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Key-Policy ABE with Switchable Attributes

This paper revisits Key-Policy Attribute-Based Encryption (KP-ABE), allowing delegation of keys, traceability of compromised keys, and key anonymity, as additional properties. Whereas delegation of rights has been addressed in the seminal paper by Goyal et al. in 2006, introducing KP-ABE, this feature has almost been neglected in all subsequent works in favor of better security levels. However, in multi-device scenarios, this is quite important to allow users to independently authorize their own devices, and thus to delegate their initial rights with possibly more restrictions to their everyday-use devices. But then, one may also require tracing capabilities in case of corrupted devices and anonymity for the users and their devices. To this aim, we define a new variant of KP-ABE including delegation, with switchable attributes, in both the ciphertexts and the keys, and new indistinguishability properties. We then provide a concrete and efficient instantiation with adaptive security under the sole SXDH assumption in the standard model. We eventually explain how this new primitive can address all our initial goals.

Introduction

Multi-device scenarios have become prevalent in recent years, as it is now quite usual for people to own multiple phones and computers for personal and professional purposes. Users manage multiple applications across different devices, which brings forth new kinds of requirements. One must be able to granularly control what each of his devices can do for numerous applications, with a cost that is minimal for the user and the overall system. In particular, it is expected that one can control what each of its devices can access, for example restricting the rights to read sensitive documents from a professional laptop or phone during travel. Furthermore, if one suspects a key to be compromised, it should be possible to trace and change it without impacting the service. At the same time, these operations must happen transparently between different devices from the perspective of the user. This means each device should be autonomously configurable with regards to interactions with a central authority or to other devices. Eventually, one may also expect the delegated keys to be unlinkable, for some kind of anonymity for the users, even when devices are explored or corrupted by an adversary.

Usual current authentication means defining a unique account for the user, providing the same access-rights to all the devices, is equivalent to a key-cloning approach, where the user clones his key in every device. In this case, all the devices of the same user are easily linked together, from their keys. This also prevents countermeasures against specific devices.

Key-Policy Attribute-Based Encryption (KP-ABE), in the seminal paper of Goyal et al.

[GPSW06], offers interesting solutions to these issues. Indeed, a policy is embedded inside each user's private key, any user can finely-tune the policy for each of his devices when delegating his keys, for any more restrictive policy. Besides, since keys become different in each device, one could expect to trace and revoke keys independently. However, delegation and tracing capabilities might look contradictory with current approaches, as explained below. But we bridge this gap and we also suggest complementing these features with a certain level of unlinkability between the different keys of a single user in order to better protect the privacy of users.

Related Work

Attribute-Based Encryption (ABE) has first been proposed in the paper by Goyal et al. [GPSW06]. In an ABE system, on the one hand, there is a policy P and, on the other hand, there are some attributes (A i ) i , and one can decrypt a ciphertext with a key if the policy P is satisfied on the attributes (A i ) i . They formally defined two approaches: Key-Policy Attribute-Based Encryption (KP-ABE), where the policy is specified in the decryption key and the attributes are associated to the ciphertext; Ciphertext-Policy Attribute-Based Encryption (CP-ABE), where the policy is specified in the ciphertext and the attributes are associated to the decryption key.

In their paper, they proposed a concrete construction of KP-ABE, for any monotonous access structure defined by a policy expressed as an access-tree with threshold internal gates and leaves associated to attributes. Attributes in the ciphertext are among a large universe U (not polynomially bounded). Given an access-tree T embedded in a private key, and a set of attributes Γ ⊂ U associated to a ciphertext, one can decrypt if and only if Γ satisfies T . Furthermore, they laid down the bases for delegation of users' private keys: one can delegate a new key, associated with a more restrictive access-tree.

This first paper on KP-ABE allows fine-grained access-control for multiple devices, dealing with delegation of keys for more restrictive policies. However, their approach for delegation of keys is conflictual with traceability. Indeed, on the one hand, for delegation to work properly, users must be given enough information in the public key to be able to produce valid delegated keys. On the other hand, for the tracing process to be effective in a black-box way, attackers must not be able to detect it. From our knowledge, this natural tension between the two features is in all the existing literature.

Predicate Encryption/Inner-Product Encryption (IPE) were used by Okamoto and Takashima [OT10,OT12a,OT12b], together with LSSS: the receiver can read the message if a predicate is satisfied on some information in the decryption key and in the ciphertext. Innerproduct encryption (where the predicate checks whether the vectors embedded in the key and in the ciphertext are orthogonal) is the major tool. Their technique of Dual Pairing Vector Space (DPVS) provided two major advantages in KP-ABE applications: whereas previous constructions were only secure against selective attacks (the attributes in the challenge ciphertext were known before the publication of the keys), this technique allowed full security (a.k.a. adaptive security, where the attributes in the challenge ciphertext are chosen at the challenge-query time). In addition, it allows the notion of attribute-hiding (from [KSW08]) where no information leaks about the attributes associated to the ciphertext, except for the fact that they are accepted or not by the policies in the keys. It gets closer to our goals, as tracing might become undetectable. However, it does not seem any longer compatible with delegation, as the security proofs require all the key generation material to remain a secret information for the key issuer only.

As follow-up works, Chen et al. [CGW15,CGW18] designed multiple systems for IPE, with adaptive security, and explored full attribute-hiding with weaker assumptions and shorter ciphertexts and secret keys than in the previous work of Okamoto-Takashima. However, it does not fit our expectations on delegation, for the same reasons. On the other hand, Attrapadung also proposed new ABE schemes based on Pair Encoding Systems, which allow for all possible predicates and large universes [AT20], but this deals neither with delegation nor with any kind of attribute-hiding, as we would need.

Contributions

Since the approach of [OT12a] is close to our goal, with attribute-hiding that seems promising for traceability, we extend the original construction to make it compatible with delegation. We propose and prove, in the appendix D, a simple variant that handles delegation with adaptive security under the SXDH assumption. Then, we target delegatable KP-ABE with some additional attribute-hiding property in the ciphertext to allow undetectable tracing.

To this aim, we first detail one of the main limitation we have to overcome in order to get delegation and traceability: with the original approach of [GPSW06], attributes associated to the ciphertext are explicitly stated as elements in the ciphertext. Removing some attributes can thus allow to single out specific private keys, but this is a public process, and thus incompatible with any tracing procedure, that would then be detectable by the adversary. To prevent that, our first contribution is the new primitive: Switchable-Attribute Key-Policy Attribute-Based Encryption (SA-KP-ABE), where one can invalidate some attributes in the ciphertext, without removing them. More precisely, we will bring new properties to the attributes in ciphertexts (for undetectable tracing) but also symmetrically to the leaves in keys (for anonymity).

In a SA-KP-ABE scheme, attributes in a ciphertext and leaves in an access-tree T defining the policy in a key can be switched in two different states: Attributes can be set to valid or invalid in a ciphertext at encryption time, using a secret encryption key. We then denote Γ = Γ v • ∪ Γ i , the set of attributes for a ciphertext, as the disjoint union of valid and invalid attributes; Leaves can be set to passive or active in the access-tree in a key at key generation time, using the master secret key. We also denote L = L p • ∪ L a , the set of leaves, as the disjoint union of passive and active leaves. A set of valid/invalid attributes Γ = Γ v • ∪ Γ i is accepted by an access-tree T with passive/active leaves L = L p • ∪ L a , if the tree T is accepting when all the leaves in L associated to an attribute in Γ are set to True, except if the leaf is active (in L a ) and the associated attribute invalid (in Γ i ). As already presented above, passive/active leaves in L are decided during the Key Generation procedure by the authority, using the master secret key. Then the keys are given to the users. During the Encryption procedure, a ciphertext is generated for attributes in Γ , but one might specify some attributes to be invalid by using a secret tracing key, which virtually and secretly switches some active leaves to False. Passive leaves are not impacted by invalid attributes.

A second contribution is a concrete and efficient instantiation of SA-KP-ABE, with security proofs under the SXDH assumption. We eventually explain how one can deal with delegatable and traceable KP-ABE from such a primitive. As shown on Figure 1, our scheme is the first one that can combine both delegation and traceability of keys for KP-ABE. Computational assumptions are recalled in the next section and in the appendix A.1.

Our first simple construction (in the appendix D) following the initial proof from [OT12a], only allows a polynomial-size universe for the attributes involved in the policy, encoded as a Boolean access-tree. This is due to a limited theorem with static attributes in the change of basis in the DPVS framework (see the next section). The latter construction will allow an unbounded universe for the attributes, with an adaptive variant in the change of basis (see Theorem 3). This result is of independent interest. Discussions. Our setting bears common characteristics with recent KP-ABE approaches, but with major differences. First, Waters [Wat09] introduced the Dual System Encryption (DSE) technique, to improve the security level of KP-ABE, from selective security in [GPSW06] to adaptive security. In DSE, keys and ciphertexts can be set semi-functional, which is in the same vein as our active leaves in keys and invalid attributes in ciphertexts. However, DSE solely uses semi-functional keys and ciphertexts during the simulation, in the security proof, while our construction exploits them in the real-life construction. The security proof thus needs another layer of tricks.

Second, the attribute-hiding notions are strong properties that have been well studied in different IPE works. However, one does not need to achieve such a strong result for tracing: Our (Distinct) Attribute-Indistinguishability is properly tailored for KP-ABE and tracing.

Finally, we detail the advantage of our solution over a generic KEM approach that would combine a Delegatable KP-ABE and a black-box traitor-tracing scheme. This generic solution works if one is not looking for optimal bounds on collusion-resistance during tracing: The main issue with such a use of two independent schemes is that for each user, the KP-ABE key and the traitor-tracing key are not linked. As a consequence, the encryptions of the ABE part and the tracing part are done independently. The colluding users can all try to defeat the traitor tracing without restriction: the collusion-resistance for tracing in the global scheme will exactly be the collusion-resistance of the traitor tracing scheme. On the other hand, our construction will leverage the collusion-resistance of KP-ABE to improve the collusion-resistance of tracing: only players non-revoked by the KP-ABE part can try to defeat the traitor tracing part. Hence, during tracing, one can revoke arbitrary users thanks to the policy/attributes part. This allows to lower the number of active traitors, possibly keeping them below the collusion-resistance of the traitor tracing scheme, so that tracing remains effective.

Preliminaries

We will make use of a pairing-friendly setting G = (G 1 , G 2 , G t , e, G 1 , G 2 , q), with a bilinear map e from G 1 × G 2 into G t , and G 1 (respectively G 2 ) is a generator of G 1 (respectively G 2 ). We will use additive notation for G 1 and G 2 , and multiplicative notation in G t .

Definition 1 (Decisional Diffie-Hellman Assumption). The DDH assumption in G, of prime order q with generator G, states that no algorithm can efficiently distinguish the two distributions

D 0 = {(a • G, b • G, ab • G), a, b $ ← Z q } D 1 = {(a • G, b • G, c • G), a, b, c $ ← Z q }
And we will denote by Adv ddh G (T ) the best advantage an algorithm can get in distinguishing the two distributions within time bounded by T . Eventually, we will make the following more general Symmetric eXternal Diffie-Hellman (SXDH) Assumption which makes the DDH assumptions in both G 1 and G 2 . Then, we define Adv sxdh G (T ) = max{Adv ddh G 1 (T ), Adv ddh G 2 (T )}.

Dual Pairing Vector Spaces

We review the main points on Dual Pairing Vector Spaces (DPVS) to help following the intuition provided in this paper. Though not necessary for the comprehension of the paper, the full details are provided in the appendix C. DPVS have been used for schemes with adaptive security [OT08,LOS + 10,OT10,OT12b] in the same vein as Dual System Encryption (DSE) [Wat09], in prime-order groups under the DLIN assumption. In [LW10], and some subsequence works, DSE was defined using pairings on composite-order elliptic curves. Then, prime-order groups have been used, for efficiency reasons, first with the DLIN assumption and then with the SXDH assumption [CLL + 13]. In all theses situations, one exploited indistinguishability of sub-groups or sub-spaces. While we could have used any of them, the latter prime-order groups with the SXDH assumption lead to much more compact and efficient constructions.

In this paper, we thus use the SXDH assumption in a pairing-friendly setting G, with the additional law between elements

X ∈ G n 1 and Y ∈ G n 2 : X × Y def = i e(X i , Y i ). If X = (X i ) i = x • G 1 ∈ G n 1 and Y = (Y i ) i = y • G 2 ∈ G n 2 : ( x • G 1 ) × ( y • G 2 ) = X × Y = i e(X i , Y i ) = g
x, y t , where g t = e(G 1 , G 2 ) and x, y is the inner product between vectors x and y.

From any basis B = ( b i ) i of Z n q , we can define the basis

B = (b i ) i of G n 1 , where b i = b i • G 1 . Such a basis B is equivalent to a random invertible matrix B $ ← GL n (Z q ), the matrix with b i as its i-th row. If we additionally use B * = (b * i ) i , the basis of G n 2 associated to the matrix B = (B -1 ) , as B • B = I n , b i × b * j = ( b i • G 1 ) × ( b j • G 2 ) = g b i , b j t = g δ i,j
t , where δ i,j = 1 if i = j and δ i,j = 0 otherwise, for i, j ∈ {1, . . . , n}: B and B * are called Dual Orthogonal Bases. A pairing-friendly setting G with such dual orthogonal bases B and B * of size n is called a Dual Pairing Vector Space.

Change of Basis

Let us consider the basis U = (u i ) i of G n associated to a random matrix U ∈ GL n (Z q ), and the basis B = (b i ) i of G n associated to the product matrix BU , for any B ∈ GL n (Z q ). For a vector x ∈ Z n q , we denote ( x)

B = i x i • b i . Then, ( x) B = ( y) U where y = x • B. Hence, ( x) B = ( x • B) U and ( x • B -1 ) B = ( x) U where we denote B def = B • U. For any invertible matrix B, if U is a random basis, then B = B • U is also a random basis. Furthermore, if we consider the random dual orthogonal bases U = (u i ) i and U * = (u * i ) i of G n
1 and G n 2 respectively associated to a matrix U (which means that U is associated to the matrix U and U * is associated to the matrix U = (U -1 ) ): the bases B = B • U and B * = B • U * , where B = (B -1 ) , are also random dual orthogonal bases:

b i × b * j = g b i • b j t = g u i •B•(B -1 ) • u j t = g u i • u j t = g δ i,j t .
All the security proofs will exploit changes of bases, from one game to another game, with two kinds of changes: formal or computational.

Formal Change of Basis, where we start from two dual orthogonal bases U and U * of dimension 2, and set

B = 1 1 0 1 B = 1 0 -1 1 B = B • U B * = B • U * then, (x 1 , x 2 ) U = (x 1 , x 2 -x 1 ) B (y 1 , y 2 ) U * = (y 1 + y 2 , y 2 ) B * (1) (0, x 2 ) U = (0, x 2 ) B (0, y 2 ) U * = (y 2 , y 2 ) B * (2) 
In practice, this change of basis makes b

1 = u 1 + u 2 , b 2 = u 2 , b * 1 = u * 1 , b * 2 = -u * 1 + u * 2 . If u 1 /b 1 and u *
2 /b * 2 are kept private, the adversary cannot know whether we are using (U, U * ) or (B, B * ). This will be used to duplicate some component, from a game to another game, as shown in the above example (2).

Computational Change of Basis, where we define vectors in a dual orthogonal basis (U, U * ) of dimension 2. From a Diffie-Hellman challenge (a

• G 1 , b • G 1 , c • G 1 ), where c = ab + τ mod q with either τ = 0 or τ $ ← Z * q , one can set B = 1 a 0 1 B = 1 0 -a 1 B = B • U B * = B • U * (3)
then, in basis (B, B * ), we implicitly define

(b, c) U + (x 1 , x 2 ) B = (b, c -ab) B + (x 1 , x 2 ) B = (x 1 + b, x 2 + τ ) B (y 1 , y 2 ) U * = (y 1 + ay 2 , y 2 ) B *
where τ can be either 0 or random, according to the Diffie-Hellman challenge. And the two situations are indistinguishable. We should however note that in this case, b * 2 cannot be computed, as a • G 2 is not known. This will not be a problem if this element is not provided to the adversary.

Partial Change of Basis: in the constructions, bases will be of higher dimension, but we will often only change a few basis vectors. We will then specify the vectors as indices to the change of basis matrix: in a space of dimension n,

B = 1 a 0 1 1,2 B = 1 0 -a 1 1,2 B = B • U B * = B • U * (4)
means that only the two first coordinates are impacted, and thus b 1 , b 2 and b * 1 , b * 2 . We complete the matrices B and B with the identity matrix: b i = u i and b * i = u * i , for i ≥ 3.

Particular Changes

The security proofs will rely on specific indistinguishable modifications that we detail here. We will demonstrate the first of them to give the intuition of the methodology to the reader. A full demonstration for the other modifications can be found in the appendix C.5. These results hold under the DDH assumption in G 1 , (but it can also be applied in G 2 ), on random dual orthogonal bases B and B * . With the above change of basis provided in equation ( 4), we can compute B = (b i ) i , as we know a • G 1 and all the scalars in U :

b i = k B i,k • u k b i,j = k B i,k • u k,j = k B i,k U k,j • G 1 = k U k,j • (B i,j • G 1 ).
Hence, to compute b i , one needs all the scalars in U , but only the group elements B i,j • G 1 , and so G 1 and a • G 1 . This is the same for B * , except for the vector b * 2 as a • G 2 is missing. One can thus publish B and B * \{b * 2 }.

Indistinguishability of Sub-Spaces (3). As already remarked, for such a fixed matrix B, if U is random, so is B too, and ( x)

B = ( x • B) U , so ( x) U = ( x • B -1 ) B . Note that B -1 = B . So, (b, c, 0, . . . , 0) U = (b, c -ab, 0, . . . , 0) B , then (b, c, 0, . . . , 0) U + (x 1 , x 2 , x 3 , . . . , x n ) B = (x 1 + b, x 2 + τ, x 3 , . . . , x n ) B
where τ can be either 0 or random. Note that whereas we cannot compute b * 2 , this does not exclude this second component in the computed vectors, as we can use (y 1 , . . . , y n ) U * = (y 1 + ay 2 , y 2 , . . . , y n ) B * .

Theorem 2. Under the DDH Assumption in G 1 , for random dual orthogonal bases B and B * , once having seen B and B * \{b * 2 }, and any vector (y 1 , y 2 , . . . , y n ) B * , for any y 2 , . . . , y n ∈ Z q , but unknown random y 1

$ ← Z q , one cannot distinguish (x 1 , x 2 , x 3 , . . . , x n ) B and (x 1 , x 2 , x 3 , . . . , x n ) B , for any x 2 , . . . , x n ∈ Z q , but unknown random x 1 , x 2 $ ← Z q .
Some scalar coordinates can be chosen (and thus definitely known) by the adversary, whereas some other must be random. Eventually the adversary only sees the vectors in G n 1 and G n 2 . We now directly state two other properties for which the demonstration (which works similarly as the SubSpace-Ind one) can be found in the appendix C.5.

Swap-Ind Property, on (B, B * ) 1,2,3 : from the view of B and B * \{b * 1 , b * 2 }, and the vector (y 1 , y 1 , y 3 , . . . , y n ) B * , for any y 1 , y 3 , . . . , y n ∈ Z q , one cannot distinguish the vectors (x 1 , 0, x 3 , x 4 , . . . , x n ) B and (0, x 1 , x 3 , x 4 , . . . , x n ) B , for any x 1 , x 4 , . . . , x n ∈ Z q , but unknown random x 3 $ ← Z q . (Static) Index-Ind Property, on (B, B * ) 1,2,3 : from the view of B and B * \{b * 3 }, for fixed t = p ∈ Z q , and the (π • (t, -1), y 3 , . . . , y n ) B * , for any y 3 , . . . , y n ∈ Z q , but unknown random π

$ ← Z q , one cannot distinguish (σ • (1, p), x 3 , x 4 , . . . , x n ) B and (σ • (1, p), x 3 , x 4 , . . . , x n ) B , for any x 3 , x 3 , x 4 , . . . , x n ∈ Z q , but unknown random σ $ ← Z q .
We stress that, in this static version, t and p must be fixed, and known before the simulation starts in the security analysis, as they will appear in the matrix B. In the Okamoto-Takashima's constructions [OT10,OT12b], such values t and p were for bounded names of attributes. In the following, we want to consider unbounded attributes, we thus conclude this section with an adaptive version, where t and p do not need to be known in advance, from a large universe:

Theorem 3 (Adaptive Index-Ind Property). Under the DDH Assumption in G 1 , for random dual orthogonal bases B and B * , once having seen B and B * \{b * 3 }, and (π •(t, -1), y 3 , 0, 0, y 6 , . . . , y n ) B * , for any t, y 3 , y 6 , . . . , y n ∈ Z q , but unknown random π $ ← Z q , one cannot distinguish (σ •(1, p), x 3 , 0, 0, x 6 , . . . , x n ) B and (σ •(1, p), x 3 , 0, 0, x 6 , . . . , x n ) B , for any x 3 , x 3 , x 6 , . . . , x n ∈ Z q , and p = t, but unknown random σ $ ← Z q , with an advantage better than 8

× Adv ddh G 1 (T ) + 4 × Adv ddh G 2 (T )
, where T is the running time of the adversary. Proof. For the sake of simplicity, we will prove indistinguishability between (σ • (1, p), 0, 0, 0) B and (σ • (1, p), x 3 , 0, 0) B , in dimension 5 only, instead of n. Additional components could be chosen by the adversary. Applied twice, we obtain the above theorem. The proof follows a sequence of games.

Game G 0 : The adversary can choose p = t and x 3 , y 3 in Z q , but π, σ $ ← Z q are unknown to it:

k * = (π(t, -1), y 3 , 0, 0) B * c 0 = (σ(1, p), 0, 0, 0) B c 1 = (σ(1, p), x 3 , 0, 0) B Vectors (b 1 , b 2 , b 3 , b * 1 , b * 2
) and (c b , k * ) are provided to the adversary that must decide on b: Adv 0 is its advantage in correctly guessing b. Only k * and c 0 will be modified in the following games, so that eventually c 0 = c 1 in the last game, which leads to perfect indistinguishability.

Game G 1 : We replicate the first sub-vector (t, -1), with ρ $ ← Z q , in the hidden components: k * = (π(t, -1), y 3 , ρ(t, -1)) B * . To show the indistinguishability, one applies the SubSpace-Ind property on (B * , B) 1,2,4,5 . Indeed, we can consider a triple (a

• G 2 , b • G 2 , c • G 2 )
, where c = ab + τ mod q with either τ = 0 or random, which are indistinguishable under the DDH assumption in G 2 . Let us assume we start from random dual orthogonal bases (V, V * ). We define

B =     1 0 a 0 0 1 0 a 0 0 1 0 0 0 0 1     1,2,4,5 B =     1 0 0 0 0 1 0 0 -a 0 1 0 0 -a 0 1     1,2,4,5 B * = B • V * B = B • V
The vectors b 4 , b 5 can not be computed, but they are hidden from the adversary's view, and are not used in any vector. We compute the new vectors:

k * = (b(t, -1), y 3 , c(t, -1)) V * c 0 = (σ(1, p), 0, 0, 0) B = (b(t, -1), y 3 , (c -ab)(t, -1) B * = (b(t, -1), y 3 , τ (t, -1) B *
One can note that when τ = 0, this is the previous game, and when τ random, we are in the new game, with π = b and ρ = τ :

Adv 0 -Adv 1 ≤ Adv ddh G 2 (T ). Game G 2 : We replicate the non-orthogonal sub-vector (1, p), with θ $ ← Z q : k * = (π(t, -1), y 3 , ρ(t, -1)) B * c 0 = (σ(1, p), 0, θ(1, p)) B
To show the indistinguishability, one applies the SubSpace-Ind property on (B, B * ) 1,2,4,5 . Indeed, we can consider a triple (a

• G 1 , b • G 1 , c • G 1 )
, where c = ab + τ mod q with either τ = 0 or random, which are indistinguishable under the DDH assumption in G 1 . Let us assume we start from random dual orthogonal bases (V, V * ). Then we define the matrices

B =     1 0 a 0 0 1 0 a 0 0 1 0 0 0 0 1     1,2,4,5 B =     1 0 0 0 0 1 0 0 -a 0 1 0 0 -a 0 1     1,2,4,5 B = B • V B * = B • V *
The vectors b * 4 , b * 5 can not be computed, but they are hidden from the adversary's view. We compute the new vectors in V and V * :

c 0 = (b(1, p), 0, c(1, p)) V k * = (π (t, -1), y 3 , ρ(t, -1)) V * = (b(1, p), 0, (c -ab)(1, p)) B = ((π + aρ)(t, -1), y 3 , ρ(t, -1)) B * = (b(1, p), 0, τ (1, p)) B
One can note that when τ = 0, this is the previous game, and when τ random, we are in the new game, with π = π + aρ, σ = b, and θ = τ :

Adv 1 -Adv 2 ≤ Adv ddh G 1 (T ). Game G 3 : We randomize the two non-orthogonal sub-vectors, with random scalars u 1 , u 2 , v 1 , v 2 $ ← Z p : k * = (π(t, -1), y 3 , u 1 , u 2 ) B * c 0 = (σ(1, p), 0, v 1 , v 2 ) B
To show the indistinguishability, one makes a formal change of basis on (B * , B) 4,5 , with a random unitary matrix Z, with z 1 z 4 -z 2 z 3 = 1: 

B = Z = z 1 z 2 z 3 z 4 4,5 B = z 4 -z 3 -z 2 z 1 4,5 B * = B • V * B = B • V
k * = (π(t, -1), y 3 , ρ(t, -1)) V * = (π(t, -1), y 3 , ρ(tz 1 -z 3 , tz 2 -z 4 )) B * c 0 = (σ(1, p), 0, θ(1, p)) V = (σ(1, p), 0, θ(z 4 -pz 2 , -z 3 + pz 1 )) B Let us consider random u 1 , u 2 , v 1 , v 2 $ ← Z p ,
and solve the system in z 1 , z 2 , z 3 , z 4 . This system admits a unique solution, if and only if t = p. And with random ρ, θ, and random unitary matrix Z,

k * = (π(t, -1), y 3 , u 1 , u 2 ) B * c 0 = (σ(1, p), 0, v 1 , v 2 ) B with random scalars u 1 , u 2 , v 1 , v 2 $ ← Z p .
In bases (V, V * ), we are in the previous game, and in bases (B, B * ), we are in the new game, if p = t: Adv 2 = Adv 3 .

