v̂
d`2 is approximately µk2|v̂|. This quantity is

negligible compared to the left-hand side of (4b) when µk2 � ρ0ω, i.e. when the viscous

boundary layer thickness is much smaller than the wavelength:

δ2
v � k−2, i.e. (kR)2/ Sh2 � 1. (15)

Similarly, κd2T̂
d`2 is negligible compared to ρ0Cp iωT̂ when the thermal boundary layer thick-

ness is much smaller than the wavelength.

δ2
t � k−2 i.e. (kR)2/( Pr Sh2)� 1, (16)

where the Prandtl number Pr is close to unity (see Table 1).

As can be visualized in Figure 2, the ratio δv/λ and consequently (kR)2/ Sh2 are less than

1× 10−3 at all audible frequencies, which validates this simplification.

• A justification of assumption (A3) is given in [36]. The relative magnitudes of the right-hand

side terms of (4b) are estimated, by using the conservation of mass, assuming that ∇ρ̂/ρ0

is of the same order as ∇p̂/p0 (which is true for adiabatic and for isothermal compression),

and that ζ is not much bigger than µ:∣∣∣(ζ +
µ

3

)
∇(∇ · v̂)

∣∣∣ = ω
(
ζ +

µ

3

)
|∇ρ̂/ρ0| ≈ ωµ |∇p̂/p0| ≈

(kR)2

Sh2 |∇p̂| .

Using the same estimate as above, at all audible frequencies this term is much smaller

than ∇p̂, and can be neglected. Some authors use this simplification (A3) alone in a 3D

finite-element setting, to dissociate the viscous and the thermal effects [27].

It should be noted that many models of viscothermal acoustics make the assumption of a

large shear wave number [1, 19, 29], which is invalid for narrow tubes at low frequencies.

Sh� 1 i.e. R/δv � 1

This is not the case of the Zwikker–Kosten model, nor of the hereby proposed generalization.
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4. Derivation of the 1D equations

In this section, the simplified system of equations (13) is reformulated as a pair of 1D dif-

ferential equations coupling the pressure and longitudinal velocity. The procedure requires no

additional simplification; it is similar to that in [36] for straight tubes, but extends it to conical

tubes with arbitrary cross-sectional shape.

To derive the 1D equations, one must express the velocity and density in terms of the pressure

unknown, and relate them through the equation of conservation of mass. For conciseness, the

dependency on ω > 0 is omitted in subsections 4.1 and 4.2.

4.1. Shape function

The simplified equations for velocity (13b) and temperature (13c) share the same form: a

diffusion equation with source term depending on the pressure. A common dimensionless version

with unknown ψ(α,x) is given by (recalling the notations from figure 1 and equation (11))
ψ(α,x) +

R2(`)

α
∇2
cψ(α,x) = 1 inside the domain x ∈ Ω,

ψ(α,x) = 0 on the wall x ∈ Σ,

(17)

where α ∈ C is a dimensionless parameter balancing propagation and diffusion effects, and where

R ≡ R(`) is a characteristic size of the domain in the transverse direction. Parameter α is set to

either αv or αt:

αv(`) = −i Sh2 = −R2(`)ρ0iω/µ, αt(`) = −i Sh2 Pr = −R2(`)ρ0iωCp/κ. (18)

Then the velocity and temperature are related to ψ through the following formulas:

v̂(x) = − 1

ρ0iω

dp̂
d`

(`)ψ
(
αv(`),x

)
, T̂ (x) =

1

ρ0Cp
p̂(`)ψ

(
αt(`),x

)
, (19)

The unknown ψ is closely related to the scalar viscous and thermal fields used by [27] in the

3D setting. Using the equation of state (13d) to relate ρ̂ to T̂ , and using that p0 = γ−1
γ Cpρ0T0,

the density can also be expressed in terms of ψ and p̂:

ρ̂(x) =
ρ0

p0
p̂(`)

[
1− γ − 1

γ
ψ
(
αt(`),x

)]
. (20)

Remark. The choice of introducing R2 both in the numerator and the denominator (inside α) of

equation (17) may seem arbitrary. One justification is that this choice makes α dimensionless:

in fact we can identify above that αv(`) = −i Sh2(`) and αt(`) = −i Pr Sh2(`). Additionally, it

suggests to rescale the domain of equation (17), using a change of variable x̃ = x/R.
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Since equation (17) involves no derivative in the longitudinal direction, it can be considered

on each cross-section Ω` independently. To highlight the fact that the overall shape of ψ depends

only on α, the problem is brought back to a reference domain Ω̃, which is planar for straight

tubes, or a section of a sphere for cones. In the latter case we impose that R be proportional

to the distance to the apex, so that Ω̃ = 1
RΩ`. Then parameter α controls the thickness of the

boundary layers in the reference domain. The rescaled equation is:

ψ(α,x) = ψ̃(α,x/R),


ψ̃(α, x̃) +

1

α
∇2
cψ̃(α, x̃) = 1 on Ω̃ =

1

R
Ω`,

ψ̃(α, x̃) = 0 on ∂Ω̃.

(21)

In particular, the average value of ψ on Ω` depends only on the complex number α. We thus

introduce:

F (α) =
1

S(`)

∫
Ω`

ψ(α,x) dS, where S(`) =

∫
Ω`

dS. (22)

Function F (α) fully describes how the shape of the cross-section affects viscothermal losses. This

shape function F (α) must be calculated for each considered cross-sectional shape, by solving

equation (17). Analytical expressions are given below for cylinders and for circular cones (see

(35) and (52)).

4.2. Effective velocity and density

Using equations (19) and (20), the total flow through one cross-section, defined as Û(`) =∫
Ω`
v̂ dS, and the averaged density, defined as 〈ρ̂〉(`) = (

∫
Ω`
ρ̂ dS)/S(`), can be related to the

pressure as

Û(`) = −S(`)

ρ0iω

(
1−Kv(`)

)dp̂
d`
, (23)

〈ρ̂〉(`) =
1

c20

(
1 + (γ − 1)Kt(`)

)
p̂(`), (24)

where viscous and thermal loss coefficientsKv(`) = 1−F (−i Sh2(`)) andKt(`) = 1−F (−i Pr Sh2(`))

are introduced. In the limit of lossless propagation (|α| → ∞) these complex coefficients are zero

since ψ(α,x) tends to 1 and therefore so does F (α).

Integrating the equation of conservation of mass (13a) on a cross-section Ω` yields:

iω

∫
Ω`

ρ̂ dS + ρ0

∫
Ω`

∇ · v̂ dS = 0. (25)

As no flow crosses the boundary Σ, the integral of ∇ · v̂ amounts to the longitudinal variation of

the flow: ∫
Ω`

∇ · v̂ dS =
dÛ
d`

. (26)
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Thus, equation (25) can be reformulated

iωS 〈ρ̂〉+ ρ0
dÛ
d`

= 0. (27)

This equation relates the mean values of the velocity and of the mass density, and involves only

one spatial variable `.

4.3. Resulting 1D equation

Two relations between the pressure and mean velocity are now available: one is (23), and the

second one is obtained by replacing the density by its expression (24) into (27).

Finally, this leads to the transmission line system (1) for p̂ and Û , where the lineic immittances

are of the form given in equation (2):
dp̂
d`

(iω, `) +
1

1−Kv(iω, `)

iωρ0

S(`)
Û(iω, `) = 0,

dÛ
d`

(iω, `) +
(

1 + (γ − 1)Kt(iω, `)
) iω S(`)

ρ0c20
p̂(iω, `) = 0.

