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Abstract

In this paper we investigate, numerically, unsteady Poiseuille flow of an elastoviscoplastic fluid. The material
is described by the rheological model by Putz and Burghelea [1]. The model can describe an elastic solid
regime for low stresses, a solid-fluid phase of stresses in the vicinity of the yield stress and a fully fluid
regime for large stresses. We impose a time dependent pressure ramp with the form of a triangular function
to drive the flow. We compare average velocity across the pipe as a function of pressure drop for different
slip laws. We find that the solid-fluid transition is correlated to the slip-law used in the computations but
the boundary conditions do not affect neither the deformation-rates nor stress at the bulk and the wall.

Keywords: Unsteady Flow, Elastoviscoplastic, Slip law.

1. Introduction

A broad class of materials exhibit a dual response when subjected to an external stress. For low applied
stresses they behave as solids (loosely speaking they may deform but no macroscopic flow is observed) but,
if the stress exceeds a critical threshold generally referred to as the "yield stress", they behave as fluids
(typically non-Newtonian) and a macroscopic flow is observed. This distinct class of materials has been
termed as "yield stress materials" and, during the past several decades it attracted a constantly increasing
level of interest from both theoreticians and experimentalists. The motivation behind this increasing level
of interest is two-fold. From a practical standpoint, such materials have found a significant number of
applications in several key industries (which include food, cosmetics, pharmaceutical, oil field engineering,
etc.) and they are encountered in daily life in numerous forms such as food pastes, hair gels and emulsions,
cement, mud etc.. More recently, hydrogels which exhibit a yield stress have found a number of future
promising applications including targeted drug delivery [2, 3], contact lenses, noninvasive intervertebral disc
repair [4] and tissue engineering [5].

From a fundamental standpoint, yield stress materials continue triggering intensive debates and posing
difficult challenges to both theoreticians and experimentalists from various communities: soft matter physics,
rheology, physical chemistry and applied mathematics. The progress in understanding the flow behaviour of
yield stress materials made the object of several review papers [6, 7, 8, 9]. The best known debate concerning
the yield stress materials is undoubtedly that related to the very existence of a "true" yield stress behaviour
[10, 11]. During the past two decades, however, a number of technical improvements of the rheometric
equipment made possible measurements of torques as small as 0.1n Nm and of rates of deformation as small
as 10−7 s−1). Such accurate rheological measurements proved unequivocally the existence of a true yielding
behaviour [1, 12, 13]. The physics of the yielding process itself on the other hand remains elusive. The
macroscopic response of yield stress fluids subjected to an external stress σ has been classically described
by the Herschel-Bulkley model [14, 15]:

σ = σy +Kγ̇n (1)
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Here σy is the yield stress, γ̇ is the rate of shear, i.e., the rate at which the material is being deformed, σ
is the macroscopically applied stress (the external forcing parameter), K is a so-called consistency parameter
that sets the viscosity scale in the flowing state and n is the power law index which characterises the degree
of shear thinning of the viscosity beyond the yield point.

Materials that have a yield-stress are known to slip when the vessel where they are being deformed has
a smooth surface, [16]. In his seminal work, Navier [17] was the first to propose a slip model where the
velocity at the wall is linearly proportional to the wall shear stress:

uw = βτw (2)

where β is the slip coefficient and it is related to the width of the slip layer. Evidence of a non-linear
relation between slip velocity and wall shear stress has driven researchers, see [18, 19, 20, 21], to generalise
Navier’s law to a power-law type of model of the form:

uw = β(τw)m. (3)

Experimental evidence of a “stick-slip” behaviour has been found for several materials under different
flow conditions, see [20, 22, 23, 24, 25]. In this model, slip only occurs when a Columbic type of friction
term called slip yield stress is exceeded at the wall. Several authors have proposed different ways to model
this “stick-slip” condition.

In [20] Hatzikiriakos and Dealy used a Bingham type equation for the slip velocity

uw =

{
ατmw τw > τy,w

0 τw ≤ τy,w,
(4)

where τy,w is the slip yield stress. Equivalent formulations to 4 have been used by several groups for analytical
and numerical investigations, see [26, 27, 28]. In [29], Roquet and Saramito proposed a continuous version
of (4):

uw = −max

(
0, β − τy,w

|τw|

)
τw. (5)

Here β is the reciprocal of a friction dissipation coefficient. In this work we consider and equivalent
formulation of (5).

Flows involving slip have been studied for decades. For this work we concentrate in studies that involved
flows with a stick-slip law or viscoplastic fluids with slip at the wall. Georgious and Kaoullas, [27, 28]
studied Poiseuille flow of a Newtonian fluid in a square and triangular ducts with stick-slip law at the wall.
Depending on the value of the pressure drop applied they describe different flow regimes. For axisymmetric
flow two regimes exist, slip along all the boundary above and no slip at the wall. When the symmetry
condition is broken, one extra regime can be found, only in a partial section of the boundary the wall shear
stress exceeds the slip yield stress.

