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Abstract 

This chapter will briefly introduce how machine learning can assist excited-state dynamics. We 

start with an overview of two traditional excited-state dynamics, a two-state system-bath 

approach in full quantum dynamics and the trajectory surface hopping approach in mixed 

quantum-classical dynamics. Then, we introduce a combination of machine learning with each 

of these two approaches. Finally, we present case studies in a tutorial format, enabling readers 

to perform simple dynamics simulations on model systems and realistic molecules. 

Introduction 

Electronically excited states are all around in the photophysics and photochemistry of 

molecules and materials [1-3]. Theoretical studies of excited states are vital in many different 

research fields, including photocatalysis [4-6], photosynthesis [7-9], photolysis [10-11], 

photoprotection [12-14], photoreception [15-17], and photovoltaics [18-20]. These studies may 

be performed based either on static electronic structure calculations or dynamics, or a 

combination of both [1]. Dynamics research elucidates temporal evolution processes of 

molecules using molecular dynamics (MD) approaches. MD encompasses a vast family of 

methods from pure classical dynamics [21-25] (using either single Born–Oppenheimer 

potential energy surfaces or force fields) to full quantum dynamics [26-30], with many 

approaches in between (see Chapter Basics of dynamics). In order to reveal the temporal 

evolution of molecules after light absorption and thus provide information about important 
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geometries visited, decay channels, branching ratios, and lifetimes of excited states, we need 

to use excited-state dynamics approaches, which are usually referred to as nonadiabatic MD 

(NAMD) because dynamics may need to account for nonadiabatic effects occurring at nuclear 

conformations where the Born–Oppenheimer approximation fails [1,31].  

A large number of NAMD methods have been developed. Ideally, when performing NAMD, 

we want to solve the full time-dependent quantum mechanical problem with no 

approximations, i.e., to carry out full quantum dynamics for either an isolated or an open system 

interacting with its environment. In the past decades, many full quantum dynamics methods 

were developed, such as the multiconfiguration time-dependent Hartree (MCTDH) [26], time-

dependent DMRG (TD-DMRG) [32], hierarchical equations of motion (HEOM) [30], and 

many others [27,33-40]. Though full quantum dynamics methods are exact, their computational 

cost and complexity restrict them to only model systems. To overcome these challenges, mixed 

quantum-classical methods are developed, such as the Ehrenfest dynamics [41] and the popular 

trajectory surface hopping (TSH) [42], which propagates classical nuclear trajectories and 

correct them for nonadiabatic effects with ad hoc approximations. Further approximations such 

as quasiclassical dynamics methods, like the Miller–Meyer–Stock–Thoss formalism (MMST) 

[43], ab initio multiple spawning (AIMS) [44], and others [45-46] are built by truncating the 

full quantum problem in the lowest powers of the Planck constant or mapping the quantum 

coordinates onto the classical phase space. Some of the imaginary-time path-integral-based 

approaches, such as ring-polymer molecular dynamics (RPMD) [47] and centroid molecular 

dynamics (CMD) [48], are also worth noting. 

Whenever a NAMD method is based on classical trajectories, as in AIMS and TSH, we say it 

is mixed quantum-classical dynamics (MQC) [49]. This class of methods holds most of the 

applied investigations of realistic molecules, ranging from small isolated molecules [50-53] to 

nanoscopic clusters [54-56]. However, the expensive quantum chemical calculations needed 

for these simulations are still a major limiting step for making these methods a routine practice 

in quantum chemistry. Take TSH as an example; Westermayr et al. [3] estimated that 

propagating 100 fs dynamics for a tiny molecule like CH2NH2+ using highly accurate quantum-

chemical properties (computed with MR-CISD/aug-cc-pVDZ) would take about 20 h using 

one CPU (2x Intel Xeon E5-2650 v3 CPU). It may not sound much, but considering that to 

reach statistical convergence of 2% error in the sample proportions (this margin of error for a 

95% confidence interval is approximately 1/√𝑁, where N is the number of trajectories), we 
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may need 2000 trajectories or 4.5 years of CPU time. Consider yet that even with some of the 

most advanced MRCI algorithms, the calculations still scale with N7´M [57], where N is the 

number of active orbitals and M the number of orbitals, and you can grasp the prohibitive costs 

of performing dynamics. TSH is a local theory where quantum effects are estimated only at the 

classical position. If, however, non-local quantum effects are required (for instance, for the 

description of tunnelling or quantum interference), we must use higher-level dynamics 

methods, like the full quantum dynamics methods mentioned above. Naturally, such non-local 

quantum methods using information from the entire configuration space are computationally 

expensive and not easily extensible to large systems. For instance, the computational cost and 

memory requirements of HEOM, which delivers non-local quantum information for a system-

bath model Hamiltonian, increase exponentially with the decrease in temperature. 

Fortunately, machine learning (ML) has proven to make relatively accurate predictions for 

chemical properties at a meagre cost [58-61], thus, is seen as an auspicious way to accelerate 

NAMD. The ML modelling of potential energy surfaces (PESs), couplings, and other quantities 

we may need for dynamics is still very challenging. Take ML-assisted TSH as an example. 

First, great care is required when generating the training set to include as many important 

configurations as possible while keeping the training set at a minimum. Moreover, extra 

attention should be paid when picking points around critical regions like conical intersections 

since the PES will show removable discontinuities, and nonadiabatic coupling vectors (NACs) 

may show a singularity around these regions.  

Despite these difficulties, much progress has been made in ML-assisted NAMD. Westermayr 

et al. [3] showed that it would just cost 24 s to simulate 100 fs surface hopping dynamics for 

the same CH2NH2+ through SchNarc (an approach combining SchNet and SHARC) using one 

CPU (2x Intel Xeon E5-2650 v3 CPU). Lopez et al. [62] have performed a 10 ns simulation 

for trans-hexafluoro-2-butene in 2 days, using the machine learning ab initio molecular 

dynamic package PyRAI2MD. Akimov [63] has recently applied ML to propagate 

nanostructures dynamics for 20 ps. Table 1 surveys several of such works. It is, of course, a 

dated and incomplete picture of the field; however, it may help debutant researchers find out 

the type of method that is the most suited for their application. 

While most applications of ML-assisted NAMD have been made with TSH, significant 

progress has also been made in ML-assisted system-bath quantum dynamics. Rodríguez and 

Kananenka [64] have studied the excitation energy transfer in a dimer using a convolutional 
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neural network (CNN). Lin et al. [65] have used bootstrap-based long short-term memory 

recurrent neural networks to predict the quantum dissipative dynamics of a two-state system. 