Game G 4 : We now randomize the third component in c 0 :

k * = (π(t, -1), y 3 , u 1 , u 2 ) B * c 0 = (σ(1, p), x 3 , v 1 , v 2 ) B
To show the indistinguishability, one applies the SubSpace-Ind property on (B, B * ) 4,3 . Indeed, we can consider a triple (a

• G 1 , b • G 1 , c • G 1 )
, where c = ab + τ mod q with either τ = 0 or τ = x 3 , which are indistinguishable under the DDH assumption in G 1 . Let us assume we start from random dual orthogonal bases (V, V * ). Then we define the matrices

B = 1 0 a 1 3,4 B = 1 -a 0 1 3,4 B = B • V B * = B • V *
The vectors b * 3 can not be computed, but it is not into the adversary's view. We compute the new vectors:

k * = (π(t, -1), y 3 , u 1 , u 2 ) V * c 0 = (σ(1, p), c, b, v 2 ) V = (π(t, -1), y 3 , u 1 + ay 3 , u 2 ) B * = (σ(1, p), c -ab, b, v 2 ) B = (σ(1, p), τ, b, v 2 ) B
One can note that when τ = 0, this is the previous game, and when τ = x 3 , we are in the new game, with v 1 = b and

u 1 = u 1 + ay 3 : Adv 3 -Adv 4 ≤ 2 × Adv ddh G 1 (T )
, by applying twice the Diffie-Hellman indistinguishability game.

We can undo successively games G 3 , G 2 , and G 1 to get, after a gap bounded by Adv ddh

G 1 (t) + Adv ddh G 2 (t): k * = (π(t, -1), y 3 , 0, 0) B * and c 0 = (σ(1, p), x 3 , 0, 0) B .
In this game, the advantage of any adversary is 0. The global difference of advantages is bounded by 4•Adv ddh G 1 (T )+2•Adv ddh G 2 (T ), which concludes the proof.

3 Key-Policy ABE with Switchable Attributes Classical definitions and properties for KP-ABE, and more details about policies, are reviewed in the appendix A.2, following [GPSW06]. We recall here the main notions on labeled access-trees as a secret sharing to embed a policy in keys.

Policy Definition

Access Trees. As in the seminal paper [GPSW06], we will consider an access-tree T to model the policy on attributes in an unbounded universe U, but with only AND and OR gates instead of more general threshold gates: an AND-gate being an n-out-of-n gate, whereas an OR-gate is a 1-out-of-n gate. This is also a particular case of the more general LSSS technique. Nevertheless, such an access-tree with only AND and OR gates is as expressive as with any threshold gates or LSSS. For any monotonic policy, we define our access-tree in the following way: T is a rooted labeled tree from the root ρ, with internal nodes associated to AND and OR gates and leaves associated to attributes. More precisely, for each leaf λ ∈ L, A(λ) ∈ U is an attribute, and any internal node ν ∈ N is labeled with a gate G(ν) ∈ {AND, OR} as an AND or an OR gate to be satisfied among the children in children(ν). We will implicitly consider that any access-tree T is associated to the attribute-labeling A of the leaves and the gate-labeling G of the nodes. For any leaf λ ∈ L of T or internal node ν ∈ N \{ρ}, the function parent links to the parent node: ν ∈ children(parent(ν)) and λ ∈ children(parent(λ)).

On a given list Γ ⊆ U of attributes, each leaf λ ∈ L is either satisfied (considered or set to True), if A(λ) ∈ Γ , or not (ignored or set to False) otherwise: we will denote L Γ the restriction of L to the satisfied leaves in the tree T (corresponding to an attribute in Γ ). Then, for each internal node ν, one checks whether all children (AND-gate) or at least one of the children (ORgate) are satisfied, from the attributes associated to the leaves, and then ν is itself satisfied or not. By induction, if for each node ν we denote T ν the subtree rooted at the node ν, T = T ρ . A leaf λ ∈ L is satisfied if λ ∈ L Γ then, recursively, T ν is satisfied if the AND/OR-gate associated to ν via G(ν) is satisfied with respect to status of the children in children(ν): we denote T ν (Γ ) = 1 when the subtree is satisfied, and 0 otherwise: Fig. 3: Example of a 6-labeling in Z/7Z, with a non-satisfying set of (colored) attributes: leaves λ 8 , λ 9 and λ 10 are not independent Evaluation Pruned Trees. In the above definition, we considered an access-tree T on leaves L and a set Γ of attributes, with the satisfiability T (Γ ) = 1 where the predicate defined by T is true when all the leaves λ ∈ L Γ are set to True. A Γ -evaluation tree T ⊂ T is a pruned version of T , where one children only is kept to OR-gate nodes, down to the leaves, so that T (Γ ) = 1. Basically, we keep a skeleton with only necessary True leaves to evaluate the internal nodes up to the root. We will denote EPT(T , Γ ) the set of all the evaluation pruned trees of T with respect to Γ . EPT(T , Γ ) is non-empty if and only if T (Γ ) = 1.

T λ (Γ ) = 1 iff λ ∈ L Γ for any leaf λ ∈ L T ν (Γ ) = 1 iff ∀κ ∈ children(ν), T κ (Γ ) = 1 when G(ν) = AND T ν (Γ ) = 1 iff ∃κ ∈ children(ν), T κ (Γ ) = 1 when G(ν) = OR
Figure 2 gives an illustration of such an access-tree for a policy: when the colored leaves {λ 1 , λ 3 , λ 5 , λ 8 , λ 9 , λ 10 } are True, the tree is satisfied, and there are two possible evaluation pruned trees: down to the leaves {λ 1 , λ 3 , λ 5 , λ 8 } or {λ 1 , λ 3 , λ 5 , λ 9 , λ 10 }.

Partial Order on Policies. Delegation will only be possible for a more restrictive access-tree, or a less accessible tree T , than T with the following partial order: T ≤ T , if and only if for any subset Γ of attributes, T (Γ ) = 1 =⇒ T (Γ ) = 1. In our case of access-trees, a more restrictive access-tree is, for each node ν: if G(ν) = AND, one or more children are added (i.e., more constraints); if G(ν) = OR, one or more children are removed (i.e., less flexibility); the node ν is moved one level below as a child of an AND-gate at node ν , with additional sub-trees as children to this AND-gate (i.e., more constraints).

Labeling of Access-Trees

Labeled Access-Trees. We will label such trees with integers so that some labels on the leaves will be enough/necessary (according to the policy) to recover the labels above, up to the root, as illustrated on Figure 3.

Definition 4 (Random y-Labeling). For an access-tree T and any y ∈ Z p , the probabilistic algorithm Λ y (T ) sets a ρ ← y for the root, and then in a top-down manner, for each internal node ν, starting from the root: if G(ν) = AND, with n children, a random n-out-of-n sharing of a ν is associated to each children; if G(ν) = OR, with n children, each children is associated to the value a ν .

Algorithm Λ y (T ) outputs Λ y = (a λ ) λ∈L , for all the leaves λ ∈ L of the tree T . Because of the linearity, from any y-labeling (a λ ) λ of the tree T , and a random z-labeling (b λ ) λ of T , the sum (a λ + b λ ) λ is a random (y + z)-labeling of T . In particular, from any y-labeling (a λ ) λ of T , and a random zero-labeling (b λ ) λ of T , the values c λ ← a λ + b λ provide a random y-labeling of T . Labels on leaves are a secret sharing of the root that allows reconstruction of the secret if and only if the policy is satisfied, as explained below:

Properties of Labelings. For an acceptable set Γ for T and a labeling Λ y of T for a random y, given only (a λ ) λ∈L Γ , one can reconstruct y = a ρ . Indeed, as T (Γ ) = 1, we use an evaluation pruned tree T ∈ EPT(T , Γ ). Then, in a bottom-up way, starting from the leaves, one can compute the labels of all the internal nodes, up to the root.

On the other hand, when T (Γ ) = 0, with a random labeling Λ y of T for a random y, given only (a λ ) λ∈L Γ , y is unpredictable: for any y, y ∈ Z p , D y and D y are perfectly indistinguishable, where D y = {(a λ ) λ∈L Γ , (a λ ) λ $ ← Λ y (T )}. Intuitively, given (a λ ) λ∈L Γ , as T (Γ ) = 0, one can complete the labeling so that the label of the root is any y.

For our notion of Attribute-Indistinguishability, we need to identify a specific property called independent leaves, which describes leaves for which the secret share leaks no information in any of the other leaves in the access-tree.

Definition 5 (Independent Leaves). Given an access-tree T and a set Γ so that T (Γ ) = 0, we call independent leaves, in L Γ with respect to T , the leaves µ such that, given only (a λ ) λ∈L Γ \{µ} , a µ is unpredictable: for any y, the two distributions

D $ y (Γ ) = {(a λ ) λ∈L Γ } and D y (Γ, µ) = {(b µ ) ∪ (a λ ) λ∈L Γ \{µ} } are perfectly indistinguishable, where (a λ ) λ $ ← Λ y (T ) and b µ $ ← Z p .
With the illustration on Figure 3, with non-satisfied tree, when only colored leaves are set to True, leaves λ 3 and λ 5 are independent among the True leaves {λ 3 , λ 5 , λ 8 , λ 9 , λ 10 }. But leaves λ 8 , λ 9 and λ 10 are not independent as a λ 8 = a λ 9 + a λ 10 mod 7 for any random labeling. Intuitively, given (a λ ) λ∈L Γ \{µ} and any a µ , one can complete it into a valid labeling (with any random root label y as T (Γ ) = 0), for µ ∈ {3, 5}, but not for µ ∈ {8, 9, 10}.

Switchable Leaves and Attributes

For a Key-Policy ABE with Switchable Attributes (SA-KP-ABE), leaves in the access-tree can be made active or passive, and attributes in the ciphertext can be made valid or invalid. We thus enhance the access-tree T into T = (T , L a , L p ), where the implicit set of leaves L = L a • ∪L p is now the explicit disjoint union of the active-leaf and passive-leaf sets. Similarly, a ciphertext will be associated to the pair (Γ v , Γ i ), also referred as a disjoint union Γ = Γ v • ∪ Γ i , of the valid-attribute and invalid-attribute sets.

We note T (Γ v , Γ i ) = 1 if there is an evaluation pruned tree T of T that is satisfied by

Γ = Γ v • ∪ Γ i (i.
e., T ∈ EPT(T , Γ )), with the additional condition that all the active leaves in T correspond only to valid attributes in Γ v : ∃T ∈ EPT(T , Γ ), ∀λ ∈ T ∩ L a , A(λ) ∈ Γ v . In other words, this means that an invalid attribute in the ciphertext should be considered as inexistent for active leaves, but only for those leaves.

We also have to enhance the partial order on T to T , so that we can deal with delegation:

T = (T , L a , L p ) ≤ T = (T , L a , L p ) if and only if T ≤ T , L a ∩ L p = L p ∩ L a = ∅ and L a ⊆ L a .
More concretely, T must be more restrictive, existing leaves cannot change their passive or active status, and new leaves can only be passive.

Key-Policy Attribute-Based Encapsulation with Switchable Attributes

We can now define the algorithms of an SA-KP-ABE, with the usual description of Key Encapsulation Mechanism, that consists in generating an ephemeral key K and its encapsulation C. The encryption of the actual message under the key K, using a symmetric encryption scheme is then appended to C. We will however call C the ciphertext, and K the encapsulated key in C. In our definitions, there are two secret keys: the master secret key MK for the generation of users' keys, and the secret key SK for running the advanced encapsulation with invalid attributes:

Setup(1 κ ). From the security parameter κ, the algorithm defines all the global parameters PK, the secret key SK and the master secret key MK;

KeyGen(MK, T ). The algorithm outputs a key dk T which enables the user to decapsulate keys generated under a set of attributes Γ = Γ v • ∪ Γ i if and only if T (Γ v , Γ i ) = 1; Delegate(dk T , T ). Given a key dk T , generated from either the KeyGen or the Delegate algorithms, for a policy T and a more restrictive policy T ≤ T , the algorithm outputs a decryption key dk T ; Encaps(PK, Γ ). For a set Γ of (valid only) attributes, the algorithm generates the ciphertext C and an encapsulated key K; Encaps * (SK, Γ v , Γ i ). For a pair (Γ v , Γ i ) of disjoint sets of valid/invalid attributes, the algorithm generates the ciphertext C and an encapsulated key K; Decaps(dk T , C). Given the key dk T from either KeyGen or Delegate, and the ciphertext C, the algorithm outputs the encapsulated key K.

We stress that fresh keys (from the KeyGen algorithm) and delegated keys (from the Delegate algorithm) are of the same form, and can both be used for decryption and can both be delegated. This allows multi-hop delegation.

On the other hand, one can note the difference between Encaps with PK and Encaps * with SK, where the former runs the latter on the pair (Γ, ∅). And as Γ i = ∅, the public key is enough. This is thus still a public-key encryption scheme when only valid attributes are in the ciphertext, but the invalidation of some attributes require the secret key SK. For the advanced reader, this will lead to secret-key traceability, as only the owner of SK will be able to invalidate attributes for the tracing procedure (as explained in Section 5). For correctness, the Decaps algorithm should output the encapsulated key K if and only if C has been generated for a pair (Γ v , Γ i ) that satisfies the policy T of the decryption key dk T : T (Γ v , Γ i ) = 1. The following security notion enforces this property. But some other indistinguishability notions need to be defined in order to be able to exploit these switchable attributes in more complex protocols.

Security Notions

For the sake of simplicity, we focus on one-challenge definitions (one encapsulation with Real-or-Random encapsulated key, one user key with Real-or-All-Passive leaves, and one encapsulation with Real-or-All-Valid attributes), in the same vein as the Find-then-Guess security game. But the adversary could generate additional values, as they can either be publicly generated or an oracle is available. Then, the definitions can be turned into multi-challenge security games, with an hybrid proof, as explained in [BDJR97].

Definition 6 (Delegation-Indistinguishability for SA-KP-ABE). Del-IND security for SA-KP-ABE is defined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public parameters PK to the adversary; Oracles: The following oracles can be called in any order and any number of times, except for RoREncaps which can be called only once. OKeyGen( T ): this models a KeyGen-query for any access-tree T = (T , L a , L p ). It generates the decryption key but only outputs the index k of the key; ODelegate(k, T ): this models a Delegate-query for any more restrictive access-tree T ≤ T , for the k-indexed generated decryption key for T . It generates the decryption key but only outputs the index k of the new key; OGetKey(k): the adversary gets back the k-indexed decryption key generated by OKeyGen or ODelegate oracles; OEncaps(Γ v , Γ i ): The adversary may be allowed to issue Encaps * -queries, with (K, C) ← Encaps * (SK, Γ v , Γ i ), and C is returned;

RoREncaps(Γ v , Γ i ):
The adversary submits a unique real-or-random encapsulation query on a set of attributes Γ = Γ v • ∪ Γ i . The challenger asks for an encapsulation query on (Γ v , Γ i ) and receives (K 0 , C). It also generates a random key K 1 . It eventually flips a random coin b, and outputs (K b , C) to the adversary; Finalize(b ): The adversary outputs a guess b for b. If for some access-tree T corresponding to a key asked to the OGetKey-oracle, T (Γ v , Γ i ) = 1, on the challenge set (Γ v , Γ i ), β $ ← {0, 1}, otherwise one sets β = b . One outputs β.

Adv del-ind (A) denotes the advantage of an adversary A in this game.

In the basic form of Del-IND-security, where Encaps * encapsulations are not available, the RoREncaps-oracle only allows Γ i = ∅, and no OEncaps-oracle is available. But as Encaps (with Γ i = ∅) is a public-key algorithm, the adversary can generate valid ciphertexts by himself. We will call it "Del-IND-security for Encaps". For the more advanced security level, RoREncapsquery will be allowed on any pair (Γ v , Γ i ), with the additional OEncaps-oracle. We will call it "Del-IND-security for Encaps * ".

With these disjoint unions of L = L a • ∪ L p and Γ = Γ v • ∪ Γ i , we will also consider some indistinguishability notions on (L a , L p ) and (Γ v , Γ i ), about which leaves are active or passive in L = L a • ∪ L p for a given key, and which attributes are valid or invalid in Γ = Γ v • ∪ Γ i for a given ciphertext. The former will be the key-indistinguishability, whereas the latter will be attributeindistinguishability. Again, as Encaps is public-key, the adversary can generate valid encapsulations by himself. However, we may provide access to an OEncaps-oracle to allow Encaps * queries, but with constraints in the final step, to exclude trivial attacks against key-indistinguishability. Similarly there will be constraints in the final step on the OKeyGen/ODelegate-queries for the attribute-indistinguishability. 

. If for some (Γ v , Γ i ) asked to the OEncaps- oracle, T (Γ v • ∪ Γ i ) = 1, for the challenge access-tree T where L = L a • ∪ L p , β $ ← {0, 1}, otherwise one sets β = b . One outputs β.
Adv key-ind (A) denotes the advantage of an adversary A in this game.

In this first definition, the constraints in the finalize step require the adversary not to ask for an encapsulation on attributes that would be accepted by the policy with all-passive attributes in the leaves.

A second version deals with accepting policies: it allows encapsulations on attributes that would be accepted by the policy with all-passive leaves in the challenge key, until attributes associated to the active leaves in the challenge key and invalid attributes in the ciphertexts are distinct. Hence, the Distinct Key-Indistinguishability (dKey-IND) where Finalize(b ) reads: The adversary outputs a guess b for b. If some active leaf λ ∈ L a from the challenge key corresponds to some invalid attribute t ∈ Γ i in an OEncaps-query, then set β $ ← {0, 1}, otherwise set β = b . One outputs β.

Definition 8 (Attribute-Indistinguishability). Att-IND security for SA-KP-ABE is defined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public parameters PK to the adversary; Oracles: OKeyGen( T ), ODelegate(k, T ), OGetKey(k), OEncaps(Γ v , Γ i ), and RoAVEncaps(Γ v , Γ i ): The adversary submits one Real-or-All-Valid encapsulation query on distinct sets of attributes (Γ v , Γ i ). The challenger generates (K,

C) ← Encaps * (SK, Γ v , Γ i ) as the real case, if b = 0, or (K, C) ← Encaps(PK, Γ v • ∪ Γ i )
as the all-valid case, if b = 1, and outputs C to the adversary; Finalize(b ): The adversary outputs a guess b for b. If for some access-tree T corresponding to a key asked to the OGetKey-oracle,

T (Γ v • ∪ Γ i , ∅) = 1, on the challenge set (Γ v , Γ i ), β $ ← {0, 1}, else one sets β = b . One outputs β.
Adv att-ind (A) denotes the advantage of an adversary A in this game.

This definition is a kind of attribute-hiding, where a user with keys for access-trees that are not satisfied by Γ = Γ v • ∪ Γ i cannot distinguish valid from invalid attributes in the ciphertext. As above on key-indistinguishability, this first definition excludes accepting policies on the challenge ciphertext. However, for tracing, one also needs to deal with ciphertexts on accepting policies. More precisely, we must allow keys and a challenge ciphertext that would be accepted in the all-valid case, and still have indistinguishability, until attributes associated to the active leaves in the keys and invalid attributes in the challenge ciphertext are distinct. Hence, the Distinct Attribute-Indistinguishability (dAtt-IND) where Finalize(b ) reads: The adversary outputs a guess b for b. If some attribute t ∈ Γ i from the challenge query corresponds to some active leaf λ ∈ L a in a OGetKey-query, then set

β $ ← {0, 1}, otherwise set β = b . One outputs β.
4 Our SA-KP-ABE Scheme

Description of our KP-ABE with Switchable Attributes

We extend the basic KP-ABE scheme proven in the appendix D, with leaves that can be made active or passive in a decryption key, and some attributes can be made valid or invalid in a ciphertext, and prove that it still achieves the Del-IND-security. For our construction, we will use two DPVS, of dimensions 3 and 9 respectively, in a pairing-friendly setting (G 1 , G 2 , G t , e, G 1 , G 2 , q), using the notations introduced in Section 2.1. Essentially, we introduce a 7-th component to deal with switchable attributes. The two new basis-vectors d 7 and d * 7 are in the secret key SK and the master secret key MK respectively. The two additional 8-th and 9-th components are to deal with the unbounded universe of attributes, to be able to use the adaptive Index-Ind property (see Theorem 3), instead of the static one. These additional components are hidden, and for the proof only:

Setup(1 κ ). The algorithm chooses two random dual orthogonal bases

B = (b 1 , b 2 , b 3 ) B * = (b * 1 , b * 2 , b * 3 ) D = (d 1 , . . . , d 9 ) D * = (d * 1 , . . . , d * 9 ). It sets the public parameters PK = {(b 1 , b 3 , b * 1 ), (d 1 , d 2 , d 3 , d * 1 , d * 2 , d * 3 )}, whereas the mas- ter secret key is MK = {b * 3 , d * 7 }
and the secret key is SK = {d 7 }. Other basis vectors are kept hidden. KeyGen(MK, T ). For an extended access-tree T = (T , L a , L p ), the algorithm first chooses a random a 0 $ ← Z q , and a random a 0 -labeling (a λ ) λ of the access-tree T , and builds the key:

k * 0 = (a 0 , 0, 1) B * k * λ = (π λ (1, t λ ), a λ , 0, 0, 0, r λ , 0, 0) D * for all the leaves λ, where t λ = A(λ), π λ $ ← Z q , and r λ $ ← Z * q if λ is an active leaf in the key (λ ∈ L a ) or else r λ = 0 for a passive leaf (λ ∈ L p ). The decryption key dk T is then (k * 0 , (k * λ ) λ ).
Delegate(dk T , T ). Given a private key for a tree T and a more restrictive subtree T ≤ T , the algorithm creates a delegated key dk T . It chooses a random a 0 $ ← Z q and a random a 0 -labeling (a λ ) λ of T ; Then, it updates k

* 0 ← k * 0 + (a 0 , 0, 0) B * ; It sets k * λ ← (π λ • (1, t λ ), a λ , 0, 0, 0, 0, 0, 0) B * for a new leaf, or updates k * λ ← k * λ +(π λ •(1, t λ ), a λ , 0, 0, 0, 0, 0, 0) B * for an old leaf, with π λ $ ← Z q .
Encaps(PK, Γ ). For a set Γ of attributes, the algorithm first chooses random scalars ω, ξ $ ← Z q . It then sets K = g ξ t and generates the ciphertext C = (c 0 , (c t ) t∈Γ ) where c 0 = (ω, 0, ξ) B c t = (σ t (t, -1), ω, 0, 0, 0, 0, 0, 0) D for all the attributes t ∈ Γ , with σ t

$ ← Z q . Encaps * (SK, (Γ v , Γ i )). For a disjoint union Γ = Γ v •
∪ Γ i of sets of attributes (Γ v is the set of valid attributes and Γ i is the set of invalid attributes), the algorithm first chooses random scalars ω, ξ

$ ← Z q . It then sets K = g ξ t and generates the ciphertext C = (c 0 , (c t ) t∈(Γv • ∪Γ i )
) where

c 0 = (ω, 0, ξ) B c t = (σ t (t, -1), ω, 0, 0, 0, u t , 0, 0) D for all the attributes t ∈ Γ v • ∪ Γ i , σ t $ ← Z q and u t $ ← Z * q if t ∈ Γ i or u t = 0 if t ∈ Γ v . Decaps(dk T , C).
The algorithm first selects an evaluation pruned tree T of T that is satisfied by Γ = Γ v ∪ Γ i , such that any leaf λ in T is either passive in the key (λ ∈ L p ) or associated to a valid attribute in the ciphertext (t λ ∈ Γ v ). This means that the labels a λ for all the leaves λ in T allow to reconstruct a 0 by simple additions, where t = t λ :

c t × k * λ = g σt•π λ • (t,-1),(1,t λ ) +ω•a λ +ut•r λ t = g ω•a λ t , as u t = 0 or r λ = 0. Hence, the algorithm can derive g ω•a 0 t . From c 0 and k * 0 , it can also compute c 0 × k * 0 = g ω•a 0 +ξ t
, which then easily leads to K = g ξ t . First, note that the delegation works as b * 1 , d * 1 , d * 2 , d * 3 are public. This allows to create a new key for T ≤ T . But as d * 7 is not known, any new leaf is necessarily passive, and an active existing leaf in the original key cannot be converted to passive, and vice-versa. Indeed, all the randomnesses are fresh, except for the last components r λ that remain unchanged: this is perfectly consistent with the definition of T ≤ T .

Second, in encapsulation, for invalidating a contribution c t in the ciphertext with a non-zero u t , for t ∈ Γ i , one needs to know d 7 , hence the Encaps * that requires SK, whereas Encaps with Γ i = ∅ just needs PK.