Poiseuille flows of viscoplastic materials in a square duct with a stick-slip law were first investigated by
Roquet and Saramito in [29]. They found that depending on the ratio between slip yield stress and bulk
yield stress (S) and the intensity of the pressure drop the flow can be characterised in the following way:
i) If S < 0.7, the flow may be arrested, the fluid moves as a rigid solid (block translation) and flow in the
bulk while full slip at the wall. ii) Similarly, if 0.7 ≤ S ≤ 1 there is a no flow regime, flow in the bulk with
partial slip at the wall and flow in the bulk with total slip at the wall. iii) When S > 1, we have the same
regimes as in (ii) with the addition of a regime between no flow and flow with partial slip, flow in the bulk
with no slip at the wall.

Damianou and Georgiou studied viscoplastic Poiseuille flow in a rectangular duct with wall slip in [30]
and found similar results as in the square duct case of Roquet and Saramito [29].

Yoshimura and Prud’homme, were the first model model unsteady pipe flows of a Bingham fluid with
an elastic solid core following Hooke’s law [31]. Similar studies concerning with different flow configurations
and forcing have been reported recently, [32, 33]. However, a systematic analysis of the coupling between the

2



solid-fluid transition and the wall slip behaviour typically observed in experiments is, to our best knowledge,
missing. This sets the global scope of the present contribution.

2. Elastoviscoplastic model with internal microstructure

Prior to discussing the elasto-viscoplastic model, we will briefly recall several key rheological features of
the physical gel used in the experiments reported in Ref. [16]. The material used was an aqueous solution
of Carbopol 980 neutralised by adding the right amount of sodium hydroxide. The details of the procedure
used to prepare the gel sample are given in Ref. [16]. The macro-rheological characterisation of the solution
was performed using a commercial rotational rheometer (Mars III from Thermofischer scientific) equipped
with nano-torque module. The instrumental accuracy of the device is roughly 0.5nN m for the torque
measurements and 10−5 s−1 for the shear rate. We have used a plate plate geometry with a gap d = 1 mm.
To prevent the wall slip during the rheological tests, both plates have been covered with sand-paper and
the inertia of the geometry re-calibrated. To test the absence of wall slip effects, we have repeated the
measurements for several values of the gap d and found no visible difference.

As a protocol, we have used an increasing/decreasing controlled stress stepped ramp as shown in Fig.
1(a) and defined by:

σ(t) = σmax

−2N + 1 +
∑N

k=0,t0
H(t− k) +

∑2N
k=N+1,t0

H(k − t)
N

(6)

Here H stands for the Heaviside step function, t0 is the duration of each step (to be further referred to as the
"characteristic forcing time") of the ramp and Tmax = N t0 is the total duration of the loading/unloading
branches of the ramp. As we are interested in case of unsteady forcing, the characteristic forcing time was
rather small, t0 = 5 s (see the inset in Fig. 1(a)). The largest value of the applied stress σmax has been
chosen such as the entire material was yielded. A representative result of such test is presented in Fig. 1(b).
The error bars have been obtained by repeating the rheological test three times.

The rheological response of the material to such an unsteady forcing is illustrated in Fig. 1(b) which
presents the dependence of the absolute value of the rate of shear |γ̇| on the applied stress σ. Several
important features of the response of the Carbopol gel to the unsteady forcing already highlighted and
systematically reproduced in several subsequent papers [1, 34, 35, 36, 37, 38, 39, 40, 41] can be noted as
follows:

1. The transition from an elastic solid regime (S) that can be described by the Hooke’s law σ = Gγ
(where γ is the strain) to a fully fluidised regime (F) that can be accurately described by the Herschel-
Bulkley law given by Eq. 1 (the dotted line in Fig. 1(b)) is not direct but mediated by an intermediate
deformation regime (S+F) where the solid and the purely viscous behaviours coexist.

2. The solid fluid transition is reversible upon increasing/decreasing control parameter (the externally
applied stress stress) only within the fluid deformation regime (F). Within the solid and solid-fluid
coexistence regime (S+F) a clear hysteresis is observed. This type of irreversible behaviour has been
observed for a number of chemically different yield stress materials, [35] which indicates that it is
rather universal. The magnitude of the hysteresis or the power per unit volume of material that is
not recovered upon the loading/unloading of the sample decays algebraically with the characteristic
forcing time t0, [1]. Thus, in the asymptotic limit of steady forcing t0 → ∞, the Carbopol gels do
recover their status of "model" yield stress materials.