(28)

with loss coefficients defined by

Kv(iω, `) = 1− F (−i Sh2(ω, `)) and Kt(iω, `) = 1− F (−i Pr Sh2(ω, `)) (29)

All the information about the viscothermal losses is contained in coefficients Kv and Kt; their

computation requires to evaluate the shape function. In the general case, this function can be

computed by solving equation (17) with numerical methods. Some special cases lead to analytic

expressions. Two of them are derived hereafter: in the case of circular cylinders, which is well

known, and in the case of circular cones, which had not yet been studied as far as the authors

know.

5. Low reduced frequency solution for right circular cylinders

The procedure of section 4 is now applied to the classical case of right circular cylinders. The

calculation of the shape function defined in (22) leads back to the well-known Zwikker–Kosten

model [7, 1, 36, 2]. Let R denote the radius of the cylinder. In all this section ` = z ∈ [z−, z+]

denotes the axial coordinate, and r ∈ [0, R] the radial coordinate in the cylindrical basis.
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5.1. Shape function of a cylinder

Using the notations of section 3, the cross-section is Ωc = {(x, y) | x2 + y2 ≤ R2}, and the

considered domain is

Ω =
{

(x, y, z) ∈ R3 | (x, y, z) ∈ Ωc × [z−, z+]
}

(30)

Due to symmetry, the solution is a function ψ(α, r) only depending on the radial coordinate.
ψ(α, r) +

R2

α

1

r

∂

∂r

(
r
∂ψ

∂r

)
= 1 on Ω,

ψ(α,R) = 0.

(31)

Using the change of variable ψ̃(α, r̃) = ψ(α, r̃R/
√
α) − 1, where r̃ = r

√
α/R is a dimensionless

coordinate, this equation can be identified with a Bessel equation:

ψ̃ +
1

r̃

∂

∂r̃

(
r̃
∂ψ̃

∂r̃

)
= 0.

Hence, ψ is of the form

ψ(α, r) = 1 + C1J0

(√
α
r

R

)
+ C2Y0

(√
α
r

R

)
, (32)

where J0 and Y0 are Bessel functions of the first and second kind, and C1 and C2 are two complex

constants. Since regular solutions are sought, ψ must be continuous at r = 0, so that C2 = 0.

The other constant is obtained from the boundary condition ψ = 0 at r = R that yields

ψ(α, r) = 1− J0(
√
αr/R)

J0(
√
α)

. (33)

For a given α ∈ C, the average value of ψ over Ω` is

〈ψ〉 =

∫ R
0

2πr ψ(r)dr∫ R
0

2πr dr
. (34)

Using the Bessel function identity

d
dx

(xJ1(x)) = xJ0(x),

allows to derive this average value

Fcyl(α) = 〈ψ〉 = 1− 2J1(
√
α)√

αJ0(
√
α)
. (35)

Function Fcyl(α) is the shape function of the cylinder: it expresses the averaged behavior of

viscous and thermal diffusion processes on a given cross-section.
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Note that due to parity properties of Bessel functions, expression (35) does not depend on

which determination of the square root is chosen. Namely, the power series for J0(
√
α) and

2J1(
√
α)/
√
α around 0 are respectively [43]

J0(
√
α) =

∞∑
m=0

(−1)m

(m!)2

(α
4

)m
, 2J1(

√
α)/
√
α =

∞∑
m=0

(−1)m

m!(m+ 1)!

(α
4

)m
. (36)

Both series have an infinite radius of convergence, thus Fcyl(α) is analytic except where α is the

square of a zero of J0:

α ∈ C \ {j2
k | (jk)k∈N zeros of J0}

Function F (α) is therefore analytic everywhere except on a discrete set of poles located on the

positive part of the real axis. Since α is purely imaginary (either −iωR2ρ0/µ or −iωR2ρCp/κ),

function F depends smoothly on the frequency ω > 0.

5.2. Transmission line equations for the cylinder

The transmission line equation is rewritten using the shape function of the cylinder (35):
1

1−Kv,cyl(iω)

iωρ0

πR2
Û(z) +

dp̂
dz

(z) = 0,

(
1 + (γ − 1)Kt,cyl(iω)

) iω πR2

ρ0c20
p̂(z) +

dÛ
dz

(z) = 0,

(37)

where the loss coefficients do not depend on z and are given by

∀ω > 0, Kv,cyl(iω) = J(R
√
−iωρ0/µ) = J(i3/2 Sh(ω)), (38)

Kt,cyl(iω) = J(R
√
−iωρ0Cp/κ) = J(i3/2

√
Pr Sh(ω)), (39)

with

J(q) =
2J1(q)

q J0(q)
. (40)

System (37) coincides with the model initially derived by Zwikker and Kosten [7, 1, 36]. In its

“transmission line” form, it has been used by various authors [2, (5.132)],[10, 35, 44, 41]. The

extension to the Laplace domain of the lossy immittance operators appearing in equation (37) is

discussed in Appendix A.1.

5.3. Propagation constant and characteristic impedance

Since coefficients do not depend on the axial coordinate z = `, the solutions of (37) are given

by the classical solutions of the transmission line equations:

p̂(z) = p̂+e
−Γz + p̂−e

Γz, Û(z) = 1/Zc
[
p̂+e

−Γz − p̂−eΓz
]
, (41)
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where the complex propagation constant and characteristic impedance are given by

Γ =
iω

c0

√
1 + (γ − 1)Kt,cyl(iω)

1−Kv,cyl(iω)
, Zc =

ρ0c0
πR2

[(
1−Kv,cyl(iω)

)(
1 + (γ − 1)Kt,cyl(iω)

)]−1/2 (42)

and p̂+, p̂− are the complex amplitudes of the “forward” and “backward” wave respectively. Note

that the loss coefficients Kv and Kt depend on frequency, resulting in wave dispersion as Γ de-

pends non-linearly on ω. Moreover, Γ has a positive real part accounting for the wave attenuation

with respect to distance.

Asymptotic expansions of Kv and Kt were proposed by Keefe [32] for large shear wave

number Sh, i.e. when the boundary layers are thin compared to the tube’s radius. Various

expressions of the dispersion relation due to viscothermal effects in a cylinder have been proposed

in the past. A review by Tijdeman [1] showed that most of them are approximations of the

Zwikker–Kosten model.

6. Low reduced frequency solution for right circular cones

We now follow exactly the same steps as in section 5, adapted to the case of a cone with

circular base. The solution ψ of equation (17) is calculated for this geometry; its average yields

the shape function F (α) defined in (22), resulting in a new expression of loss coefficients. Let

Θ denote the half opening angle of the cone. In all this section ` = r ∈ [r−, r+] denotes the

distance of one considered point from the apex, and θ ∈ [0,Θ] the angle measured from the cone

axis, in spherical coordinates (see Figure 3). Using the notations of section 2, the set of angles

contained in the cone is Ωc = [0,Θ]× [0, 2π).

x

y

z

r

φ

θ

r−

r+

Θ

Figure 3: Sketch of the 3D domain considered in section 6, with the spherical coordinates used.

