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Copulas, lower probabilities and random
sets: how and when to apply them?

Roman Malinowski, Sébastien Destercke

Abstract A copula is an aggregation function, that can be used as a depen-
dency model. Any multivariate distribution function can be characterized by
its marginals and a copula. When introducing imprecision in the modelling of
those distribution functions, different solutions are available to aggregate the
univariate uncertainty representations into a multivariate one via the copula.
We present some of those solutions, and discuss their respective inclusions for
special cases: independence, belief functions, necessity functions and p-boxes.

1 Introduction

Credal sets, or convex sets of probability distributions, are useful tools to
reason under uncertainty, especially in the presence of imprecision. They in-
clude many uncertainty models, such as belief functions, p-boxes, etc (Dester-
cke et al., 2008). How to combine such univariate models into multivariate
ones remain a very active research question, with many researchers studying
how tools used in the precise setting can be extended to the imprecise one,
including in particular copulas (Gray et al., 2021; Montes et al., 2015).

When considering precise probabilities, copulas have been shown to be able
to model any dependency structure between probability distributions. This is
no longer true when adding imprecision to probabilities (Montes et al., 2015),
for various reasons, such as the fact that imprecise cumulative distributions
and credal sets are no longer in one-to-one correspondence.
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In this paper, we first provide a short review of different models of uncer-
tainty (Section 2), and then present multiple ways of combining creal sets or
their lower envelopes with a copula (Section 3). In Section 4, we finally study
their relationships for various specific cases of interest.

2 Preliminaries

In this section, we present the various uncertainty models we will consider,
as well as copulas, which are aggregation functions typically used to model
dependencies between random variables. We will work on finite spaces.

2.1 Imprecise Models

Definition 1 Given a credal set1 M over a finite space X, we define its lower
probability 𝑃 as its lower envelope on all events of the power set P(X):

∀𝐴 ⊆ X, 𝑃(𝐴) = inf{𝑃(𝐴) |𝑃 ∈ M} (1)

Note that although lower probabilities cannot describe any credal set, we
will mostly focus on them in this paper to privilege clarity of exposure. As
credal sets are quite generic, it is useful to consider simpler, more practical
models. We now define such models that we will consider later on.

Definition 2 Given a finite space X and its power set P(X), a probability
mass function (Shafer (1976)) is a mapping P(X) → [0, 1] satisfying:

𝑚(∅) = 0 and
∑︁
𝐴⊆X

𝑚(𝐴) = 1 (2)

A set 𝐴 of X is called a focal set if and only if 𝑚(𝐴) > 0 and we will note
F𝑚 the set of all focal sets. Such a probability mass function defines a Belief
function 𝐵𝑒𝑙 : P(X) → [0, 1] and a Plausibility function 𝑃𝑙 : P(X) → [0, 1]:

∀𝐴 ⊆ X, 𝐵𝑒𝑙 (𝐴) =
∑︁
𝐵⊆𝐴

𝑚(𝐵) and 𝑃𝑙 (𝐴) =
∑︁

𝐵∩𝐴≠∅
𝑚(𝐵) (3)

Those two functions are conjugate as 𝐵𝑒𝑙 (𝐴) = 1 − 𝑃𝑙 (𝐴𝑐). 𝐵𝑒𝑙 (𝐴) can be
interpreted as our belief that the truth lies in 𝐴. A belief function is a lower
probability (1) inducing a credal set M(𝐵𝑒𝑙) = {𝑃 | ∀𝐴 ⊆ X, 𝐵𝑒𝑙 (𝐴) ⩽ 𝑃(𝐴)}.

Definition 3 A necessity measure 𝑁𝑒𝑐 is a minitive belief function:

∀𝐴, 𝐵 ⊆ X, 𝑁𝑒𝑐(𝐴 ∩ 𝐵) = 𝑚𝑖𝑛(𝑁𝑒𝑐(𝐴), 𝑁𝑒𝑐(𝐵)). (4)

1 A convex set of probability distributions.
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In a finite space, focal elements of a necessity function form a nested family
of events : F𝑚 = {𝑎1 ⊂ ... ⊂ 𝑎𝑘} (Dubois and Prade, 2009). As a specific belief
function, a necessity induces a credal set M(𝑁𝑒𝑐) = {𝑃 |𝑁𝑒𝑐(𝐴) ⩽ 𝑃(𝐴),∀𝐴}.