3. On the decreasing branch of the controlled stress ramp (the full symbols in Fig. 1(b)) an elastic recoil
is observed in the form of a cusp marked by a full red circle. At this point, the rate of deformation
becomes negative, i.e. the sense of rotation of the rheometer shaft is reversed.

Although Carbopol gels have been considered "model" yield stress fluids, the features enumerated above
indicate that this is not entirely the case as they exhibit both a weak thixotropic behaviour and some
elasticity around the onset of the solid-fluid transition.
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However, this conclusion is still subjected to a fair amount of controversy within the viscoplastic commu-
nity. Recently, Dinkgreve and her coworkers have argued that these weakly thixotropic effects solely occur
if the Carbopol gel is over-stirred during the preparation (more precisely during the neutralisation phase)
which, according to them, results in an irreversible damage of its microstructure leading to an irreversibility
of the deformation states, [42]. In an even more recent paper, however, it is demonstrated just the contrary:
gently stirred (during the neutralisation phase) Carbopol gels still exhibit the weakly thixotropic and elastic
behaviour highlighted above, [41] (see Fig. 2(a) therein). A second very important claim made in Ref. [42]
is that the thixotropic behaviour of the over-stirred Carbopol (particularly the hysteresis behaviour) can be
modelled by the simple λ - model proposed by Coussot and co-workers, [43] (see Fig. 7 in Ref. [42]). A
first counter-proof of this claim is trivial: thixotropic or not, any Carbopol gels exhibits a shear-thinning
behaviour beyond the yield point while the λ - model predicts a constant (Newtonian) viscosity far above
the yield point. We are simply not aware of any experimental paper that shows a constant viscosity of a
Carbopol gel in a fully yielded state. The second counter proof relates to the fact that the λ - model has no
elasticity embedded whereas it is common knowledge that, prior to the solid-fluid transition, Carbobol gels
behave as Hookean solids. To conclude this part, contrary to what is shown in Fig. 7 of Ref. [42], the flow
curve of a Carbopol gel can not be described by the simple λ - model.

To describe the yielding behaviour of a Carbopol gel we will resort to the phenomenological model
proposed in [1, 37]. The flow of an elastovisplastic fluid is described by the following set of equations with
unknowns (p,u, τ ,Φ):

ρ

(
∂u

∂t
+ (u ·∇)u

)
= −∇p+ ∇ · τ (7)

∇ · u = 0, (8)

where u is the velocity field, p the pressure, and τ is the stress tensor. The constitutive equation for the
model is:

τ + λ(γ̇,Φ)
O
τ= µ (γ̇(u)) γ̇, (9)

where
O·= D·

Dt
−∇u · − ·∇uT

is the Upper-Convected-Derivative, D · /Dt is the usual material derivative,

λ(γ̇,Φ) =
µ (γ̇(u))

G
Φ

is the relaxation time, G is the elastic modulus, and γ̇ = γ̇(u) is rate of strain tensor.
Finally, the concentration of the solid state, Φ, satisfies the following kinematic equation:

∂Φ

∂t
+ (u ·∇)Φ = Rd(Φ, τ(u)) +Rr(Φ, τ(u)), (10)

with Rd being the rate of destruction of solid units and Rr is the rate of fluid recombination of fluid elements
into a gelled structure.

Note that when Φ ≡ 1 the model describes a White-Metzner viscoelastic fluid and if Φ ≡ 0 the model
represents a Generalized Newtonian fluid.

In both (9) and (10), γ̇ and τ are the second invariant of the rate of strain and stress tensors respectively.
These are defined as follow:

γ̇(u) =

1

2

3∑
i,j=1

[γ̇ij(u)]2

1/2

, τ(u) =

1

2

3∑
i,j=1

[τij(u)]2

1/2

.
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2.1. Choice of functions for nonlinear viscosity, destruction rate and recombination rate.
The choices for the nonlinear viscosity µ(γ̇) and the destruction and recombination rate functions are

presented below. We note that the choices are clearly non unique in this type of phenomenological models.
The description of the rates of destruction and recombination is rather empirical. However, it has been shown
both qualitatively and quantitatively from first principles that the choices for destruction and recombination
functions presented in [1, 37] can describe a yield stress material [38, 44, 39] . Below we present the full
model.

2.1.1. Non-linear viscosity µ(γ̇)

The fluids we are interested in present a yield stress. As discussed in Sec. 2, the transition from an
elastic solid behaviour (unyielded) to a fluid behaviour (yielded) is not direct but mediated a regime where
solid and fluid behaviour coexist (S+F). Given the fact that in our case yielding is a smooth process we
choose as viscosity function the regularised Herschel-Bulkley model:

µ(γ̇) =

(
κγ̇n−1 +

τy(1− exp(−mγ̇)

γ̇

)
, (11)

where κ is the consistency of the material, n < 1 is the power law index, and τy is the yield stress and
m� 1 is the regularisation parameter.