Ullah and Dral [66] have studied the dynamics of the well-known spin-boson model based on 

the non-parametric kernel ridge regression (KRR) model. In all these studies, a reference short-

time trajectory is provided as an input, and the trained ML model predicts the long-time 

quantum dynamics iteratively with very low computational cost. In a recent preprint, Ullah and 

Dral used ML to propagate quantum dynamics up to the asymptotic limit of infinite time [67] 

non-iteratively without using a reference short-time trajectory as input. 

This chapter delivers a practical discussion of major concepts and issues from traditional 

excited-state dynamics to machine learning-assisted dynamics and shows how to perform such 

simulations. 

 

Table 1. ML-NAMD within TSH for molecular systems reported in the literature (stand on June 2021). 
See explanation about ZNSH and DC-FSSH in Methods. 

No. Ref. 

System 
(number of 

atoms/dimen
sions) 

ML algorithm 
descriptor 

single- or multi-state model 

Number of QC 
calculations Hopping 

1 
Lan et al., 

JPCL, 
2018[68] 

6-
aminopyrimi

dine (12 
atoms) 

KRR with Gaussian kernel 
Coulomb matrix 
single-state 

Total: 201 008; 
Training: 65 316; 
Dynamics: CASSCF 
calculation accounts for 
3.9% 

ZNSH 

2 
Dral, Barbatti, 
Thiel, JPCL, 

2018[69] 

Spin-boson 
Hamiltonian 

(1 and 33 
dimensions) 

KRR with Matérn kernel 
coordinates 
single-state 

Training: 128 for 1-D 
A-SBH model; 1,000 & 
10,000 for 33-D A-SBH 
model 
Dynamics: 
A-SBH 
calculations accounts 
for 13–16% 

DC-FSSH 

3 
Cui et al., 

JPCL, 
2018[70] 

CH2NH 
(5 atoms) 

NN-based DPMD model 
local frame descriptor 
single-state 

Training: 90 000 
Test: 26 522 ZNSH 

4 
Cui et 

al.,JPCL, 
2019[71] 

CH3N=NCH
3 and five 
waters (15 
atoms for 
waters) 

NN-based DPMD model 
local frame descriptor 
chromophore is not treated 
by ML models, ML only 
used for water monomer, 
dimer, and trimer energies 

Training: 
144,000 for monomer, 
100,000 for dimer, and 
60,000 for trimer 

ZNSH 

5 
Marquetand et 

al., CS, 
2019[72] 

CH2NH2+ 

(6 atoms) 

feed-forward NNs 
inverse distance descriptor 
multi-state 
 

Final training set: 4000; 
Test set: 
770 

SHARC 

6 
Marquetand et 

al., MLST, 
2020[73] 

CH2NH2+ 

(6 atoms) 
①feed-forward NNs 
FCHL 

Training set: 4000 
Test set: 770 SHARC 
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inverse distance descriptor 
single-state and multi-state 
 
②KRR 
FCHL 
single-state and multi-state  

7 
Marquetand et 

al., JPCL, 
2020[74] 

CH2NH2+ 

and CSH2 

(6 and 4 
atoms) 

NN-based SchNet model 
automatically determined 
representation derived from 
interatomic distances and 
nuclear charge 
  
multi-state 

Training set: 3000 for 
CH2NH2+; 4703 for 
CSH2 
 

SHARC 

8 
Brorsen et al., 

JPCA, 
2020[75] 

Spin-boson 
Hamiltonian 

system 
(1 and 3 

dimensions) 

KRR with Matérn kernel 
Coordinates 
ML used only to fit the 
nonadiabatic coupling  
single-state 

Training: 17 points for 
1D A-SBH model; 4913 
points for 3D A-SBH 
model 
 

FSSH 

9 Lopez et al., 
CS, 2021[62] 

Trans-
hexafluoro-
2-butene; 
Norbornyl 

hexacyclodie
ne 

(12 atoms; 
25 atoms) 

feed-forward NN   
inverse distance descriptor 
multi-state 
 

Total: Trans-
hexafluoro-2-butene 
6207; Norbornyl 
hexacyclodiene 6267 

FSSH; 
ZNSH 

 

Methods 

This section outlines traditional and ML-assisted NAMD methods with a focus on HEOM and 

TSH, which will be later considered in the case studies. 

Hierarchical equation of motion (HEOM) 

In full quantum dynamics methods, nuclei and electrons' time evolutions are described 

quantum mechanically. In the Chapter Basics of dynamics, the time-dependent Schrödinger 

equation has been expanded in a Born–Huang basis, leading to electrons-nuclei coupled 

equations of motion. Here, we describe the system-bath approach, where the system is divided 

into two parts: electrons are considered the system of interest, which are coupled to the nuclei, 

treated as an environment (bath); note that other definitions of system and bath are possible. 

Many methods are based on a system-bath approach, e.g., QuAPI [27], HEOM [30], and the 

stochastic equation of motion (SEOM) [33-35], and in this chapter, we restrict ourselves to 

HEOM and a two-state system with one ground state and one excited state, which is also 

coupled to external (nuclear) degrees of freedom (bath). The bath is modeled as a reservoir of 

an infinite number of noninteracting harmonic oscillators. To describe our composite, total 

system, we use the spin-boson model (we set ℏ = 1 and 𝛽 = 1/(𝑘!𝑇) where 𝑘! is Boltzmann 

constant and 𝑇 is the temperature): 
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𝐻-T = 𝐻-S + 𝐻-B + 𝐻-SB,

𝐻-T =
1
2
𝜀𝜎3% +

1
2
𝛥𝜎3& +5𝜔'𝑏8'

(𝑏8'
'

+ 𝜎3%5𝑐':𝑏8'
( + 𝑏8';

'

(1) 

where 𝐻-S, 𝐻-B, and 𝐻-SB are respectively system Hamiltonian (S), bath Hamiltonian (B), and 

system-bath interaction Hamiltonian term (SB). 𝜎3& and 𝜎3% are Pauli matrices, 𝜀 is the energy 

bias of the two states, and Δ is the tunneling matrix element of the two states. 𝑏8'
(:𝑏8'; is the 

creation (annihilation) operator and 𝜔' is the frequency of the bath mode k. In Eq. (1), the last 

term denotes the system-bath interaction where 𝑐' represents the interaction coefficients. The 

influence of bath on the dynamics of the two-state system is described by a two-time correlation 

function of the operator 𝐹8, i.e., 𝐶(𝑡) = 〈𝐹8(𝑡)𝐹8(0)〉 where 𝐹8 = ∑ 𝑐'' :𝑏8'
( + 𝑏8';. In the case of 

isolated bath, 𝐶(𝑡) can be written as [76] 

𝐶(𝑡) =
1
𝜋E d

)

*
𝜔𝐽(𝜔) Hcoth H

𝜔𝛽
2 M cos

(𝜔𝑡) − 𝑖sin(𝜔𝑡)M (2) 

where 𝐽(𝜔) is the spectral density 𝐽(𝜔) = ∑ 𝑐'+𝛿(𝜔 − 𝜔')' , and here we consider it in Debye 

form 

𝐽(𝜔) = 2𝜆
𝜔𝜔,

𝜔+ + 𝜔,+
(3) 

where 𝜔,and 𝜆 denote the characteristic frequency and the reorganization energy, respectively. 