Definition 4 A p-box (probability-box) is a pair of two cumulative distribu-
tion functions (CDFs) [𝐹, 𝐹] defined on the real line s.t. 𝐹 (𝑥) ⩽ 𝐹 (𝑥), ∀𝑥 ∈ R.
A p-box is the extension of CDFs to imprecise probabilities. It induces a
credal set, composed of all the CDFs dominating 𝐹 and dominated by 𝐹:

M([𝐹, 𝐹]) = {𝑃 |∀𝑥 ∈ R, 𝐹 (𝑥) ⩽ 𝑃(] − ∞, 𝑥]) ⩽ 𝐹 (𝑥)} (5)

We can define ‘𝛼-levels’ C𝛼

[𝐹,𝐹 ]
(𝛼 ∈ [0, 1]) of a p-box as intervals [𝑥, 𝑥]

whose lower bound (resp. upper bound) is the pseudo-inverse of 𝐹 (resp. 𝐹)
at 𝛼 (Figure 1). It has been proven in Destercke et al. (2008) that to each
p-box corresponds a belief function 𝐵𝑒𝑙 s.t.:

M([𝐹, 𝐹]) = M(𝐵𝑒𝑙) (6)

Additionally, the set of focal elements of a p-box is included in the 𝛼-levels
F𝑚 ⊆ C𝛼

[𝐹,𝐹 ]
. We will note F𝑚 = {[𝑥

𝑘
, 𝑥𝑘] | 𝑚( [𝑥

𝑘
, 𝑥𝑘]) > 0}. Due to the fact

that both 𝐹 and 𝐹 are increasing mappings, the lower and upper bounds of
those intervals are ordered. Thus all focal elements [𝑥

𝑘
, 𝑥𝑘] can be ordered

using the natural order:

∀𝑖, 𝑗 , [𝑥
𝑖
, 𝑥𝑖] ⩽𝑛𝑎𝑡 [𝑥 𝑗

, 𝑥 𝑗 ] ⇔ 𝑥
𝑖
⩽ 𝑥

𝑗
and 𝑥𝑖 ⩽ 𝑥 𝑗 (7)
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Fig. 1 p-box and one of its focal elements [𝑥
𝑖
, 𝑥𝑖 ]

2.2 Copulas

Definition 5 A copula is a multivariate distribution function 𝐶 : [0, 1]𝑁 →
[0, 1] whose marginals are uniform on [0, 1]. It can be seen as a joint distribu-
tion function of N random variables. A copula verifies a number of properties,
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expressed here in the bivariate case. ∀𝑢, 𝑢′, 𝑣, 𝑣′ ∈ [0, 1]4 s.t. 𝑢 ⩽ 𝑢′, 𝑣 ⩽ 𝑣′:

𝐶 (𝑢, 0) = 𝐶 (0, 𝑣) = 0, 𝐶 (𝑢, 1) = 𝑢, 𝐶 (1, 𝑣) = 𝑣 (8)

𝐶 (𝑢′, 𝑣′) + 𝐶 (𝑢, 𝑣) − 𝐶 (𝑢, 𝑣′) − 𝐶 (𝑢′, 𝑣) ⩾ 0 (9)

From (9) we have that 𝐶 is a component-wise increasing mapping. There
exists two copulas, the  Lukasiewicz (𝐶𝐿) and Minimum (𝐶𝑀) copulas (also
called lower and upper Fréchet–Hoeffding copulas in Nelsen (2006)), that
bound all copulas 𝐶, i.e, ∀𝑢, 𝑣 ∈ [0, 1],

max(0, 𝑢 + 𝑣 − 1) ≜ 𝐶𝐿 (𝑢, 𝑣) ⩽ 𝐶 (𝑢, 𝑣) ⩽ 𝐶𝑀 (𝑢, 𝑣) ≜ min(𝑢, 𝑣) (10)

The celebrated Sklar’s theorem states that copulas, when applied to cu-
mulative distributions of precise probabilities, can model any multivariate
function, and that any multivariate function can be modelled by a copula
applied to its marginals. As said earlier, this is however no longer true in the
imprecise setting, hence the need to restudy how copulas can be applied to
generic credal sets and lower probabilities (Montes et al., 2015).