2.1.2. Rd and Rr

As in [1, 37] we have:

Rd(Φ, τ(u)) = −g(τ(u))Φ, (12)

with
g(τ(u)) = Kd

(
1 + tanh

(
τ(u)− τy

w

))
, (13)

and
Rr(Φ, τ(u)) = f(τ(u))(1− Φ), (14)

with
f(τ(u)) = Kr

(
1− tanh

(
τ(u)− τy

w

))
. (15)

Here Kd and Kr are the rate of destruction and rate of recombination with units s−1, w determines the
width of the solid-fluid region and has units Pa.

The model reduces to:

dΦ

dt
= −g(τ)Φ + f(τ)(1− Φ), (16)

µ(γ̇)

G
Φ
dτ

dt
+ τ = µ(γ̇)γ̇. (17)

In order to find the best set of parameters that accurately fit the controlled stress ramps data with the
model presented above, we have written a nested function program in Matlab. The main function uses the
built-in function lsqnonlin which solves nonlinear least-squares fitting problems using a trust-region-reflective
algorithm. As input we provide an initial guess for the parameters vector, the target data (see the symbols
in Fig. 1(b)) and a function which first solves the equation 16 for Φ using the built-in function ode15s in
Matlab and then solves Eq. 17 for γ̇ using the built-in function fzero in Matlab. The output of the main
function is a vector with the optimal parameter values. We note that we fitted the increasing/decreasing
branches of the flow ramp were fitted separately in order to properly capture the hysteresis behaviour visible
in Fig. 1(b) within the (S) and (S+F) deformation regimes. The best fitting functions obtained according
to this procedure are shown in Fig. 1(b) as full lines.
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Figure 1: 1(a) Controlled stress ramp used for the rheological characterisation of the gel. The characteristic forcing time is
t0 = 5 s. The inset presents a magnified view. 1(b) Dependence of the modulus of the shear rate |γ̇| on the applied stress
σ measured for increasing/decreasing stresses, empty/full symbols respectively. The dotted line is a Hereschel-Bulkley fit
according to Eq. (1). The full symbol marks the point when an elastic recoil is observed (γ̇ changes sign). The full lines are
the best fit obtained using the elasto-viscoplastic model. The symbols (S), (F) stand for solid, fluid respectively.

The fitting functions shown in Figure 1(b) confirm that we can fully reproduce all the main features of
the unsteady rheological behaviour quite accurately. Note that when τ < τy µ(γ̇) � 1, and by dominant
balance, equation (17) approximates the definition of a viscoelastic solid.

Due to its ability to fit very well the response during loading/unloading ramps, we will resort to this
model later through the paper in order to describe the laminar unsteady pipe flow with various wall slip
conditions.

3. Problem description

As already stated in the Introduction, we numerically approximate the unsteady flow of an elasto-
viscoplastic fluid in a circular pipe at low Reynolds number and compare the results with the experimental
findings reported in Ref. [16]. The experiments were performed in a glass tube with a circular cross-section
and a radius R = 1.9 mm and a length L = 115 cm.

The unsteady flows are driven by a pressure drop varying in time as schematically illustrated in Fig.
2(a). This unsteady forcing scheme closely mimics the stepped stress ramp used during the rheological tests
discussed in Sec. 2. The experiments were performed for several values of the time per pressure step t0
ranging from 4 s to 15 s.

We illustrate in Fig. 2(b) time averaged transversal profiles of the axial velocity measured for the largest
value of t0 corresponding to a steady state (the data is replotted from Fig. 4(c) of Ref. [16]). Here Us

stands for the slip velocity, Up stands for the velocity of the rigid plug located around the centre-line of the
tube and Uav is the velocity averaged across the channel. As we are in the case of a steady forcing (large
t0), the transverse profiles of the time averaged velocity are reproducible upon increasing/decreasing the
pressure drop consistently with a reversible flow regime (the full and empty symbols in Fig. 2(b) overlap).
The reproducibility of the velocity profiles in the steady state limit is consistent with the power law decay
of the hysteresis of the rheological flow curves with respect to the characteristic forcing time t0, [1].

The velocity profiles displayed in Fig. 2(b) are consistent with the theoretical picture of a laminar
and steady flow behaviour of a viscoplastic fluid in a tube. Following [45] and in the framework of the
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Figure 2: 2(a) The controlled pressure ramp used to generate the unsteady flows studied in Ref. [16]. The characteristic forcing
time was t0 = 5 s. 2(b) Example of steady state transversal profiles of the time averaged axial velocity measured for both
increasing (full symbols) and decreasing (empty symbols) driving pressures ∆p. The solid red curve corresponds to (18).