Eventually, we stress that in the above decryption, one can recover g ω•a 0 t if and only if there is an evaluation pruned tree T of T that is satisfied by Γ and the active leaves in T correspond to valid attributes in Γ v (used during the encapsulation). And this holds if and only if T (Γ v , Γ i ) = 1.

Del-IND-Security of our SA-KP-ABE for Encaps

For this security notion, we first consider only valid contributions in the challenge ciphertext, with indistinguishability of the Encaps algorithm. Which means that Γ i = ∅ in the challenge pair. And the security result holds even if the vector d 7 is made public: Theorem 9. Our SA-KP-ABE scheme is Del-IND for Encaps (with only valid attributes in the challenge ciphertext), even if d 7 is public.

The proof essentially reduces to the IND-security result of the KP-ABE scheme, and is available in the appendix E.1. We present an overview of the proof, as the structure of the first games is common among most of our proofs. The global sequence of games is described on Figure 4, where (c 0 , (c t )) is the challenge ciphertext for all the attributes t ∈ Γ , and (k * ,0 , (k * ,λ )) are the keys, for 1 ≤ ≤ K, and λ ∈ L for each -query, with active and passive leaves. In the

G 0 Real Del-IND-Security game c 0 = ( ω 0 ξ ) c t = ( σ t (1, t) ω | 0 0 0 u t 0 0 ) k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 r ,λ 0 0 ) G 1 SubSpace-Ind Property, on (B, B * ) 1,2 and (D, D * ) 3,4 , between 0 and τ $ ← Z q c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 0 u t 0 0 ) k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 r ,λ 0 0 ) G 2 SubSpace-Ind Property, on (D, D * ) 1,2,6 , between 0 and τ z t c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 τ z t u t 0 0 ) k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 r ,λ 0 0 ) G 3 Introduction of an additional random-labeling. c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 τ z t u t 0 0 ) k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 s ,λ zt ,λ r ,λ 0 0 ) G 4 Formal basis change, on (B, B * ) 2,3 , to randomize ξ c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 τ z t u t 0 0 ) k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 s ,λ zt ,λ
r ,λ 0 0 )

Gray cells x mean they have been changed in this game.

Fig. 4: Global sequence for the Del-IND-security proof of our SA-KP-ABE two first games G 1 and G 2 , one is preparing the floor with a random τ and random masks z t in the ciphertexts c t (actually, the challenge ciphertext corresponding to the attribute t). Note that until the actual challenge query is asked, one does not exactly know the attributes in Γ (as we are in the adaptive-set setting), thus we will decide on the random mask z t , where t is virtually associated to the number of the attribute in their order of apparition in the security game. The main step is to get to Game G 3 , starting with an additional labeling (s ,0 , (s ,λ ) λ ), using hybrid games that begins from Game G 2 . To do this, the new labelling is added in each -th key, then each label is masked by the random z t for each attribute t. One then exploits the limitations expected from the adversary in the security game: the adversary cannot ask keys on access-trees T such that T (Γ ) = 1, for the challenge set Γ . This limitation translates into the value s ,0 being unpredictable for the adversary with regards to (s ,λ ) λ , as for each key requested by the adversary, there is at least one s ,λ by lack of a corresponding ciphertext. Thus, we can replace s ,0 by a random independent r ,0 without giving any advantage to the adversary. To formally mask the shares s ,λ , we need another level of hybrid games: we will change all the keys associated with a specific attribute λ at the same time, by using the Adaptive Index-Ind technique. This allows us to mask the s ,λ share in each key with z t , one λ at a time inside the -th key.

Simulation of delegation can just be done by using the key generation algorithm, making sure we use the same randomness for all the keys delegated from the same one. As the vector d * 7 is known to the simulator, this is easy. As d 7 is public, the adversary can run by himself both Encaps and Encaps * .

We stress that our construction makes more basis vectors public, than in the schemes from [OT12b], as only b * 3 is for the key issuer. This makes the proof more tricky, but this is the reason why we can deal with delegation for any user. We now study the full indistinguishability of the ciphertext generated by an Encaps * challenge, with delegated keys. The intuition is that when u t • r ,λ = 0, the share a ,λ in g ω•a ,λ +ut•r ,λ t is hidden, but we have to formally prove it.

The main issue in this proof is the need to anticipate whether u t • r ,λ = 0 or not when simulating the keys, and the challenge ciphertext as well (even before knowing the exact query (Γ v , Γ i )). Without being in the selective-set setting where both Γ v and Γ i would have to be specified before generating the public parameters PK, we ask to know disjoint super-sets A v , A i ⊆ U of attributes. Then, in the challenge ciphertext query, we will ask that Γ v ⊆ A v and Γ i ⊆ A i . We will call this setting the semi-adaptive super-set setting, where the super-sets have to be specified before the first decryption keys are issued. Furthermore, the set of attributes Γ = Γ v • ∪ Γ i used in the real challenge query is only specified at the moment of the challenge, as in the adaptive setting.

For this proof, d 7 must be kept secret (cannot be provided to the adversary). We will thus give access to an Encaps * oracle. We then need to simulate it.

Theorem 10. Our SA-KP-ABE scheme is Del-IND for Encaps * , in the semi-adaptive super-set setting (where A v , A i ⊆ U so that Γ v ⊆ A v and Γ i ⊆ A i are specified before asking for keys).

We stress that the semi-adaptive super-set setting is much stronger than the selective-set setting where the adversary would have to specify both Γ v and Γ i before the setup. Here, only supersets have to be specified, and just before the first key-query. The adversary is thus given much more power.

The full proof can be found in the appendix E.2, we provide some hints, that extend the above sketch: we only consider keys that are really provided to the adversary, and thus delegated keys. They can be generated as fresh keys except for the r λ 's that have to be the same for leaves in keys delegated from the same initial key. However, in order to randomize s ,0 once all of the shares have been masked, one cannot directly conclude that s ,0 is independent from the view of the adversary: we only know T

(Γ v , Γ i ) = 0, but not necessarily T (Γ v • ∪ Γ i ) = 0, as in the previous proof.
To this aim, we revisit this gap with an additional sequence where we focus on the k-th key and the challenge ciphertext. In that sequence, we first prepare with additional random values y ,λ in all the keys, with the same repetition properties as the r ,λ . Thereafter, in another subsequence of games on the attributes, we can use the Swap-Ind property to completely randomize s k,λ when u t k,λ • r k,λ = 0. Hence, the s k,λ are unknown either when z t k,λ is not known (the corresponding element is not provided in the challenge ciphertext) or this is a random s k,λ when u t k,λ • r k,λ = 0. The property of the access-tree then makes s k,0 perfectly unpredictable, which can be replaced by a random independent r k,0 .

Distinct Indistinguishability Properties

We first claim easy results, for which the proofs are symmetrical:

Theorem 11. Our SA-KP-ABE scheme is dKey-IND, even if d * 7 is public. Theorem 12. Our SA-KP-ABE scheme is dAtt-IND, even if d 7 is public.
Both proofs can be found in the appendix E.3. In these alternative variants, all the invalid attributes in all the queried ciphertexts do not correspond to any active leaf in the challenge keys (for dKey-IND) or all active leaves in all the queried keys do not correspond to any invalid attribute in the challenge ciphertext (for dAtt-IND). Then, we can gradually replace all the real keys by all-passive in the former proof or all the real ciphertexts by all-valid in the latter proof.

Attribute-Indistinguishability

Theorem 13. Our SA-KP-ABE scheme is Att-IND, even if d 7 is public, if all the active keys correspond to independent leaves with respect to the set of attributes Γ = Γ v • ∪Γ i in the challenge ciphertext. The proof can be found in the appendix E.5. This is an important result with respect to our target application of tracing, combined with possible revocation. Indeed, with such a result, if a user is excluded independently of the tracing procedure (the policy would reject him even if all his passive leaves match valid attributes in the ciphertext), he will not be able to detect whether there are invalid attributes in the ciphertext and thus that the ciphertext is from a tracing procedure. This gives us a strong resistance to collusion.

Application to Tracing

In our Traitor-Tracing approach, any user would be given a key associated to a word in a traceable code at key generation time. To embed a word inside a key, the key generation authority only needs to create a new policy for a user with policy T : the new policy will be a root AND gate, that connects the original access-tree T as one child, and a word-based access-tree composed of active leaves as another child, as illustrated on Figure 5.

From there, the tracing authority, using the secret key SK, could trace any Pirate Decoder by invalidating attributes associated to the positions in words, one position at a time. Since an adversary cannot know whether attributes are valid or invalid, until it is not impacted by the invalid attributes (thanks to the Distinct Attribute-Indistinguishability), he will answer each queries of the tracer, when it is able to do it, effectively revealing the bits of his word on each position, until the tracer finds his complete word, to eventually trace back the traitors, from the traceable-code properties. Furthermore, thanks to the Attribute-Indistinguishability (not Distinct), a traitor that has been identified by the tracing authority can be removed from the target set at tracing time, and can thus no longer participate in the coalition, as it will be excluded from the policy, whatever the valid/invalid attributes. We stress that the secret key SK is required for invalidating some attributes, and so for the tracing. We thus have secret-key black-box traceability. More details are given in the appendix B.

Conclusion

We have designed a KP-ABE scheme that allows an authority to generate keys with specific policies for each user, so that these users can thereafter delegate their keys for any more restrictive rights. Thanks to the (Distinct) Attribute-Indistinguishability and Attribute-Indistinguishability, it can also include key material for tracing a compromised key involved in a pirate device while limiting the size of collusions. In addition, with Key-Indistinguishability on active leaves and perfect randomization on passive leaves, one achieves a strong level of anonymity: one cannot detect whether two keys have been delegated by the same original key. 

A More Definitions

A.1 Computational Assumptions First, we recall the assumptions used in some related work:

Definition 14 (Decisional Linear Assumption (DLIN)). The DLIN assumption in G, of prime order q with generator G, states that no algorithm can efficiently distinguish the two distributions, where a, b, c, x, y, z

$ ← Z q , D 0 = {(a • G, b • G, c • G, ax • G, by • G, c(x + y) • G)} D 1 = {(a • G, b • G, c • G, ax • G, by • G, z • G)}
Definition 15 (External Decisional Linear Assumption (XDLIN)). The XDLIN assumption in G 1 , G 2 , of prime order q with generators G 1 , G 2 respectively, states that no algorithm can efficiently distinguish the two distributions, where a, b, c, x, y, z

$ ← Z q , D 0 = {(a • G 1 , b • G 1 , c • G 1 , ax • G 1 , by • G 1 , a • G 2 , b • G 2 , c • G 2 , ax • G 2 , by • G 2 , c(x + y) • G 2 )} D 1 = {(a • G 1 , b • G 1 , c • G 1 , ax • G 1 , by • G 1 , a • G 2 , b • G 2 , c • G 2 , ax • G 2 , by • G 2 , z • G 2 )}
However, for our proofs, in the sequence of games, we will sometimes use the following DSDH assumption, that is equivalent to the DDH assumption:

Definition 16 (Decisional Separation Diffie-Hellman Assumption). The DSDH assumption in G, of prime order q with generator G, between two constant values x, y, states that no algorithm can efficiently distinguish the two distributions, where a, b

$ ← Z q , D x = {(a • G, b • G, (ab + x) • G)} D y = {(a • G, b • G, (ab + y) • G)}
As c + x and c + y are perfectly indistinguishable for a random c, then the best advantage an algorithm can get in distinguishing the two distributions within time T is upper-bounded by 2 • Adv ddh G (T ).

A.2 Definitions for KP-ABE

We now recall the definition of KP-ABE from [GPSW06], with access-trees to define policies in the keys:

Setup(1 κ ). From the security parameter κ, the algorithm defines all the global parameters PK and the master secret key MK; KeyGen(MK, T ). For a master secret key MK and an access-tree T , the algorithm outputs a private key dk T ; Encaps(PK, Γ ). For a list Γ of attributes and global parameters PK, the algorithm generates the ciphertext C and an encapsulated key K; Decaps(dk T , C). Given the private key dk T and the ciphertext C, the algorithm outputs the encapsulated key K.

For correctness, the Decaps algorithm should output the encapsulated key K if and only if C has been generated for a set Γ that satisfies the policy T of the decryption key dk T : T (Γ ) = 1.

Delegation. A major feature in [GPSW06] is delegation of decryption keys: a user with a decryption key dk corresponding to an access-tree T can compute a new decryption key corresponding to any more restrictive access-tree, or a less accessible tree T , than T with the following partial order: T ≤ T , if and only if for any subset Γ of attributes, T (Γ ) = 1 =⇒ T (Γ ) = 1. More concretely, in our case of access-trees, a more restrictive access-tree is, for each node ν, 1. if G(ν) = AND, one or more children are added (i.e., more constraints); 2. if G(ν) = OR, one or more children are removed (i.e., less flexibility); 3. the node ν is moved one level below as a child of an AND-gate at node ν , with additional sub-trees as children to this AND-gate (i.e., more constraints).

We illustrate the last rule, with a simple example in Figure 6. There is thus the additional algorithm:

Delegate(dk T , T ). Given a key dk T , generated from either the KeyGen or the Delegate algorithms, for a policy T and a more restrictive policy T ≤ T , the algorithm outputs a decryption key dk T .

Security Notions. Whereas we could recall the classical indistinguishability, with only KeyGenqueries, we extend it to handle delegation queries: if one can ask several more restrictive delegations from an access-tree T , one should not be able to distinguish an encapsulated key in a ciphertext under a non-trivial list of attributes, according to the obtained delegated keys only.

Note that this definition allows for an adversary to make delegation requests on keys that are delegated keys themselves, without limit.

Definition 17 (Delegation-Indistinguishability). Del-IND security for KP-ABE is defined by the following game between the adversary and a challenger:

Initialize: The challenger runs the Setup algorithm of KP-ABE and gives the public parameters PK to the adversary; Oracles: The following oracles can be called in any order and any number of times, except for RoREncaps which can be called only once. The advantage of an adversary A in this game is defined as

Adv del-ind (A) = Pr[β = 1|b = 1] -Pr[β = 1|b = 0].
One could of course consider Chosen-Ciphertext security, where the adversary could have access to some decryption oracles, without the decryption key itself. On the more limited side, one can consider Selective-Set security, where the adversary declares Γ at the initialization step, as in [GPSW06]. This Delegation-Indistinguishability is definitely stronger than basic Indistinguishability as the adversary can ask for an OGetKey(k)-query right after the OKeyGen(T )query that provides index k to get the decryption key for T .

B Application to Traitor-Tracing

Black-Box Traitor-Tracing. In a black-box traitor-tracing system, a tracing authority can interact with a Pirate Decoder (PD) that non-legitimately decrypts ciphertexts, using one or more decryption keys of legitimate users (the traitors). The keys used by the PD, or the aggregated key, are unknown to the tracing authority when we are dealing with black-box tracing, the most reasonable scenario. The goal of traitor-tracing is to determine which user's private keys are used by the PD, only interacting with the PD in a black-box way, in turn allowing to identify the traitors or the compromised devices. An approach is to embed codewords (also called "fingerprints") with specific properties in the decryption keys. These codewords can then be recovered, under some marking assumptions that address collusion of traitors, after only a few interactions with the PD. Boneh and Shaw [BS95] proposed a tracing technique by embedding codewords in each ciphertext. With this approach, the ciphertext size has to be linear in the length of the codeword, and this length quickly increases with the size of the possible collusion. Boneh and Naor [BN08] improved this approach with a shorter ciphertext: only some bits of the codeword are involved in each ciphertext, but in this case tracing requires additional assumptions on the decryption capabilities of the PD. Boneh et al.

[BSW06], followed by [BW06], proposed traceability (and revocation) whatever the size of the collusion, but with ciphertexts of size √ N , where N is the maximal number of users. Wong et al. [LW15,LLLW17] combined this technique into a CP-ABE, with policy encoded in a Linear Secret Sharing Scheme (LSSS). Those techniques nevertheless seem incompatible with delegation properties. Intuitively, their approach assigns each single user to a different cell in a table, and then methodically tests each cell of the table for a traitor, with linear tracing. This is quite exclusive with delegation for the users, as one cannot add more cells in the table.

Lai and Tang [LT18] proposed a framework for traitor-tracing in ABE. Their technique is a generic transformation to make any ABE into a traceable ABE, following above Boneh and Shaw [BS95] methodology. By representing bits in fingerprinting codewords as attributes, they successfully embed the words into any ABE key. However, their construction is a generic one, and the additional layer excludes delegation for the usual ABE scheme. Nevertheless, our approach will be in this vein, but for a very specific construction.

B.1 Delegatable and Traceable KP-ABE

Our initial motivation was to adapt KP-ABE with delegation to support tracing, which should not be detectable by the pirate decoder. We now explain how our SA-KP-ABE primitive allows that. We recall the definitions of tracing, and then we illustrate with a possible family of policies with switchable leaves and attributes. We first add a Tracing algorithm to initial definition of delegatable KP-ABE from the appendix A.2:

Setup(1 κ , n, t). From the security parameter κ, the total number n of users in the system, and the maximal size t on the collusion, the algorithm defines all the global parameters PK, the master secret key MK, and the tracing key TK;

KeyGen(MK, T , id). From a master key MK and an access tree T , the algorithm outputs a key dk id,T , specific to the user id; Delegate(dk id,T , T , id ). Given a key dk id,T and a more restrictive access-tree T ≤ T , the algorithm outputs a decryption key dk id ,T ; Encaps(PK, Γ ). For a set Γ of attributes, the algorithm generates the ciphertext C and an encapsulated key K; Decaps(dk id,T , C). Given the key dk id,T and the ciphertext C, the algorithm outputs the encapsulated key K; Trace D (SK, Γ ). Given the secret key SK, and a black-box access to a Pirate Decoder D, the tracing algorithm outputs an index set I which identifies a set of malicious users, among the users id and id compatible with Γ .

In the above definition, id might be for a specific device of user id. Then the authority generates keys for users, and users delegate for devices, with any more restrictive policy T ≤ T : one can consider that id = id d, for device d. One can then trace users and devices.

We expect two properties from the Trace algorithm on a perfect Pirate Decoder for a set Γ (that always decrypts the encapsulated key), when the number of traitors compatible with Γ is at most t: it always outputs a non-empty set of traitors, but does never wrongly accuse anybody.

Definition 18 (Traceability).

Initialize: The challenger runs the Setup algorithm and gives the public parameters PK to the adversary; OKeyGen(id, T ): The adversary is allowed to issue KeyGen-queries for any access-tree T of its choice, the corresponding secret key dk id,T is generated; ODelegate(id, T , id , T ): The adversary is allowed to issue several Delegate-queries for any more restrictive access-tree T ≤ T of its choice, for an already generated decryption key for T , and the corresponding secret key dk id ,T is generated; OGetKey(id, T ): The adversary can then ask and see the secret key dk id,T , if it has been generated, else it gets ⊥; Finalize: The adversary generates a set of attributes Γ and a perfect Decoder D on Γ , the challenger runs Trace D (SK, Γ ) to get back I. Let us denote U c (corrupted users) the set of id for which T has been asked such that T (Γ ) = 1. If the size of U c is at most t, but I ⊂ U c or I is empty, one outputs 1, otherwise one outputs 0.

The success Adv trace (A) of an adversary A in this game is the probability to have 1 as output.

We stress that the above definition requires a perfect Pirate Decoder. This could be relaxed, but this is enough for our illustration.

B.2 Fingerprinting Code

Our technique will exploit traceable codes as in [CFN94] that allow to trace back codewords from words that have been derived from legitimate codewords. It uses the definition of feasible set, the list the words that can be derived from a set of words:

Definition 19 (Feasible Set). Let W = {w (1) , . . . , w (t) } be a set of t words in {0, 1} . We say a word w ∈ {0, 1} is feasible for W if for all i = 1, . . . , , there is a j ∈ {1, . . . , t} such that

w i = w (j)
i . The set of words feasible for W is the feasible set of W , denoted

F (W ) = {w ∈ {0, 1} , ∀i, ∃w ∈ W, w i = w i }.
A fingerprinting code is a particular traceable code. It defines a set of codewords that allows correct and efficient tracing to recover the traitor codewords from a word derived from them (in the feasible set). For the sake of clarity, we focus on binary codes: Definition 20 (Fingerprinting Code). A fingerprinting code is a pair of algorithms (G, T ) defined as follows:

Code generator G is a probabilistic algorithm that takes a tuple (n, t) as input, where n is the number of codewords to output, and t is the maximal collusion size. The algorithm outputs a code Π of n codewords of bit-length . Tracing algorithm T is a deterministic algorithm that takes as input a word w * ∈ {0, 1} to trace. The algorithm T outputs a subset S ⊆ Π of possible traitors.

Such a fingerprinting code is said t-secure if for all n > t and all subsets C ⊆ {1, . . . , n} of size at most t, when we set Π = {w (1) , . . . , w (n) } ← G(n, t) and W C = {w (i) } i∈C , for any word

w * ∈ F (W C ), then ∅ = T (w * ) ⊆ C.
Again, we could relax the definition with error probabilities in identifying a traitor and in framing an honest user. Tardos codes [Tar03] are examples of short codes with probabilistic tracing capabilities and low error rates.

B.3 Traceable and Delegatable KP-ABE from SA-KP-ABE

We now explain how our SA-KP-ABE primitive is enough for tracing. For the sake of simplicity, in the following, we will keep id = id, without specifying the device, still with any T ≤ T , but then devices of the same user cannot be traced. Only users can be traced, but various devices might have different policies:

Setup Tr (1 κ , n, t). The algorithm calls Setup(1 κ ) and gets back PK, MK, SK. It also calls code generator algorithm G(n, t) to get the code Π. It sets the parameters as PK Tr = PK, MK Tr = (MK, Π) and TK Tr = (SK, T ). KeyGen Tr (MK Tr , id, T ). For an access-tree T , the algorithm defines T Tr , where T Tr = T ∧ T Tr are linked by an AND-gate at their root. The access-tree T Tr is constructed as follows (see Figure 5) :

-Choose a word w id = w id,1 . . . w id, from Π, for any new id; -Set T Tr as the AND of active leaves λ i associated to the attributes A i,w id,i , for i = 1, . . . , . The algorithm then calls KeyGen(MK, T Tr ), where all leaves are passive in T and all leaves are active in T Tr , and gets back dk T Tr , and finally sets dk Tr id,T ← dk T Tr . Delegate Tr (dk Tr id,T , T ). Given a private key for an access-tree T and a more restrictive subtree T ≤ T , but for the same identity (as we focus on id = id), the algorithm calls Delegate(dk T , T ), where T and T are T and T combined with T Tr as above, to get a new delegated key dk T , and sets dk Tr id,T = dk T . Encaps Tr (PK Tr , Γ ). For a set Γ of attributes, the algorithm defines Γ Tr = {A 1,0 , A 1,1 , . . . , A ,0 , A ,1 }. Security Analysis. Again, we stress that we assume perfect Pirate Decoder D, but relaxed version would be possible. Hence, here, we know that D will successfully decrypt any normal ciphertext when Γ is acceptable for all the traitors. Then, during the tracing procedure, for any index j, there are three possibilities:

It then calls

. Set Γ (0) v = Γ ∪ {A k, , k = j, ∈ {0, 1}} ∪ {A j,0 } and Γ (0) i = {A j,1 }; 2. Set Γ (1) v = Γ ∪ {A k, , k = j, ∈ {0, 1}} ∪ {A j,1 } and Γ (1) i = {A j,0 }; 3. Compute the two challenges (K 0 , C 0 ) ← Encaps * (SK, (Γ (0) v , Γ (0) i )) and (K 1 , C 1 ) ← Encaps * (SK, (Γ (1) v , Γ ( 
-If w j = b for all keys in U c , then the ciphertext C b is indistinguishable from the one where This way, the built word w * satisfies that, for each position j, w * j = w j , for some w in U c : w * ∈ F (U c ). If the fingerprinting code is t-secure, since the size of U c is at most t, ∅ = T (w * ) ⊆ U c . As a consequence, under the Distinct Attribute-Indistinguishability and the Delegation-Indistinguishability for Encaps * , the delegatable KP-ABE is traceable.

A j,1-b is in Γ v because
Discussions. Our tracing system is presented with basic fingerprinting notions, for the sake of clarity, but more advanced features are possible. In particular, our tracing algorithm works as well with non-perfect Pirate Decoder, at the cost of more calls to D to increase the quality of the estimation. It is also compatible with [BN08], to drastically reduce the ciphertext size. Eventually, one could also let the user to delegate traceable keys to each devices. However, as we do not allow public traceability, only the tracing authority can run the tracing procedure, to trace users or devices.

C Dual Pairing Vector Spaces

In this section, we provide a brief review of the Dual Pairing Vector Spaces (DPVS), that have been proposed for efficient constructions with adaptive security [OT08,LOS + 10,OT10,OT12b], as Dual Systems [Wat09], in prime-order groups under the DLIN assumption. In [LW10], Dual Systems were using pairing on composite order elliptic curves. Then, prime-order groups have been used with the SXDH assumption, in a pairing-friendly setting of primer order, which means that the DDH assumptions hold in both G 1 and G 2 [CLL + 13]. In all theses situations, one exploited indistinguishability of sub-groups or sub-spaces. In this section, for the sake of efficiency, we use the SXDH assumption in a pairing-friendly setting (G 1 , G 2 , G t , e, G 1 , G 2 , q) of primer order q.