3 Applying copulas to credal sets

There are multiple ways to apply a copula to lower probabilities. We will
describe some of them: a robust method on dominated probabilities, a method
on mass distributions inducing belief functions, and an aggregation method.

3.1 Robust method on dominated probabilities

Consider a copula 𝐶, and two credal sets M(𝑃𝑋) and M(𝑃𝑌 ) defined over
P(X) and P(Y) respectively. Applying 𝐶 to every marginal 𝑃𝑋 ∈ M(𝑃𝑋)
and 𝑃𝑌 ∈ M(𝑃𝑌 ) gives a joint lower probability such that for all 𝐸 ⊆ X ×Y:

𝑃𝑅𝑜𝑏𝑢𝑠𝑡 (𝐸) = inf{𝑃𝑋𝑌 (𝐸) |𝐹𝑋𝑌 (𝑥, 𝑦) = 𝐶 (𝐹𝑋 (𝑥), 𝐹𝑌 (𝑦)) ,∀(𝑥, 𝑦) ∈ X×Y} (11)

with 𝐹𝑋, 𝐹𝑌 the CDF of 𝑃𝑋, 𝑃𝑌 and 𝐹𝑋𝑌 (𝑥, 𝑦) = 𝑃𝑋𝑌 (𝑋 ⩽ 𝑥,𝑌 ⩽ 𝑦). Because
𝐹𝑋𝑌 is a precise CDF, it completely determines 𝑃𝑋𝑌 , allowing 𝑃𝑋𝑌 to be
computed on events that are not Cartesian products. 𝑃𝑅𝑜𝑏𝑢𝑠𝑡 (𝐸) is then the
infinimum of those probability distributions on 𝐸 . Note that for defining the
CDFs on finite spaces that are not subsets of R, complete orderings on X and
Y must be defined. In the following sections, we will refer to 𝑃𝑅𝑜𝑏𝑢𝑠𝑡 as in
(11) and its credal set generated with two univariate lower probabilities 𝑃𝑋,
𝑃𝑌 and a copula 𝐶 as:

M𝑅𝑜𝑏𝑢𝑠𝑡 (𝐶, 𝑃𝑋, 𝑃𝑌 ) = {𝑃𝑋𝑌 | 𝑃𝑅𝑜𝑏𝑢𝑠𝑡 ⩽ 𝑃𝑋𝑌 } (12)
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or M𝑅𝑜𝑏𝑢𝑠𝑡
2 for short when no ambiguity can arise.

3.2 Joint masses from copulas

As mass functions inducing belief functions can be seen as probabilities over
sets, one could directly apply copulas to those masses. However, in general
there is no natural order over the set of focal sets F𝑚 (which then play the
role of atoms). To apply a copula and define a joint mass, we have to chose an
arbitrary ordering ⩽𝑎𝑟𝑏 that will determine the order inside the sets of focal
sets F𝑚𝑋

= {𝑎1, 𝑎2, ..., 𝑎𝑛} and F𝑚𝑌
= {𝑏1, 𝑏2, ..., 𝑏𝑛′} with 𝑎𝑖−1 ⩽𝑎𝑟𝑏 𝑎𝑖 ∀𝑖 ∈

[[1, 𝑛]] and 𝑏 𝑗−1 ⩽𝑎𝑟𝑏 𝑏 𝑗 ∀ 𝑗 ∈ [[1, 𝑛′]] (with 𝑎0 = 𝑏0 = ∅). The bivariate
mass associated to an element (𝑎𝑖 , 𝑏 𝑗 ) of F𝑚𝑋

× F𝑚𝑌
can be defined using the

diagonal difference as in Ferson et al. (2004) :