The correlation function in Eq. (2) can be expressed as a sum of exponential decay functions 

of time 

𝐶(𝑡 > 0) = 5𝜂'𝑒-.!/
)

'0*

(4) 

with Matsubara frequencies 𝛾* = 𝜔1  and 𝛾' = 2𝑘𝜋/𝛽  for 𝑘 ≥ 1 . The coefficients 𝜂'  are 

given by  

𝜂* = 𝜆𝜔1 \𝑐𝑜𝑡 H
𝜔1𝛽
2 M − 𝑖^ (5) 

𝜂' =	
4𝜆𝜔1
𝛽 	

𝛾'
𝛾'+ − 𝜔1+

			for	𝑘 ≥ 1 (6) 
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We assume that the system is initially in the excited state, and the bath is in thermal equilibrium. 

We have a product initial state 𝜌2(0) = 𝜌3(0)⨂𝑒-456"/𝑍7  where 𝜌2 , 𝜌3  and 𝑍7  are 

respectively the density matrix of the composite system, the density matrix of the system of 

interest, and the partition function of the isolated bath 𝑍7 = Tr[𝑒-456"] (Tr denotes the trace 

over bath degrees of freedom). This condition is justified in situations when the bath relaxation 

is slower compared to the changes in the system after the initial excitation (methods to deal 

with the situation when this approximation is no longer valid also exist [77-78]). Using the path 

integral formalism, the HEOM for Eq. (1) can be written as [30] 

𝜕
𝜕𝑡 𝜌𝒏 =	−k𝑖ℒ +5𝑛'𝛾'

'

n𝜌𝒏 +	−𝑖	 o𝜎3%	,5𝜌9!#
'

p − 𝑖5𝑛':𝜂'𝜎3%𝜌𝒏!$ − 𝜂'
∗𝜌𝒏!$𝜎3%;

'

(7) 

where ℒ ∗	= [𝐻-3	, ∗]  represents the Liouville superoperator. The labels 𝒏 = {𝑛;} =

{𝑛*, 𝑛<, 𝑛+, … } are integers, and for each Matsubara term 𝑘 , each index runs from zero to 

infinity. The null labels 𝜌[*,*,*,… ]  define the reduced density matrix (RDM) of the system 

(density matrix of the system of interest after tracing out the bath degrees of freedom). The 𝜌𝒏 

with 𝒏 ≠ 0 represent the auxiliary density matrices (ADMs) which encode the influence of the 

bath on the system. The 𝒏'
±  refers to the change in 𝒏  at index 𝑘  by 1 , i.e., 𝒏'

± =

{𝑛*, 𝑛<, … , 𝑛' ± 1,… }. In Eq. (4), as 𝑘 →∞, 𝛾' →∞ and 𝜂' → 0, thus we can introduce a 

cutoff 𝐾, neglecting the terms with large Matsubara frequency (𝑘 > 𝐾) or treating them using 

the Markov approximation (replaced them by Dirac’s delta function 𝛿(𝑡)) . At high 

temperatures, we may need a small cutoff 𝐾, but it should be increased with a decrease in 

temperature. Each matrix in Eq. (7) belongs to a hierarchy level 𝐿	defined as 𝐿 = ∑ 𝑛'B
'0< . At 

𝐿 = 0 hierarchy level, we only evaluate RDM ignoring the effects of the bath. All ADMs in 

Eq. (7) occupy higher hierarchy levels such as ADMs with 𝒏 = {1,0,0,0} and 𝒏 = {1,0,0,1} 

belong to 𝐿 = 1 and 𝐿 = 2, respectively. As evaluating an infinite number of ADMs is not 

feasible, a hierarchy truncation level should be fixed, setting a limit on 𝐿 . The hierarchy 

truncation level should be increased for non-Markovian cases (strong system-bath coupling) as 

the contribution of higher-level ADMs becomes significant. With given 𝐾 and 𝐿, the total 

number of ADMs is given by (𝐿	 + 𝐾	)!/(𝐿! 𝐾!). For a two-state system with 𝐾 = 2 and 𝐿 =

30, 496 matrices (each of size 2 × 2) need to be evaluated at each time-step. In the HEOM 

method, the number of ADMs that have to be evaluated rapidly increases with an increase in 

𝐾 and 𝐿, which may therefore lead to a very high computational cost. 



 

Page 8 of 32 
 

ML-assisted HEOM  

ML can substantially reduce the propagation cost with the expensive full quantum methods 

such as HEOM. A strategy proposed recently [64,66] trains ML on multiple trajectories and 

then propagates new trajectories for different conditions. Before training ML models, 

unsupervised training trajectories (unlabeled data with no explicit vector 𝐘, see Figure 1) are 

transformed into supervised data (labeled data with explicit vector 𝐘). For this, an input for ML 

is formed from a short time segment with time-length 𝑡C	(memory time) of a trajectory (e.g., 

with 〈𝜎3%〉 values taken with time-step 𝑑𝑡DEFGH), and the next value (e.g., 〈𝜎3%〉) at 𝑡CI< can be 

used as the target value to learn (label). Thus, we can generate much supervised data even from 

a single trajectory (see Figure 1). To propagate a new trajectory, ML should be given a short 

time trajectory of time length 𝑡C  and the trained ML model predicts dynamics a learned 

property for the next time step 𝑡CI< (see Figure 1). This process is repeated iteratively as the 

predicted value for the previous time-step is included in the input vector for the ML model to 

predict the next time step. Figure 2 shows the time-dependent dynamics of 〈𝜎3%〉 for a two-state 

system. It is worth emphasizing that the trained ML model is also capable of extrapolation 

beyond the maximum propagation time of the training trajectories (see Figure 1). 



 

Page 9 of 32 
 

 

Figure 1. Flowchart of generating supervised training data from unsupervised training trajectories, 
training ML model, and making predictions with it to speed up NAMD simulations within HEOM 
approach. ⟨𝜎#!(𝑡)⟩ is given in Eq. (17). See Figure 2 for results. 