Herschel-Bulkley model the steady state velocity profile can be formally 1 fitted by (the full line in Fig.
2(b)):

U(r) = Us +

(
n

n+ 1

)(
1

2K
· ∆p

L

) 1
n

(R−Rp)
1
n+1

[
1−

(
r −Rp

R−Rp

) 1
n+1

]
(18)

Here Rp is the radius of the un-yielded plug. The slip velocity was measured by either extrapolating the
fit given by Eq. (18) at the wall when a reliable fit could be obtained (i.e. at larger driving pressures when
the viscoplastic profile is developed) or by extrapolation of a spline interpolation function.

3.1. Non-dimensionalisation
We have unsteady unidirectional flow hence, we non-dimensionalise our equations as follow:

r = r̂R, z = ẑL, t = t̂tc, u = ûuc, p = p̂
∆pR

ρu2c
, τ = τ̂κ

(uc
R

)n
.

From our experimental results we can see that the right characteristic scale for time is the “yielding”
time which we define tc = γ̇−1

c , hence the natural characteristic velocity scale is then defined as uc = γ̇c ∗R.
The scaling for the physical parameters in (10) is:

Kd = K̂dγ̇
−1
c , Kr = K̂rγ̇

−1
c , w = ŵκ

(uc
R

)n
.

Substituting all this into equations (7)-(10) and dropping hats for simplicity we have our unsteady one
dimensional problem:

1Note that the slip term Us is not accounted for in [45] which discusses the slip-free case and has been formally added here
to describe the measured transverse velocity profiles.
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∂u

∂t
= −dp

dz
+

1

Re

1

r ∂r
(rτrz) (19)

Weµ(γ̇)Φ
∂τrz
∂t

+ τrz = µ(γ̇)
∂u

∂r
(20)

Weµ(γ̇)Φ
∂τzz
∂t

+ τzz = 2Weµ(γ̇)Φτrz
∂u

∂r
(21)

dΦ

dt
= −g(τ)Φ + f(τ)(1− Φ) (22)

where
γ̇ =

∣∣∣∣∂u∂r
∣∣∣∣ , Re =

ρucR

η
, We =

ηuc
RG

and η = κ
(uc
R

)n−1

Here

µ(γ̇) =

(
γ̇n−1 +

B(1− exp(−mγ̇)

γ̇

)
g(τ) = Kd

(
1 + tanh

(
τ −B
w

))
f(τ) = Kr

(
1− tanh

(
τ −B
w

))
with

B =
τyR

ucη
and τ =

(
1

2
(τ2zz + 2τ2rz)

)1/2

and boundary condition at the wall,
u = F (τw).

Note that F (τw) can be equal to zero in the case of no-slip condition.

3.2. Boundary conditions
In [16], the authors showed that flow irreversibility is strongly coupled with wall slip. Even though they

propose a non-linear Navier-slip law to model the behaviour at the wall, they acknowledge that due to the
non-negligible level of scatter of their data more investigation in order to describe the relation between flow
properties, wall slip and microstructure is needed. Hence, for the rest of the paper we consider four different
boundary conditions (no-slip/slip laws).

3.2.1. Slip Laws
For all our numerical simulations, we will consider the following cases at r = 1.

• No slip (NS)
uw = 0. (23)

• Navier slip (S1)
uw = βτrz,w. (24)

• Power law Navier slip less than one (S2), [21]

uw = βτ1/3rz,w. (25)

• Power law Navier slip greater than one (S3), [16]

uw = βτ3/2rz,w. (26)
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• Continuous “stick-slip” law (S4), [29]

uw = max

(
0, 1− Bw

|τrz,w|

)
βτrz,w. (27)

where
Bw =

τy,wR

Uη

is the slip Bingham number and τy,w is the slip yield stress.

4. Numerical method

Equations (19)-(22) are discretised using a second order finite difference scheme in space and a first order
implicit scheme in time. We assume symmetry of our velocity profile and solve for r ∈ [0, 1]. The nonlinear
system is presented below:

uji − u
j−1
i

∆t
= f(ti) +

1

Re

1

ri+1/2

(
ri+1τ

j
rz,i+1 − riτ

j
rz,i

2∆r

)
(28)

Wekµ
j
iΦ

j
i

(
τ jrz,i − τ

j−1
rz,i

∆t

)
+ τ jrz,i = µj

i

(
uji+1 − u

j
i−1

2∆r

)
(29)

Wekµ
j
iΦ

j
i

(
τ jzz,i − τ

j−1
zz,i

∆t

)
+ τ jzz,i = 2Wekµ

j
iΦ

j
i τ

j
rz,i

(
uji+1 − u

j
i−1

2∆r

)
(30)

Φj
i − Φj−1

i

∆t
= Kr

(
1− tanh

(
τ ji −B
w

))
(1− Φj

i )−Kd

(
1 + tanh

(
τ ji −B
w

))
Φj

i (31)

with symmetry condition at r = 0 and one of (23)-(27) at r = 1.
We solve the system of nonlinear equations (28)-(31) using a fixed-point algorithm at each time step.