𝑚𝐶
𝑋𝑌 (𝑎𝑖 × 𝑏 𝑗 ) = 𝐶 (𝐴𝑖

𝑋 , 𝐵
𝑗

𝑌
) +𝐶 (𝐴𝑖−1

𝑋 , 𝐵
𝑗−1
𝑌

) −𝐶 (𝐴𝑖
𝑋 , 𝐵

𝑗−1
𝑌

) −𝐶 (𝐴𝑖−1
𝑋 , 𝐵

𝑗

𝑌
) (13)

with 𝐴𝑖
𝑋
=
∑

𝑘⩽𝑖 𝑚𝑋 (𝑎𝑘) and 𝐵
𝑗

𝑌
=
∑

𝑘⩽ 𝑗 𝑚𝑌 (𝑏𝑘) being the cumulative masses

over 𝑎𝑖 and 𝑏 𝑗 (with 𝐴0
𝑋
= 𝑚𝑋 (𝑎0) = 𝐵0

𝑌
= 𝑚𝑌 (𝑏0) = 0). It is easy to check

that the joint mass defined in (13) is a mass distribution whose focal sets
form a subset of the Cartesian product of the marginal focal sets F𝑚𝑋

× F𝑚𝑌
.

This mass induces a belief function 𝐵𝑒𝑙𝑋𝑌 from which can be generated a
credal set. In the following sections, we will refer to this credal set as:

M𝑚𝑎𝑠𝑠 (𝐶, 𝐵𝑒𝑙𝑋, 𝐵𝑒𝑙𝑌 ) = {𝑃𝑋𝑌 | 𝐵𝑒𝑙𝑋𝑌 =
∑︁

𝑚𝐶
𝑋𝑌 ⩽ 𝑃𝑋𝑌 } (14)

or M𝑚𝑎𝑠𝑠 for short, where 𝑚𝐶
𝑋𝑌

is defined as in (13). However, as shows the
next example, the choice of ⩽𝑎𝑟𝑏 can strongly impact the joint model.

Fig. 2 Joint probability
over events A and B

2 M𝑅𝑜𝑏𝑢𝑠𝑡 is the smallest credal set containing all probabilities from the marginal
credal sets linked with 𝐶, but as it is convex, it can also contain probabilities linked
to their marginals with a different copula 𝐶′.
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Example 1 Let 𝑚𝑋 and 𝑚𝑌 be mass functions defined over P(X) and P(Y),
and whose sets of focal sets are F𝑚𝑋

= {𝑎1, 𝑎2} and F𝑚𝑌
= {𝑏1, 𝑏2} (Fig 2).

Assuming that 𝑏1 ⩽𝑎𝑟𝑏 𝑏2, consider the following ⩽𝑎𝑟𝑏 on F𝑚𝑋
:

• If ”𝑎1 ⩽𝑎𝑟𝑏 𝑎2”: 𝑚𝑋𝑌 (𝑎1 × 𝑏1) = 𝐶 (𝛼1, 𝛽1), 𝑚𝑋𝑌 (𝑎2 × 𝑏1) = 𝛽1 − 𝐶 (𝛼1, 𝛽1)
• If ”𝑎1 ⩾𝑎𝑟𝑏 𝑎2”: 𝑚𝑋𝑌 (𝑎1 × 𝑏1) = 𝛽1 − 𝐶 (𝛼2, 𝛽1), 𝑚𝑋𝑌 (𝑎2 × 𝑏1) = 𝐶 (𝛼2, 𝛽1)

Taking 𝐶 (𝑢, 𝑣) = min(𝑢, 𝑣) and 𝛼1 = 𝛼2 = 𝛽1 = 0.5, yields in the first case
𝑚𝑥𝑦 (𝑎1 × 𝑏1) = 0.5 and in the second case 𝑚𝑥𝑦 (𝑎1 × 𝑏1) = 0. There is, in
general, no reason for two orders to have the same value of masses for the
same Cartesian product of events. A notable exception is the product cop-
ula, explored below. Finally, note that such an approach is quite commonly
encountered in the literature (Gray et al., 2021; Alvarez et al., 2018)