Credit: Reproduced from Ref. [66] (New J. Phys. 2021, 23, 113019) under CC-BY 4.0. 
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Figure 2. Expectation value of 𝜎#! for two state system as a function of time. Results predicted by KRR 
model (blue line) are compared to the HEOM results (red dots). The adopted parameters are: (a) 𝜖 =
0.0, 𝜆 = 0.2, 𝜔" = 8.0, 𝛽 = 1.0; (b) 𝜖 = 0.0, 𝜆 = 0.2, 𝜔" = 10.0, 𝛽 = 0.25; (c) 𝜖 = 1.0, 𝜆 = 0.1,
𝜔" = 6.0, 𝛽 = 0.75 and (d) 𝜖 = 1.0, 𝜆 = 0.2, 𝜔" = 10.0, 𝛽 = 0.25. Here in all cases, Δ = 1.0. All 
parameters are in units of Δ. 

 

In the literature, both neural networks and kernel methods were used for this strategy of 

accelerating HEOM dynamics with ML. In Case study 2, we use a kernel method (kernel ridge 

regression, KRR, with the Gaussian kernel). We note that other strategies were also suggested 

[66-67,79]: one of them is to learn from a single short time trajectory and to propagate the 

remaining trajectory for a longer time, while in the other, ML was used to learn the entire 

trajectories as a function of continuous time, but we will not elaborate on these strategies here. 

Trajectory surface hopping (TSH) 

In mixed quantum-classical (MQC) dynamics, the degrees of freedom of the entire system are 

split into slow particle parts (usually, nuclei), which are treated classically, and fast particle 

parts (usually, electrons) treated quantum mechanically. In doing so, MQC methods 

circumvent extensive calculations usually performed when full quantum dynamics is applied. 
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Trajectory surface hopping (TSH) is one of the most well-known types of MQC methods. TSH 

aims to emulate nuclear wavepacket propagation moving through a nonadiabatic coupling 

region through an ensemble of independent classical trajectories. The wavepacket split due to 

nonadiabatic effects is simulated by allowing each trajectory to change the potential energy 

surface during the time propagation following a stochastic algorithm. Thus, TSH is composed 

of two core elements, the classical dynamics on Born–Oppenheimer surfaces and the hopping 

probabilities calculation. 

TSH algorithms can use either instantaneous or global probability algorithms. Instantaneous 

algorithms tell the probability of making a transition between two electronic states at a specific 

time. The fewest-switches surface hopping (FSSH) introduced by Tully [42] is the most 

popular among the instantaneous algorithms. Global algorithms evaluate the transition 

probability over the entire duration of the nonadiabatic interaction and evaluate afterward 

whether the system should move to another surface or not. The Zhu–Nakamura surface hopping 

(ZNSH) is an example of such an approach [80]. 

Each type of algorithm has its pros and cons. FSSH is derived for arbitrary surface crossing 

topographies, is straightforward to implement, and is easy to generalize to other cases beyond 

internal conversion [81-82]. It, however, requires the computation of nonadiabatic couplings 

and needs to be corrected for decoherence effects [83]. ZNSH, in turn, is derived for Landau–

Zener-like topographies (the adiabatic surfaces approach each other, creating a region of 

nonadiabatic interaction, and separate again) and requires a more involved implementation 

(when a hopping takes place, the trajectory must resume from an earlier time step). 

Nevertheless, ZNSH neither requires nonadiabatic couplings (estimated from the diabatic 

forces) nor decoherence corrections.  

As surveyed in Table 1, both FSSH and ZNSH have been used with ML. In our Case Study 3, 

we will use FSSH. For this reason, let us take a moment to understand some technical details 

of this method. For a discussion of the ZNSH implementation, see Ref. [84]. 

Fewest switches surface hopping (FSSH) 

If we want to compute a single trajectory for FSSH, we need to solve two equations of motion 

(EOM), a classical equation for the nuclei 𝐑� on a Born–Oppenheimer potential energy surface 

HLL 
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d+𝐑�𝜶
𝑑𝑡+

= −
1
𝑀K

∇K𝐻LL (8) 

where L denotes the Lth electronic state and α represents the nucleus α; and a quantum EOM 

[42] 

d𝑐M
d𝑡 =5−𝑐B

B

H
𝑖
ℏ𝐻MB + 𝜎MBM

(9) 

This equation is a local approximation of the time-dependent Schrödinger equation for the 

electronic wave function. c are the complex-valued coefficients we are interested in. 𝐻MB is the 

off-diagonal element of the electronic Hamiltonian matrix between electronic states J and state 

K (they are null in the adiabatic representation) and 𝜎MB is the time derivative coupling between 

these states, defined as 

𝜎MB(𝐑�) ≡ �𝜓M�
∂𝜓B
∂𝑡 � = 𝐝MB ⋅ 𝐯� (10) 

The last equality shows that in FSSH, we can either use the time derivative coupling or the 

inner product between the nuclear velocity 𝐯� and nonadiabatic coupling vectors (NACs)  

𝐝MB ≡ �𝜓M�∇�𝜓B� (11) 

After solving the two EOMs for one time step, we have updated electronic coefficients c and 

nuclear positions 𝐑� and velocities 𝐯�. In adiabatic representation (which is commonly used in 

FSSH), the FSSH transition probability from state K to state J state is simply 

𝑃B→MOPP5 = max \0,
2∆𝑡
𝜌BB

Re:𝜌BM𝜎BM;^ (12) 

where  are the density matrix elements 

𝜌BM(𝑡) ≡ 𝑐B∗(𝑡)𝑐M(𝑡) (13) 

 

The decision on whether the trajectory will switch from K to J is made by checking two 

conditions. First, we sample a uniform random number 𝜉 between 0 and 1. The switch may 

occur if 
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5𝑃B→QOPP5

M-<

Q

< 𝜉 ≤5𝑃B→QOPP5

M

Q

(14) 

Second, the total energy (kinetic plus potential) must remain constant. The hopping is allowed 

only if adjusting the kinetic energy can balance the potential energy change. If both conditions 

are satisfied, a hopping from K to J happens. Before resuming the EOM propagation for the 

next time step, the nuclear velocities are rescaled to keep the total energy constant (see Ref. 

[85] for a detailed description of how this is done). 

FSSH is over-coherent. In simple terms, it means that the non-diagonal terms of the density 

matrix in Eq. (13) do not go to zero as fast as they should [83], causing a wrong description of 

the populations. There are many ways to address this problem. A practical approach is to use 

the simplified decay of mixing [86], which corrects the coefficient c before resuming the 

integration of the EOMs to the next time step. Thus, most recent works do not employ the 

original FSSH but some flavor of decoherence-corrected (DC) FSSH. 