Note that equation (17) makes use of a characteristic transverse length. To reflect the widen-
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ing of the cone with the distance to the apex, we set

R(x) = cΘr, (43)

where the constant cΘ will be chosen later. It should however be close to Θ for small cone angles

(cΘ = Θ + O(Θ2)). Possible choices for cΘ are discussed in section 6.4.

6.1. Shape function of a right circular cone

The shape function F (α) of a cone must be determined by computing the solution ψ(α,x) of

equation (17). Due to symmetry of the problem around the main axis of the cone, the equation

reduces to: 
ψ(α, r, θ) +

c2Θ
α sin θ

∂

∂θ

(
sin θ

∂ψ(α, r, θ)

∂θ

)
= 1 for 0 ≤ θ ≤ Θ,

ψ(α, r,Θ) = 0.

(44)

This is an ordinary differential equation in variable θ. The dependence of ψ on α and r is

made implicit in the following. Equation (44) can be identified as a noninteger-order equation

of spherical harmonics:

η(η + 1)ψ +
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
= η(η + 1), (45)

where η(α, r) ∈ C is such that

η(η + 1) =
α

c2Θ
, i.e. η = ±

√
α

c2Θ
+

1

4
− 1

2
. (46)

A classical way of solving this equation is to perform a change of variable; with q := cos θ, the

equation (45) is rewritten as

d
dq

(
(1− q2)

dψ
dq

)
+ η(η + 1)ψ = η(η + 1). (47)

which is the Legendre differential equation, a special case of hypergeometric equation, for which

the solutions are widely known [43]. The solutions ψ(θ) have the form:

ψ(θ) = 1 + C1Pη(cos θ) + C2Qη(cos θ), (48)

where Pη and Qη denote the Legendre functions of noninteger degree of the first and second kind.

Note that due to properties of the Legendre functions, this expression does not depend on which

root is chosen in (46). As in section 5.1, since regular solutions are sought, ψ must be continuous
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at θ = 0, so that C2 = 0. The other constant is obtained from the boundary condition ψ(Θ) = 0

which yields

ψ(θ) = 1− Pη(cos θ)

Pη(cos Θ)
. (49)

The shape function can be computed as

FΘ(α) = 〈ψ〉 =

∫ Θ

0
r2 sin(θ)ψ(θ) dθ∫ Θ

0
r2 sin(θ) dθ

. (50)

Legendre function Pη satisfies the following useful identity:∫ Θ

0

sin(θ)Pη(cos θ) dθ =
sin2 Θ

η(η + 1)
P ′η(cos Θ), (51)

where P ′η(z) is the derivative of Pη(z) with respect to its argument z. Therefore

FΘ(α) = 1− sin2 Θ

1− cos Θ

P ′η(cos Θ)

η(η + 1)Pη(cos Θ)
, where η

(
η + 1

)
=

α

c2Θ
. (52)

This shape function FΘ(α) is parametrized by the cone angle Θ. A calculation can show that in

the limit of a small cone angle, the cylindrical shape function is recovered4.

6.2. Transmission line equations of the cone

Pressure and velocity are thus solutions to equations (1) and (2), where the loss coefficients

are calculated using shape function FΘ (52). Dependency on position r and frequency ω is

highlighted for convenience:
1

1−Kv,Θ(r, iω)

iωρ0

S(r)
Û(r) +

dp̂
d`

(r) = 0,

(
1 + (γ − 1)Kt,Θ(r, iω)

) iωS(r)

ρ0c20
p̂(r) +

dÛ
d`

(r) = 0.

for r ∈ [r−, r+] (53)

The loss coefficients of the cone are given by:

Kv,Θ(r, iω) = P
(
ηv(r, iω), cos Θ

)
, ηv(r, iω) = −1

2
±
√

1

4
− iωr2

ρ0

µ
(54)

Kt,Θ(r, iω) = P
(
ηt(r, iω), cos Θ

)
, ηt(r, iω) = −1

2
±
√

1

4
− iωr2

ρ0Cp
κ

, (55)

4More precisely, for all α ∈ C such that J0(α) 6= 0, one has limΘ→0 FΘ(α) = Fcyl(α). The proof is not included,

but can be summarized as follows: write Fcyl(α) and FΘ(α) using ratios of functions; express the numerators and

denominators as series of functions; prove pointwise convergence of each term of each series as Θ→ 0; for a given

α, prove normal convergence of the series for Θ small enough; conclude that the numerator and denominator

converge to their expected limit, and thus that FΘ(α) converges to Fcyl(α), for all α such that the denominator

is nonzero.

19



where

P(ν, q) = (1 + q)
P ′ν(q)

ν(ν + 1)Pν(q)
. (56)

Once again, the values of the Legendre function Pη and its derivative do not depend on which

determination of the square root is chosen for η [43, §8.2.1]. Although the expression of the loss

coefficients is more complicated than previously, the structure of the equation relating p and

Û is exactly the same as in the cylindrical case. Note that the loss coefficients depend both on

frequency and space, similarly to when authors apply the Zwikker–Kosten model to an instrument

with a varying radius [9, 10]. The main difference between the classical formulas and these new

coefficients is that the Bessel functions of equation (40) have become Legendre functions in

equation (56). The extension of these new operators to the Laplace domain, and the passivity

of the immittances calculated using them in equation (2), are discussed in Appendix A.2.

6.3. Solving the transmission line equations

Whereas in the case of straight tube a closed form solution to the transmission line equations

(37) is given as the sum of "forward" and "backward" waves by equation (41), this breaks down

in the case of conical tubes. Indeed, due to the spatial dependence of the coefficients, there is no

exact closed-form solution known for the transmission line equations (53). To circumvent this

difficulty, several authors use constant "averaged" loss coefficients, both in the transfer matrix

method [2, §7.4.5], and in time-domain methods [19, §5.2]. The constant value can be chosen

to be the mean value of the coefficients [19]

Kv(r, iω) ≈ K̄v(iω) =
1

r+ − r−

∫ r+

r−

Kv(r, iω)dr (57)

or it can be set to K̄v(iω) = Kv(r
∗, iω) where r∗ is some radius between r− and r+, for instance

the arithmetic mean of the radii of the two ends [8]. After this approximation, a closed-form

solution is available [19]. The approximation error can be reduced by subdividing each cone into

shorter cones, thus making a piecewise constant approximation of Kv, but this method converges

slowly [10]. Other approximations have been proposed for solving the propagation equation with

nonconstant loss coefficients, using a perturbation method [5] or the WKB method [44].

In the current work, no further approximation is necessary. A high-order 1D finite element

method is used for solving system (53) with arbitrary accuracy [10, 24].

A second difficulty is related to time-domain integration. As in the Zwikker–Kosten model,

the dependency ofKv andKt on frequency is highly nonlinear, leading to complicated convolution

kernels in the time domain. Methods have been devised to deal with this issue using auxiliary
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variables [45, 35, 46], which may be accommodated to use the newly proposed coefficients of

system (53).

6.4. On the effective loss radius

Several authors choose to use the formulas for the cylinder coefficients, given by equations

(38), even in the case of conical tubes. This requires the choice of an effective "tube radius"

R to be used in the formula for Kv,cyl, depending on the cone angle Θ and the distance to the

apex r. As we are considering spherical waves rather than planar waves, several definitions of

this "effective radius" are possible and lead to slightly different results.