For all our calculations we set ∆r = 5 × 10−3 and ∆t = 10−5. As we start from a quiescent state, all our
initial conditions are zero at t = 0.

5. Results

For all the simulations presented below we use the following parameter values in agreement with the
parameters that refer to the experiments reported in Ref. [16]: R = 1.9mm, L = 1.15 m, ρ = 990 kg/m3,
κ = 0.118 Pas−n, τy = 0.65 Pa, τy,w = 0.2 Pa, Gup = 100 Pa, Gdown = 20 Pa, n = 0.77, ∆p = 3000

Pa, γ̇c = 0.02 s−1, uc = 3.8 · 10−5 m/s, tc = 1/γ̇c = 50 s and β̂ = 5 · 10−5 m/(Pas)a. The regularisation
parameter for the viscosity function is fixed at m = 500. Note that here a = 1/3, 1, 3/2 depending which
slip law we choose. For simplicity we use the same value for β̂ for all slip cases. For most of our results we
fix our forcing time t̂0 = 2 s.

Hence our nondimensional parameters are: Re = 2.4634 × 10−5, Weup = 5.8033 × 10−5, Wedown =
2.9017 × 10−4, B = 112.0052, Bw = 34.4631, m = 500, Kr = 20, Kd = 1, w = 0.1 and β = 0.076 and
t0 = 0.04.

In Figure 3 we present the absolute value of the velocity averaged along the transversal flow direction as
a function of pressure drop ∆p. This is allows us to directly compare the response of the material to the un-
steady pressure forcing in the tube with the macro- rheological response to the unsteady loading/unloading.
In the absence of slip at the wall (the curve denoted by ◦), the dependence is qualitatively similar to that
obtained from macro-rheological measurements illustrated in Fig 1(b). For low values of ∆p the velocity
is almost constant for both the increasing and the decreasing branch of the pressure ramp which is clear
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Figure 3: Dependence of the average velocity Uav on the driving pressure drop ∆p for several slip conditions: ◦ -NS, � -S1, /
-S2, . S3. Symbols mark the instant where Uav changes sign.
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Figure 4: Uav vs ∆p. NS-◦ and S4-∗. Symbols mark the instant where Uav changes sign.
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Figure 5: Dependence of the plug radius Rp on the driving pressure drop for increasing (broken line) and decreasing (full line)
∆p. The black full line is the analytical solution according to the Herschel-Bulkley model, Rp = 2Lτy∆p−1.

signature of full plug flow. For very small values of the pressure drop corresponding to the start up to the
flow transient elastic effects are visible.

As the pressure drop is gradually increased, the flow fully develops. For large values of ∆p the material
behaves as a shear thinning fluid. Note that for non-slip and slip laws (24)-(27) we get the same response
of the material for ∆p ≤ 10Pa and for ∆p ≥ 900Pa. The main difference between the no slip and slip cases
is observed within the solid-fluid transition region. This indicates a direct coupling between the solid-fluid
transition and the slip behaviour. For slip laws (24)-(26) the dependence of the average speed on the driving
pressure follows a power law. An inflexion point is present at the boundary of the solid-fluid and fluid regions.
This dependence is more evident as the exponent in the slip law increases and is fully consistent with the
macro-rheological measurements (see Fig. 3(a) in Ref. [16]). As in the macro-rheological experiments, the
presence of wall slip leads to a shift of the solid-fluid transitional region towards lower values of the control
parameter. We note that for the “stick-slip” law (S4), this power-law behaviour in the solid-fluid region is
broken. To clearly demonstrate this we plot the results for (NS), (S1) and (S4) in Figure 4.

On a closer inspection, we may identify two distinct transitions when the slip law given by Eq. (27)
is used. For values of ∆p up to 200 Pa the fluid behaves as a Hookean solid. When the wall shear stress
exceeded the slip yield stress we get a non-linear relationship between the pressure drop and the velocity.
This can be easily explained if we consider now our slip coefficient β as a function of the wall shear stress,
i.e.

βs4(|τrz,w|) = βmax

(
0, 1− Bw

|τrz,w|

)
. (32)

Once we exceed the bulk yield stress the material behaves like a fluid and no clear difference between
the no slip and slip cases can be observed which is once more qualitatively consistent with both the macro-
rheological observations reported in Ref. [1] and the pipe flow experiments reported in [16].