C.1 Pairing Vector Spaces

Let us be given any cyclic group (G = G , +) of prime order q, denoted additively. We can define the Z q vector space of dimension n,

G n = {X = x • G def = (X 1 = x 1 • G, . . . , X n = x n • G) | x ∈ Z n q },
with the following laws:

(X 1 , . . . , X n ) + (Y 1 , . . . , Y n ) def = (X 1 + Y 1 , . . . , X n + Y n ) a • (X 1 , . . . , X n ) def = (a • X 1 , . . . , a • X n )
Essentially, all the operations between the vectors in G n are applied on the vectors in Z n q :

x • G + y • G def = ( x + y) • G a • ( x • G) def = (a • x) • G
where x + y and a • x are the usual internal and external laws of the vector space Z n q . For the sake of clarity, vectors will be row-vectors.

If we are using a pairing-friendly setting (G 1 , G 2 , G t , e, G 1 , G 2 , q), with a bilinear map e from G 1 × G 2 into G t , we can have an additional law between an element

X ∈ G n 1 and Y ∈ G n 2 : X × Y def = i e(X i , Y i ), where G t is usually denoted multiplicatively. Note that if X = (X 1 , . . . , X n ) = x • G 1 ∈ G n 1 and Y = (Y 1 , . . . , Y n ) = y • G 2 ∈ G n 2 : ( x • G 1 ) × ( y • G 2 ) = X × Y = i e(X i , Y i ) = i e(x i • G 1 , y i • G 2 ) = i g x i •y i t = g x• y t = g
x, y t where g t = e(G 1 , G 2 ) and x, y is the inner product between vectors x and y.

C.2 Dual Pairing Vector Spaces

We define E = ( e i ) i the canonical basis of Z n q , where e i = (δ i,1 , . . . , δ i,n ), with the classical δ i,j = 1 if i = j and δ i,j = 0 otherwise, for i, j ∈ {1, . . . , n}. We can also define E = (e i ) i the canonical basis of G n , where e i = e i • G = (δ i,j • G) j . More generally, given any basis B = ( b i ) i of Z n q , we can define the basis

B = (b i ) i of G n , where b i = b i • G.
Choosing a random basis B of G n is equivalent to a random choice of an invertible matrix B $ ← GL n (Z q ), the definition B ← B × E, where B = ( b i ) i is a basis of Z n q (B is essentially the matrix with b i as its i-th row, as b i = j B i,j • e j ), and then B ← (b i ) i where b i = b i • G: B is the basis of G n associated to the matrix B as

b i = b i • G = j B i,j • e j • G = j B i,j • e j : B = B • E.
In case of pairing-friendly setting, for a dimension n, we will denote E = (e i ) i and E * = (e * i ) i the canonical bases of G n 1 and G n 2 , respectively:

e i × e * j = ( e i • G 1 ) × ( e j • G 2 ) = g e i , e j T = g δ i,j
T .

The same way, if we denote B = (b i ) i = B • E the basis of G n 1 associated to a matrix B, and

B * = (b * i ) i = B • E * the basis of G n 2 associated to the matrix B = (B -1 ) , as B • B = I n , b i × b * j = ( b i • G 1 ) × ( b j • G 2 ) = g b i , b j t = g δ i,j t .
B and B * are called Dual Orthogonal Bases.

We have seen above the canonical bases E and E * are dual orthogonal bases, but for any random invertible matrix U $ ← GL n (Z q ), the bases U of G n 1 associated to the matrix U and U * of G n 2 associated to the matrix (U -1 ) are Random Dual Orthogonal Bases.

A pairing-friendly setting (G 1 , G 2 , G t , e, G 1 , G 2 , q), with such dual orthogonal bases U and U * of size n, is called a Dual Pairing Vector Space (DPVS).

C.3 Change of Basis

Let us consider the basis U = (u i ) i of G n associated to a matrix U ∈ GL n (Z q ), and the basis B = (b i ) i of G n associated to the product matrix BU , for any B ∈ GL n (Z q ). For a vector x ∈ Z q , we can define

( x) B = i x i • b i = i x i • b i • G = x • BU • G = ( x • B) • U • G = y • U • G = i y i • u i • G = i y i • u i = ( y) U where y = x • B. Hence, ( x) B = ( x•B) U and ( x•B -1 ) B = ( x) U where we denote B def = B•U. For any invertible matrix B, if U is a random basis, then B = B •U is also a random basis. Then, with B -1 = ( b 1 , . . . , b n ), x = y • ( b 1 , . . . , b n ): B = B • U, B =    b 1 . . . b n    , and ( x) B = ( y) U =⇒ x = ( y, b 1 , . . . , y, b n ).
Let us consider the random dual orthogonal bases U = (u i ) i and

U * = (u * i ) i of G n 1 and G n 2
respectively associated to a matrix U (which means that U is associated to the matrix U and U * is associated to the matrix (U -1 ) ): the bases B = B • U and B = (B -1 ) • U * are also dual orthogonal bases:

b i × b * j = g b i • b j t = g u i •B•(B -1 ) • u * j t = g u i • u * j t = g δ i,j t .

C.4 Partial Change of Basis

We will often just have to partially change a basis, on a few vectors only: the transition matrix

B = (t) i 1 ,...,im =    t 1,1 . . . t 1,m . . . . . . t m,1 . . . t m,m    i 1 ,...,im
means the n × n matrix B where

B i,j = δ i,j , if any i, j ∈ {i 1 , . . . , i m } B i k ,i = t k, , for all k, ∈ {1, . . .

, m}

As a consequence, from a basis U, B = B • U corresponds to the basis

b i = u i , if i ∈ {i 1 , . . . , i m } b i k = t k, • u i , if k ∈ {i 1 , . . . , i m }
As we need to have B * = (B -1 ) •U * , we need the dual transition matrix B to be B = (t ) i 1 ,...,im where t = (t -1 ) . Indeed, in such a case, we have

b * i = u * i , if i ∈ {i 1 , . . . , i m } b * i k = t k, • u * i , if k ∈ {i 1 , . . . , i m } so, -if both i, j ∈ {i 1 , . . . , i m }, b i × b * j = u i × u * j = g δ i,j t ; -if i = i k ∈ {i 1 , . . . , i m }, but j ∈ {i 1 , . . . , i m }, b i × b * j = b i k × u * j = t k, • u i × u * j = (u i × u * j ) t k, = 1 -if i ∈ {i 1 , . . . , i m }, but j = i k ∈ {i 1 , . . . , i m }, b i × b * j = u i × b * i k = u i × t k, • u * i = (u i × u * i ) t k, = 1 -if i = i k and j = i , b i × b * j = p t k,p • u ip × p t ,p • u * ip = p (u ip × u * ip ) t k,p •t ,p = g p t k,p •t ,p t = g p t k,p •t p, t = g δ k, t = g δ i,j t C.5 Particular Changes Let us consider a triple (a • G 1 , b • G 1 , c • G 1 )
, that is either a Diffie-Hellman tuple (i.e., c = ab mod q) or a random tuple (i.e., c = ab + τ mod q, for τ $ ← Z * q ). For any random dual orthogonal bases U and U * associated to the matrices U and U = (U -1 ) , respectively, we can set

B = 1 a 0 1 1,2 B = 1 0 -a 1 1,2 B = B • U B * = B • U *
Note that we can compute B = (b i ) i , as we know a • G 1 and all the scalars in U :

b i = k B i,k • u k b i,j = k B i,k • u k,j = k B i,k U k,j • G 1 = k U k,j • (B i,j • G 1 ).
Hence, to compute b i , one needs all the scalars in U , but only the group elements B i,j • G 1 , and so G 1 and a • G 1 . This is the same for B * , excepted for the vector b * 2 as a • G 2 is missing. One can thus publish B and B * \{b * 2 }.

Indistinguishability of Sub-Spaces. As already remarked, for such a fixed matrix B, if U is random, so is B too, and ( x)

B = ( x • B) U , so ( x) U = ( x • B -1 ) B . Note that B -1 = B . So, in particular (b, c, 0, . . . , 0) U + (x 1 , x 2 , x 3 , . . . , x n ) B = (b, c -ab, 0, . . . , 0) B + (x 1 , x 2 , x 3 , . . . , x n ) B = (x 1 + b, x 2 + τ, x 3 , . . . , x n ) B
where τ can be either 0 or random. Note that whereas we cannot compute b * 2 , this does not exclude this second component in the computed vectors: ( y)

U * = ( y • B -1 ) B * = ( y • B ) B * . So, in particular (y 1 , . . . , y n ) U * = (y 1 + ay 2 , y 2 , . . . , y n ) B * .
Theorem 21. Under the DDH Assumption in G 1 , for random dual orthogonal bases B and B * , once having seen B and B * \{b * 2 }, and any vector (y 1 , y 2 , . . . , y n ) B * , for chosen y 2 , . . . , y n ∈ Z q , but unknown random y 1 $ ← Z q , one cannot distinguish the vectors (x 1 , x 2 , x 3 , . . . , x n ) B and (x 1 , x 2 , x 3 , . . . , x n ) B , for chosen x 2 , . . . , x n ∈ Z q , but unknown random

x 1 , x 2 $ ← Z q .
Using the DSDH assumption instead of the DDH assumption, on two chosen values x 2 and x 2 , one can show that no algorithm can efficiently distinguish (x 1 , x 2 , x 3 , . . . , x n ) B from (x 1 , x 2 , x 3 , . . . , x n ) B , for chosen x 2 , x 2 , . . . , x n ∈ Z q , but unknown random x 1 $ ← Z q :

Theorem 22 (SubSpace-Ind Property). Under the DSDH Assumption in G 1 , for random dual orthogonal bases B and B * , once having seen B and B * \{b * 2 }, and any vector (y 1 , y 2 , . . . , y n ) B * , for chosen y 2 , . . . , y n ∈ Z q , but unknown random y 1 $ ← Z q , one cannot distinguish the vectors (x 1 , x 2 , x 3 , . . . , x n ) B and (x 1 , x 2 , x 3 , . . . , x n ) B , for chosen x 2 , x 2 , . . . , x n ∈ Z q , but unknown random x 1 $ ← Z q .

We stress that for this property, we only work with (b 1 , b 2 ) and (b * 1 , b * 2 ), but without publishing b * 2 .

Indistinguishability of Position. Let us consider another change of basis:

B =   1 0 0 0 1 0 a -a 1   1,2,3 B =   1 0 -a 0 1 a 0 0 1   1,2,3 B = B • U B * = B • U * In this case, we can compute B = (b i ) i , but not the vectors b * 1 and b * 2 as a • G 2 is missing. (c, -c, b, x 4 , . . . , x n ) U = (c -ab, -c + ab, b, x 4 , . . . , x n ) B = (τ, -τ, b, x 4 , . . . , x n ) B (θ, θ, y 3 , y 4 , . . . , y n ) U * = (θ, θ, aθ -aθ + y 3 , y 4 , . . . , y n ) B * = (θ, θ, y 3 , . . . , y n ) B *
There is the limitation for the first two components in B * to be the same:

Theorem 23 (Pos-Ind Property). Under the DDH Assumption in G 1 , for random dual orthogonal bases B and B * , once having seen B and B * \{b * 1 , b * 2 } and (y 1 , y 1 , y 3 , . . . , y n ) B * , for chosen y 1 , y 3 , . . . , y n ∈ Z q , one cannot distinguish the vectors (x 1 , -x 1 , x 3 , x 4 , . . . , x n ) B and (0, 0, x 3 , x 4 , . . . , x n ) B , for chosen x 4 , . . . , x n ∈ Z q , but unknown random x 1 , x 3 $ ← Z q .

We stress again that for this property, 

(a • G, b • G, (ab + 0) • G) and (a • G, b • G, (ab + x 1 ) • G), we have indistinguishability between (0, x 1 , x 3 , . . . , x n ) B + (ab, -ab, b, 0, . . . , 0) U = (0, x 1 , x 3 , . . . , x n ) B + (ab -ab, -ab + ab, b, 0, . . . , 0) B = (0, x 1 , x 3 , . . . , x n ) B (0, x 1 , x 3 , . . . , x n ) B + (ab + x 1 , -ab -x 1 , b, 0, . . . , 0) U = (0, x 1 , x 3 , . . . , x n ) B + (ab + x 1 -ab, -ab -x 1 + ab, b, 0, . . . , 0) B = (x 1 , 0, x 3 , . . . , x n ) B (y 1 , y 1 , y 3 , y 4 , . . . , y n ) U * = (y 1 , y 1 , ay 1 -ay 1 + y 3 , y 4 , . . . , y n ) B * = (y 1 , y 1 , y 3 , . . . , y n ) B *

Hence,

Theorem 24 (Swap-Ind Property). Under the DSDH Assumption in G 1 , for random dual orthogonal bases B and B * , once having seen B and B * \{b * 1 , b * 2 } and (y 1 , y 1 , y 3 , . . . , y n ) B * , for chosen y 1 , y 3 , . . . , y n ∈ Z q , one cannot distinguish the vectors (x 1 , 0, x 3 , x 4 , . . . , x n ) B and (0, x 1 , x 3 , x 4 , . . . , x n ) B , for chosen x 1 , x 4 , . . . , x n ∈ Z q , but unknown random x 3 $ ← Z q .

Again, for this property, we only work with (b

1 , b 2 , b 3 ) and (b * 1 , b * 2 , b * 3 ), but without publishing (b * 1 , b * 2 ). SubSpace-Ind: with b * 2 hidden c = ( x1 x2 x3 ) B ≈ ( x1 x 2 x3 ) B k * = ( y1 y2 y3 ) B * = ( y1 y2 y3 ) B * Swap-Ind: with b * 1 , b * 2 hidden c = ( x1 0 x3 ) B ≈ ( 0 x1 x3 ) B k * = ( y1 y1 y3 ) B * = ( y1 y1 y3 ) B * Index-Ind: with b * 3 hidden, if p = t c = ( σ • (1, p) x3 ) B ≈ ( σ • (1, p) x 3 ) B k * = ( π • (t, -1) y3 ) B * = ( π • (t, -1) y3 ) B *
Colored cells x are random values, while gray cells x are any value (possibly chosen).

Fig. 8: Computationally indistinguishable Changes of Basis

Indexing and Randomness Amplification. The crucial tool introduced in [OT12b] is the following change of basis, for chosen scalars t = p ∈ Z q :

B = 1 t -p ×   t -p at -1 1 -a 0 0 t -p   1,2,3 B =   1 1 0 p t 0 -a 0 1   1,2,3
In this case, we can compute

B = (b i ) i , but not the vectors b * 3 as a • G 2 is missing. (b, 0, c, x 4 , . . . , x n ) U = (b, bp, c -ab, x 4 , . . . , x n ) B = (b • (1, p), τ, x 4 , . . . , x n ) B ((t -p) • (π, 0), δ, y 4 , . . . , y n ) U * = (πt + atδ/(t -p), -π -aδ/(t -p), δ, y 4 , . . . , y n ) B * = ((π + aδ/(t -p)) • (t, -1), δ, y 4 , . . . , y n ) B *
There is the limitation for the first two components in B and B * not to be orthogonal: (1, p), (t, -1) = (t -p) = 0: Theorem 25. Under the DDH Assumption in G 1 , for random dual orthogonal bases B and B * , once having seen B and B * \{b * 3 }, and (π • (t, -1), y 3 , . . . , y n ) B * , for chosen y 3 , . . . , y n ∈ Z q , but unknown random π $ ← Z q , and for any chosen t = p ∈ Z q , one cannot distinguish the vectors (b • (1, p), τ, x 4 , . . . , x n ) B and (b • (1, p), 0, x 4 , . . . , x n ) B , for chosen x 4 , . . . , x n ∈ Z q , but unknown random b, τ $ ← Z q .

As above, we can have a more convenient theorem under the DSDH assumption:

Theorem 26 ((Static) Index-Ind Property). Under the DSDH Assumption in G 1 , for random dual orthogonal bases B and B * , once having seen B and B * \{b * 3 }, and (π•(t, -1), y 3 , . . . , y n ) B * , for chosen y 3 , . . . , y n ∈ Z q , but unknown random π $ ← Z q , and for any chosen t = p ∈ Z q , one cannot distinguish the vectors

(σ•(1, p), x 3 , x 4 , . . . , x n ) B and (σ•(1, p), x 3 , x 4 , . . . , x n ) B , for chosen x 3 , x 3 , x 4 , . . . , x n ∈ Z q , but unknown random σ $ ← Z q .
For this property, we only work with (b

1 , b 2 , b 3 ) and (b * 1 , b * 2 , b * 3
), but without publishing b * 3 . For a fixed t, we can iteratively update all the other other indices p = t.

A recap of all the modifications can be found in Figure 8.

D KP-ABE Scheme

Our ultimate goal is the design of a new KP-ABE scheme with Switchable Attributes. We start from a variation of the fully-secure attribute-based encryption from [OT12b], that provides some kind of attribute-hiding property. It is in the same vein as [GPSW06]. But for the sake of clarity, just using the static Index-Ind theorem, it can only handle a polynomially-bounded universe of attributes and delegation, but with adaptive-set security (see Definition 17).

D.1 Description of the KP-ABE Scheme

For the construction, we will use two DPVS, of dimensions 3 and 6 respectively, in a pairingfriendly setting (G 1 , G 2 , G t , e, G 1 , G 2 , q), using the notations introduced in Section 2.1:

Setup(1 κ ). The algorithm chooses two random dual orthogonal bases

B = (b 1 , b 2 , b 3 ) B * = (b * 1 , b * 2 , b * 3 ) D = (d 1 , d 2 , d 3 , d 4 , d 5 , d 6 ) D * = (d * 1 , d * 2 , d * 3 , d * 4 , d * 5 , d * 6 ). It sets the public parameters PK = {(b 1 , b 3 , b * 1 ), (d 1 , d 2 , d 3 , d * 1 , d * 2 , d *
3 )}, whereas the master secret key MK = {b * 3 }. Other basis vectors are kept hidden. KeyGen(MK, T ). For an access-tree T , the algorithm first chooses a random a 0 $ ← Z q , and a random a 0 -labeling (a λ ) λ of the access-tree T , and builds the key:

k * 0 = (a 0 , 0, 1) B * k * λ = (π λ (1, t λ )
, a λ , 0, 0, 0) D * for all the leaves λ, where t λ = A(λ) and π λ $ ← Z q . The decryption key dk T is then (k * 0 , (k * λ ) λ ). Delegate(dk T , T ). The algorithm first generates zero-label credentials for the new attributes, with k * λ ← (π λ •(1, t λ ), 0, 0, 0, 0) D * , with π λ $ ← Z q , for a new leaf. Keeping only the credentials useful in T , it gets a valid key from dk T . It can thereafter be randomized with a random a 0 $ ← Z q and a random a 0 -labeling (a λ ) of T , with k * 0 ← k * 0 + (a 0 , 0, 0) B * , and

k * λ ← k * λ + (π λ • (1, t λ ), a λ , 0, 0, 0) D * , for π λ $ ← Z q .
Encaps(PK, Γ ). For the set Γ of attributes, the algorithm first chooses random scalars ω, ξ $ ← Z q . It then sets K = g ξ t and generates the ciphertext C = (c 0 , (c t ) t∈Γ ) where c 0 = (ω, 0, ξ) B and c t = (σ t (t, -1), ω, 0, 0, 0) D , for all the attributes t ∈ Γ and σ t $ ← Z q . Decaps(dk T , C). The algorithm first selects an evaluation pruned tree T of T that is satisfied by Γ . This means that the labels a λ for all the leaves λ in T allow to reconstruct a 0 by simple additions. Note that from every leaf λ in T and

t = t λ = A(λ) ∈ Γ , it can compute c t × k * t = g σt•π λ • (t,-1),(1,t) +ω•a λ t = g ω•a λ t .
Hence, it can derive g ω•a 0 t . From c 0 and k * 0 , it gets c 0 × k * 0 = g ω•a 0 +ξ t which then easily leads to K = g ξ t . We stress that in the above decryption, one can recover g ω•a 0 t if and only if there is an evaluation pruned tree T of T that is satisfied by Γ . And this holds if and only if T (Γ ) = 1. Additionally, since b * 3 is not public but in MK only, for the key issuer, only the latter can issue keys, but anybody can delegate a key for a tree T into a key for a more restrictive tree T . As everything can be randomized (the random coins π λ and the labeling), the delegated keys are perfectly indistinguishable from fresh keys. Hence, given two keys possibly delegated from a common key, one cannot decide whether they have been independently generated or delegated.

D.2 Security Analysis of the KP-ABE

We first consider the security analysis, without delegation, as it is quite similar to [OT12b], but under the SXDH assumption instead of the DLIN assumption: Theorem 27. Under the SXDH assumption, no adversary can win the IND security game (without delegation) against our KP-ABE scheme, in the Adaptive-Set setting, with non-negligible advantage.

This theorem is proven in details in the appendix D.3, with exact bound for an adversary with running time bounded by t, where P is the size of the universe of the attributes and K is the number of queries to the OKeyGen-oracle:

Adv ind (A) ≤ 2(KP 2 + 1) × Adv ddh G 1 (t) + (3P + 1)K × Adv ddh G 2 (t) ≤ (2KP 2 + 3KP + K + 2) × Adv sxdh (t)
The global sequence of games is described on Figure 9, with another sequence of sub-games on Figure 10. In the two first games G 1 and G 2 , one is preparing the floor with a random τ

G 0 Real IND-Security game (without delegation) c 0 = ( ω 0 ξ ) c t = ( σ t (1, t) ω | 0 0 0 ) k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 )
G 1 SubSpace-Ind Property, on (B, B * ) 1,2 and (D, D * ) 3,4 , between 0 and τ

$ ← Z q c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 0 ) k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 ) G 2 SubSpace-Ind Property, on (D, D * ) 1,2,6 , between 0 and τ z t c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 τ z t ) k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 ) G 3 Introduction of an additional random-labeling. See Figure 10 c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 τ z t ) k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 s ,λ /z t ,λ ) G 4 Formal basis change, on (B, B * ) 2,3 , to randomize ξ c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 τ z t ) k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 s ,λ /z t ,λ )
Gray cells x mean they have been changed in this game. G 2.k.0 Hybrid game for G 2 , with 1 ≤ k ≤ K + 1 (from Figure 9)

c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 τ z t ) < k k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 s ,λ /z t ,λ ) ≥ k k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 ) G 2.k.1 SubSpace-Ind Property, on (B * , B) 1,2 and (D * , D) 3,4 , between 0 and s k, * k * k,0 = ( a k,0 s k,0 1 ) k * k,λ = ( π k,λ (t k,λ , -1) a k,λ | s k,λ 0 0 ) G 2.k.2 Masking of the labeling. See Figure 11 k * k,0 = ( a k,0 s k,0 1 ) k * k,λ = ( π k,λ (t k,λ , -1) a k,λ | 0 0 s k,λ /z t k,λ ) G 2.k.3 Limitations on KeyGen-queries: s k,0 unpredictable, replaced by a random r k,0 k * k,0 = ( a k,0 r k,0 1 ) k * k,λ = ( π k,λ (t k,λ , -1) a k,λ | 0 0 s k,λ /z t k,λ )
Fig. 10: Sequence of games on the K keys for the IND-security proof of the KP-ABE and random masks z t in the ciphertexts c t (actually, the challenge ciphertext corresponding to the attribute t). Note that until the challenge query is asked, one does not exactly know the attributes in Γ (as we are in the adaptive-set setting), but we prepare all the material for all possible c t , and only the ones corresponding to attributes in Γ will be provided to the adversary. The main step is to get to Game G 3 , with an additional labeling (s ,0 , (s ,λ ) λ ), using hybrid games starting from Game G 2 . The sequence on Figure 10 gives more details: the new labelling is added in each -th key (in G 2.k.1 ), then each label is masked by the random z t for each attribute t (in G 2.k.2 ). In order to go to game G 2.k.3 one exploits the limitations one expects from the adversary in the security game: the adversary cannot ask keys on access-trees T such that T (Γ ) = 1, for the challenge set Γ . We stress that this construction makes more basis vectors public, than in the original proof from [OT12b], and only b * 3 is for the key issuer. This is the reason why we can deal with delegation for any user. In addition, as delegation provides keys that are perfectly indistinguishable from fresh keys, one can easily get the full result:

Corollary 28. Under the SXDH assumption, no adversary can win the Del-IND security game against the KP-ABE scheme, in the Adaptive-Set setting, with non-negligible advantage.

The bound is the same, except K is the global number of OKeyGen and ODelegate queries.

D.3 IND-Security Proof of the KP-ABE Scheme

In this section, we will focus on the IND-security proof of the KP-ABE scheme, where the definition is quite similar to Definition 17, but without the Delegation-Oracle.

Definition 29 (Indistinguishability). IND-security for KP-ABE is defined by the following game:

Initialize: The challenger runs the Setup algorithm of KP-ABE and gives the public parameters PK to the adversary; OKeyGen(T : The adversary is allowed to issue KeyGen-queries for any access-tree T of its choice, and gets back the decryption key dk T ; RoREncaps(Γ ): The adversary submits one real-or-random encapsulation query on a set of attributes Γ . The challenger asks for an encapsulation query on Γ and receives (K 0 , C). It also generates a random key K 1 . It eventually flips a random coin b, and outputs (K b , C) to the adversary; The advantage of an adversary A in this game is defined as

Adv ind (A) = Pr[β = 1|b = 1] -Pr[β = 1|b = 0].
The global sequence of games will follow the steps shown on Figure 9. But while the first steps (from G 0 to G 2 ) will be simple, the big step from G 2 to G 3 will need multiple hybrid games, presented on Figure 10. All theses games work in a pairing-friendly setting (G 1 , G 2 , G t , e, G 1 , G 2 , q), with two random dual orthogonal bases (B, B * ) and (D, D * ) of size 3 and 6, respectively.