FSSH can be generalized to work not only during internal conversion but also intersystem 

crossing [81,87]. In the latter case, instead of the NAC (Eq. (11)) we should use the spin-orbit 

coupling (SOC). Moreover, the dynamics should not be propagated in the adiabatic 

representation, but in the spin-adiabatic representation (more formally, the PESs are 

eigenvalues of the total electronic Hamiltonian including SOC [88]). 

Nonadiabatic couplings 

FSSH needs nonadiabatic couplings to evaluate the transition probabilities in Eq. (12). As we 

mentioned, we either work with time derivative couplings 𝜎MB or nonadiabatic coupling vectors 

𝐝MB. If the electronic structure method used to compute the potential energy surfaces allows 

getting 𝐝MB, it should be used, as the proper treatment of the kinetic energy correction after 

hopping requires knowing it [85]. However, this quantity is not always available. In such a 

case, 𝜎MBbecomes a good option because it can be readily computed [89-90] from the electronic 

wavefunction overlap at consecutive time steps using the Hammes-Schiffer/Tully approach 

[91]. In fact, 𝜎MB can be computed even for methods without explicit wavefunctions, like those 

based on linear-response theory [92].  
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𝜎MB  can also be computed with time-dependent Baeck–An (TD-BA) approach [93], a 

straightforward approximation based only on the energy gap between J and K and the second 

time derivative of this gap (which can be quickly evaluated numerically during the propagation):  

𝜎MB ≈

⎩
⎪
⎨

⎪
⎧𝑠𝑔𝑛:𝛥𝐸MB;

2 ¥
1

𝛥𝐸MB
𝑑+𝛥𝐸MB
𝑑𝑡+ if	

1
𝛥𝐸MB

𝑑+𝛥𝐸MB
𝑑𝑡+ > 0

0 if	
1

𝛥𝐸MB
𝑑+𝛥𝐸MB
𝑑𝑡+

≤ 0

(15) 

We will use this approximation in Case Study 3. 

ML-assisted TSH 

TSH requires two critical ingredients: potential energy surfaces and the hopping probabilities. 

ML can predict both ingredients, which we cover in the following subsections. In addition, we 

will elaborate on general strategies for the generation of satisfactory training data. 

Learning potential energy surfaces 

Propagating trajectories requires evaluating potential energies and energy gradients at each 

time step on either ground or excited state, for which machine learning potential (MLP) can be 

used. Here, we will mainly focus on the peculiarities of MLP application to NAMD, while a 

discussion of many different types of MLPs for learning ground-state potential energy can be 

found in the preceding chapters of this book. While ground-state dynamics is limited to moving 

on the lowest surface, NAMD faces the increased complexity of the multivalued landscape 

[94]. The excited-state potential surfaces stack on each other, and even interfaces between them 

may exist (see Figure 3, from the review paper of Mai and González [1], for a nice illustration 

of such an excited-state landscape featuring many types of topographic structures). 
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Figure 3. A typical potential energy surface in NAMD. 

Credit: Reproduced from Ref. [1] (Angew. Chem. Int. Ed. 2020, 59, 16832–16846) under CC BY 4.0. 

 

Among topographical structures, one particular structure called conical intersection [95-97] is 

of high interest to us. Conical intersections are crossing regions with a double-cone topography 

formed when two potential energy surfaces of two states with the same multiplicity touch [1]. 

Nonadiabatic processes often occur in the vicinity of these features because the Born–

Oppenheimer approximation weakens there, and the nonadiabatic couplings between the two 

states are non-negligible.  

Before discussing the ML training of PES for NAMD, we should briefly mention that any 

quantum-chemical reference data may have accuracy issues. First, the accuracy of the excited 

state prediction is usually lower than that of the ground state [98]. Second, the accuracy of 

excited states of different electronic characters may also differ. Therefore, the data we will 

learn is usually intrinsically inaccurate. 

We can now summarize the peculiarities of learning potential energy surfaces for NAMD and 

possible strategies suggested in the literature to address them: 

• First, we need to learn more than one surface in a balanced way. We can either learn each 

surface separately for each state or learn them together [3,31,98]. The latter option is done 

by using multi-output learning with neural networks [62,72-74] special extension of kernel 

methods [73] or simply adding the state number into the input vector [73]. All these 

approaches have been successfully applied. 
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• Second, learning excited-state energies tends to be more difficult than learning ground-

state energies. Thus, usually, more training data for learning excited-state energies are 

required to achieve satisfactory accuracy [3,31,98]. 

• Third, at the seam of conical intersections, the potential energy surface presents removable 

discontinuities, which poses a challenge to the learning. One suggested solution is 

switching to reference calculations for PESs when NAMD moves into critical regions near 

conical intersections to ensure accurate treatment of these regions [3,31,98]. Another 

solution is to include more geometries near conical intersections in the training set 

[3,31,98]. 

Many different MLPs were used for learning both ground- and excited-state potential energy 

surfaces required for propagating TSH, and a dated list is given in Table 1. Here we briefly 

describe the MLP – the KREG model – used in Case study 3. 

KREG [99] is based on kernel ridge regression (KRR) with RE (internuclear distances 	𝑟 

relative to equilibrium distances 𝑟RS) descriptor (a vector with elements 𝑟 𝑟RS⁄  calculated for 

all pairs of atoms in a molecule) and the Gaussian kernel function. Descriptions about KRR 

and Gaussian kernel function can be found in Chapter Kernel methods.  

The RE descriptor is rotationally and translationally invariant, but it lacks permutational 

invariance concerning the interchange of atoms with the same element. Thus, a permutationally 

invariant KREG model called pKREG can be used, introducing permutational invariance on a 

kernel level.  

Hopping in ML-assisted TSH: Internal conversion 

Excited-state processes of molecules may involve states of the same or different spin 

multiplicity (Figure 3), which leads to two types of nonadiabatic processes: internal conversion 

(IC) and intersystem crossing (ISC) [82]. The IC process happens between states with the same 

multiplicity and is governed by the NACs, while the ISC process occurs between states with 

different multiplicities and is mediated by spin–orbit couplings (SOCs) [82]. In this subsection, 

we focus on ML-assisted description of IC, while in the following subsection, we discuss ISC. 

To describe IC within TSH, we need to choose a hopping algorithm to determine which 

properties the machine needs to learn. 