3.3 Copula applied to the lower probabilities

Another way to aggregate two lower probabilities 𝑃𝑋, 𝑃𝑌 with a copula 𝐶 is
by directly applying the copula to lower probabilities:

∀𝐴 ∈ X, 𝐵 ∈ Y, 𝑃𝑎𝑔𝑔 (𝐴 × 𝐵) = 𝐶 (𝑃𝑋 (𝐴), 𝑃𝑌 (𝐵)) (15)

Here, we use a copula only as an aggregation operator. Note that in general
we cannot expect 𝑃𝑎𝑔𝑔 to induce a non-empty M(𝑃𝑎𝑔𝑔). We can nevertheless
note that in the case of the product copula, the bivariate lower probability
induced by (15) induces a non empty credal set if the marginals credal sets
are not empty, i.e. ∃𝑃𝑋 ⩾ 𝑃𝑋, ∃𝑃𝑌 ⩾ 𝑃𝑌 =⇒ ∃𝑃𝑋𝑌 = 𝑃𝑋 × 𝑃𝑌 ⩾ 𝑃𝑎𝑔𝑔 due
to the fact that it is true for any precise probability. It follows that for all
copulas 𝐶 such that 𝐶Π (𝑢, 𝑣) = 𝑢 × 𝑣 ⩾ 𝐶 (𝑢, 𝑣), we have

𝑃𝑋𝑃𝑌 ⩾ 𝐶 (𝑃𝑋, 𝑃𝑌 ) = 𝑃𝑎𝑔𝑔 =⇒ M(𝑃𝑎𝑔𝑔) ≠ ∅ (16)

In the following sections, we will refer to the credal set generated by aggre-
gating directly two univariate lower probabilities with a copula 𝐶 as:

M𝑎𝑔𝑔 (𝐶, 𝑃𝑋, 𝑃𝑌 ) = {𝑃𝑋𝑌 | 𝑃𝑎𝑔𝑔 = 𝐶 (𝑃𝑋, 𝑃𝑌 ) ⩽ 𝑃𝑋𝑌 } (17)

or M𝑎𝑔𝑔 for short, and we will note 𝑃𝑎𝑔𝑔 its lower envelope.
We have defined three different ways to apply copulas to probability sets.

In general, they will generate different, incomparable probability sets. Also,
while M𝑅𝑜𝑏𝑢𝑠𝑡 is probably the most well-grounded way to extend copulas, it
may generate a complex set, while M𝑚𝑎𝑠𝑠 is guaranteed to be a belief function
and M𝑎𝑔𝑔 is easy to compute and generate. In the next section, we study
different special cases where those sets enjoy some specific relationships.
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4 Special cases

This section explores what happens when considering the product copula,
and when marginal models are both necessity measure or p-boxes.

Product Copula: In the case of the product copula, it is known (Couso
et al., 2000) that all 𝑃𝑟𝑜𝑏𝑢𝑠𝑡 , 𝑃𝑚𝑎𝑠𝑠 and 𝑃𝑎𝑔𝑔 factorize over Cartesian prod-
ucts, i.e., ∀ (𝐴, 𝐵) ⊆ X × Y, 𝑃(𝐴 × 𝐵) = 𝑃𝑋 (𝐴) × 𝑃𝑌 (𝐵). It is also known
(Couso et al., 2000) that M𝑅𝑜𝑏𝑢𝑠𝑡 ⊆ M𝑚𝑎𝑠𝑠, with the inclusion being some-
times strict. Also, as M𝑎𝑔𝑔 is the largest credal set enjoying this factorisation
properties, we necessarily have

M𝑅𝑜𝑏𝑢𝑠𝑡 (𝐶Π , 𝐵𝑒𝑙𝑋, 𝐵𝑒𝑙𝑌 ) ⊆ M𝑚𝑎𝑠𝑠 (𝐶Π , 𝐵𝑒𝑙𝑋, 𝐵𝑒𝑙𝑌 ) ⊆ M𝑎𝑔𝑔 (𝐶Π , 𝐵𝑒𝑙𝑋, 𝐵𝑒𝑙𝑌 )

therefore having strong relationships in the case of the product copula3.