(ALT) Most authors implicitly choose the radius of the circle bounding the considered spherical

cap [8, 35, 47]. This corresponds to setting cΘ,ALT = sin Θ and RALT = r sin Θ. The

length RALT is called the altitude hereafter, as it is the length of the segment which joins

a boundary point to its orthogonal projection on the main axis.

(ARC) Another natural choice is cΘ,ARC = Θ: this would correspond to choosing RARC = Θr,

which can be interpreted geometrically as the length of the arc traced from the axis to a

point on the edge of the spherical cap.

(HR) A third possible choice is to ensure that the surface-to-perimeter ratio of the cylinder’s

cross section is the same as that of the spherical cap. We denote RHR the hydraulic radius

of the considered spherical cap, given by the following expressions:

RHR(x) = 2
area

perimeter
= cΘ,HRr, where cΘ,HR =

2(1− cos Θ)

sin Θ
. (58)

This choice is inspired from the modeling of porous media [48], and motivated by the fact

that boundary layers are thinning as frequency grows, making losses mainly depend on the

ratio between wall surface and air volume. Note that the asymptote cΘ,HR ∼
Θ→0

Θ remains

valid.

For each convention conv in {ALT,ARC,HR}, we define the corresponding loss coefficient

Kv,conv:

∀ω > 0, Kv,conv(iω) = J(Rconv
√
−iωρ0/µ), (59)

and similarly Kt,conv(iω) = J(Rconv
√
−iωρ0Cp/κ), where the function J is defined in equation

(40). Each of theseKv,conv(iω) could serve as an approximation ofKv,Θ(iω); in order to determine

which of these conventions leads to the least error, a numerical comparison is conducted.
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For the sake of the example, the values r = 2 mm and Θ ∈ {π/3, π/10} are chosen. These

exaggerated opening angles are used to maximize the discrepancies between the models. Note

that although a special case is presented for clarity, the conclusions shall remain valid for other

values of r, as well as for the thermal loss coefficient Kt, which has a similar expression5.

The viscous loss coefficients for cylinders (38) and their counterpart for cones (54) are com-

pared numerically as functions of frequency, for the conventions (ALT) and (HR). The following

discussion is also valid for the behavior of thermal loss coefficient Kt, which is given by the same

formula up to a parameter scaling (replacing Sh with
√

Pr Sh).

Legendre function Pλ and its derivative for complex order λ are computed using Python

library mpmath [49], through the use of the Gaussian hypergeometric function 2F1:

Pλ(z) = 2F1

(
−λ, λ+ 1; 1;

1− z
2

)
, for |1− z| < 2, (60)

P ′λ(z) =
λ(λ+ 1)

2
2F1

(
−λ+ 1, λ+ 2; 2;

1− z
2

)
, for |1− z| < 2. (61)

where the Gaussian hypergeometric function is defined as :

2F1 (a, b; c; z) =

∞∑
n=0

a(a+ 1) . . . (a+ n− 1) b(b+ 1) . . . (b+ n− 1)

c(c+ 1) . . . (c+ n− 1)

zn

n!
. (62)

The viscous loss coefficient Kv,Θ(iω), given by (54) is compared numerically with the different

possible approximations given by equation (59) for conventions (ALT), (ARC) and (HR) in Figure

4.

In all conventions, at low frequencies the coefficients tend to the real number 1. At high

frequencies, all the approximations Kv,conv(iω) tend to zero with an asymptotic equivalent in
1−i
Rconv

√
2µ
ρ0ω

. Note that these asymptotes differ by a constant factor depending on the chosen

convention. Asymptotically, coefficientKv,Θ(iω) follows the (HR) convention at high frequencies,

whereas the relative error of the two other conventions remains high. One should therefore avoid

approximating Kv,Θ(iω) with Kv,ALT(iω) as it leads to a slight overestimation of its magnitude,

especially at high frequencies. The common use in cones of the Bessel-function-based coefficients

should be expected to slightly overestimate the amount of losses. This error can reach 30%

for the extreme cone angle Θ = π/3 considered here, although for realistic values Θ ≤ π/10,

the error appears to be less than 3%. On the other hand, the relative error between Kv,Θ and

5The loss coefficients Kv,cyl, Kt,cyl, Kv,Θ and Kv,Θ can in fact all be expressed in terms of the dimensionless

quantities Sh, Pr and cΘ, where the shear wave number is proportional to the square root of the frequency, the

Prandtl number can be assumed to be constant, and cΘ depends only on the cone angle and the chosen convention.
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Figure 4: Comparison of the loss coefficient of a cone of half-angle Θ = π/3 (top) or π/10 (bottom) at distance

r = 2 mm from the apex, with the loss coefficients of cylinders with different radii. The radii of the cylinders are

chosen to coincide with the transverse characteristic length of the cone using different conventions (ALT), (ARC)

and (HR). The magnitude (left) and phase (center) of each of these models, and the magnitude of the relative

error of each approximation (right) are shown as functions of the frequency.

Kv,HR is less than 0.4% in all the cases concerned by musical acoustics (Θ ≤ π/10, r ≥ 2 mm

and f ≥ 20 Hz on Figure 4). Moreover, this error decreases at high frequencies whereas the

others do not. Therefore the hydraulic radius can be interpreted as a relevant effective radius

for viscothermal effects.

Existing algorithms which calculate viscothermal losses using the classical formula (38) can

be modified to take into account conicity by using the hydraulic radius instead of the "altitude

length" radius.

RHR =
cΘ,HR
cΘ,ALT

RALT =
2

1 + cos Θ
RALT, Kv,Θ(r, iω) ≈ Kv,HR(iω) = J(RHR

√
−iωρ0/µ) (63)

This approximation alleviates the need to compute hypergeometric functions, which are more

rarely available and more computationally demanding than Bessel functions, while recovering

the correct high-frequency asymptotes.

23



7. Numerical comparison

In order to assess the magnitude of the correction considered in this article, impedances of

cones are computed using different models. We solve the transmission line equations (1) with

` = r as the abscissa6, with lineic immittances given by (2), and several possible expressions of

the loss coefficients:

ZK. (Zwikker–Kosten) the loss coefficients are calculated from equation (59) using convention

(ALT); this corresponds to the viscothermal model many authors use [2, 35].

SH. (Spherical Harmonics) the loss coefficients are those derived in section 6, given by equations

(54-55);

ZK-HR. (Zwikker–Kosten with Hydraulic Radius) the loss coefficients are calculated using the equa-

tion (63) based on the hydraulic radius proposed in section 6.4.

As a reference, we use the 3D Sequential Linearized Navier–Stokes (SLNS) model of viscothermal

acoustics described in [27].

In [50], a Vox Humana organ pipe is described in three parts, for which the dimensions

are given in Table 2. It is known that the assumption of single-mode propagation (A1) is the

largest source of error in the Zwikker–Kosten model, and numerous authors have studied ways to

remedy it [2, 7.6.3.5]. As this issue is out of scope of the current article, the chosen computational

setting should be compatible with spherical wavefronts, in order to only observe the differences

which are due to the transmission line coefficients themselves. This is why the predictions of the

different models are compared on a single cone (mid-part of the Vox Humana pipe), limited by

two spherical caps. The corresponding geometry is represented in Figure 5.