In the following proof, we will use t to denote attributes, and thus the indices for the possible ciphertexts c t associated to each attribute in the challenge ciphertext. We indeed anticipate all the possible c t , before knowing the exact set Γ , as we are in the adaptive setting. The variable p will be used in hybrid proofs to specify a particular attribute. We will denote P the size of the universe of attributes. Then 1 ≤ t, p ≤ P . Similarly, we will use to denote key queries, and thus the index of the global -th key k * , whereas λ will we used for the leaf in the tree of the key-query: k * ,λ is thus the specific key for leaf λ in the global -th key. The variable k will be used in hybrid proofs to specify a particular key-query index. We will denote K the maximal number of key-queries. Then 1 ≤ , k ≤ K.

Game G 0 : This is the real game where the simulator generates all the private information and sets

PK = {(b 1 , b 3 , b * 1 ), (d 1 , d 2 , d 3 , d * 1 , d * 2 , d * 3 )} and MK = {b * 3 }.
The public parameters PK are provided to the adversary OKeyGen(T ): The adversary is allowed to issue KeyGen-queries on an access-tree T (for the -th query), for which the challenger chooses a random scalar a ,0 $ ← Z q and a random a ,0 -labeling (a ,λ ) λ of the access-tree T , and builds the key:

k * ,0 = (a ,0 , 0, 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, 0) D *
for all the leaves λ, where t ,λ = A(λ) is the attribute associated to the leaf λ in T and π ,λ $ ← Z q . The decryption key dk is then (k * ,0 , (k * ,λ ) λ ); RoREncaps(Γ ): On the unique query on a set of attributes Γ , the challenger chooses random scalars ω, ξ, ξ $ ← Z q . It then sets K 0 = g ξ t and K 1 = g ξ t . It generates the ciphertext C = (c 0 , (c t ) t∈Γ ) where

c 0 = (ω, 0, ξ) B c t = (σ t (1, t), ω, 0, 0, 0) D
for all the attributes t ∈ Γ and σ t $ ← Z q . According to the real or random game (bit b $ ← {0, 1}), one outputs (K b , C). Eventually, on adversary's guess b for b, if for some T ,

T (Γ ) = 1, then β $ ← {0, 1}, otherwise β = b . Then Adv 0 = Pr[β = 1|b = 1] -Pr[β = 1|b = 0].
In the next games, we gradually modify the simulations of OKeyGen and RoREncaps oracles, but always (at least) with random ω, ξ, ξ , (σ t ) $ ← Z q , (a ,0 ), (π ,λ ) $ ← Z q , and random a ,0labeling (a ,λ ) λ of the access-tree T for each OKeyGen-query.

Game G 1 : One chooses random τ $ ← Z q , and sets (which differs for the ciphertext only)

c 0 = (ω, τ, ξ) B c t = (σ t (1, t), ω, τ, 0, 0) D k * ,0 = (a ,0 , 0, 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, 0) D *
The previous game and this game are indistinguishable under the DDH assumption in G 1 : one applies the SubSpace-Ind property from Theorem 22, on (B, B * ) 1,2 and (D, D * ) 3,4 . Indeed, we can consider a triple (a

• G 1 , b • G 1 , c • G 1 )
, where c = ab + τ mod q with either τ = 0 or τ $ ← Z * q , which are indistinguishable situations under the DDH assumption. Let us assume we start from random dual orthogonal bases (U, U * ) and (V, V * ) of size 3 and 6 respectively. Then we define the matrices

B = 1 a 0 1 1,2 B = 1 0 -a 1 1,2 D = 1 a 0 1 3,4 D = 1 0 -a 1 3,4 B = B • U B * = B • U * D = D • V D * = D • V *
Note that we can compute all the basis vectors excepted b * 2 and d * 4 , that nobody needs: the vectors below have these coordinates at zero. So one can set

c 0 = (b, c, ξ) U = (b, τ, ξ) B c t = (σ t (1, t), b, c, 0, 0) V = (σ t (1, t), b, τ, 0, 0) D k * ,0 = (a ,0 , 0, 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, 0) D *
When τ = 0, this is exactly the previous game, with ω = b, for a random τ , this is the current game: Adv 0 -Adv 1 ≤ Adv ddh G 1 (t). Game G 2 : One continues to modify the ciphertext, with random τ, (z t )

$ ← Z q : c 0 = (ω, τ, ξ) B c t = (σ t (1, t), ω, τ, 0, τ z t ) D k * ,0 = (a ,0 , 0, 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, 0) D *
The previous game and this game are indistinguishable under the DDH assumption in G 1 : one applies again the SubSpace-Ind property from Theorem 22, on (D, D * ) (1,2),6 . Indeed, we can consider a triple (a

• G 1 , b • G 1 , c • G 1 )
, where c = ab + ζ mod q, with either ζ = 0 or ζ $ ← Z * q , which are indistinguishable situations under the DDH assumption. Let us assume we start from random dual orthogonal bases (B, B * ) and (V, V * ) of size 3 and 6 respectively. Then we define the matrices

D =   1 0 a 0 1 a 0 0 1   1,2,6 D =   1 0 0 0 1 0 -a -a 1   1,2,6 D = D • V D * = D • V *
Note that we can compute all the basis vectors excepted d * 6 , that nobody needs: the vectors below have these coordinates at zero. One chooses additional random scalars α t , β t

$ ← Z q to virtually set b t = α t • b + β t and c t = α t • c + β t • a, which makes c t -ab t = α t • ζ. One can set c 0 = (ω, τ, ξ) B c t = (b t (1, t), ω, τ, 0, c t (t + 1)) V = (b t (1, t), ω, τ, 0, c t (t + 1) -ab t -ab t t) D = (b t (1, t), ω, τ, 0, c t (t + 1) -ab t (1 + t)) D = (b t (1, t), ω, τ, 0, α t • ζ • (t + 1)) D = (b t (1, t), ω, τ, 0, τ z t ) D k * ,0 = (a ,0 , 0, 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, 0) D * where z t = α t • ζ • (t + 1)/τ . When ζ = 0,
this is exactly the previous game, as z t = 0, with π t = b t = α t •b+β t , whereas for a random ζ, this is the current game: Adv 1 -Adv 2 ≤ Adv ddh G 1 (t). Game G 3 : We introduce a second independent s ,0 -labeling s ,λ for each access-tree T and a random r ,0 to define

k * ,0 = (a ,0 , r ,0 , 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, s ,λ /z t k,λ ) D *
But to this, we move to a sub-sequence of hybrid games, with distinct ways for answering the k -1 first key queries and the last ones, as explained on Figure 10: for the -th key generation query on T , the challenger chooses three random scalars a ,0 , r ,0 , s ,0 $ ← Z q , and two random a ,0 -labeling (a ,λ ) λ and s ,0 -labeling (s ,λ ) λ of the access-tree T , and builds the key (k * ,0 , (k * ,λ ) λ ), with π ,λ

$ ← Z q : < k k * ,0 = (a ,0 , r ,0 , 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, s ,λ /z t ,λ ) D * ≥ k k * ,0 = (a ,0 , 0, 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, 0) D *
For this game, we have to anticipate the values z t , for each attribute t, before knowing Γ , for the challenge ciphertext, as we have to introduce z t ,λ during the creation of the leaves. These z t are thus random values chosen as soon as an attribute t is involved in the security game. When k = 1, this is exactly the game G 2 : G 2 = G 2.1.0 , whereas for k = K + 1 this is exactly the expected game G 3 : G 3 = G 2.K+1.0 . We now consider any k ∈ {1, . . . , K}, to show that G 2.k.3 = G 2.k+1.0 , where all the keys for = k will be defined using the basis vectors of (B * , D * ) and known scalars. We only focus on the k-th key and the ciphertext, but still with random ω, τ, ξ, ξ , (σ t ), (z t ) $ ← Z q , random a k,0 , (π k,λ ) $ ← Z q , as well as a random a k,0labeling (a k,λ ) λ of the access-tree T k , but also s k,0 $ ← Z q and a second independent random s k,0 -labeling (s k,λ ) λ of the access-tree T k : Game G 2.k.0 : This is exactly as described above, for = k:

c 0 = (ω, τ, ξ) B c t = (σ t (1, t), ω, τ, 0, τ z t ) D k * k,0 = (a k,0 , 0, 1) B * k * k,λ = (π k,λ (t k,λ , -1), a k,λ , 0, 0, 0) D *
Game G 2.k.1 : One now introduces the second labeling:

c 0 = (ω, τ, ξ) B c t = (σ t (1, t), ω, τ, 0, τ z t ) D k * 0 = (a k,0 , s k,0 , 1) B * k * k,λ = (π k,λ (t k,λ , -1), a k,λ , s k,λ , 0, 0) D *
This game is indistinguishable from the previous one under the DDH assumption in G 2 : one applies the SubSpace-Ind property from Theorem 22 on (B * , B) 1,2 and (D * , D) 3,4 . Indeed, we can consider a triple (a

• G 2 , b • G 2 , c • G 2 )
, where c = ab + ρ mod q, with either ρ = 0 or ρ $ ← Z * q , which are indistinguishable situations under the DDH assumption. Let us assume we start from random dual orthogonal bases (U, U * ) and (V, V * ) of size 3 and 6 respectively. Then we define the matrices

B = 1 a 0 1 1,2 B = 1 0 -a 1 1,2 D = 1 a 0 1 3,4 D = 1 0 -a 1 3,4 B * = B • U * B = B • U D * = D • V * D = D • V
Note that we can compute all the basis vectors excepted b 2 and d 4 . But we can define the ciphertext vectors in the original bases (U, V), and all the keys in bases (B * , D * ), excepted the k-th one: 

c 0 = (ω, τ, ξ) U = (ω + aτ, τ, ξ) B c t = (σ t (1, t), ω, τ, 0, τ z t ) V = (σ t (1, t), ω + aτ, τ, 0, τ z t ) D k * k,0 = (b 0 , 0, 1) B * + (b, c, 0) U * = (b 0 , 0, 1) B * + (b, ρ, 0) B * = (b 0 + b, ρ, 1) B * k * k,λ = (π k,λ (t k,λ , -1), b λ , 0, 0, 0) D * + (0, 0, b • b λ , c • b λ , 0, 0) V * = (π k,λ (t k,λ , -1), b λ , 0, 0, 0) D * + (0, 0, b • b λ , ρ • b λ , 0, 0) D * = (π k,λ (t k,λ , -1), b λ + b • b λ , ρ • b λ , 0, 0) D * with b 0 $ ← Z q , a
k,0 = ρ, s k,λ = ρ • b λ : Adv 2.k.0 -Adv 2.k.1 ≤ Adv ddh G 2 (t). Game G 2.k.2 :
With the same inputs, one just changes as follows

c 0 = (ω, τ, ξ) B c t = (σ t (1, t), ω, τ, 0, τ z k ) D k * k,0 = (a k,0 , s k,0 , 1) B * k * k,λ = (π k,λ (t k,λ , -1), a k,λ , 0, 0, s k,λ /z k ) D *
Unfortunately, for the latter gap, which intuitively exploits the Swap-Ind property from Theorem 24, we cannot do all the changes at once. Then, the Index-Ind property will be applied first, with Theorem 26. We will thus describe another sequence of games, as shown on Figure 11, where G 2.k.1.p.0 with p = 1 is the previous game: G 2.k.1 = G 2.k.1.1.0 ; for any p, G 2.k.1.p.5 is G 2.k.1.p+1.0 ; and G 2.k.1.p.0 with p = P + 1 is the current game: G 2.k.2 = G 2.k.1.P +1.0 . For each p, we prove that Adv

2.k.1.p.0 -Adv 2.k.1.p.5 ≤ 2P × Adv ddh G 1 (t) + 3 × Adv ddh G 2 (t). Hence, globally, we have Adv 2.k.1 -Adv 2.k.2 ≤ 2P 2 × Adv ddh G 1 (t) + 3P × Adv ddh G 2 (t).
But before proving this huge gap, let us conclude the analysis.

Game G 2.k.3 : In the above game, to be a legitimate attack (that does not output a random bit β in the Finalize procedure, but the actual output b of the adversary), for all the key queries T , one must have T (Γ ) = 0. In particular, T k (Γ ) = 0: this means that there are missing attributes in the ciphertext, and thus false leaves to make the access-tree no acceptable. More concretely, a missing attribute t means c t is not provided to the adversary, and so no information about z t is leaked. As the key only contains s k,λ /z t k,λ , the missing z t k,λ guarantees that no information leaks about s k,λ : all the false leaves λ correspond to these s k,λ that are unknown: only (s k,λ ) λ∈L Γ is known, and so the root s k,0 is unpredictable.

Remark 30. One may wonder whether previous keys that involve those z t k,λ could leak some information and contradict the above argument. Let us focus on the leaf λ associated to the attribute p, and so the information one could get about z p when c p is not part of the challenge ciphertext. At least, this argument holds for the first key generation, when we are in the first sequence of games, in G 2.k.2 with k = 1: z p is only used in c p , that is not revealed to the adversary, and so s 1,λ /z p does not leak any information about s 1,λ . And this is the same for all the leaves associated to missing attributes. Then s 1,0 can definitely be replaced by a random and independent r 1,0 : which is the current game G 2.k.3 for k = 1. When we are in G 2.k.2 for k = 2, the adversary may now have some information about s 1,λ /z p and s 2,λ /z p , but no information about s 1,0 that has already been replaced by a random r 1,0 , which makes s 1,λ unpredictable, and so no additional information leaks about z p : s 2,λ is unpredictable. Again, the same argument holds for all the leaves associated to missing attributes: s 2,0 can also be replaced by a random and independent r 2,0 . This is the reason of this hybrid sequence of game: if we would have first introduced the z p in all the keys, it would not have been possible to replace all the s ,0 by r ,0 in the end. This is only true when all the previous keys have already been modified. One can thus modify the key generation algorithm for the k-th key, with an independent r k,0

$ ← Z q : c 0 = (ω, τ, ξ) B c t = (σ t (1, t), ω, τ, 0, τ z t ) D k * k,0 = (a k,0 , r k,0 , 1) B * k * k,λ = (π k,λ (t k,λ , -1), a k,λ , 0, 0, s k,λ /z t k,λ ) D *
This concludes this sequence of sub-games with, for each k,

Adv 2.k.0 -Adv 2.k.3 ≤ 2P 2 × Adv ddh G 1 (t) + (3P + 1) × Adv ddh G 2 (t).
Hence, globally, we have

Adv 2 -Adv 3 ≤ 2KP 2 × Adv ddh G 1 (t) + (3P + 1)K × Adv ddh G 2 (t).
Game G 4 : In this game, one chooses a random θ to define the matrices

B = 1 -θ 0 1 2,3 B = 1 0 θ 1 2,3 B = B • U B * = B • U *
which only modifies b 2 , which is hidden, and b * 3 , which is kept secret:

c 0 = (ω, τ, ξ) U = (ω, τ, τ θ + ξ) B = (ω, τ, ξ ) B k * ,0 = (a ,0 , r ,0 , 1) U * = (a ,0 , r ,0 , 1) D *
As a consequence, any value for θ can be used, without impacting the view of the adversary, as r ,0 is indeed independent of the other variables. In this last game, a random value ξ is used in the ciphertext, whereas K 0 = g ξ t and K 1 = g ξ t : the advantage of any adversary is 0 in this last game.

If we combine all the steps:

Adv 0 = Adv 0 -Adv 4 ≤ Adv ddh G 1 (t) + Adv ddh G 1 (t) + 2KP 2 × Adv ddh G 1 (t) + (3P + 1)K × Adv ddh G 2 (t) ≤ 2(KP 2 + 1) × Adv ddh G 1 (t) + (3P + 1)K × Adv ddh G 2 (t)
We now present the sub-sequence of games for proving the gap from the above G 2.k.1 to G 2.k.2 .

c 0 = (ω τ ξ) h * 0 = (δ ρ 0) G 2.k.1.p.0
Hybrid game for G 2.k.1 , with 1 ≤ p ≤ P + 1 (from Figure 10)

c t = ( σ t (1, t) ω | τ 0 τ z t ) t < p h * t = ( π t (t, -1) δ | 0 0 ρ/z t ) t ≥ p h * t = ( π t (t, -1) δ | ρ 0 0 ) G 2.k.1.p.1 Formal basis change, on (D, D * ) 4,5 , to duplicate τ c t = ( σ t (1, t) ω | τ τ τ z t ) G 2.k.1.p.2
Swap-Ind Property, on (D * , D) 2,4,5 , for 0 and ρ in h * p only

c t = ( σ t (1, t) ω | τ τ τ z t ) h * p = ( π p (p, -1) δ | 0 ρ 0 ) G 2.k.1.p.3 Index-Ind Property, on (D, D * ) 1,2,5 , between τ and τ z t /z p c p = ( σ p (1, p) ω | τ τ τ z p ) t = p c t = ( σ t (1, t) ω | τ τ z t /z p τ z t ) G 2.k.1.p.4 Formal basis change, on (D, D * ) 5,6 , to cancel τ c t = ( σ t (1, t) ω | τ 0 τ z t ) h * p = ( π p (p, -1) δ | 0 α ρ/z p ) G 2.k.1.p.5
SubSpace-Ind Property, on (D * , D) 2,5 , between α and 0 where k * ,0 = (a ,0 , 0, 1)

c t = ( σ t (1, t) ω | τ 0 τ z t ) t < p h * t = ( π t (t, -1) δ | 0 0 ρ/z t ) h * p = ( π p (p, -1) δ | 0 0 ρ/z p ) t > p h * t = ( π t (t, -1) δ | ρ 0 
B * + s ,0 • h * 0 and k * ,λ = (Π ,λ (t ,λ , -1), a ,λ , 0, 0, 0) D * + s ,λ • h * t k,λ
, for all the leaves λ of all the keys , with h * 0 = (δ, ρ, 0) B * and h * 0 = (π t (t, -1), δ, ρ, 0, 0) D * for all the possible attributes t. We only make the latter (h * 0 , (h * t ) t ) to evolve along this sequence.

We still focus on the challenge ciphertext (c 0 , (c t )) and the k-th key we will denote, for the sake of clarity, as

k * k,0 = (a 0 , 0, 1) B * + s 0 • h * 0 k * k,λ = (Π k,λ (t k,λ , -1), a λ , 0, 0, 0) D * + s λ • h * t k,λ
where h * 0 = (δ, ρ, 0) B * and h * t = (π t (t, -1), δ, ρ, 0, 0) D * for all the possible attributes. This corresponds to

a k,0 = a 0 + δ • s 0 a k,λ = a λ + δ • s λ s k,0 = ρ • s 0 s k,λ = ρ • s λ π k,λ = Π k,λ + s λ • π t k,λ
All the other keys will be generated using the basis vectors: we stress that they all have a zero 5-th component, then d * 5 will not be needed. In the new hybrid game, the critical point will be the p-th attribute, where, when p = 1, G 2.k.1.p.0 is exactly the above Game G 2.k.1 , and when p = P + 1 this is the above Game G 2.k.2 . And it will be clear, for any p, that G 2.k.1.p.5 = G 2.k.1.p+1.0 : with random ω, τ, ξ, ξ , δ, ρ, (z t ), (σ t ), (π t ) $ ← Z q , Game G 2.k.1.p.0 : One defines the hybrid game for p:

c 0 = (ω, τ, ξ) B c t = (σ t (1, t), ω, τ, 0, τ z t ) D h * 0 = (δ, ρ, 0) B * h * t = (π t (t, -1), δ, 0, 0, ρ/z t ) D * t < p h * t = (π t (t, -1), δ, ρ, 0, 0) D * t ≥ p
Game G 2.k.1.p.1 : One defines the matrices

D = 1 -1 0 1 4,5 D = 1 0 1 1 4,5 D = D • V D * = D • V *
which modifies the hidden vectors d 4 and d * 5 , and so are not in the view of the adversary:

c t = (σ t (1, t), ω, τ, 0, τ z t ) V = (σ t (1, t), ω, τ, τ, τ z t ) D h * t = (π t (t, -1), δ, 0, 0, ρ/z t ) V * = (π t (t, -1), δ, 0, 0, ρ/z t ) D * t < p h * t = (π t (t, -1), δ, ρ, 0, 0) V * = (π t (t, -1), δ, ρ, 0, 0) D * t ≥ p
For all the other keys, as the 5-th component is 0, the writing in basis V * is the same in basis D * . Hence, the perfect indistinguishability between the two games:

Adv 2.k.1.p.1 = Adv 2.k.1.p.0 .
Game G 2.k.1.p.2 : We apply the Swap-Ind property from Theorem 24, on (D * , D) 2,4,5 : Indeed, we can consider a triple (a

• G 2 , b • G 2 , c • G 2 )
, where c = ab + θ mod q with either θ = 0 or θ = ρ, which are indistinguishable situations under the DSDH assumption. Let us assume we start from random dual orthogonal bases (B, B * ) and (V, V * ) of size 3 and 6 respectively. Then we define the matrices

D =   1 a -a 0 1 0 0 0 1   2,4,5 D =   1 0 0 -a 1 0 a 0 1   2,4,5 D * = D • V * D = D • V
Note that we can compute all the basis vectors excepted d 4 , d 5 , but we define the ciphertext on the original basis V:

c t = (σ t (1, t), ω, τ, τ, τ z t ) V = (σ t , σ t t + aτ -aτ, ω, τ, τ, τ z t ) D = (σ t (1, t), ω, τ, τ, τ z t ) D h * t = (π t (t, -1), δ, 0, 0, ρ/z t ) D * t < p h * p = (π p (p, -1), δ, ρ, 0, 0) D * + (b(p, -1), 0, -c, c, 0) V * = (π p (p, -1), δ, ρ, 0, 0) D * + (b(p, -1), 0, ab -c, -ab + c, 0) D * = (π p (p, -1), δ, ρ -θ, θ, 0) D * h * t = (π t (t, -1), δ, ρ, 0, 0) D * t > p
With θ = 0, this is as in the previous game, with θ = ρ, this is the current game:

Adv 2.k.1.p.1 - Adv 2.k.1.p.2 ≤ 2 • Adv ddh G 2 (t).
Game G 2.k.1.p.3 : We keep the τ value (at the 5-th hidden position) in the ciphertext for the p-th attribute only, and replace all the other values by τ z t /z p :

c p = (σ t (1, t), ω, τ, τ, τ z t ) D c t = (σ t (1, t), ω, τ, τ z t /z p , τ z t ) D t = p
To show this is possible without impacting the other vectors, we use the Index-Ind property from Theorem 26, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P }\{p}: Game G 2.k.1.p.2.γ : We consider 

c p = (σ p (1, p), ω, τ, τ, τ z p ) D c t = (σ t (1, t), ω, τ, τ z t /z p , τ z t ) D p = t < γ c t = (σ t (1, t), ω, τ, τ, τ z t ) D t ≥ γ h * t = (π t (t, -1), δ, 0, 0, ρ/z t ) D * t < p h * p = (π p (p, -1), δ, 0, ρ, 0) D * h * t = (π t (t, -1), δ, ρ, 0, 0) D * t > p When γ = 1,
(a • G 1 , b • G 1 , c • G 1 )
, where c = ab + ζ mod q, with either ζ = 0 or ζ = τ (z γ /z p -1), which are indistinguishable situations under the DSDH assumption. We define the matrices

D = 1 p -γ ×   p -γ ap -1 1 -a 0 0 p -γ   1,2,5 D =   1 1 0 γ p 0 -a 0 1   1,2,5
and then D = D • V, D * = D • V * : we cannot compute d * 5 , but the components on this vector are all 0 excepted for h * p we will define in V * : and then D = D • V, D * = D • V * . As the four vectors d 5 , d 6 and d * 5 , d * 6 are hidden, the modifications will not impact the view of the adversary. This consists in applying successively the matrices :

c p = (σ p (1, p), ω, τ, τ, τ z p ) D c γ = (b, 0, ω, τ, τ + c, τ z γ ) V = (b, bγ, ω, τ, τ + c -ab, τ z γ ) D = (b(1, γ), ω, τ, τ + ζ, τ z γ ) D c t = (σ t (1, t), ω, τ, τ z t /z p , τ z t ) D p = t < γ c t = (σ t (1, t), ω, τ, τ, τ z t ) D t > γ h * t = (π t (t, -1), δ, 0, 0, ρ/z t ) D * t < p h * p = ((p -γ) • (π, 0), δ, 0, ρ, 0) V * = (p • π + apρ, -π -aρ, δ, 0, ρ, 0) D * = ((π + aρ) • (p, -1), δ, 0, ρ, 0) D * h * t = (π t (t, -1), δ, ρ, 0, 0) D * t >
D = 1/z p 0 0 1 5,6 D = 1 0 1 1 5,6 D = αz p /ρ 0 0 1 5,6
Then, working in (V, V * ) gives, in (D, D * ):

c p = (σ p (1, p), ω, τ, τ, τ z p ) V = (σ p (1, p), ω, τ, 0, τ z p ) D c t = (σ t (1, t), ω, τ, τ z t /z p , τ z t ) V = (σ t (1, t), ω, τ, (τ z t /z p -τ z t /z p ) • ρ/α, τ z t ) D t = p = (σ t (1, t), ω, τ, 0, τ z t ) D h * t = (π t (t, -1), δ, 0, 0, ρ/z t ) V * = (π t (t, -1), δ, 0, 0, ρ/z t ) D * t < p h * p = (π p (p, -1), δ, 0, ρ, 0) V * = (π p (p, -1), δ, 0, α, ρ/z p ) D * h * t = (π t (t, -1), δ, ρ, 0, 0) V * = (π t (t, -1), δ, ρ, 0, 0) V * t > p
We stress again that for all the other keys, as the 5-th component is 0, the writing in basis V * is the same in basis D * . Hence, the perfect indistinguishability between the two games:

Adv 2.k.1.p.4 = Adv 2.k.1.p.3 .
Game G 2.k.1.p.5 : We can now remove the α value in the p-th element of the key: We can consider a triple (a

• G 2 , b • G 2 , c • G 2 )
, where c = ab + α mod q, with either α = 0 or α $ ← Z * q , which are indistinguishable situations under the DDH assumption. We define the matrices

D = 1 a 0 1 2,5 D = 1 0 -a 1 2,5
and then D = D • V, D * = D • V * : we cannot compute d 5 , but the components on this vector are all 0:

c p = (σ t (1, t), ω, τ, 0, τ z t ) D c t = (σ t (1, t), ω, τ, 0, τ z t ) D t = p h * t = (π t (t, -1), δ, 0, 0, ρ/z t ) D * t < p h * p = (-b(p, -1), δ, 0, c, ρ/z p ) V * = (-b(p, -1), δ, 0, c -ab, ρ/z p ) D * = (-b(p, -1), δ, 0, α, ρ/z p ) D * h * t = (π t (t, -1), δ, ρ, 0, 0) D * t > p
which is the either the previous game when α = 0 or the current game with α = 0, where

π p = -b: Adv 2.k.1.p.4 -Adv 2.k.1.p.5 ≤ Adv ddh G 2 (t).
E Security Proofs of our SA-KP-ABE Scheme Proof. We will proceed to prove this by a succession of games. At some point, our game will be in the same state as Game G 0 in the proof of IND for the KP-ABE scheme, in the appendix D.3, which allows us to conclude. We stress that we use the Adaptive Index-Ind instead of the static version, but this just impacts the way we enumerate the attributes: instead of enumerating all the universe that was polynomial-size, we enumerate them in the order the appear in the security game (either in a policy or in a ciphertext). This will be important for hybrid sequences of games on attributes: t or p will actually be the attributes but also associated to their order number when they appear for the first time in the security game.