Necessity functions: Let us first compare M𝑎𝑔𝑔 and M𝑚𝑎𝑠𝑠. In the case
of necessity functions, a natural ordering ⩽𝑛𝑎𝑡 between focal elements exists
which corresponds to the inclusion ordering. Because of this, it holds that∑

𝑘⩽𝑛𝑎𝑡 𝑖
∑

𝑙⩽𝑛𝑎𝑡 𝑗 𝑚𝑋𝑌 (𝑎𝑘×𝑏𝑙) =
∑

𝑎𝑘 ⊆𝑎𝑖
∑

𝑏𝑙⊆𝑏 𝑗
𝑚𝑋𝑌 (𝑎𝑘×𝑏𝑙) and thus computing

the belief function 𝐵𝑒𝑙𝑋𝑌 defined in (14) on all focal elements 𝑎𝑖 of 𝑁𝑒𝑐𝑋 and
𝑏 𝑗 of 𝑁𝑒𝑐𝑌 yields:

𝐵𝑒𝑙𝑋𝑌 (𝑎𝑖 × 𝑏 𝑗 ) = 𝐶
(
𝑁𝑒𝑐𝑋 (𝑎𝑖), 𝑁𝑒𝑐𝑌 (𝑏 𝑗 )

)
Thus the lower envelope of M𝑎𝑔𝑔 and M𝑚𝑎𝑠𝑠 coincide on the Cartesian prod-
ucts of events. Since M𝑎𝑔𝑔 is again the largest set with this lower envelope,
we do have M𝑚𝑎𝑠𝑠 ⊆ M𝑎𝑔𝑔 in the case of necessity functions. However, as
show the next example, there is no reason in general for

M𝑎𝑔𝑔 ⊆ M𝑅𝑜𝑏𝑢𝑠𝑡 nor M𝑎𝑔𝑔 ⊇ M𝑅𝑜𝑏𝑢𝑠𝑡

Example 2 Consider two necessity function 𝑁𝑒𝑐𝑋, 𝑁𝑒𝑐𝑌 defined over X =

{𝑥1, 𝑥2} and Y = {𝑦1, 𝑦2} respectively, s.t 𝑁𝑒𝑐𝑋 (𝑥1) = 𝑁𝑒𝑐𝑌 (𝑦2) = 0 and
𝑁𝑒𝑐𝑋 (𝑥2) = 𝑁𝑒𝑐𝑌 (𝑦1) = 0.9. Let us first consider the  Lukasiewicz copula
𝐶 (𝑢, 𝑣) = 𝑚𝑎𝑥(0, 𝑢 + 𝑣 − 1) and events 𝑥2 × 𝑦1. It is possible to show that on
those events 𝑃𝑅𝑜𝑏𝑢𝑠𝑡 = 0.9 > 0.8 = 𝑃𝑎𝑔𝑔.

If we consider the Minimum copula 𝐶 (𝑢, 𝑣) = min(𝑢, 𝑣), then taking any
(𝑃𝑋, 𝑃𝑌 ) verifying 𝑃𝑋 (𝑥1) = 0.1 and 𝑃𝑌 (𝑦1) = 0.9 and computing 𝑃𝑎𝑔𝑔 and
𝑃𝑋𝑌 ∈ M𝑅𝑜𝑏𝑢𝑠𝑡 over event 𝑥2×𝑦1 yields 𝑃𝑎𝑔𝑔 (𝑥2×𝑦1) = 0.9 and 𝑃𝑋𝑌 (𝑥2×𝑦1) =
0.8. Thus it holds that on those events 𝑃𝑎𝑔𝑔 = 0.9 > 0.8 ⩾ 𝑃𝑅𝑜𝑏𝑢𝑠𝑡 .