Using the same notations as in section 2, a constant-pressure condition P̂ (x) = P̂0 is applied

on the first end surface Γ−, and a simplified "free air" condition P̂ = 0 on the second Γ+. The

input impedance of the cone is then computed as the ratio between the applied pressure and the

resulting total flow through the input surface.

Zin =
P̂0∫

Γ−
v̂(x) · ndS

(64)

6Note that choosing the abscissa ` = z in a cone is also possible, which leads the 1D domain to be shorter length

and significantly modifies the result [20]. Since the goal of this comparison is to perturb only the viscothermal

coefficients, we prefer to use abscissa ` = r in all this section.
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Section L (mm) R0 (mm) R1 (mm)

Neck 56.50 4.95 4.95

Mid-part 61.60 4.95 24.60

Top-part 30.90 24.60 8.40

Table 2: Dimensions of the Vox Humana resonator, from [50]. Only the mid-part is considered in the simulations

presented in this paper.

The values of the physical coefficients are calculated for air at 20 °C, as given in Table 1.

For the 1D models, the calculations are performed using high-order 1D finite elements with the

Python library Openwind [24], by applying a unitary flow at the tube entrance, and calculating

Zin as in equation (64). The Python code for the 1D computations is made available online along

with the library. The reference 3D solution is calculated with an axisymmetric formulation, using

high-order finite elements on a 2D mesh with the software Montjoie [51]; further implementation

details are given in [42]. The frequency ranges from 2000 Hz to 4500 Hz. This frequency range

is chosen as it encompasses the first resonance frequency (2150 Hz) and extends beyond the first

anti-resonance frequency of the cone (2625 Hz). A frequency step of 25 Hz is chosen to limit the

computational effort. The cutoff frequency of the first non-planar mode of a cylinder with the

same radius R1 = 24.60 mm is fc = 4088 Hz (or 8500 Hz for the first axisymmetric non-planar

mode); beyond that frequency, the presence of higher-order modes becomes very likely in practice

[2, eq. (7.147)], hence assumption (A1) is invalid and none of the 1D models is usable. In total,

the 3D calculations run in about 1 hour on a laptop CPU (Intel Core i7-3687U, 2.10 GHz),

whereas the calculations for model SH take about 1 minute, most of which is spent calculating

the hypergeometric series (62), and the calculations for models ZK and ZK-HR take around

0.1 seconds. Due to the small relative differences between the results, all plots would overlap

if represented on the same figure. Therefore the magnitude and the phase of the impedance

obtained with the 3D model are represented in Figure 6a, and the signed relative error of each

1D model is represented in Figure 6b using a symmetrical logarithmic scale.

It can be observed that all 1D models give an accurate prediction of the impedance, with

a mean relative error less than 0.204% over the considered frequency range. Additionally, the

impedances computed with the two proposed models SK and ZK-HR are extremely close to

one another, with a relative difference below 0.005% at all frequencies, confirming the validity of

approximation (63). The mean error is 0.204% for model ZK, 0.023% for SH, and 0.031% for ZK-

HR. Model ZK appears to be making significant error near the resonances and the antiresonance
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Figure 5: Geometry of the considered cone (right). The solid lines represent the instrument wall, and the dotted

lines represent the input and exit surfaces.

of the cone, with a maximal error value of 3.365%, whereas the maximal relative error is below

0.055% for both models SH and ZK-HR. No significant divergence of the 3D and 1D results is

observed after the cutoff frequency; this can be attributed to the chosen computational setting

which imposes wavefronts to be almost spherical, forcing the validity of assumption (A1).

It is possible to interpret the sign of the error in Figure 6b. For the Zwikker–Kosten model,

the error on the amplitude is positive for frequencies at which the amplitude is increasing,

and negative where it is decreasing: thus one can expect that ZK slightly underestimates the

resonance and antiresonance frequencies. On the other hand, the error on the phase is negative

where the phase is positive, and conversely; thus one can expect that ZK slightly underestimates

the quality factor of the resonances. This is consistent with the conclusions of section 6.4, which

indicated that ZK slightly overestimates the amount of losses.

A calculation of the resonance frequencies and quality factors of the 1D models was performed

as described in [52]. The frequency of the first resonance peak was found to be 2165.07 Hz for

model ZK, or 2165.18 Hz for model ZK-HR; a relative difference of 0.005%. The quality factor

was more significantly modified: 217.5 for model ZK, and 222.8 for model ZK-HR; a relative

difference of 2.3%. Therefore the modification of the loss coefficients proposed in this article

appears to increase the quality factor, but to leave the frequency almost unaffected. The fact

that the quality factor is lower for ZK is consistent with the interpretation of figure 6b above.

In all these calculations, it is key to use the same definition of the impedance for all models,

i.e. equation (64) in which the entry surface Γ− is a spherical cap and not a plane, as the area

difference between the two leads to a difference of several percent on the impedance.

Similar results were obtained on a wider frequency range and for a different cone, thus we expect
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(a) Amplitude (top) and argument (bottom, in radians) of the complex input impedance of the cone as a

function of frequency, computed using the 3D Sequential Linearized Navier–Stokes model. The amplitude is

normalized by the real characteristic impedance Zc = ρ0c0/S(r−). The vertical dashed line indicates the

cutoff frequency of the first non-planar mode, after which the 1D models become unreliable due to assumption

(A1).

(b) Relative difference of the 1D models compared to the 3D reference, error on the magnitude (top) and

on the phase (bottom, in radians). The two proposed models SH and ZK-HR overlap on most points. A

symmetrical logarithmic scale is used in both plots for the vertical axis ; the top plot is linear in the range

(−10−6, 10−6), the bottom plot is linear in the range (−10−5, 10−5).

Figure 6: Comparison of the impedances calculated with the 3D and 1D models.
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these results to be valid in a more general setting.

Note however that model ZK is already an excellent approximation of the 3D phenomena, and

that in many cases there is no need to take into account the effect of the conicity on the loss

coefficients. Indeed, other aspects of the acoustic propagation not covered in this paper, such as

the curvature of the wavefronts or the radiation impedance, can induce much higher discrepancies

on the impedance [20]. As an example, computations on the complete Vox Humana pipe have

been performed with the assumptions of "spherical waves" ` = r and "planar waves" ` = z (this

amounts to a geometric length correction Lr = Lz/ cos Θ [6]), and a relative difference of 10%

was obtained between the first resonance frequencies (local maximum of |Zin|) of each model.

Also note that the computation of model SH requires the evaluation of Legendre functions

of complex order, which are costly to evaluate numerically using series summation. Indeed, we

were unable to obtain results for model SH for frequencies 3950 Hz and above due to very slow

convergence of the series. This further justifies to use model ZK-HR instead.

The conclusion of this numerical comparison is that, in cones, the main difference between

the 3D Sequential Linearized Navier–Stokes model and the 1D Zwikker–Kosten model indeed

amounts to the modification of the loss coefficients pointed out in this work. Moreover, the

approximation proposed in equation (63) leads to an improvement of the results by more than

an order of magnitude, with no additional cost compared to the direct use of the Zwikker–Kosten

model.

8. Conclusions

This article has shown that the low reduced frequency assumption, used to reduce viscother-

mal acoustic propagation in a straight tube to a 1D transmission line model relating pressure

and flow, can also be employed in conical tubes, leading to similar results. Moreover, it has

been established that in both cases, the transmission line coefficients can be expressed using

the solution of a heat equation on the cross-section surface – whether this surface is planar, or

a portion of a sphere. This makes it theoretically possible to study acoustic losses in tubes or

cones, with any cross-sectional shape.