Our simulations allow us to assess the extent of the central plug region. In Figure 5 we present the
dependence of the plug size Rp on the driving pressure drops ∆p. We chose to use Eq. (24) as slip law but
we note that the results are almost indistinguishable for all the slip laws we have considered through the

11



10
0

10
-3

10
-2

Figure 6: Hysteresis Area vs t0. NS-◦, S1-�, S2-/, S3-. and S4-∗

paper. In order to compute the size of plug Rp we find the region of our domain in which γ̇ < γ̇c = 1/tc. For
low values of ∆p this condition is satisfied over the entire domain, hence we have a rigid body downstream
motion of the material. As soon as the yield stress is overcome near the wall the plug size decreases and
the solid material no longer fills the whole pipe. In the up ramp we see that the plug has not a monotonic
decay for moderate values of the pressure drop, Rp increases until it reaches a local maximum and then
monotonically decreases like Ax−m withm = 0.67. The increase of the plug size could be related to the stored
elastic forces. Corresponding to the decreasing branch of the pressure ramp we observe a monotonic decrease
in Rp until the yielded material fills the pipe entirely. Within the transitional region, the dependence of
the pus size on the driving pressure drop is irreversible upon increasing/decreasing control parameter. This
irreversibility of the flow states originates into the irreversibility of the rheological flow curves illustrated in
Fig. 1(b) and discussed in Sec. 2.

An intrinsic feature of the solid-fluid bifurcation undergone by a yield stress material subjected to a grad-
ually increasing external forcing (e.g. the applied stress) is the emergence of a hysteresis of the deformation
states: generally, the loading/unloading deformation curves do not coincide within the transitional region.
Carbopol gels have been considered for over a decade a model yield stress fluids exhibiting a fully reversible
solid-fluid transition (no hysteresis of the deformation states that is practically no thixotropic effects), [46].
Yet, as recently demonstrated by the experiments presented in Ref. [16], Carbopol gels may also exhibit a
(relatively) weak thixotropic behaviour depending on the manner they are subjected to an external forcing.
Namely, a key feature not accounted for in the afore-mentioned classification is the steadiness of the forcing
i. e. the characteristic forcing time t0. While unsteadily forced (small values of t0) even Carbopol gels may
exhibit a weakly thixotropic behaviour. In the asymptotic limit of steady forcing t0 → ∞ the magnitude
of the hysteresis of the deformation states decays algebraically to 0 and the “model” yield stress behaviour
is recovered, [1]. A more fundamental understanding of the emergence of the hysteresis behaviour has been
achieved only recently, [38, 44, 39]. For the case of steady forcing, the hysteresis behaviour emerges only
when the level of interactions among the molecular constituents of the material exceeds a certain threshold
which is physically analogous to the Curie temperature of a magnetic system, [39]. As Carbopol gels are
neutral and thus weakly interactive at a molecular scale, no hysteresis is observed during steady-state rhe-
ological tests which is consistent with the rheological measurements presented in Ref. [1] and a large body
of previous studies. However, in the case of an unsteady forcing, a hysteresis behaviour will be observed
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regardless the magnitude of the molecular scale interactions. Consistently with this theoretical picture, the
laminar unsteady pipe flow experiments reported in Ref. [16] revealed a clear hysteresis behaviour with a
magnitude weakly decaying with the characteristic forcing time t0. The decay exponent of the hysteresis
area was, however, significantly smaller than the unitary value obtained from the unsteady rheometric tests
described in Ref. [1]. It was conjectured in Ref. [16] that this difference originates from the presence of wall
slip during the unsteady pipe flow experiments which was absent during the rheometric tests.

To test this, we plot the area of the hysteresis vs forcing time with t0 = 1, 2, 3, 4, 5, 6 for no-slip and
all the slip laws in Fig. 6. As we can see, the area of the hysteresis decays as a power law as we increase the
forcing time. The highest power corresponds to the no-slip case following a trend A ∝ t−1.48

0 . We have then
in order S1 to S3 with the following values A ∝ tmh

0 with mh = −1.3168, − 1.2549, − 1.1776 respectively.
For the “stick-slip” case we have mh = −1.3533. In experimental results presented in Ref. [16] we have
seen that having slip at the wall has the effect to greatly reduce the decay of the area of the hysteresis with
respect of forcing time. This does not happen with the current model and slip laws. Considering slip at the
wall certainly reduces the value of the exponent but clearly the model predicts a totally reversible steady
state as t0 →∞. This is inherited from equation (22). In the case of viscometric flow, our dynamical system
does not go through a bifurcation. We have only one stable fixed point for Φ which lies between zero and 1.
In the solid region we approximate a Hookean solid but never actually reach that state. We believe that in
order to weaken the dependence between the area of the hysteresis and the forcing time a modification of
the microstructure parameter equation is needed.