Game G 0 : The first game is the real game, where the simulator honestly runs the setup, with

PK = {(b 1 , b 3 , b * 1 ), (d 1 , d 2 , d 3 , d * 1 , d * 2 , d *
3 )}, SK = {d 7 }, and MK = {b * 3 , d * 7 }, from random dual orthogonal bases. OKeyGen( T ): The adversary is allowed to issue KeyGen-queries on an access-tree T (for the -th query), for which the simulator chooses a random scalar a ,0 $ ← Z q and a random a ,0 -labeling (a ,λ ) λ of the access-tree T , and builds the key: k * ,0 = (a ,0 , 0, 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, 0, r ,λ , 0, 0) D * for all the leaves λ, where t ,λ = A(λ) in T , π ,λ $ ← Z q and r ,λ $ ← Z * q if λ is an active leave or r ,λ = 0 if it is passive. The decryption key dk = (k * ,0 , (k * ,λ ) λ ) is kept private, and will be used for delegation queries; ODelegate( T , T ): The adversary is allowed to issue Delegate-queries for an access-tree T , of an already queried decryption key with access-tree T = T , with the only condition that T ≤ T . From dk = (k * 0 , (k * λ ) λ ), for λ ∈ L, then the simulator computes the delegated key as, ∀λ ∈ L :

k * 0 = k * 0 + (a 0 , 0, 0) B * k * λ = k * λ + (π λ (t λ , -1), a λ , 0, 0, 0, 0, 0, 0) D * ,
where k * λ = (0, 0, 0, 0, 0, 0, 0) D * if λ was not in L, and a 0 $ ← Z q and (a λ ) λ is an a 0 -labeling of T .

RoREncaps(Γ v , Γ i = ∅): On the unique query on a set of attributes Γ = Γ v , the simulator chooses random scalars ω, ξ, ξ $ ← Z q . It then sets K 0 = g ξ t and K 1 = g ξ t . It generates the ciphertext C = (c 0 , (c t ) t∈Γ ) where c 0 = (ω, 0, ξ) B c t = (σ t (1, t), ω, 0, 0, 0, 0, 0, 0) D for all the attributes t ∈ Γ and σ t $ ← Z q . According to the real or random game (bit b $ ← {0, 1}), one outputs (K b , C). From the adversary's guess b for b, if for some T asked as a delegation-query, T (Γ v , Γ

i ) = 1, then β $ ← {0, 1}, otherwise β = b . We denote Adv 0 = Pr[β = 1|b = 1] -Pr[β = 1|b = 0].
We stress that in this game, we deal with delegation queries, but only want to show they do not help to break indistinguishability of the encapsulated keys with the official Encaps algorithm, and not the private Encaps * one. Hence, Γ i = ∅ in the challenge ciphertext.

Game G 1 : We now show it can be reduced to Game G 0 from the IND security game on the KP-ABE, in the proof provided in the appendix D.3. The challenge ciphertext is already exactly the same, as we only consider Encaps. But we have to emulate the key-generation and key-delegation oracles OKeyGen and ODelegate using only the key-generation oracle from Game G 0 in the proof provided in the appendix D.3, we denote OKeyGen , as it only partially generates our new keys, with a 7-th coordinate r ,λ . First, we instantiate a list Λ.

OKeyGen( T ). The simulator calls the oracle OKeyGen (T ), and chooses r ,λ $ ← Z * q or sets r ,λ ← 0 according to whether λ ∈ L a or λ ∈ L p . It then adds the last component r ,λ on every k * ,λ using d * 7 which is known to the simulator. Finally, it updates Λ with a new entry Λ = (r ,λ ) λ ; ODelegate( T , T ). The simulator calls the oracle OKeyGen (T ) to get the decryption key dk.

As already noted, in the KP-ABE, a delegated key is indistinguishable from a fresh key. Then, we pick the entry r ,λ from Λ , to the last component r ,λ on every k * λ using d *

7

which is known to the simulator. We stress that for any new leaf, not present in T is necessarily passive in the delegated tree T . So, if a leaf is not in Λ , r ,λ = 0.

G 0 Real Del-IND-Security game c 0 = ( ω 0 ξ ) c t = ( σ t (1, t) ω | 0 0 0 u t 0 0 ) k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 r ,λ 0 0 )
G 1 SubSpace-Ind Property, on (B, B * ) 1,2 and (D, D * ) 3,4 , between 0 and τ

$ ← Z q c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 0 u t 0 0 ) k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 r ,λ 0 0 ) G 2 SubSpace-Ind Property, on (D, D * ) 1,2,6 , between 0 and τ z t c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 τ z t u t 0 0 ) k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 r ,λ 0 0 ) G 3 Introduction of an additional random-labeling. See Figure 13 c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 τ z t u t 0 0 ) k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 s ,λ zt ,λ r ,λ 0 0 ) G 4 Formal basis change, on (B, B * ) 2,3 , to randomize ξ c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 τ z t u t 0 0 ) k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 s ,λ zt ,λ
r ,λ 0 0 ) Fig. 12: Sequence of games on the keys for the Del-IND-security proof of our SA-KP-ABE G 2.k.0 Hybrid game for G 2 , with 1 ≤ k ≤ K + 1 (from Figure 4)

c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | τ 0 τ z t u t 0 0 ) < k k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 s ,λ zt ,λ r ,λ 0 0 ) ≥ k k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 r ,λ 0 0 ) G 2.k.1 SubSpace-Ind Property, on (B * , B) 1,2 and (D * , D) 3,4 , between 0 and s k, * k * k,0 = ( a k,0 s k,0 1 ) k * k,λ = ( π k,λ (t k,λ , -1) a k,λ | s k,λ 0 0 r k,λ 0 0 ) G 2.k.2
Masking of the labeling. See Figure 11 for Encaps, or Figure 14 for In this new game, we are exactly using the security game from the IND security on the KP-ABE, and simulating the 7-th component using d * 7 . As this component does not change nor intervene at all in any of the games from the proof in the appendix D.3, and this is exactly the same situation as in Game G 0 in that proof, we conclude by following those security games, which leads to the adversary having zero advantage in the last game.

Encaps * k * k,0 = ( a k,0 s k,0 1 ) k * k,λ = ( π k,λ (t k,λ , -1) a k,λ | 0 0 s k,λ zt k,λ r k,λ 0 0 ) G 2.k.3 Limitations on KeyGen-queries: s k,0 unpredictable, replaced by a random r k,0 k * k,0 = ( a k,0 r k,0 1 ) k * k,λ = ( π k,λ (t k,λ , -1) a k,λ | 0 0 s k,λ zt k,λ r k,λ 0 
We stress that this simulation of ODelegate will be used in all the following proofs: a delegated key is identical to a fresh key, excepted the common r ,λ for keys delegated from the same original key. Proof. The proof will proceed by games, with exactly the same sequence as in the previous proof following the IND-security proof of the KP-ABE in the appendix D.3, except the RoREncapschallenge that allows non-empty Γ i . For the same reason, the OEncaps-queries on pairs (Γ v , Γ i ), with Γ i = ∅ can be simulated. Indeed, as above, everything on the 7-th component can be done independently, knowing both d 7 and d * 7 , as these vectors will be known to the simulator, almost all the time, except in some specific gaps. In theses cases, we will have to make sure how to simulate the OEncaps ciphertexts. As explained in the proof, Section E.1, we can simulate ODelegate-queries as OKeyGen-queries, since a delegated key is identical to a fresh key, except the common r ,λ for keys delegated from the same original key. We thus just have to take care about the way we choose r ,λ . This will be critical in G 2.k.2.3.p.6 , and it will be correct as the same constraint will be applied to y ,λ introduced in G 2.k.2.2

As in the IND-security proof of the KP-ABE, the idea of the sequence is to introduce an additional labeling (s ,0 , (s ,λ ) λ ) in each -th key (in G 2.k.1 , from Figure 10), where each label is masked by a random z t for each attribute t (in G 2.k.2 ).

However, in order to go to game G 2.k.3 , one cannot directly conclude that s k,0 is independent from the view of the adversary: we only know Tk (Γ v , Γ i ) = 0, but not necessarily T k (Γ v • ∪Γ i ) = 0, as in the previous proof. Hence, we revisit this gap with an additional sequence presented in the Figure 14 where we focus on the k-th key and the ciphertext, with random ω, τ, ξ, ξ , (σ t ), (z t ) $ ← Z q , but for all the OKeyGen-query, random a ,0 , (π ,λ ) $ ← Z q , as well as a random a ,0 -labeling (a ,λ ) λ of the access-tree T k , but also s ,0 $ ← Z q and a second independent random s ,0 -labeling (s ,λ ) λ of the access-tree T k , and an independent random r ,0 $ ← Z q . The goal is to replace each label s k,λ by a random independent value s k,λ when u t k,λ • r k,λ = 0. As a consequence, we will consider below that s k,λ denotes either the label s k,λ when u t k,λ • r k,λ = 0 or a random scalar: Game G 2.k.2.0 : The first game is exactly G 2.k.2 , where the simulator honestly runs the setup, with

PK = {(b 1 , b 3 , b * 1 ), (d 1 , d 2 , d 3 , d * 1 , d * 2 , d * 
3 )}, SK = {d 7 }, and MK = {b * 3 , d * 7 }, from random dual orthogonal bases. OKeyGen(T ) (or ODelegate-queries): The simulator builds the -th key:

< k k * ,0 = (a ,0 , r ,0 , 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, s ,λ /z t ,λ , r ,λ , 0, 0) D * = k k * k,0 = (a k,0 , s k,0 , 1) B * k * k,λ = (π k,λ (t k,λ , -1), a k,λ , 0, 0, s k,λ /z t k,λ , r k,λ , 0, 0) D * > k k * ,0 = (a ,0 , 0, 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, 0, r ,λ , 0, 0) D * with r ,λ $ ← Z q if λ ∈ L a or r ,λ = 0 if λ ∈ L p .
The decryption key dk is then (k * ,0 , (k * ,λ ) λ ).

G 2.k.2.0 Intermediate sequence from G 2.k.2 (from Figure 13)

c t = ( σ t (1, t) ω | τ 0 τ z t u t 0 0 ) < k k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 s ,λ /z t ,λ r ,λ 0 0 ) = k k * k,0 = ( a k,0 s k,0 1 ) k * k,λ = ( π k,λ (t k,λ , -1) a k,λ | 0 0 s k,λ /z t k,λ r k,λ 0 0 ) > k k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | 0 0 0 r ,λ 0 
0 ) s ,λ is either the label s ,λ when r ,λ • u t ,λ = 0, or a random scalar in Z q otherwise G 2.k.2.1 SubSpace-Ind Property, on (D, D * ) 4,5 , between τ and 0 14) 

c t = ( σ t (1, t) ω | 0 0 τ z t u t 0 0 ) G 2.k.2.2 SubSpace-Ind Property, on (D * , D) 2,4 , between 0 and y ,λ k * k,0 = ( a k,0 s k,0 1 ) k * k,λ = ( π k,λ (t k,λ , -1) a k,λ | y k,λ 0 s k,λ /z t k,λ r k,λ 0 0 ) G 2.k.2.3 Formal basis change, on (D, D * ) 5,7 , to duplicate r ,λ < k k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = (. . . | y ,λ r ,λ s ,λ /z t ,λ r ,λ 0 0 ) = k k * k,0 = ( a k,0 s k,0 1 ) k * k,λ = (. . . | y k,λ r k,λ s k,λ /z t k,λ r k,λ 0 0 ) > k k * ,0 = ( a ,0 0 1 ) k * ,λ = (. . . | y ,λ r ,λ 0 r ,λ 0 0 ) G 2.k.2.4 Alteration of the labeling. See Figure 15 < k k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = (. . . | y ,λ 0 s ,λ /z t ,λ r l,λ 0 0 ) = k k * k,0 = ( a k,0 s k,0 1 ) k * k,λ = (. . . | y k,λ 0 s k,λ /z t k,λ r k,λ 0 0 ) > k k * ,0 = ( a ,0 0 1 ) k * ,λ = (. . . | y ,λ 0 0 r ,λ 0 0 ) G 2.k.2.5 Limitations on KeyGen-queries: s k,0 unpredictable, replaced by a random r k,0 = k k * k,0 = ( a k,0 r k,0 1 ) k * k,λ = (. . . | y k,λ 0 s k,λ /z t k,λ r k,λ 0 0 ) G 2.k.2.6 SubSpace-Ind Property, on (D * , D) 2,4 , between y ,λ and 0 k * k,0 = ( a k,0 r k,0 1 ) k * k,λ = ( π k,λ (t k,λ , -1) a k,λ | 0 0 s k,λ /z t k,λ r k,λ 0 
c 0 = ( ω τ ξ ) c t = ( σ t (1, t) ω | 0 0 τ z t u t |0 0) < k k * ,0 = ( a ,0 r ,0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | y ,λ r ,λ s ,λ /z t ,λ r ,λ |0 0) = k k * k,0 = ( a k,0 s k,0 1 ) t k,λ < p k * k,λ = ( π k,λ (t k,λ , -1) a k,λ | y k,λ r k,λ s k,λ /z t k,λ r k,λ |0 0) t k,λ ≥ p k * k,λ = ( π k,λ (t k,λ , -1) a k,λ | y k,λ r k,λ s k,λ /z t k,λ r k,λ |0 0) > k k * ,0 = ( a ,0 0 1 ) k * ,λ = ( π ,λ (t ,λ , -1) a ,λ | y ,λ r ,λ 0 r ,λ |0 
= p c p = (. . . | 0 u p τ z p 0 |0 0) c t = (. . . | 0 0 τ z t u t |0 0) t ,λ = p, < k k * ,λ = (. . . | y ,λ 0 s ,λ /z t ,λ r ,λ |0 0) k * ,λ = (. . . | y ,λ r ,λ s ,λ /z p r ,λ |0 0) t ,λ = p, < k t k,λ < p, = k k * k,λ = (. . . | y k,λ 0 s k,λ /z t k,λ r k,λ |0 0) k * k,λ = (. . . | y k,λ r k,λ s k,λ /z p r k,λ |0 0) t k,λ = p, = k t k,λ > p, = k k * k,λ = (. . . | y k,λ 0 s k,λ /z t k,λ r k,λ |0 0) t ,λ = p, > k k * ,λ = (. . . | y ,λ 0 0 r ,λ |0 0) k * ,λ = (. . . | y ,λ r ,λ 0 r ,λ |0 0) t ,λ = p, > k G 2.k.2.3.p.3
Formal change of basis on column 5, multiplying ciphertext by τ z p /u p c p = (. .

. | 0 τ z p τ z p 0 |0 0) c t = (. . . | 0 0 τ z t u t |0 0) k * ,λ = (. . . | y ,λ r ,λ u p /τ z p s ,λ /z p r ,λ |0 0) t ,λ = p, < k k * k,λ = (. . . | y k,λ r k,λ u p /τ z p s k,λ /z p r k,λ |0 0) t k,λ = p, = k k * ,λ = (. . . | y ,λ r ,λ u p /τ z p 0 r ,λ |0 0) t ,λ = p, > k G 2.k.2.3.p.4
Index-Ind Property, on (D, D * ) 1,2,5 , between 0 and τ z t , for t

= p c p = (. . . | 0 τ z p τ z p 0 |0 0) c t = (. . . | 0 τ z t τ z t u t |0 0) G 2.k.2.3.p.5
Swap-Ind Property, on (D * , D) 4,5,6 , between r k,λ u p /τ z p and 0, for 

t k,λ = p only c p = (. . . | 0 τ z p τ z p 0 |0 0) c t = (. . . | 0 τ z t τ z t u t |0 0) k * ,λ = (. . . | y ,λ r ,λ u p /τ z p s ,λ /z p r ,λ |0 0) t ,λ = p, < k k * k,λ = (. . . | y k,λ 0 s k,λ +r k,λ up/τ zp r k,λ |0 0) t k,λ = p, = k k * ,λ = (. . . | y ,λ r ,λ u p /τ z p 0 r ,λ |0 0) t ,λ = p, > k
. | 0 τ z p τ z p 0 |0 0) c t = (. . . | 0 τ z t τ z t u t |0 0) t ,λ = p, < k k * ,λ = (. . . | y ,λ 0 s ,λ /z t ,λ r ,λ |0 0) t k,λ < p, = k k * k,λ = (. . . | y k,λ 0 s k,λ /z t k,λ r k,λ |0 0) k * ,λ = (. . . | y ,λ r ,λ u p /τ z p s ,λ /z p r ,λ |0 0) t ,λ = p, < k k * k,λ = (. . . | y k,λ 0 s k,λ /z p r k,λ |0 0) t k,λ = p, = k k * ,λ = (. . . | y ,λ r ,λ u p /τ z p 0 r ,λ |0 0) t ,λ = p, > k t k,λ > p, = k k * k,λ = (. . . | y k,λ 0 s k,λ /z t k,λ r k,λ |0 0) t ,λ = p, > k k * ,λ = (. . . | y ,λ 0 0 r ,λ |0 0) G 2.k.2.3.p.7
Swap-Ind Property, on (D * , D) 4,5,6 , between 0 and r k,λ u p /τ z p , for t k,λ = p only c

p = (. . . | 0 τ z p τ z p 0 |0 0) c t = (. . . | 0 τ z t τ z t u t |0 0) k * ,λ = (. . . | y ,λ r ,λ u p /τ z p s ,λ /z p r ,λ |0 0) t ,λ = p, < k k * k,λ = (. . . | y k,λ r k,λ u p /τ z p s k,λ -r k,λ up/τ zp r k,λ |0 0) t k,λ = p, = k k * ,λ = (. . . | y ,λ r ,λ u p /τ z p 0 r ,λ |0 0) t ,λ = p, > k G 2.k.2.3.p.8
Index-Ind Property, on (D, D * ) 1,2,5 , between τ z t and 0

c p = (. . . | 0 τ z p τ z p 0 |0 0) c t = (. . . | 0 0 τ z t u t |0 0) t ,λ = p, < k k * ,λ = (. . . | y ,λ 0 s ,λ /z t ,λ r ,λ |0 0) t k,λ < p, = k k * k,λ = (. . . | y k,λ 0 s k,λ /z t k,λ r k,λ |0 0) k * ,λ = (. . . | y ,λ r ,λ u p /τ z p s ,λ /z p r ,λ |0 0) t ,λ = p, ≤ k k * ,λ = (. . . | y ,λ r ,λ u p /τ z p 0 r ,λ |0 0) t ,λ = p, > k t k,λ > p, = k k * k,λ = (. . . | y k,λ 0 s k,λ /z t k,λ r k,λ |0 0) t ,λ = p, > k k * ,λ = (. . . | y ,λ 0 0 r ,λ |0 0) G 2.k.2.3.p.9 Formal change of basis c p = (. . . | 0 u p τ z p 0 |0 0) c t = (. . . | 0 0 τ z t u t |0 0) k * ,λ = (. . . | y ,λ r ,λ s ,λ /z p r ,λ |0 0) t ,λ = p, ≤ k k * ,λ = (. . . | y ,λ r ,λ 0 r ,λ |0 0) t ,λ = p, > k G 2.k.2.3.p.10
Index-Ind Property, on (D * , D) 1,2,5 , between 0 and r ,λ , for all t ,λ = p c p = (. . Game G 2.k.2.2 : In this game, we can now introduce noise in the 4-th column the keys. In order to properly deal with delegated keys, as for r ,λ that have to be the same values for all the leaves delegated from the same initial key, we will also set the same random y ,λ . To this aim, we are given a tuple (a

. | 0 u p τ z p 0 |0 0) c t = (. . . | 0 0 τ z t u t |0 0) t ,λ = p, < k k * ,λ = (. . . | y ,λ r ,λ s ,λ /z t ,λ r ,λ |0 0) t k,λ < p, = k k * k,λ = (. . . | y k,λ r k,λ s k,λ /z t k,λ r k,λ |0 0) k * ,λ = (. . . | y ,λ r ,λ s ,λ /z p r ,λ |0 0) t ,λ = p, ≤ k k * ,λ = (. . . | 0 r ,λ 0 r ,λ |0 0) t ,λ = p, > k t k,λ > p, = k k * k,λ = (. . . | y k,λ r k,λ s k,λ /z t k,λ r k,λ |0 0) t ,λ = p, > k k * ,λ = (. . . | y ,λ r ,λ 0 r ,λ |0 
• G 2 , b • G 2 , c • G 2 ) in G 2 , where c = ab + ζ mod q with either ζ = 0 or ζ $ ← Z * q .
We choose additional random scalars α ,λ , β ,λ $ ← Z q (but the same α ,λ for all the leaves delegated from the same initial key), to virtually set b

,λ = α ,λ • b + β ,λ and c ,λ = α ,λ • c + β ,λ • a, then c ,λ -ab ,λ = ζ • α ,λ
, which are either 0 or independent random values. When we start from random dual orthogonal bases (U, U * ) and (V, V * ) of size 3 and 7 respectively, one considers the matrices:

D = 1 0 a 1 2,4 D = 1 -a 0 1 2,4 D * = D • V * D = D • V
We can calculate all vectors but d 4 , which is not used anywhere. Then, for the keys, we exploit the DDH assumption:

k * ,λ = (b ,λ (t ,λ , -1), a ,λ , c ,λ , . . .) V * = (b ,λ (t ,λ , -1), a ,λ , c ,λ -ab ,λ , . . .) D * = (b ,λ (t ,λ , -1), a ,λ , ζ • α ,λ , . . .) D *
Which is either the previous game, with π ,λ = b ,λ , when ζ = 0, or the current game with y ,λ = ζ • α ,λ (the same random y ,λ for all the leaves delegated from the same initial key):

Adv 2.k.2.1 -Adv 2.k.2.2 ≤ Adv ddh G 2 (t). Game G 2.k.2.3 :
In this game, we duplicate every r ,λ into the 5-th column of the key. To this aim, one defines the matrices

D = 1 1 0 1 5,7 D = 1 0 -1 1 5,7 D * = D • V * D = D • V
which only modifies d 5 , which is hidden, and d * 7 , which is secret, so the change is indistinguishable for the adversary. One can compute the keys and ciphertexts as follows, for all leaves λ of each query of the adversary:

k * ,λ = (π ,λ (t ,λ , -1), a ,λ , y ,λ , 0, s ,λ /z t ,λ , r ,λ , 0, 0) V * = (π ,λ (t ,λ , -1), a ,λ , y ,λ , r ,λ , s ,λ /z t ,λ , r ,λ , 0, 0) D * c t = (σ t (1, t), ω, 0, 0, τ z t , u t , 0, 0) V = (σ t (1, t), ω, 0, 0, τ z t , u t , 0, 0) D
As the 5-th component in the ciphertext is 0, the change of basis makes no change. And this is the same for the ciphertexts generated by the OEncaps-simulation. Hence, the perfect indistinguishability between the two games: Adv

2.k.2.3 = Adv 2.k.2.2 .
Game G 2.k.2.4 : In this game, we target the k-th OKeyGen-query, and replace s k,λ by an independent s k,λ for all the active leaves that correspond to an invalid attribute in the challenge ciphertext. For the sake of simplicity, s ,λ is either the label s ,λ when r ,λ • u t ,λ = 0, or a random independent scalar in Z q :

k * k,0 = (a k,0 , s k,0 , 1) B * k * k,λ = (π k,λ (t k,λ , -1), a k,λ , y k,λ , 0, s k,λ /z t k,λ , r k,λ , 0, 0) D *
But to this aim, we will need an additional sequence of sub-games G 2.k.2.3.p. * , that will operate iteratively on each attribute p, to convert G 2.k.2.3 into G 2.k.2.4 , as presented in the Figure 15. But we first complete the first sequence, and details the sub-sequence afterwards.