Closed-form solutions of this heat equation have been found for the simplest geometries (right

circular cylinders and right circular cones). Numerical comparisons show that the corresponding
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transmission line coefficients are different depending on the taper of the tube7. It is therefore

interesting to find how to take into account this variation in the simplest possible way; we pro-

pose to use the same formulas as in cylinders, but to replace the altitude radius by the hydraulic

radius in the argument of the Bessel functions. This manipulation should be easy to apply to

any program which computes lossy acoustic propagation, and restores the correct high-frequency

behavior of the loss coefficients; the hydraulic radius can therefore be interpreted as an effective

loss radius.

In our numerical experiments, the corrected models significantly outperform the classical model

when used to compute impedance curves. Although the "classical" Zwikker–Kosten model is

already extremely accurate (which validates the common assumption that the viscothermal ef-

fects in a cone can be approximated by those in a cylinder), the correction of the loss coefficients

proposed in this paper leads to a reduction of the error on the impedance by more than an order

of magnitude.

One limitation of this numerical comparison is the use of the Sequential Linearized Navier–Stokes

model as the 3D reference, since it also performs some simplifying assumptions [27] which may

affect the computed impedance. To better ascertain the quality of our models, it would be desir-

able to perform similar comparisons using a finite element implementation of the full Linearized

Navier–Stokes system.

A possible extension of this work could be the study of viscothermal acoustics through the lens of

the multi-modal method [16, 17], which computes the acoustic field by splitting it into a sum of

transverse modes. Although it has been developed for lossless acoustic propagation, this method

may be able to reveal the higher-order influence of the boundary layers on the acoustic propaga-

tion. Moreover, such a method would be much more adaptable to realistic musical instruments

with flare, possible side holes, and radiating into the external air.

Appendix A. Loss coefficients in the Laplace domain

Since the system is lossy, it would be sensible to consider whether the loss coefficients can

be extended to the Laplace domain, to represent linear time-invariant (LTI) operators. The

discussion is done separately for the coefficients Kv,cyl(iω) and Kt,cyl(iω) obtained for a circular

cylinder and given by equations (38)-(39), and for the new formulas of Kv,Θ(r, iω) and Kt,Θ(r, iω)

7with the usual convention to use the altitude radius in the Bessel function: this is mainly due to the difference

in perimeter-to-surface ratio between a circle and a spherical cap with the same external radius
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obtained in the case of the circular cone and given by equations (54)-(55).

Appendix A.1. Cylinder coefficients in the Laplace domain

The calculations leading from system (13) to the transmission line equations (37) can be

generalized by replacing iω by the complex Laplace variable s, and remain valid except for

particular values of s. In particular, the solution of the transverse problem given by equation

(33) becomes invalid only when the denominator J0(
√
α) is zero. Away from these poles, function

Fcyl(α) remains well defined by the same formula. The loss coefficients are therefore also defined

for all s ∈ C except on a discrete set of poles, which are all located on the negative real axis, by:

Kv,cyl(s) = 1− Fcyl
(
−R

2ρ0

µ
s

)
s ∈ C \

{
− µ

R2ρ0
j2
k | (jk)k∈N zeros of J0

}
(A.1)

Kt,cyl(s) = 1− Fcyl
(
−R

2ρ0Cp
κ

s

)
s ∈ C \

{
− κ

R2ρ0Cp
j2
k | (jk)k∈N zeros of J0

}
(A.2)

These expressions are symmetric with respect to complex conjugation, and analytic on the half-

plane {s ∈ C | Re(s) > − µ
R2ρ0

j2
1}. The fact that this domain contains the right half-plane

{Re(s) ≥ 0}, can be related to the causality of the corresponding operators. Moreover, since it

contains a half-plane of the form {Re(s) ≥ −ε} (ε > 0), this domain is the region of convergence

of the Laplace transform of a stable operator [22]. One can thus expect that Kv,cyl and Kt,cyl

correspond to the Laplace transform of causal, decreasing, real signals8.

Appendix A.2. Cone coefficients in the Laplace domain

As in Appendix A.1, note that all the calculations of section 6.1 can be generalized to the

Laplace domain, by replacing iω with the complex variable s. Indeed, the solution (49) of equation

(44) is valid not only for pure imaginary α, but for any value of α such that the denominator

Pη(α)(cos Θ) is nonzero. The coefficients Kv,Θ(r, iω), which have been computed for sinusoidal

oscillations only, can therefore be extended analytically to operators in the Laplace domain using

the same formulas.

Kv,Θ(r, s) = P
(
ηv(r, s), cos Θ

)
ηv(r, s) = −1

2
±
√

1

4
− sr2

ρ0

µ
, (A.3)

Kt,Θ(r, s) = P
(
ηt(r, s), cos Θ

)
ηt(r, s) = −1

2
±
√

1

4
− sr2

ρ0Cp
κ

, (A.4)

8In other words, there exists functions (or at least distributions) whose Laplace transforms are Kv,cyl(s) and

Kt,cyl(s) respectively. A formal proof is out of the scope of the current article, but would only require to check

that there exists a half-plane Re(s) > c in which these functions are bounded above by some polynomial in |s|

[22, Chap. VI, Theorem 5].
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where P(ν, q) is defined by equation (56). A complementary theoretical study would be necessary

to determine the domain on which this analytic extension remains valid; we conjecture that, like

in Appendix A.1, the only singularities are a discrete, countably infinite set of strictly negative

real poles. This property appears to hold numerically. Like in Appendix A.1, we thus expect

(without proof) thatKv,Θ(s) andKt,Θ(s) are the Laplace transforms of causal decreasing signals,

corresponding to causal and stable operators [22, VI, Th. 5].

This further allows to extend the lineic impedance Zv and shunt admittance Yt, defined by

(2), to the Laplace domain. It can then be checked that these operators are plausible from a

physical standpoint; more precisely, the lineic immittances should be causal and passive operators

[23]. Figure A.7 plots the analytic extension of these lineic immittances to the complex plane, as

Figure A.7: Amplitude (left) and phase (right) of the analytic extension to the complex plane of the lineic

immittances Zv (top) and Yt (bottom) defined by equation (2). The loss coefficients (54) have been calculated

for a cone with angle Θ = π/4. The calculation uses unitary coefficients R = Pr = ρ0 = µ = 1. Black curves on

the phase plots indicate the locus of points where the real part of the lineic immittances is zero.

a function of the Laplace variable s. Then we observe that, in the left-hand side of the complex
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plane they display poles (the bright spots in the magnitude plot) and zeros (the dark spots).

On the phase plot, the curve on which the real part of the lineic immittances is equal to zero

is highlighted, showing that in the right-hand side of the complex plane, their real part remains

positive:

∀s s.t. Re(s) ≥ 0, Re(Zv(s)) ≥ 0 and Re(Yt(s)) ≥ 0. (A.5)

Moreover, both operators are symmetric by complex conjugation.

∀s ∈ C, Zv(s̄) = Zv(s) and Yt(s̄) = Yt(s) (A.6)

Thanks to these properties, the transmission line equations give rise to a model which dissipates

energy, and would thus be suitable for use in time-domain simulations using an appropriate

finite-dimensional representation [45, 35, 23, 46].