Two different scenarios were explored in literature: one is the use of an algorithm such as 

ZNSH or TD-BA  FSSH, which do not need the calculation of NACs and can derive hopping 
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probabilities from the potential energy surfaces, and another one is the use of other FSSH 

algorithms requiring the calculation of NACs. In the first case, learning potential energy 

surfaces, as described in the preceding section, is enough to propagate NAMD. This is what 

we will do in Case study 3. In the second case, we also need to learn NACs, which is a 

challenging problem. The difficulties and possible solutions to them are as follows: 

• NAC data will show singularity around conical intersections, clearly seen after rewriting 

Eq. (11) according to the Hellmann–Feynman theorem [100]: 

𝐝MB =
�𝜓M�∇𝐻-R�𝜓B�
𝐸M − 𝐸B

for	𝐽 ≠ 𝐾 (16) 

Obviously, when the related electronic states are nearly degenerate, the gap 𝐸M − 𝐸B 

becomes very small, which leads to extremely large NACs (Figure 4). NACs often are 

very narrow functions, meaning that even a slight change in geometry can drastically 

change NAC values. This poses a severe problem for learning them [3] as, on the one 

hand, the training set may not contain enough (if any at all) points with substantial NAC 

values and, on the other hand, such a narrow function is intrinsically difficult to learn with 

ML. Possible solutions are including points with substantial NAC values into the training 

set [60,69,75] and switching to reference calculations in the region of small gaps, where 

the probability of large NAC values is larger [69]. An additional simple solution is to 

multiply values of NACs by the gap 𝐸M − 𝐸B to generate easier to learn values [73-74] 

(Figure 4). Alternatively, one can perform diabatization (as is often done in full quantum 

dynamics simulations, and diabatization can also be assisted by ML [3,31,101]), and then 

ML can be trained on much smoother coupling values, which do not have a singularity 

problem [102-105]. However, there are few such studies due to the complexity of 

diabatization and the problems of using diabatic representation in TSH [82]. 
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Figure 4. The norm of the NAC vectors along the reaction coordinate of CH2NH2
+. 

Credit: Reproduced from Ref. [73] (Mach. Learn. Sci. Technol. 2020, 1, 025009) under CC-BY. 

 

• NACs can have an arbitrary sign because they are calculated from two wavefunctions of 

different states, which have arbitrary signs (Figure 5). This feature makes it more complex 

to learn NACs, because even the same geometry may have NACs with opposite signs [3]. 

Thus, NACs signs may be corrected by standard approaches (such as by tracking 

wavefunction overlap [72]) before training the ML model on them. Alternatively, ML can 

choose the sign [62], leading to the NAC function easier to learn.  
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Figure 5. Arbitrary phases of wavefunctions and resulting properties. 

Credit: Reproduced from Ref. [72] (Chem. Sci. 2019, 10, 8100–8107) under CC-BY. 

 

Finally, we should mention that although couplings can be learned independently from 

potential energy surfaces, all of them can also be learned together by a single ML model, as is 

done in the SchNarc approach [74]. 

Learning spin-orbit couplings 

Description of the ISC processes requires evaluations of spin–orbit couplings (SOCs) 

mediating transition between states with different multiplicity. ML can be applied to learn 

SOCs, although ML-assisted TSH dynamics for ISC is underexplored. In one study [74], ML 

was used within Surface Hopping including ARbitrary Couplings (SHARC) approach [81-82] 

(the generalization of the TSH method to include additional couplings like SOCs).  

Learning SOCs should be much easier than learning NACs because the SOC data do not have 

the problem of singularity. However, the arbitrary sign problem still needs to be considered as 

SOCs are also properties derived from two wavefunctions. As in the case of NACs, this sign 
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problem can either be solved by traditional methods (e.g., by tracking phases through wave 

function overlaps) or by choosing easier-to-learn phases by ML. Again, Westermayr et al. [74] 

also suggested learning SOCs together with potential energy surfaces by a single ML model 

called SchNarc. This model was applied to model the slow ISC process in the CSH2 molecule 

(investigated states were S0, S1, T1, and T2). 

Training set generation 

Readers may be very clear about the importance of the generation of training set right now 

since we have mentioned it several times. The ideal training set should be characterized by a 

few points and optimal coverage. Optimal coverage here means that the most representative 

configurations during excited-state processes should be included, enabling a good description 

of points around conical intersections. To obtain a satisfactory training set, many strategies can 

be used: sampling from MD trajectories [68]; sampling from conformational space [69] (e.g., 

by farthest-point sampling [106]); including enough points near conical intersections through 

handpicking [60] or sampling around conical intersections [75]; excluding problematic data 

points in critical regions [74]. 

Active learning is gaining momentum in ML-assisted TSH [3,31,72-74]. The next chapter is 

about Constructing machine learning potentials with active learning and will give details about 

this approach. Here we will briefly show how active learning is typically used in ML-assisted 

TSH and highlight points specific to TSH. Figure 6 demonstrates a typical scheme of active 

learning using the query-by-committee approach [107] with two NN models. Firstly, the initial 

training set is generated through scanning the normal modes, MD simulations, or other 

strategies. Then, two NN models can be trained based on the initial training set and applied to 

exploratory MD trajectories to generate new geometries with associated energies, gradients, 

and couplings. The points with the largest deviations in the predicted values of any of these 

properties by two NN models are flagged as potentially unreliable. Quantum chemical 

calculations are then performed for these points, and new data is then added to the training set. 

Models are retrained, NAMD trajectories propagated again until the difference between 

predictions of two models drops below a certain threshold. 
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Figure 6. A typical active learning (adaptive sampling) scheme. 

Credit: Reproduced from Ref. [3] (Chem. Rev. 2021, 121, 9873–9926) under CC-BY. 

 

Case studies 

This section demonstrates how ML accelerates two different types of excited-state dynamics: 

full quantum dynamics and trajectory surface hopping. Before that, we also show how to 

perform full quantum dynamics with the traditional HEOM approach for a better comparison. 

The full quantum dynamics is demonstrated on a standard example of the two-state spin-boson 

Hamiltonian, which is a general representation for many chemical systems. TSH is 

demonstrated on a specific chemical system – fulvene. This molecule is an excellent test system 

for surface hopping thanks to its nontrivial PES topography, with recurrences between S1 and 

S0 at an extended crossing seam with peaked and sloped conical intersections [108-109]. 

Instructions and materials needed to perform these case studies are provided at 

https://github.com/maxjr82/MLinQCbook16-NAMD. 

Case study 1: Hierarchical equation of motion (HEOM) 

In the case of a two-state system, the quantity of interest is the expectation value of 𝜎3% (the 

population difference between the two states) which is expressed as 

⟨𝜎3%(𝑡)⟩ = Tr3[𝜎3%𝜌33(𝑡)] (17) 
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where 𝜌33(𝑡) is the reduced density matrix of the system. Eq. (17) can be propagated with the 

HEOM method [Eq. (7)], which is computationally expensive (case study 1). However, ML 

can be used as a surrogate model to speed up the HEOM method, as discussed in the next 

section. 