Game G 2.k.2.5 : For the k-th key query, one can now replace s k,0 by r k,0 . Indeed, as explained in the Remark 30, for missing ciphertexts in the challenge ciphertext, the associated leaves in the key have unpredictable s k,λ . In addition, for active leaves that correspond to invalid attributes in the challenge ciphertext, s k,λ have been transformed into s k,λ , random independent values. Then, we can consider that all the leaves associated to attributes not in Γ are false, but also active leaves associated to attributes in Γ i are false. As Tk (Γ v , Γ i ) = 0, the root label is unpredictable. One thus generates the k-th key query as: With random ω, τ, ξ, ξ , (σ t ), (z t ) $ ← Z q , but for all the OKeyGen-query, random a ,0 , (y λ ), (π ,λ ) $ ← Z q , as well as a random a ,0 -labeling (a ,λ ) λ of the access-tree T k , but also s ,0 $ ← Z q and a second independent random s ,0 -labeling (s ,λ ) λ of the access-tree T k , and an independent random r ,0 $ ← Z q : Game G 2.k.2.3.p.0 : One defines the hybrid game for p:

k * k,0 = (a k,0 , r k,0 , 1) B * k * k,λ = (π k,λ (t k,λ , -1), a k,λ , y k,λ , 0, s k,λ /z t k,λ , r k,λ , 0, 0) D * Game G 2.k.2
k * k,0 = (a k,0 , s k,0 , 1) B * t k,λ < p k * k,λ = (π k,λ (t k,λ , -1), a k,λ , y k,λ , r k,λ , s k,λ /z t k,λ , r k,λ , 0, 0) D * t k,λ ≥ p k * k,λ = (π k,λ (t k,λ , -1), a k,λ , y k,λ , r k,λ , s k,λ /z t k,λ , r k,λ , 0, 0) D *
where s ,λ is either the label s ,λ when r ,λ • u t ,λ = 0, or a random independent scalar in Z q (when this is an active leaf that corresponds to an invalid ciphertext). So one can note that if at the challenge query p ∈ Γ v , then u p = 0, and so we can jump to G 2.k.2.3.p.11 , but we do not know it before the challenge-query is asked, whereas we have to simulate the keys. This is the reason why we need to know the super sets A v and A i : the challenge ciphertext is anticipated with u

p = 0 if p ∈ A v or with u p $ ← Z * q if p ∈ A i . Game G 2.k.2.3.p.1 :
The previous game and this game are indistinguishable under the DDH assumption in G 1 : one essentially uses theorem 24. Given a tuple (a

• G 1 , b • G 1 , c • G 1 ) in G 1
, where c = ab + µ mod q with either µ = 0 or µ = u p , the 7-th component of the p-th ciphertext. When we start from random dual orthogonal bases (U, U * ) and (V, V * ) of size 3 and 7 respectively, one considers the matrices:

D =   1 a -a 0 1 0 0 0 1   1,5,7 D =   1 0 0 -a 1 0 a 0 1   1,5,7 D = D • V D * = D • V *
We can calculate all vectors but d * 5 and d * 7 , which are not in the public key. Through V, we calculate the challenge ciphertext for the attribute of the p-th ciphertext c p = (0, 0, ω, 0, 0, τ z p , u p , 0, 0) D + (b(1, p), 0, 0, c, 0, -c, 0, 0) V = (0, 0, ω, 0, 0, τ z p , u p , 0, 0) D + (b(1, p), 0, 0, c -ab, 0, ab -c, 0, 0) D = (b(1, p), ω, 0, µ, τ z p , u p -µ, 0, 0) D If µ = 0, we are in the previous game. If µ = u p , then we are in the current game. Then, every other ciphertext is computed directly in D: ∀t = p, c t = (σ t (1, t), ω, 0, 0, τ z t , u t , 0, 0) D as well as the answers to OEncaps-queries. The keys are calculated through V * but are unchanged by the change of basis because the 5-th and 7-th components are exactly the same for every key query , and thus cancel themselves in the 1st component. We thus have Adv 2.k.2.3.p.0 -Adv 2.k.2.3.p.1 ≤ 2 • Adv ddh G 1 (t). Game G 2.k.2.3.p.2 : We keep the r ,λ value (at the 5-th hidden position) in the keys such that t ,λ = p, and replace it in all other keys by 0, in order to prepare the possibility to later modify the ciphertexts on this component. To show this is possible without impacting the other vectors, we use the Index-Ind property from Theorem 3, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P }\{p}. We will enumerate γ in their order of appearance in the security game (wether in key queries, or ciphertexts), therefore we can treat an unbounded number of γ. Game G 2.k.2.3.p.1.γ : We consider the following hybrid game, where the first satisfied condition on the indices is applied: c p = (σ p (1, p), ω, 0, u p , τ z p , 0, 0, 0) D c t = (σ t (1, t), ω, 0, 0, τ z t , u t , 0, 0) D t = p k * ,λ = (π ,λ (t ,λ , -1), a ,λ , y ,λ , r ,λ , s * ,λ /z t ,λ , r ,λ , 0, 0) D * t ,λ = p k * ,λ = (π ,λ (t ,λ , -1), a ,λ , y ,λ , 0, s * ,λ /z t ,λ , r ,λ , 0, 0) D * p = t ,λ < γ k * ,λ = (π ,λ (t ,λ , -1), a ,λ , y ,λ , r ,λ , s We will gradually replace the r ,λ values, at the 5-th hidden position, by 0 (when t ,λ = p): in this game, we deal with the case t ,λ = γ, for all the -th keys.

For this, we use the Adaptive Index-Ind property on (D, D * ) 1,2,5,8,9 , with: c p = (σ p (1, p), ω, 0, u p , τ z p , 0, 0, 0) D k * ,λ = (π ,λ (t ,λ , -1), a ,λ , y ,λ , r ,λ , s The challenge ciphertext and keys that are impacted become: c p = (σ p (1, p), ω, 0, u p , τ z p , 0, 0, 0) V = (σ p (1, p), ω, 0, τ z p , τ z p , 0, 0, 0) D ∀ , t ,λ = p, k * ,λ = (π ,λ (p, -1), a ,λ , y ,λ , r ,λ , s * ,λ /z p , r ,λ , 0, 0) V * = (π ,λ (p, -1), a ,λ , y ,λ , r ,λ u p /τ z p , s * ,λ /z p , r ,λ , 0, 0) D *

All the other vectors have a zero in these components (included the OEncaps-ciphertexts). Hence, Adv 2.k.2.3.p.3 = Adv 2.k.2.3.p.2 . Note however this is because of this game the security result requires the semi-adaptive super-set setting: the change of basis needs to know that u p = 0.

Game G 2.k.2.3.p.4 : We keep the τ z p value (at the 5-th hidden position) in the ciphertext for the p-th attribute only, and replace all the other values from 0 to τ z t , which is the same value as in the 6-th component of each ciphertext, to allow a later swap of the key elements from the 6-th component to the 5-th: c p = (σ t (1, t), ω, 0, τ z p , τ z p , 0, 0, 0) D c t = (σ t (1, t), ω, 0, τ z t , τ z t , u t , 0, 0

) D t = p
To show this is possible without impacting the other vectors, we use the Index-Ind property from Theorem 3, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P }\{p}.

We will enumerate γ in their order of appearance in the security game (wether in key queries, or in ciphertexts), therefore we can treat an unbounded number of γ. Game G 2.k.2.3.p.4.γ : We consider c p = (σ p (1, p), ω, 0, τ z p , τ z p , 0, 0, 0) D c t = (σ t (1, t), ω, 0, τ z t , τ z t , u t , 0, 0) D p = t < γ c t = (σ t (1, t), ω, 0, 0, τ z t , u t , 0, 0) D p = t ≥ γ k * ,λ = (π ,λ (t ,λ , -1), a ,λ , y ,λ , r ,λ , s . Game G 2.k.2.3.p.5 : All ciphertexts now have exactly the same value in 5-th and 6-th positions.

We will thus use r ,λ in the 5-th position, for keys with t ,λ = p, to modify the 6-th position of said keys with a swap. The previous game and this game are indistinguishable under the DDH assumption in G 2 : one essentially uses theorem 24. We consider a triple (a We can calculate all vectors but d 5 and d 6 , which are not in the public key: However the challenge ciphertext computation through V is trivial since the 5-th and 6-th components cancel each other out. We can thus simulate them in D.

• G 2 , b • G 2 , c • G 2 ),
For challenge ciphertexts, we set c p = (σ t (1, t), ω, 0, τ z p , τ z p , 0, 0, 0) V = (σ t (1, t), ω, 0, τ z p , τ z p , 0, 0, 0) D c t = (σ t (1, t), ω, 0, τ z t , τ z t , u t , 0, 0) V = (σ t (1, t), ω, 0, τ z t , τ z t , u t , 0, 0) D t = p Game G 2.k.2.3.p.7 : All ciphertexts have exactly the same value in 5-th and 6-th positions. We will thus use the Swap-Ind property to revert the change made in game G 2.k.2.3.p.5 , with the notable difference we are now working with r k,λ (which has just been randomized) instead of r k,λ , for keys with t k,λ = p. We are thus not restoring the initial s k,λ but we get a truly random value s k,λ . The previous game and this game are indistinguishable under the DDH assumption in G 2 : one essentially uses theorem 24. We consider a triple (a We can calculate all vectors but d 5 and d 6 , which are not in the public key: However, the challenge ciphertext computation through V is trivial since the 5-th and 6-th component cancel each other out. We can thus simulate them through V. We can revert as above by setting in V * the keys from the k-th query so that t k,λ = p. Game G 2.k.2.3.p.8 : We keep the τ z p value (at the 5-th hidden position) in the ciphertext for the p-th attribute only, and replace all the other values from τ z t to 0 c p = (σ t (1, t), ω, 0, τ z p , τ z p , 0, 0, 0) D c t = (σ t (1, t), ω, 0, 0, τ z t , u t , 0, 0

•
) D t = p
To show this is possible without impacting the other vectors, we use the Index-Ind property from Theorem 3, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P }\{p}.

We will enumerate γ in their order of appearance in the security game (wether in key queries, or in ciphertexts), therefore we can treat an unbounded number of γ. Game G 2.k.2.3.p.8.γ : We consider c p = (σ p (1, p), ω, 0, τ z p , τ z p , 0, 0, 0) D c t = (σ t (1, t), ω, 0, 0, τ z t , u t , 0, 0) D p = t < γ c t = (σ t (1, t), ω, 0, τ z t , τ z t , u t , 0, 0) D p = t ≥ γ k * ,λ = (π ,λ (t ,λ , -1), a ,λ , y ,λ , r ,λ , s From the adversary's guess b for b, one forwards it as the output β, unless for some (Γ m,v , Γ m,i ) asked to the OEncaps-oracle, some active leaf λ ∈ L a from the challenge key corresponds to some invalid attribute t ∈ Γ m,i , in which case one outputs a random β $ ← {0, 1}. We denote Adv 0 = Pr[β = 1|b = 1] -Pr[β = 1|b = 0]. We stress that in this distinct key-indistinguishability security game, the active keys in the challenge key (λ ∈ L a with possibly r λ = 0) correspond to valid ciphertexts only (t ∈ Γ m,i with u m,t = 0, for all queries). But we do not exclude accepting access-trees. Game G 1 : In the second and final game, we set r λ ← 0 for all the leaves in the real key dk 0 :

k * 0 = (a 0 , 0, 0) B * k * λ = (π λ (t λ , -1), a λ , 0, 0, 0, 0, 0, 0) D * It is then clear than Adv 1 = 0, as all challenge keys are independent from b.

We detail the sub-sequence starting from G 0.p.0 to prove the indistinguishability between G 0 and G 1 . In the new hybrid sequence G 0.p. * , we will modify all the keys associated to the p-th attribute, in an indistinguishable way, using the Index-Ind property. It is clear that G 0.1.0 = G 0 , whereas G 0.P +1.0 = G 1 , and G 0.p.4 = G 0.p+1.0 .

Of course, the values r ,λ and u t are random in Z * q or 0 according to L ,a /L ,p and Γ i /Γ v . In particular, if u p = 0, we can directly go to G 0.p.4 , as there is no change from this game. The following sequence only makes sense when u p = 0, but then necessarily r ,λ = 0 for all the pairs ( , λ) such that t ,λ = p. We thus assume this restriction in this sequence: u p = 0 and r ,λ = 0 for all ( , λ) such that t ,λ = p. Game G 0.p.1 : One defines the matrices

D = 1 1 0 1 6,7 D = 1 0 -1 1 6,7 D = D • V D * = D • V *
which modifies the hidden and secret vectors d 6 and d * 7 , and so are not in the view of the adversary: k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, 0, r ,λ , 0, 0) V * = (π ,λ (t ,λ , -1), a ,λ , 0, 0, r ,λ , r ,λ , 0, 0) D * c t = (σ t (1, t), ω, 0, 0, 0, 0) V = (σ t (1, t), ω, 0, 0, 0, 0, 0, 0) D if t < p c t = (σ t (1, t), ω, 0, 0, 0, u t ) V = (σ t (1, t), ω, 0, 0, 0, u t , 0, 0) D if t ≥ p

We thus have Adv ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, r ,λ , r ,λ , 0, 0) V * = (π ,λ • t ,λ + ar ,λ -ar ,λ , -π ,λ , a ,λ , 0, 0, r ,λ , r ,λ , 0, 0) D * = (π ,λ (t ,λ , -1), a ,λ , 0, 0, r ,λ , r ,λ , 0, 0) D * c t = (σ t (1, t), ω, 0, 0, 0, 0, 0, 0) D if t < p c p = (σ(1, p), ω, 0, 0, 0, u p , 0, 0) D + (b(1, p), 0, 0, 0, c, -c, 0, 0) V = (σ(1, p), ω, 0, 0, 0, u p , 0, 0) D + (b(1, p), 0, 0, 0, c -ab, -c + ab, 0, 0) D = ((σ + b)(1, p), ω, 0, 0, θ, u p -θ, 0, 0) D c t = (σ t (1, t), ω, 0, 0, 0, u t , 0, 0) D if t > p With θ = 0, this is as in the previous game, where σ p = σ + b. When θ = u p , this is the current game: Adv 0.p.1 -Adv 0.p.2 ≤ 2 • Adv ddh G 1 (t). Game G 0.p.3 : We make all the r ,λ values (at the 6-th hidden position) in the keys to be 0, excepted for t ,λ = p. The case t ,λ = p is already r ,λ = 0, by assumption in this sequence, as u p = 0. For that, we iteratively replace all the values by zero, using the Adaptive Index-Ind-property from theorem 3, in another level of sequence of hybrid games, for γ ∈ {1, . . . , P }\{p}. We will enumerate γ in their order of appearance in the security game (wether in key queries, or in ciphertexts), therefore we can treat an unbounded number of γ.

  This only impacts the hidden vectors (b 4 , b 5 ), (b * 4 , b * 5 ). If one defines k * and c 0 in (V * , V), this translates in (B * , B):
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 2 Fig.2: Example of an access-tree with two different evaluation pruned trees for the leaves colored in green: {λ 1 , λ 3 , λ 5 , λ 8 } or {λ 1 , λ 3 , λ 5 , λ 9 , λ 10 } AND/6
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 7 Key-Indistinguishability). Key-IND security for SA-KP-ABE is defined by the following game: Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public parameters PK to the adversary; Oracles: OKeyGen( T ), ODelegate(k, T ), OGetKey(k), OEncaps(Γ v , Γ i ), and RoAPKeyGen( T ): The adversary submits one Real or All-Passive KeyGen-query for any access structure T of its choice, with a list L = L a • ∪ L p of active and passive leaves, and gets dk 0 = KeyGen(MK, (T , L a , L p )) or dk 1 = KeyGen(MK, (T , ∅, L)). It eventually flips a random coin b, and outputs dk b to the adversary; Finalize(b ): The adversary outputs a guess b for b
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 5 Fig. 5: Tracing sub-tree for the codeword w = (1, 0, 1)

Fig. 6 :

 6 Fig.6: Access-tree (left-side) and delegated-tree (right-side) where the leaf associated with attribute A is changed into an AND-gate with a new child leaf associated with attribute A

  Encaps(PK, Γ ∪ Γ Tr ) and gets the output K and C. It then sets K Tr = K and C Tr = C. Decaps Tr (dk Tr id,T , C). The algorithm calls Decaps Tr (dk T , C), for dk T = dk Tr id,T , to get K, and outputs K Tr = K.Trace Tr (TK Tr , Γ ). On input the tracing key TK Tr = (SK, T ), and access to a perfect Pirate Decoder D, the algorithm repeats the following experiment, for j = 1, . . . , , to build the word w * : 1

Fig. 7 :

 7 Fig. 7: Tracing sub-tree for the codeword w = (1, 0, 1)

  of the Distinct Attribute-Indistinguishability (Att-IND) property of the scheme, hence D will always output K b . We correctly set w * j = b. -If w j = 1 -b for all keys in U c , K b will be unpredictable because of the Delegation-Indistinguishability for Encaps * , we correctly set w * j = 1 -b. -If w j has mixed values in 0 and 1 among users in U c , D can detect that C b involves active keys. But we could anyway set w * j ← 0 or w * j ← 1.

  we only work with (b 1 , b 2 , b 3 ) and (b * 1 , b * 2 , b * 3 ), but without publishing (b * 1 , b * 2 ). But more useful, using the DSDH assumption on 0 and x 1 , which claims indistinguishability between

Fig. 9 :

 9 Fig. 9: Global sequence of games for the IND-security proof of the KP-ABE

  Finalize(b ): The adversary outputs a guess b for b. If for some access-tree T asked to the OKeyGen-oracle, T (Γ ) = 1, on the challenge set Γ , β $ ← {0, 1}, otherwise one sets β = b . One outputs β.

  random b 0 -labeling (b λ ) λ , and a random 1-labeling (b λ ) λ of T k . When ρ = 0, this is exactly the previous game, with ω = ω + aτ , and a k,0 = b 0 + b, a k,λ = b λ + b • b λ , whereas for a random ρ, this is the current game, with additional s

0 )Fig. 11 :

 011 Fig. 11: Sequence of sub-games on the P attributes for the IND-security proof of our KP-ABE, where k *,0 = (a ,0 , 0, 1)B * + s ,0 • h * 0 and k * ,λ = (Π ,λ (t ,λ , -1), a ,λ , 0, 0, 0) D * + s ,λ • h * t k,λ, for all the leaves λ of all the keys , with h * 0 = (δ, ρ, 0) B * and h * 0 = (π t (t, -1), δ, ρ, 0, 0) D * for all the possible attributes t. We only make the latter (h * 0 , (h * t ) t ) to evolve along this sequence.
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 013 Fig. 13: Sequence of games on the keys for the Del-IND-security proof of our SA-KP-ABE
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Fig. 15 :

 15 Fig. 15: Sequence of sub-games on the attributes for the Del-IND-security proof of our SA-KP-ABE (Cont'ed on Figure 15)

  Fig. 15: Sequence of sub-games on the attributes for the Del-IND-security proof of our SA-KP-ABE (Cont'ed)

D

  3.p.3 : The previous game (in bases (U, U * , V, V * )) and this game (in bases (B, B * , D, D * )) are perfectly indistinguishable by using a formal change of basis, on hidden vectors, with = D • V D * = D • V *

D

  where c = ab+ζ mod q with either ζ = 0 or ζ = u p /τ z p , which are indistinguishable under the DSDH assumption. When we start from random dual orthogonal bases (U, U * ) and (V, V * ) of size 3 and 7 respectively, one considers the matrices: = D • V D * = D • V *

D

  G 2 , b • G 2 , c • G 2 ), where c = ab+ζ mod q with either ζ = 0 or ζ = u p /τ z p , which are indistinguishable under the DSDH assumption. When we start from random dual orthogonal bases (U, U * ) and (V, V * ) of size 3 and 7 respectively, one considers the matrices: = D • V D * = D • V *

  Fig. 16: Sub-sequence of games for Distinct Key-Indistinguishability

D

  0.p.1 = Adv 0.p.0 . Game G 0.p.2 : We use the Swap-Ind-property on (D, D * ) 1,6,7 : Indeed, we can consider a triple (a• G 1 , b • G 1 , c • G 1 ), where c = ab + θ mod q with either θ = 0 or θ = u p . We define the matrices= D • V D * = D • V *Note that we can compute all the basis vectors excepted d * 6 , d * 7 , but we define the keys on the original basis V * : k *

  Wat09.Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619-636. Springer, Heidelberg, August 2009.

  this is the previous game: G 2.k.1.p.2.1 = G 2.k.1.p.2 , whereas with γ = P + 1, this is the current game: G 2.k.1.p.2.P +1 = G 2.k.1.p.3 . For any γ ∈ {1, . . . , P }, we consider a triple

  p which is the hybrid game with π p = π + aρ and the 5-th component of c γ is τ + ζ, which is either τ when ζ = 0, and thus the game G 2.k.1.p.2.γ or τ z γ /z p when ζ = τ z γ /z p -τ , which is G 2.k.1.p.2.γ+1 : hence, the distance between two consecutive games is bounded by Adv dsdh G 1 (t). Hence, we have Adv 2.k.1.p.2 -Adv 2.k.1.p.3 ≤ 2P × Adv ddh G 1 (t). Game G 2.k.1.p.4 : We can now insert 1/z p in the p-th last component, and then make some cleaning with the matrices, for α

		$ ← Z * q			
	D =	α/ρ 0 1/z p 1 5,6	D =	ρ/α -ρ/αz p 0 1	5,6

  Hybrid game for G 2.k.2.3 , with 1 ≤ p ≤ P + 1 (from Figure

	G 2.k.2.3.p.0							
								0 )
	G 2.k.2.7 SubSpace-Ind Property, on (D, D * ) 4,5 , between 0 and τ	
	c t = (	σ t (1, t)	ω	|	τ	0	τ z t	u t 0 0 )
	Fig. 14: Sequence of games on the keys for the Del-IND-security proof of our SA-KP-ABE

  0) s ,λ is either the label s ,λ when r ,λ • u t ,λ = 0, or a random scalar in Z q otherwise G 2.k.2.3.p.1Swap-Ind Property, on (D, D * ) 5,7 , for 0 and u p in c p only c p = (. . . | 0

		u p	τ z p	0 |0 0) c t = (. . . 0 0	τ z t	u t |0 0)
	G 2.k.2.3.p.2	Index-Ind Property, on (D		

* , D) 1,2,5 , between r ,λ and 0, for all t ,λ

  .6 : We can now invert the above step, when we added y ,λ : Adv 2.k.2.5 -Adv 2.k.2.6 ≤ Adv ddh G 2 (t). Game G 2.k.2.7 : We can now invert the above step, when we removed τ from the ciphertext:Adv 2.k.2.6 -Adv 2.k.2.7 ≤ 2 • Adv ddh G 1 (t). We now detail the sub-sequence starting from G 2.k.2.3.p.0 to prove the indistinguishability between G 2.k.2.3 and G 2.k.2.4 . In the new hybrid game G 2.k.2.3.p.0 , the critical point will be the p-th ciphertext, where, when p = 1, this is exactly the above Game G 2.k.2.3 , and when p = P + 1, this is the above Game G 2.k.2.4 . And it will be clear, for any p, that G 2.k.2.3.p.11 = G 2.k.2.3.p+1.0 .

  When γ = 1, this is the previous game: G 2.k.2.3.p.1.1 = G 2.k.2.3.p.1 , whereas with γ = P + 1, this is the current game: G 2.k.2.3.p.1.P +1 = G 2.k.2.3.p.2 .

	s * ,λ = s ,λ	if < k, or = k, t k,λ < p
	s * ,λ = s ,λ	if = k, t k,λ ≥ p
	s * ,λ = 0	if > k

* ,λ /z t ,λ , r ,λ , 0, 0) D * p = t ,λ ≥ γ

where s * ,λ is either s ,λ , s ,λ , or 0:

  ,λ /z t ,λ , r ,λ , 0, 0) D * t ,λ = γ With all this sequence, we have Adv 2.k.2.3.p.1 -Adv 2.k.2.3.p.2 ≤ 2P •(8×Adv ddh G 1 (t)+4×Adv ddh G 2 (t)). Game G 2.k.2.

* 

  ,λ /z t ,λ , r ,λ , 0, 0) D * t ,λ = p k * ,λ = (π ,λ (t ,λ , -1), a ,λ , y ,λ , 0, s * ,λ /z t ,λ , r ,λ , 0, 0) D * t ,λ = p When γ = 1,this is the previous game: G 2.k.2.3.p.4.1 = G 2.k.2.3.p.3 , whereas with γ = P + 1, this is the current game: G 2.k.2.3.p.4.P +1 = G 2.k.2.3.p.4 . For this, we use the Adaptive Index-Ind property on (D * , D) 1,2,5,8,9 , with: k * ,λ = (π ,λ (t ,λ , -1), a ,λ , y ,λ , r ,λ , s * ,λ /z t ,λ , r ,λ , 0, 0) D * t ,λ = p c t = (σ t (1, t), ω, 0, 0, τ z t , u t , 0, 0) D t = γ With all this sequence, we have Adv 2.k.2.3.p.3 -Adv 2.k.2.3.p.4 ≤ 2P •(8×Adv ddh G 2 (t)+4×Adv ddh G 1 (t))

* 

  And, Adv 2.k.2.3.p.6 -Adv 2.k.2.3.p.7 ≤ 2 • Adv ddh G 2 (t). We stress that after the swap, we get, for t k,λ= p k * k,λ = (π k,λ (p, -1), a k,λ , y k,λ , r k,λ u p /τ z p , (s k,λ -r k,λ u p /τ )/z p , r k,λ , 0, 0) D *where s k,λ is a truly random value independent of r k,λ . So we are not back to game G 2.k.2.3.p.4 , but still with a random value in the 6-th component of the key.