References

[1] H. Tijdeman, On the propagation of sound waves in cylindrical tubes, J Sound Vib 39 (1)

(1975) 1–33. doi:10.1016/S0022-460X(75)80206-9.

[2] A. Chaigne, J. Kergomard, Acoustics of musical instruments, Springer Science & Business

Media, Germany, 2016. doi:10.3813/AAA.919364.

[3] M. S. Cramer, Numerical estimates for the bulk viscosity of ideal gases, Phys Fluids 24 (6)

(2012) 066102. doi:10.1063/1.4729611.

[4] S. W. Rienstra, Webster’s horn equation revisited, SIAM J Appl Math 65 (6) (2005) 1981–

2004. doi:10.1137/S0036139902413040.

[5] C. Nederveen, Acoustical aspects of woodwind instruments, Doctoral thesis, Publisher:

Frits Knuf (1969).

URL https://repository.tudelft.nl/islandora/object/uuid%

3A01b56232-d1c8-4394-902d-e5e51b9ec223

[6] T. Hélie, Unidimensional models of acoustic propagation in axisymmetric waveguides, J

Acoust Soc Am 114 (5) (2003) 2633–2647. doi:10.1121/1.1608962.

[7] C. Zwikker, C. W. Kosten, Sound Absorbing Materials, pp. 25–29, Elsevier, Netherlands,

1949.

32

https://doi.org/10.1016/S0022-460X(75)80206-9
https://doi.org/10.3813/AAA.919364
https://doi.org/10.1063/1.4729611
https://doi.org/10.1137/S0036139902413040
https://repository.tudelft.nl/islandora/object/uuid%3A01b56232-d1c8-4394-902d-e5e51b9ec223
https://repository.tudelft.nl/islandora/object/uuid%3A01b56232-d1c8-4394-902d-e5e51b9ec223
https://repository.tudelft.nl/islandora/object/uuid%3A01b56232-d1c8-4394-902d-e5e51b9ec223
https://doi.org/10.1121/1.1608962


[8] R. Caussé, J. Kergomard, X. Lurton, Input impedance of brass musical instruments – com-

parison between experiment and numerical models, J Acoust Soc Am 75 (1) (1984) 241–254.

doi:10.1121/1.390402.

[9] S. Bilbao, Direct simulation of reed wind instruments, Comput Music J 33 (4) (2009) 43–55.

[10] R. Tournemenne, J. Chabassier, A comparison of a one-dimensional finite element method

and the transfer matrix method for the computation of wind music instrument impedance,

Acta Acust united Acust 105 (5) (2019) 838–849. doi:10.3813/AAA.919364.

[11] A. G. Webster, Acoustical impedance and the theory of horns and of the phonograph, PNAS

5 (7) (1919) 275. doi:10.1073/pnas.5.7.275.

[12] D. Bernoulli, Recherches physiques mécaniques et analytiques sur le son et sur le ton des

tuyaux d’orgues différemment construits (Physical, mechanical and analytical research on

the sound and tone of differently constructed organ pipes), no. 74, Arnaldo Forni, France,

1764.

[13] J.-L. Lagrange, Nouvelles recherches sur la nature et la propagation du son (New research

on the nature and propagation of sound), in: Oeuvres de Lagrange, Vol. 1, Bibliothèque

nationale de France, département Littérature et art, V-15590, 1760, pp. 232–238.

[14] E. Eisner, Complete Solutions of the “Webster” Horn Equation, J Acoust Soc Am 41 (4B)

(1967) 1126–1146. doi:10.1121/1.1910444.

[15] P. Rucz, Innovative methods for the sound design of organ pipes, Ph.D. thesis, Budapest

University of Technology and Economics (2015).

[16] V. Pagneux, N. Amir, J. Kergomard, A study of wave propagation in varying cross-section

waveguides by modal decomposition. Part I. Theory and validation, J Acoust Soc Am 100

(1996) 2034–2048. doi:10.1121/1.419306.

[17] T. Guennoc, J.-B. Doc, S. Félix, Improved multimodal formulation of the wave propagation

in a 3D waveguide with varying cross-section and curvature, J Acoust Soc Am 149 (1) (2021)

476–486. doi:10.1121/10.0003336.

[18] N. H. Fletcher, J. Smith, A. Z. Tarnopolsky, J. Wolfe, Acoustic impedance measure-

ments—correction for probe geometry mismatch, The Journal of the Acoustical Society

of America 117 (5) (2005) 2889–2895.

33

https://doi.org/10.1121/1.390402
https://doi.org/10.3813/AAA.919364
https://doi.org/10.1073/pnas.5.7.275
https://doi.org/10.1121/1.1910444
https://doi.org/10.1121/1.419306
https://doi.org/10.1121/10.0003336


[19] T. Hélie, T. Hézard, R. Mignot, D. Matignon, One-dimensional acoustic models of horns

and comparison with measurements, Acta Acust united Acust 99 (6) (2013) 960–974. doi:

10.3813/AAA.918675.

[20] P. Eveno, J.-P. Dalmont, R. Caussé, J. Gilbert, Wave Propagation and Radiation in a Horn:

Comparisons Between Models and Measurements, Acta Acust united Acust 98 (1) (2012)

158–165. doi:10.3813/AAA.918501.

[21] M. Bruneau, Fundamentals of acoustics, John Wiley & Sons, NJ, 2013.

[22] L. Schwartz, Mathematics for the Physical Sciences, Adison-Wesley Publishing Company,

Boston, 1966.

[23] F. Monteghetti, D. Matignon, E. Piot, L. Pascal, Design of broadband time-domain

impedance boundary conditions using the oscillatory-diffusive representation of acoustical

models, J Acoust Soc Am 140 (3) (2016) 1663–1674. doi:10.1121/1.4962277.

[24] J. Chabassier, G. Castera, A. Ernoult, A. Thibault, R. Tournemenne, Open wind instru-

ment design - a python toolbox assisting instrument makers, https://openwind.inria.fr/

(2020).

[25] G. Kirchhoff, Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung

(On the influence of heat conduction in a gas on the motion of sound), Ann Phys 210 (6)

(1868) 177–193.

[26] W. Kampinga, Y. H. Wijnant, A. de Boer, Performance of several viscothermal acoustic

finite elements, Acta Acust united Acust 96 (1) (2010) 115–124. doi:10.3813/AAA.918262.

[27] W. Kampinga, Y. H. Wijnant, A. de Boer, An efficient finite element model for viscothermal

acoustics, Acta Acust united Acust 97 (4) (2011) 618–631. doi:10.3813/AAA.918442.

[28] L. Cremer, On the acoustic boundary layer outside a rigid wall, Arch. Elektr. Uebertr 2

(1948) 235.

[29] M. Berggren, A. Bernland, D. Noreland, Acoustic boundary layers as boundary conditions,

J Comput Phys 371 (2018) 633–650. doi:https://doi.org/10.1016/j.jcp.2018.06.005.

[30] J. W. S. B. Rayleigh, The theory of sound, Vol. 2, Macmillan, NY, 1896.

34

https://doi.org/10.3813/AAA.918675
https://doi.org/10.3813/AAA.918675
https://doi.org/10.3813/AAA.918501
https://doi.org/10.1121/1.4962277
https://openwind.inria.fr/
https://doi.org/10.3813/AAA.918262
https://doi.org/10.3813/AAA.918442
https://doi.org/https://doi.org/10.1016/j.jcp.2018.06.005


[31] D. Weston, The theory of the propagation of plane sound waves in tubes, Proc Phys Soc

London, Sect B 66 (8) (1953) 695.