In this case study, we demonstrate the propagation of Eq. (17) for a two-state system. Using 

the HEOM method implemented in the publicly available QuTiP package [110], we generate 

trajectories of 〈𝜎3%(𝑡)〉  for all the possible combinations of the following parameters (all 

parameters are in atomic units (a.u.)): ∆ = 1, 𝜀	 ∈ {0, 1}, λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9, 1.0}, 𝜔1 	 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and 𝛽	 ∈ {0.1, 0.25, 0.5, 0.75, 1}, here 𝛽 =

1/(𝑘7𝑇)  with 𝑘7 as the Boltzmann constant and T as temperature. The total number of 

generated trajectories is 1000, propagated up to the maximum run-time of a trajectory 𝑡T = 20 

(a.u.) or ≈ 0.48 fs using timestep dt = 0.05 (a.u.). The data and script for running dynamics 

with HEOM are available at https://github.com/maxjr82/MLinQCbook16-NAMD. Here we 

have considered both symmetric (𝜖 = 0) and asymmetric (𝜖 ≠ 0) cases of our two-state system. 

The cutoff frequency ranges from a mildly nonadiabatic environment (𝜔1 = 1) to strongly 

nonadiabatic environment (𝜔1 = 10). As has already been discussed, the computational cost 

of HEOM method depends on two factors; the number of exponential functions approximating 

the correlation function 𝐾 (see Eq. (4)) and the depth of the hierarchy level 𝐿 where 𝐾 strongly 

depends on temperature and 𝐿 on the strength of the system–bath coupling. An increase in 𝐾 

and 𝐿 inevitably makes HEOM approach rather computationally expensive.  For	 𝐾	 = 	2	and 

𝐿	 = 	3, the HEOM propagation with time-step dt = 0.05 (a.u) for time-length 20 (a.u.) takes 

few seconds on a single Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz while for 𝐾	 = 	5	and 

𝐿 = 30, it takes ca. 13 hrs. 

Case study 2: HEOM with machine learning 

Instead of propagating dynamics with the expensive full quantum methods such as HEOM, we 

can train an ML model on the data and then propagate dynamics with less computational cost. 

To do that, we divide our data set of 1000 trajectories into two sets; a training set with 900 

trajectories and a test set with 100 randomly chosen trajectories. Before training our ML model, 

we transfer our unsupervised training trajectories (unlabeled data) into supervised data (labeled 

data), as discussed in the Methods section (see Figure 1). We choose a short time trajectory 

with time-length 𝑡C	(memory time, in our case we choose 𝑡C = 4) as a seed trajectory and we 

define the next 〈𝜎3%〉 value at 𝑡CI< as the target value making it the first training point. Though 
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our propagation time-step is dt = 0.05 in reference HEOM trajectories, we can use a different 

time-step of dtDEFGH = 0.1 for training which makes our input vector 41 time-steps long. For the 

second training point, we delete the first value at 𝑡* and include the 〈𝜎3%〉 value at 𝑡CI< and as 

a target we choose 〈𝜎3%〉  value at 𝑡CI+ . In a similar way, we transform all the training 

trajectories into supervised data (see Figure 1). Using the Gaussian kernel, we train a kernel 

ridge regression (KRR) model implemented in the publicly available MLatom package [111-

113]. The data set of supervised trajectories is partitioned into two subsets: the training set, 

which contains 80% of the data, and the validation set with 20% randomly selected data points, 

which is used to optimize hyperparameters 𝜎 and 𝜆 on the logarithmic grid [111]. To minimize 

our training cost, we train separate models for both symmetric and asymmetric cases. The 

training for each case takes ≈ 8 hrs with parallel computation on 36 Intel(R) Xeon(R) Gold 

6240 CPUs @ 2.60GHz (most of this time is taken by the optimization of hyperparameters	𝜎 

and 𝜆, and without optimization, the training takes less than 30 min). We prepare our input file 

input.inp for MLatom as shown in Figure 7 and we provide it to MLatom as mlatom 

input.inp > output. 

 

Figure 7. Input options for training a KRR model using the publicly available MLatom package [111-
113]. Any statement starting after # is a comment. 

The input file is available at https://github.com/maxjr82/MLinQCbook16-NAMD. Upon 

completion, a trained KRR model spin_boson.unf should be saved. Now we can 

provide a short time trajectory of time length 𝑡C from the hold-out test set trajectories, and the 

trained KRR model should be able to predict dynamics beyond 𝑡T = 20	(𝑎. 𝑢. ) (used in the 

training trajectories propagated with HEOM) as shown in Figure 8. The process of prediction 

is iterative, where in order to predict 〈𝜎3%〉 at the next time-step, the predicted values at previous 
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time-steps are included in the input. The algorithm for running dynamics with MLatom is 

presented in Figure 9. Figure 2 shows the time-dependent dynamics of 〈𝜎3%〉 for our considered 

two-state system. It is worth emphasizing that the trained KRR model not only reproduce 

dynamics for unseen trajectories in the interpolation region 4 < t ≤ 20, but it is also capable of 

extrapolation beyond the training region t > 20 as shown in Figure 2. On a single Intel(R) 

Core(TM) i7-10700 CPU @ 2.90 GHz, prediction of the dynamics beyond the initial memory 

time 𝑡C up to 𝑡 = 30(𝑎. 𝑢. ) takes ≈ 3 min. 

 

Figure 8. Propagation of quantum dynamics with MLatom where a short time trajectory of time-length 
𝑡# is provided as an input, and as a result, MLatom (using the trained KRR model) successfully predicts 
the dynamics beyond 𝑡# [66]. 

 

Figure 9. A simple algorithm for doing full quantum dynamics with MLatom. The predictions beyond 
𝑡# is recursive, where predicted values at previous time-steps are included in the input for next time-
step predictions. 

As seen from the above case study, doing dynamics with ML is substantially faster. In our case, 

the amount of saved time, which depends on 𝑡C and trajectory time (𝑡T), is ca. 90%. In contrast 

to HEOM, where the computational cost depends on temperature, the computational cost for 
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propagating dynamics with ML remains the same for all cases. Such a substantial reduction in 

computational cost may allow longer simulations with the HEOM method.  

Case study 3: Trajectory-surface hopping with machine learning  

In this case study, we demonstrate in a tutorial way step-by-step how to perform a TSH NAMD 

simulation using trained machine learning models. The fulvene molecule will be used as a 

prototype of a photoactive system. This molecule undergoes significant geometry deformation 

(C–CH2 bond stretching and CH2 rotation) during the internal conversion process from the S1 

to S0 state [93,114]. Two independent program packages will be necessary to follow the tutorial 

and run the simulations: (i) the MLatom program [111-113] will be used to train the machine 

learning model, and (ii) the Newton-X software [115-116] interfaced with MLatom will be 

responsible for propagating the dynamics. Instructions and materials needed to perform this 

case study are provided at https://github.com/maxjr82/MLinQCbook16-NAMD. 