  ,λ /z t ,λ , r ,λ , 0, 0) D * t ,λ = p k * ,λ = (π ,λ (t ,λ , -1), a ,λ , y ,λ , 0, s * ,λ /z t ,λ , r ,λ , 0, 0) D * t ,λ = p When γ = 1,this is the previous game: G 2.k.2.3.p.8.1 = G 2.k.2.3.p.7 , whereas with γ = P + 1, this is the current game: G 2.k.2.3.p.8.P +1 = G 2.k.2.3.p.8 . For this, we use the Adaptive Index-Ind property on (D * , D) 1,2,5,8,9 , with: k * ,λ = (π ,λ (t ,λ , -1), a ,λ , y ,λ , r ,λ , s * ,λ /z t ,λ , r ,λ , 0, 0) D With all this sequence, we have Adv 2.k.2.3.p.7 -Adv 2.k.2.3.p.8 ≤ 2P (8×Adv ddh G 2 (t)+4×Adv ddh G

* * t ,λ = p c t = (σ t (1, t), ω, 0, τ z t , τ z t , u t , 0, 0) D t = γ 1 (t)).
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OEncaps(Γ m,v , Γ m,i ): The simulator builds the m-th ciphertext using all the known vectors of the basis: c m,0 = (ω m , 0, ξ m ) B c m,t = (σ m,t (t, -1), ω m , 0, 0, 0, u m,t , 0, 0) D with ω m , ξ m $ ← Z q , σ m,t $ ← Z q and u m,t

The ciphertext C m is then (c m,0 , (c m,t ) t ); RoREncaps(Γ v , Γ i ): On the unique query on a set of attributes (Γ v • ∪ Γ i ), the simulator generates the ciphertext C = (c 0 , (c t ) t∈(Γv • ∪Γ i ) ) where c 0 = (ω, τ, ξ) B c t = (σ t (1, t), ω, τ, 0, τ z t , u t , 0, 0) D for all the attributes t ∈

According to the real or random game (bit b $ ← {0, 1}), one outputs (K b , C).

From the adversary's guess b for b, if for some T , T (Γ v , Γ i ) = 1, then β $ ← {0, 1}, otherwise β = b . We denote Adv 2.k.2.0 = Pr[β = 1|b = 1] -Pr[β = 1|b = 0]. The goal of this sequence of games is to replace s k,0 , that can be derived by an acceptable set of s k,λ , by a random and independent value r k,0 , in the key generated during the k-th OKeyGen-query. Indeed, to be a legitimate attack (that does not randomize the adversary's guess b ), for all the key queries T , one must have T (Γ v , Γ i ) = 0. In particular, Tk (Γ v , Γ i ) = 0: this means that either the regular access-tree policy is not met, i.e., T k (Γ v • ∪ Γ i ) = 0.

or the regular access-tree policy is met, but one active key leaf matches one invalid ciphertext attribute: ∀T ∈ EPT(T k , Γ v • ∪ Γ i ), ∃λ ∈ T ∩ L a , A(λ) ∈ Γ i , and from the assumptions, for any such tree T , the active leave is an independent leave. In both cases, we will use the same technique to show s k,0 is independent from any other value. But first, we will replace all the active leaves associated to invalid ciphertexts in the challenge ciphertext by inactive leaves. Of course, in the following sequence, we will have to take care of the simulation of the challenge ciphertext, but also of the OEncaps-oracle. For the latter, we will have to clarify how we do the simulation when public vectors (d 1 , d 2 , d 3 ) or the private vector d 7 are impacted.

Game G 2.k.2.1 : In this game, we first clean the 4-th column of the ciphertext from the τ . To this aim, we are given a tuple (a

, where c = ab + µ mod q with either µ = 0 or µ = τ (fixed from c 0 ). When we start from random dual orthogonal bases (U, U * ) and (V, V * ) of size 3 and 7 respectively, one considers the matrices:

We can calculate all vectors but d * 3 . Hence, there is no problem for simulating the OEncapsqueries. For the challenge ciphertext, we exploit the DSDH assumption: c t = (σ t (1, t), b, c, 0, τ z t , u t , 0, 0) V = (σ t (1, t), b, c -ab, 0, τ z t , u t , 0, 0) D = (σ t (1, t), b, µ, 0, τ z t , u t , 0, 0) D which is correct, with ω = b and according to µ, this is either τ , as in the previous game or 0 as in this game. For the keys, one notes that the 4-th component is 0, and so the change of basis has no impact on the 3-rd component, when using basis V * : k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, . . .) V * = (π ,λ (t ,λ , -1), a ,λ , 0, . . .) D * Then, we have Adv

The only keys that are calculated through V * are the ones from the k-th query so that t k,λ = p. We choose additional random scalars β k,λ Game G 2.k.2.3.p.6 : In this game, we want to replace r k,λ when t k,λ = p by a random value in the 7-th column, independently of the value in the 6-th column, so that this 6-th column value can be really random and independent from other values. We will exploit the random y k,λ in the 4-th column: We consider a triple (a

which are either 0 or independent random values. When we start from random dual orthogonal bases (U, U * ) and (V, V * ) of size 3 and 7 respectively, one considers the matrices:

We can calculate all vectors but d 7 , which is not in the public key. Through V, we calculate the challenge ciphertext, and the OEncaps-answers, when the 7-th component is non-zero, as the 0 value of the 4-th component does not impact the 7-th during the change of basis.

On the other hand, all the keys can be directly generated in D * , except k k,λ when t k,λ = p, for which we use the DDH assumption:

In order to keep the same r ,λ for all the leaves delegated from the same initial key, we also apply this additional vector (0, 0, 0, b λ , 0, 0, c λ ) V * . This will also keep the same y ,λ for all these leaves. Game G 2.k.2.3.p.9 : The previous game (in bases (U, U * , V, V * )) and this game (in bases (B, B * , D, D * )) are perfectly indistinguishable by using a formal change of basis, on hidden vectors, with

The challenge ciphertext and keys that are impacted become:

All the other vectors have a zero in these components (included the OEncaps-ciphertexts).

Hence, Adv 2.k.2.3.p.9 = Adv 2.k.2.3.p.8 .

Game G 2.k.2.3.p.10 : We keep the r ,λ value (at the 5-th hidden position) in the keys such that t ,λ = p, and replace back the 0 in all other keys by r ,λ , in order to prepare the possibility to later modify the ciphertexts on this component. To show this is possible without impacting the other vectors, we use the Index-Ind property from Theorem 3, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P }\{p}. We will enumerate γ in their order of appearance in the security game (wether in key queries, or in ciphertexts), therefore we can treat an unbounded number of γ. Game G 2.k.2.3.p.9.γ : We consider the following hybrid game, where the first satisfied condition on the indices is applied:

where s * ,λ is either s ,λ , s ,λ , or 0 When γ = 1, this is the previous game: G 2.k.2.3.p.9.1 = G 2.k.2.3.p.9 , whereas with γ = P + 1, this is the current game: G 2.k.2.3.p.9.P +1 = G 2.k.2.3.p.10 . We will gradually replace the 0 values, at the 5-th hidden position, by r ,λ (when t ,λ = p): in this game, we deal with the case t ,λ = γ, for all the -th keys. For this, we use the Adaptive Index-Ind property on (D, D * ) 1,2,5,8,9 , with: 

, where c = ab + µ mod q with either µ = 0 or µ = u p , the 5-th component of the p-th ciphertext. When we start from random dual orthogonal bases (U, U * ) and (V, V * ) of size 3 and 7 respectively, one considers the matrices:

We can calculate all vectors but d * 5 and d * 7 , which are not in the public key. Through V, we calculate the challenge ciphertext for the attribute of the p-th ciphertext c p = (0, 0, ω, 0, 0, τ z p , u p ) D + (b(1, p), 0, 0, c, 0, -c, 0, 0) V = (0, 0, ω, 0, 0, τ z p , u

we are in the previous game. If µ = 0, then we are in the current game. Then, every other ciphertext is computed directly in D:

as well as the answers to OEncaps-queries. The keys are calculated through V * but are unchanged by the change of basis because the 5-th and 7-th components are exactly the same for every key query , and thus cancel themselves in the 1st component. We thus have Adv

E.3 Proof of Theorem 11 -dKey-IND-Security

Proof. In this security game, the adversary has access to the OEncaps-oracle, but only for distinct key-indistinguishability: all the invalid attributes t ∈ Γ m,i in a OEncaps-query correspond to passive leaves λ ∈ L p from the challenge key. We will prove it as usual with a sequence of games:

Game G 0 : The first game is the real game where the simulator plays the role of the challenger, with

and MK = {b * 3 }, from random dual orthogonal bases. We note that d * 7 can be public. OKeyGen( T ) (or ODelegate-queries): The adversary is allowed to issue KeyGen-queries on an access-tree T = (T , L ,a , L ,p ) (for the -th query), for which the simulator chooses a random scalar a ,0 $ ← Z q and a random a ,0 -labeling (a ,λ ) λ of the access-tree T , and builds the key:

for all the leaves λ, where t ,λ = A(λ), π ,λ $ ← Z q and r ,λ

The adversary is allowed to issue Encaps * -queries on disjoint unions

RoAPKeyGen( T , L a , L p ): On the unique query on an access-tree T of its choice, with a list L = (L a • ∪L p ) of active and passive leaves, the simulator chooses a random scalar a 0 $ ← Z q , and a random a 0 -labeling (a λ ) λ of the access-tree. It then sets the real key dk 0 as follows, with r λ

), a λ , 0, 0, 0, r λ , 0, 0) D * On the other hand, it sets the all-passive key dk 1 as: Game G 0.p.0 : One defines the hybrid game for p :

In this game, we duplicate every u m,t into the 5-th column of the ciphertext.

To this aim, one defines the matrices

which only modifies d 7 , which is secret, and d * 6 , which is hidden, so the change is indistinguishable for the adversary. One can compute the keys and ciphertexts as follows, for all leaves λ, and for each of each query m of the adversary:

Hence, the perfect indistinguishability between the two games: Adv 0.p.1 = Adv 0.p.0 .

Game G 0.p.2 : The previous game and this game are indistinguishable under the DSDH assumption in G 2 : one essentially uses theorem 24. Given a tuple (a

, where c = ab + µ mod q with either µ = 0 or µ = 1, the 7-th component of the leaf λ of the challenge key, with t λ = p. When we start from random dual orthogonal bases (U, U * ) and (V, V * ) of size 3 and 7 respectively, one considers the matrices:

We can calculate all vectors but d 6 and d 7 , which are not in the public key. Through V, we calculate the challenge key for the attribute of the p-th ciphertext We choose additional random scalars

If µ = 0, we are in the previous game. If µ = 1, then we are in the current game. Then, every other key is computed directly in D * :

), a λ , 0, 0, 0, r λ , 0, 0) D * as well as the answers to OKeyGen-queries. The ciphertexts are calculated through V but are unchanged by the change of basis because the 6-th and 7-th components are exactly the same for every ciphertext query m, and thus cancel themselves in the 2nd component. We thus have Adv 0

Game G 0.p.3 : We keep the u m,p value (at the 6-th hidden position) in the ciphertexts, and replace it in all other ciphertexts by 0. To show this is possible without impacting the other vectors, we use the Index-Ind property from Theorem 3, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P }\{p}. We will enumerate γ in their order of appearance in the security game (wether in key queries, or in ciphertexts), therefore we can treat an unbounded number of γ. Game G 0.p.2.γ : We consider the following hybrid game, where the first satisfied condition on the indices is applied:

Keys are unchanged throughout the hybrid game

When γ = 1, this is the previous game: G 0.p.2.1 = G 0.p.2 , whereas with γ = P + 1, this is the current game: G 0.p.2.P +1 = G 0.p.3 . We will gradually replace the u m,t values, at the 6-th hidden position, by 0 (when t = p): in this game, we deal with the case t = γ, for the m-th ciphertext query.

For this, we use the Adaptive Index-Ind property on (D * , D) 1,2,6,8,9 , with:

We remind that u m,p = 0 because r λ = 0. If r λ = 0, then we would have skipped directly to the hybrid p + 1 game. With all this sequence, we have Adv

). Game G 0.p.4 : In this final game for p, we can finally cancel out r λ in each key with t λ = p because it corresponds to a coordinate where all other values (in keys and ciphertexts) are 0. We consider a triple (a

, where c = ab + α mod q, with either α = 0 or α = r λ . One defines the matrices

Note that we can compute all the basis vectors excepted d 6 , but all the ciphertexts have a 0 components in 6-th position. So one can set all the values honestly in D and D * , except for k λ = (0, 0, a λ , 0, 0, 0, 0, 0, 0) D + (b(p, -1), 0, 0, 0, c, 0, 0, 0) V = (0, 0, a λ , 0, 0, 0, 0, 0, 0) D + (b(p, -1), 0, 0, 0, c -ab, 0, 0, 0) D = (b(1, p), a λ , 0, 0, α, 0, 0, 0) D When α = 0, this is exactly the current game, with π λ = b, whereas α = r λ , this is the previous game. Then, Adv 0.p.3 -Adv 0.p.4 ≤ 2 • Adv ddh G 2 (t). In total, this sequence of games, for a given p, satisfies Then,

In the last game, the adversary has zero advantage. Indeed, whether b = 0 or b = 1, the distributions of dk 0 and dk 1 are perfectly identical, with all-passive leaves.

E.4 Proof of Theorem 12 -dAtt-IND-Security

Proof. We start with the distinct variant, where all the invalid attributes in the challenge ciphertext do not correspond to any active leaf in the obtained keys. Our proof will proceed by games.

Game G 0 : This is the real security game, where the simulator honestly emulates the challenger, with

, from random dual orthogonal bases. The public parameters PK are provided to the adversary. Since d 7 is public (empty SK), there is no need to provide access to an encryption oracle. OKeyGen( T ) (or ODelegate-queries): The adversary is allowed to issue KeyGen-queries on an access-tree T = (T , L ,a , L ,p ) (for the -th query), for which the simulator chooses a random scalar a ,0 $ ← Z q and a random a ,0 -labeling (a ,λ ) λ of the access-tree T , and builds the key:

for all the leaves λ, where t ,λ = A(λ), π ,λ $ ← Z q and r ,λ

Then, the simulator generates the ciphertext C 0 = (c 0 , (c t ) t ), for all the attributes t ∈ Γ v • ∪ Γ i , with σ t $ ← Z q , and where u t

, ω, 0, 0, 0, 0, 0, 0) D According to the real or all-valid game (bit b $ ← {0, 1}), one outputs (K, C b ). From the adversary's guess b for b, if for some T = (T , L ,a , L ,p ), there is some active leaf λ ∈ L ,a such that t

We stress that in this distinct attribute-indistinguishability security game, the invalid attributes in the challenge ciphertext (t ∈ Γ i with possibly u t = 0) correspond to passive leaves only (λ ∈ L ,p with r ,λ = 0, for all queries). But we do not exclude accepting access-trees.

Game G 1 : The second and final game simply corresponds to the situation where u t = 0 in C 0 , clearly leading to Adv 1 = 0. Using the indexing technique, we can show this game is indistinguishable the previous game. But we need to describe a sub-sequence of games (see Figure 17) for proving the gap from the above G 0 to G 1 , with the sequence G 0.p. * , that will modify the p-th ciphertext in the challenge ciphertext, for p ∈ {1, . . . , P + 1}, where G 0 = G 0.1.0 , and G 1 = G 0.P +1.0 . In these games, we describe how we generate the keys and the real encapsulation C 0 . C 1 will be easily simulated in an honest way.

Game G 0.p.0 : One thus chooses random scalars and defines the hybrid game for some p, where the first components of the ciphertext are all-valid, and the last ones are real:

G 0.p.3 Index-Ind Property, on (D, D * ) 1,2,6 , between r ,λ and 0, for

Fig. 17: Sub-sequence of games for Distinct Attribute-Indistinguishability Game G 0.p.2.γ : We consider k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, 0, 0, 0, 0) 

). Game G 0.p.4 : One can easily conclude by removing u p in the ciphertext c p , as it corresponds to a coordinate where all the other values (in the keys and the ciphertext) are 0. To this aim, we can consider a triple (a

, where c = ab + α mod q with either α = 0 or α = u p . One defines the matrices

Note that we can compute all the basis vectors excepted d * 6 , which has only 0 components in the keys. So one can set all the values honestly in D and D * , excepted c p = (b(1, p), ω, 0, 0, c, 0, 0, 0) V = (b(1, p), ω, 0, 0, c -ab, 0, 0, 0) D = (b(1, p), ω, 0, 0, α, 0, 0, 0) D When α = 0, this is exactly the current game, with σ p = b, whereas for α = u p , this is the previous game. Then, Adv 0.p.3 -Adv 0.p.4 ≤ 2 • Adv ddh G 1 (t). In total, this sequence of games, for a given p, satisfies Then,

E.5 Proof of Theorem 13 -Att-IND-Security

Proof. We now prove the attribute-indistinguishability, where there are no restrictions between active leaves in the keys and invalid attributes in the challenge ciphertext, but just that the access-trees of the obtained keys reject the attribute-set of the challenge ciphertext, even in the all-valid case. Our proof will proceed by games. Not that we also assume active keys correspond to independent leaves with respect to the set of attributes Γ = Γ v • ∪Γ i in the challenge ciphertext.

Game G 0 : This is the real security game, where the simulator honestly emulates the challenger, with

, from random dual orthogonal bases. The public parameters PK are provided to the adversary. Since d 7 is public (empty SK), there is no need to provide access to an encryption oracle.

OKeyGen( T ) (or ODelegate-queries):

The adversary is allowed to issue KeyGen-queries on an access-tree T = (T , L ,a , L ,p ) (for the -th query), for which the simulator chooses a random scalar a ,0 $ ← Z q and a random a ,0 -labeling (a ,λ ) λ of the access-tree T , and builds the key:

for all the leaves λ, where t ,λ = A(λ), π ,λ $ ← Z q and r ,λ

Then, the simulator generates the ciphertext

On the other hand, it computes C 0 = (c 0 , (c t + (0, 0, 0, 0, 0, 0, u t , 0, 0) D ) t ), where u t

According to the real or all-valid game (bit b

From the adversary's guess b for b, if for some T = (T , L ,a , L ,p ), for which tree a key has been obtained, T (

We now proceed with exactly the same sequence as in the IND-security proof of the KP-ABE in the appendix D.3, except the RoREncaps-challenge is instead a RoAVEncaps-challenge, where we require T (Γ v • ∪ Γ i , 0) = 0 for all the obtained keys. For the same reason, the OEncaps-queries on pairs (Γ m,v , Γ m,i ), with Γ m,i = ∅ can be simulated. Indeed, as above, everything on the 7-th component can be done independently, knowing both d 7 and d * 7 , as these vectors will be known to the simulator, almost all the time, excepted in some specific gaps. In theses cases, we will have to make sure how to simulate the OEncaps ciphertexts. As in that proof, the idea of the sequence is to introduce an additional labeling (s ,0 , (s ,λ ) λ ) in the hidden components of each key, with a random s ,0 , as the trees are rejecting. We are thus able to go as in G 3 , from Figure 9, where each label is masked by a random z t for each attribute t. The following sequence is described on Figure 18.

Game G 1 : This is as G 1 , with a random τ in the challenge ciphertext.

Game G 2 : This is as G 2 , with random z t in the challenge ciphertext.

Game G 3 : This is as G 3 , with an additional independent s ,0 -labeling (s ,λ ) for each accesstree T and a random r ,0 to define

We stress that all these steps are not impacted by the values u t in the 7-th component of the challenge ciphertext:

where b is the random bit of the challenger: when b = 0, the ciphertext is in the real case, whereas for b = 1, one gets an all-valid ciphertext.

Game G 4 : We remove all u t from the RoAVEncaps challenge query, in the case b = 1:

G 1 SubSpace-Ind Property, on (B, B * ) 1,2 and (D, D * ) 3,4 , between 0 and τ

G 2 SubSpace-Ind Property, on (D, D * ) (1,2),6 , between 0 and τ z t c 0 = ( ω τ ξ )

G 3 Additional random-labeling as in the IND-security proof. See Figure 10

G 4 Index-Ind property to suppress u t , when b = 0. See Figure 19

G 5 Limitation of independent active leaves k * ,0 = (a ,0 , r ,0 , 1) B * k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, s ,λ /z t ,λ , r ,λ , 0, 0)

Of course, the values r ,λ and u t are random in Z * q or 0 according to L ,a /L ,p and Γ i /Γ v . In particular, if u p = 0, we can directly go to G 3.p.5 , as there is no change from this game. But there is no need to know it in advance, and so we can follow this sequence in any case and set u p in the ciphertext at the challenge-time.

Game G 3.p.1 : One defines the matrices

which modifies the hidden and secret vectors d 6 and d * 7 , and so are not in the view of the adversary: k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, s ,λ /z t ,λ , r ,λ , 0, 0) V * = (π ,λ (t ,λ , -1), a ,λ , 0, r ,λ , s ,λ /z t ,λ , r ,λ , 0, 0) D * c t = (σ t (1, t), ω, τ, 0, τ z t , 0, 0, 0) V = (σ t (1, t), ω, τ, 0, τ z t , 0, 0, 0) D if t < p c t = (σ t (1, t), ω, τ, 0, τ z t , u t , 0, 0) V = (σ t (1, t), ω, τ, 0, τ z t , u t , 0, 0) D if t ≥ p G 3.p.0 Hybrid game for G 3 and G 4 , with 1

G 3.p.1 Formal basis change, on (D, D * ) 5,7 , to duplicate r ,λ in the 5-th column

G 3.p.2 Swap-Ind Property, on (D, D * ) 1,5,7 , to swap u p alone in the 5-th column

G 3.p.4 SubSpace-Ind Property, on (D, D * ) 6,5 , between u p and 0

G 3.p.5 SubSpace-Ind Property, on (D * , D) 6,5 , between r ,λ and 0, for t 

, where c = ab + θ mod q with either θ = 0 or θ = u p . We define the matrices

Note that we can compute all the basis vectors excepted d * 5 , d * 7 , but we define the keys on the original basis V * :

With θ = 0, this is as in the previous game, where

We make all the r ,λ values (at the 5-th hidden position) in the keys to be 0, excepted when t ,λ = p. For that, we iteratively replace all the values by zero, using Adaptive Index-Ind-property from theorem 3, in another level of sequence of hybrid games, for γ ∈ {1, . . . , P }\{p}. We will enumerate γ in their order of appearance in the security game (wether in key queries, or in ciphertexts), therefore we can treat an unbounded number of γ. Game G 3.p.2.γ : We consider k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, r ,λ , s ,λ /z t ,λ , r ,λ , 0, 0) D * if t ,λ = p k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, 0, s ,λ /z t ,λ , r ,λ , 0, 0) D * if p = t ,λ < γ k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, r ,λ , s ,λ /z t ,λ , r ,λ , 0, 0) D * if p = t ,λ ≥ γ c t = (σ t (1, t), ω, τ, 0, τ z t , 0, 0, 0) D if t < p c p = (σ p (1, p), ω, τ, u p , τ z p , 0, 0, 0) D c t = (σ t (1, t), ω, τ, 0, τ z t , u t , 0, 0) D if t > p When γ = 1, this is the previous game: G 3.p.2.1 = G 3.p.2 , whereas with γ = P + 1, this is the current game: G 3.p.2.P +1 = G 3.p.3 . For this, we use the Adaptive Index-Ind property on (D * , D) 1,2,5,8,9 , with: c p = (σ p (1, p), ω, τ, u p , τ z p , 0, 0, 0) D k * ,λ = (π ,λ (t ,λ , -1), a ,λ , 0, r ,λ , s ,λ /z t ,λ , r ,λ , 0, 0) D * t ,λ = γ Game G 3.p.4 : We use the SubSpace-Ind-property on (D, D * ) 6,5 : Indeed, we can consider a triple (a

, where c = ab + θ mod q with either θ = 0 or θ = u p . We define the matrices

Note that we can compute all the basis vectors excepted d * 5 that is not public, and not used excepted for the keys with t ,λ = p, which will be defined in the original basis V * : k * ,λ = (π ,λ (p, -1), a ,λ , 0, r ,λ , s ,λ /z p , r ,λ , 0, 0) V * = (π ,λ (p, -1), a ,λ , 0, r ,λ , s ,λ /z p + ar ,λ , r ,λ , 0, 0) D * = (π ,λ (p, -1), a ,λ , 0, r ,λ , s ,λ /z p , r ,λ , 0, 0) D * c t = (σ t (1, t), ω, b, 0, bz t , 0, 0, 0) D if t < p c p = (σ p (1, p), ω, b, c, bz p , 0, 0, 0) V = (σ p (1, p), ω, b, c -ab, bz p , 0, 0, 0) D = (σ p (1, p), ω, b, θ, bz p , 0, 0, 0) D c t = (σ t (1, t), ω, b, 0, bz t , u t , 0, 0) D if t > p

When θ = 0, this is this game, whereas when θ = u p , this is the previous game, with τ = b and s ,λ = s ,λ +az p r ,λ a new random and independent value for each active leaf associated to the attribute p. When ζ = 0, this is this game, whereas when ζ = 1, this is the previous game, with s ,λ = z p • b ,λ , a truly random and independent value for each active leaf associated to the attribute p.

Game G 5 : Under the assumption of independent active leaves with respect to the set of attributes Γ = Γ v • ∪Γ i in the challenge ciphertext, the random values s ,λ are indistinguishable from real labels s ,λ . Indeed, labels that correspond to leaves that are associated to attributes not in Γ are unknown, as the masks z t are not revealed. This shows that the advantage of the adversary in this last game is 0.