P-boxes When considering uncertainty represented by two p-boxes [𝐹𝑋, 𝐹𝑋],
[𝐹𝑌 , 𝐹𝑌 ] , it does not hold in general that M𝑅𝑜𝑏𝑢𝑠𝑡 ⊆ M𝑎𝑔𝑔 nor M𝑅𝑜𝑏𝑢𝑠𝑡 ⊇

3 In this case, M𝑚𝑎𝑠𝑠 is insensitive to re-ordering, as 𝐶Π corresponds to the uniform
distribution over [0, 1]2



8 Roman Malinowski, Sébastien Destercke

M𝑎𝑔𝑔. We refer to example 2 when considering the p-boxes induced from
necessity functions as in Baudrit and Dubois (2006). It however holds that
(Appendix A):

M𝑅𝑜𝑏𝑢𝑠𝑡 (𝐶, 𝐵𝑒𝑙𝑋, 𝐵𝑒𝑙𝑌 ) ⊆ M𝑚𝑎𝑠𝑠 (𝐶, 𝐵𝑒𝑙𝑋, 𝐵𝑒𝑙𝑌 )

5 Conclusion

We presented different methods for joining uncertainty models with a copula:
a robust method, a method based on cumulated masses, and a method using
the copula as a direct aggregation operator. We showed that in the special
case of the product copula, the lower probabilities coincide on Cartesian
products. When using necessity functions, the aggregated lower probability
coincides with the cumulated masses one on Cartesian products, and when
using p-boxes we showed that the credal set obtained with the robust method
is included in the credal set of the cumulated mass approach.
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Appendix A

We define the pseudo-inverse of a CDF 𝐹 as 𝐹−1 (𝛼) = min{𝑥 |𝐹 (𝑥) = 𝛼}. In
the continuous case we have

𝑃𝑋𝑌 (𝐴𝑋, 𝐴𝑌 ) =
∫
𝑎∈𝐴𝑋

∫
𝑏∈𝐴𝑌

𝑑𝐹𝑋𝑌 (𝑎, 𝑏)

=

∫ 1

𝛼=0

∫ 1

𝛽=0
I(𝐹−1

𝑋 (𝛼) ∈ 𝐴𝑋&𝐹−1
𝑌 (𝛽) ∈ 𝐴𝑌 )𝑑𝐶 (𝛼, 𝛽)

𝐵𝑒𝑙𝑋𝑌 (𝐴𝑋, 𝐴𝑌 ) =
∫ 1

𝛼=0

∫ 1

𝛽=0
I( [𝐹−1

𝑋 (𝛼), 𝐹−1
𝑋 (𝛼)] ⊆ 𝐴𝑋&[𝐹−1

𝑌 (𝛽), 𝐹−1
𝑌 (𝛽)] ⊆ 𝐴𝑌 )𝑑𝐶 (𝛼, 𝛽)

If a p-box [𝐹, 𝐹] and one of its CDF 𝐹 are continuous, then we know that:

∀𝛼 ∈ [0, 1], 𝐹−1 (𝛼) ⩽ 𝐹−1 (𝛼) ⩽ 𝐹−1 (𝛼)

Thus under hypothesis of continuity:

∀𝛼, 𝛽 ∈ [0, 1],
{
[𝐹−1

𝑋 (𝛼), 𝐹−1
𝑋
(𝛼)] ⊆ 𝐴𝑋

[𝐹−1
𝑌 (𝛽), 𝐹−1

𝑌
(𝛽)] ⊆ 𝐴𝑌

=⇒
{
𝐹−1
𝑋

(𝛼) ∈ 𝐴𝑥

𝐹−1
𝑌

(𝛽) ∈ 𝐴𝑌

which implies

I( [𝐹−1
𝑋 (𝛼), 𝐹−1

𝑋 (𝛼)] ⊆ 𝐴𝑋&[𝐹−1
𝑌 (𝛽), 𝐹−1

𝑌 (𝛽)] ⊆ 𝐴𝑌 ) ⩽ I(𝐹−1
𝑋 (𝛼) ∈ 𝐴𝑋&𝐹−1

𝑌 (𝛽) ∈ 𝐴𝑌 )

and thus
𝐵𝑒𝑙𝑋𝑌 (𝐴𝑋, 𝐴𝑌 ) ⩽ 𝑃𝑋𝑌 (𝐴𝑋, 𝐴𝑌 )
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