Step 1: Create the training set 

This is a crucial step to guarantee good accuracy for the machine learning model. It is, however, 

rather involved, as we discussed in the Methods section. We provide the training set by 

selecting points from a set of NAMD trajectories already computed at the quantum mechanical 

level. It can be downloaded from https://figshare.com/articles/dataset/Fulvene_DC-

FSSH/14446998/1, but it is not necessary for this study. This data set contains 200 TSH 

CASSCF trajectories, run at the SA-2-CAS(6,6)/6-31G level with a time step of 0.1 fs up to a 

maximum time of 60 fs. More than 120000 data points are available in this fulvene dataset with 

information of molecular geometries, gradients, the potential energy of the S0 and S1 states, 

and the nonadiabatic coupling vectors between the two energy surfaces. 

For this case study, we have randomly picked 40000 points from the first 199 NAMD 

trajectories while the trajectory 200 is left out as a reference to test the performance of the 

trained model. This training set is provided in three different files: 

- xyz_train_40k.dat containing XYZ geometries; 

- en_s0_train_40k.dat and en_s1_train_40k.dat with the potential 

energies in the ground and the first excited states 

All quantities provided in these data files are given in atomic units; the order of energies 

corresponds to the order of XYZ geometries. 
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Step 2: Model training (MLatom/KREG) 

To run a full nonadiabatic dynamics for the fulvene example, we will train two independent 

models to predict the potential energy of each electronic state. Next, the gradients are calculated 

by the MLatom program as the derivative of the trained model. NACS will be computed by the 

molecular dynamics program using the TD-BA approximation [93]. 

The readers can train the model themselves as described in the tutorial instructions or use the 

KREG models provided with this tutorial to save time because, depending on your machine, 

the training of a model on energies in one state may take up to a dozen hours. Either way, in 

the end, trained models are saved in the binary files mlmod_engrad1.unf and 

mlmod_engrad2.unf containing the KREG models that will be used to make predictions 

of energy and gradients for the electronic state 1 (S0) and the electronic state 2 (S1) at each time 

step during the dynamics. 

Step 3: Run the ML-NAMD simulation (NX/MLatom) 

Suppose the accuracy of the model obtained in step 2 is satisfactory (check the MLatom outputs 

for the error metrics, but note that the ultimate check of the quality of the ML model is in the 

analysis of many trajectories). In that case, we can use this model as an estimator for each 

state's potential energy and corresponding gradients to propagate the dynamics. To run one 

NAMD trajectory for the fulvene molecule using the ML models as a predictor, the reader can 

either use the input examples already provided with this tutorial or create a new TRAJ folder 

from scratch using the Newton-X interactive program, nxinp. In the latter case, one must ensure 

that the prog flag is in the control.dyn input file of Newton-X is set to 11, meaning that 

MLatom will be called by NX in every step of the dynamics to compute the required quantities. 

Also, the flag vdoth in the sh.inp file must be set to 2 to use the TD-BA to compute the 

nonadiabatic couplings. The JOB_NAD directory should contain the MLatom models 

mlmod_engrad1.unf and mlmod_engrad2.unf obtained in the previous step. In 

addition, one should also copy the eq.xyz file into the JOB_NAD folder. 

Either way, the dynamics is ready to start with Newton-X as described in the tutorial manual. 

After finishing the simulation, the reader can visualize the results by using the plot utility script 

of Newton-X and obtain a plot similar to the one shown in Figure 10. 
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Figure 10. The plot shows the time evolution of the potential energies during TSH ML-NAMD 

propagation for a fulvene molecule in a single trajectory. The simulation starts in the first 

excited state S1 (blue line) and then at ca. 9.2 fs hops from the S1 state to S0 state (red line) and 

stays there. The active surface, i.e., the current electronic state at each step, is shown with green 

markers. The total energy is shown with the dashed line, and it is evident that it does not change 

during dynamics. 

 

The plot may differ because hopping is a stochastic process and can happen at different times 

when the simulation is restarted. ML NAMD is very fast, as the reader will see after running 

this simulation. It takes ca. 1 hour with a relatively inefficient implementation, while the 

reference dynamics take 15 hours. Importantly, we can observe that ML NAMD simulation 

also features hopping events, which is the first indication that the quality of ML PESs may be 

sufficient to describe challenging regions near the conical intersection because the reference 

quantum chemical NAMD trajectory also features hopping. To perform a more rigorous 

analysis of the quality of ML PES, one would need to run a large number (at least hundreds) 

of such trajectory simulations starting with different geometries and velocities and perform 

statistical analysis on them to calculate the populations and lifetimes in each state and other 

properties of interest such as structural parameters. 
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Conclusions and outlook 

Excited-state nonadiabatic molecular dynamics (NAMD) simulations reveal the temporal 

evolution and provide insights into underlying principles of photophysics and photochemistry 

processes. However, the application of NAMD to large systems and long-time excited-state 

processes has been limited by the expensive underlying quantum chemical calculations. This 

chapter introduced the combination of ML with two classes of excited-state dynamics 

methods—full quantum dynamics (HEOM as an example) and mixed quantum-classical 

dynamics (TSH as an example) and showed the challenges and strategies of using ML to 

accelerate the NAMD simulations. In the ML-assisted HEOM section, the strategy of learning 

from multiple trajectories is introduced. In the ML-assisted TSH section, how to treat the 

complexity of potential energy surfaces, the singularity of NACs, and the arbitrary sign 

problem of NACs and SOCs are discussed, and strategies for generating training sets are also 

mentioned. As we have discussed, these two methods (TSH and HEOM) represent different 

aspects of NAMD investigations. On the one hand, TSH allows treating realistic molecules at 

the cost of neglecting many quantum effects. On the other, HEOM describes global quantum 

effects in the dynamics of dissipative systems using a system-bath model Hamiltonian. In the 

case studies, we have demonstrated that ML-assisted NAMD saves 90% of computational time 

compared to the traditional NAMD. 

Since this is an emerging and rapidly changing field, it is difficult to predict what will happen 

in the future. We can be, however, sure that still much research is needed to explore when and 

why ML fails and how to mitigate such failures in ML-assisted NAMD. For example, the ML-

TSH approach failed to learn nonadiabatic couplings for cubane systems [117], although the 

same approach worked for other systems [50]. As usual in ML applications, one of the largest 

problems is how to reduce the cost of generating training data. Finally, one can envision that 

someday we will be able to use universal ML models for running dynamics, and this model 

could be updated with more data as needed. 
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