[32] D. H. Keefe, Acoustical wave propagation in cylindrical ducts: Transmission line parameter

approximations for isothermal and nonisothermal boundary conditions, J Acoust Soc Am

75 (1) (1984) 58–62. doi:10.1121/1.390300.

[33] S. Scheichl, On the calculation of the transmission line parameters for long tubes using

the method of multiple scales, J Acoust Soc Am 115 (2) (2004) 534–555. doi:10.1121/1.

1639323.

[34] A. S. Iberall, Attenuation of oscillatory pressures in instrument lines, J Res Nat Bur Stand

45 (1) (1950) 85–108.

URL https://nvlpubs.nist.gov/nistpubs/jres/045/jresv45n1p85_A1b.pdf

[35] S. Bilbao, R. Harrison, Passive time-domain numerical models of viscothermal wave propa-

gation in acoustic tubes of variable cross section, J Acoust Soc Am 140 (1) (2016) 728–740.

doi:10.1121/1.4959025.

[36] M. R. Stinson, The propagation of plane sound waves in narrow and wide circular tubes,

and generalization to uniform tubes of arbitrary cross-sectional shape, J Acoust Soc Am

89 (2) (1991) 550–558. doi:10.1121/1.400379.

[37] R. Christensen, Modeling the effects of viscosity and thermal conduction on acoustic prop-

agation in rigid tubes with various cross-sectional shapes, Acta Acust united Acust 97 (2)

(2011) 193–201. doi:10.3813/AAA.918398.

[38] Y. Champoux, J. Allard, Dynamic tortuosity and bulk modulus in air-saturated porous

media, Journal of Applied Physics 70 (4) (1991) 1975–1979. doi:10.1063/1.349482.

[39] D. Lafarge, P. Lemarinier, J. F. Allard, V. Tarnow, Dynamic compressibility of air in porous

structures at audible frequencies, J Acoust Soc Am 102 (4) (1997) 1995–2006. doi:10.1121/

1.419690.

[40] M. Bruneau, P. Herzog, J. Kergomard, J.-D. Polack, General formulation of the dispersion

equation in bounded visco-thermal fluid, and application to some simple geometries, Wave

Motion 11 (5) (1989) 441–451. doi:10.1016/0165-2125(89)90018-8.

35

https://doi.org/10.1121/1.390300
https://doi.org/10.1121/1.1639323
https://doi.org/10.1121/1.1639323
https://nvlpubs.nist.gov/nistpubs/jres/045/jresv45n1p85_A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/045/jresv45n1p85_A1b.pdf
https://doi.org/10.1121/1.4959025
https://doi.org/10.1121/1.400379
https://doi.org/10.3813/AAA.918398
https://doi.org/10.1063/1.349482
https://doi.org/10.1121/1.419690
https://doi.org/10.1121/1.419690
https://doi.org/10.1016/0165-2125(89)90018-8


[41] H. Boutin, S. Le Conte, J.-L. Le Carrou, B. Fabre, Modèle de propagation acoustique dans

un tuyau cylindrique à paroi poreuse (Model of acoustic propagation in a cylindrical pipe

with porous wall), in: 14ème Congrès Français d’Acoustique (CFA’18), Le Havre, France,

2018, pp. 685–691.

URL https://hal.sorbonne-universite.fr/hal-01830275

[42] A. Thibault, J. Chabassier, Viscothermal models for wind musical instruments, Research

report, Inria Bordeaux Sud-Ouest (2020).

URL https://hal.inria.fr/hal-02917351

[43] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs,

and Mathematical Tables, U.S. Government Printing Office, 1948.

[44] A. Ernoult, J. Kergomard, Transfer matrix of a truncated cone with viscothermal losses:

application of the WKB method, Acta Acust united Acust 4 (7) (2020). doi:10.1051/

aacus/2020005.

[45] T. Hélie, D. Matignon, Diffusive representations for the analysis and simulation of flared

acoustic pipes with visco-thermal losses, Math Models Methods Appl Sci 16 (04) (2006)

503–536. doi:10.1142/S0218202506001248.

[46] A. Thibault, J. Chabassier, Dissipative time-domain one-dimensional model for viscothermal

acoustic propagation in wind instruments, J Acoust Soc Am 150 (2) (2021) 1165–1175.

doi:10.1121/10.0005537.

[47] S. Schmutzhard, V. Chatziioannou, A. Hofmann, Parameter optimisation of a viscothermal

time-domain model for wind instruments, in: Proc 2017 Int Symp Musical Acoust, 2017,

pp. 27–30.

URL https://isma2017.cirmmt.mcgill.ca/proceedings/pdf/ISMA_2017_paper_7.pdf

[48] J. Allard, N. Atalla, Propagation of sound in porous media: modelling sound absorbing

materials 2e, John Wiley & Sons, NJ, 2009.

[49] F. Johansson, et al., mpmath: a Python library for arbitrary-precision floating-point arith-

metic (version 0.18), http://mpmath.org/ (December 2013).

[50] P. Rucz, J. Angster, F. Augusztinovicz, A. Miklós, T. Preukschat, Modeling resonators of

reed organ pipes, Merano, 2013, p. 4.

36

https://hal.sorbonne-universite.fr/hal-01830275
https://hal.sorbonne-universite.fr/hal-01830275
https://hal.sorbonne-universite.fr/hal-01830275
https://hal.sorbonne-universite.fr/hal-01830275
https://hal.inria.fr/hal-02917351
https://hal.inria.fr/hal-02917351
https://doi.org/10.1051/aacus/2020005
https://doi.org/10.1051/aacus/2020005
https://doi.org/10.1142/S0218202506001248
https://doi.org/10.1121/10.0005537
https://isma2017.cirmmt.mcgill.ca/proceedings/pdf/ISMA_2017_paper_7.pdf
https://isma2017.cirmmt.mcgill.ca/proceedings/pdf/ISMA_2017_paper_7.pdf
https://isma2017.cirmmt.mcgill.ca/proceedings/pdf/ISMA_2017_paper_7.pdf


[51] M. Duruflé, Montjoie software, https://www.math.u-bordeaux.fr/~durufle/montjoie/

(2021).

[52] J. Chabassier, R. Auvray, Direct computation of modal parameters for musical wind instru-

ments, Journal of Sound and Vibration 528 (2022) 116775.

37

https://www.math.u-bordeaux.fr/~durufle/montjoie/

	Introduction
	Base equations
	Low reduced frequency approximation
	Simplifying assumptions
	Discussion of the simplifications (A1)-(A3)

	Derivation of the 1D equations
	Shape function
	Effective velocity and density
	Resulting 1D equation

	Low reduced frequency solution for right circular cylinders
	Shape function of a cylinder
	Transmission line equations for the cylinder
	Propagation constant and characteristic impedance

	Low reduced frequency solution for right circular cones
	Shape function of a right circular cone
	Transmission line equations of the cone
	Solving the transmission line equations
	On the effective loss radius

	Numerical comparison
	Conclusions
	Loss coefficients in the Laplace domain
	Cylinder coefficients in the Laplace domain
	Cone coefficients in the Laplace domain