To further investigate the effects the slip-laws have on the flow we present in Figures 7 to 11 velocity
profiles (U vs r) and micro-structure parameter profiles (Φ vs r). The rows in the figures correspond to
different values of the pressure drop ∆p. In the first row we consider ∆p = 96Pa which corresponds to the
solid regime in Figure 2(a)a. In the second and third rows we set ∆p = 996Pa (solid+fluid) and ∆p = 3000Pa
(fluid). For all figures the forcing time is set to t0 = 2s. The full line corresponds to the increasing part
of pressure ramp and the broken line corresponds to the decreasing part. In all cases, see panels (a-b), for
∆p = 96Pa we observe back flow on the decreasing branch of the controlled pressure ramp and hence, the
model accurately predicts irreversible flow when |τ | ≤ τy. This is confirmed in panels (b) where we show the
microstructure parameter. As we can see, on the up ramp the material is fully structured whereas in the
down ramp it has not have time to fully recombine itself and we have Φ < 1 near the wall. In panels (c-d) and
(e-f) of all figures we plot the averaged velocity and microstructure profiles computed for ∆p = 996Pa and
∆p = 3000Pa respectively. In panels (c-d) we are just before recoil happens and we can see the early stages
of the irreversible flow, this is where the solid-fluid phase of the materials coexist. Note how in the down
ramp the material takes longer to reconstitute itself, a clear signature of hysteretic behaviour. In panels
(e-f) the material behaves like a shear-thinning fluid, the flow is fully reversible upon increasing/decreasing
pressures and we have weaker viscoelasticity.

At first glance, we see that the shape of the velocity and microstructure parameter profiles remains the
same for all boundary conditions. Not surprisingly, the only difference is a translation of the velocity profiles
which is governed by the law chosen at the wall. This explains why the point at which the back flow starts
is different for all boundary conditions. On the other hand, the microstructure remains unchanged for all
slip laws even though the irreversibility is present. This implies that stresses and deformation-rates must
remain the same irrespectively of the boundary conditions we impose. We can see that this is indeed the
case in Figure 12. In figure 12a we plot the absolute value of averaged shear-stress versus the averaged
shear-rate and similarly, in figure 12b, we present results of |γ̇w| vs |τw| for all slip-laws. Not surprisingly,
all curves collapse into one. An explanation might be that for this type of axisymmetric flow configuration,
the deformation-rates and stresses are dictated only by the bulk rheological constitutive relation and are
independent of what happens at the wall. Experimental results in [16] show that slip and macro-rheological
characterisation of a material are interconnected (flow curves and area of the hysteresis), hence in order to
accurately model this behaviour (for analytical/numerical studies), we need either a different constitutive
equation or a modified slip law.
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Figure 7: Velocity profiles (U) and micro-structure parameter (Φ) computed in the absence of wall slip for different values of
the driving pressure ∆p - (a) ∆p = 96 Pa, (b) - ∆p = 996 Pa, (c) - ∆p = 3000 Pa. Broken lines correspond to the up-ramp
and full lines correspond to the down-ramp of the pressure drop.
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Figure 8: Velocity profiles (U) and micro-structure parameter (Φ) computed for slip-law S1 (equation (24) for different values
of the driving pressure ∆p - (a) ∆p = 96 Pa, (b) - ∆p = 996 Pa, (c) - ∆p = 3000 Pa. Broken lines correspond to the up-ramp
and full lines correspond to the down-ramp of the pressure drop.
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Figure 9: Velocity profiles (U) and micro-structure parameter (Φ) computed for slip-law S1 (equation (25) for different values
of the driving pressure ∆p - (a) ∆p = 96 Pa, (b) - ∆p = 996 Pa, (c) - ∆p = 3000 Pa. Broken lines correspond to the up-ramp
and full lines correspond to the down-ramp of the pressure drop.
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Figure 10: Velocity profiles (U) and micro-structure parameter (Φ) computed for slip-law S1 (equation (26) for different values
of the driving pressure ∆p - (a) ∆p = 96 Pa, (b) - ∆p = 996 Pa, (c) - ∆p = 3000 Pa. Broken lines correspond to the up-ramp
and full lines correspond to the down-ramp of the pressure drop.
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Figure 11: Velocity profiles (U) and micro-structure parameter (Φ) computed for slip-law S1 (equation (27) for different values
of the driving pressure ∆p - (a) ∆p = 96 Pa, (b) - ∆p = 996 Pa, (c) - ∆p = 3000 Pa. Broken lines correspond to the up-ramp
and full lines correspond to the down-ramp of the pressure drop.
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Figure 12: Shear-rate vs Shear-stress for all cases. (a) τav vs γ̇av . (b) τw vs γ̇w.
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6. Conclusions

We have considered unsteady pipe flow of an elastoviscoplastic material driven by an up-down pressure
ramp. Previous experimental results showed that slip at the wall allows the material to remain thixotropic,
i.e. hysteresis in the flow curve is present in steady flow conditions. In our numerical results we explore
several slip-laws found in the literature together with a no-slip condition. We found that in an averaged
velocity and pressure map the solid-fluid transition is correlated to the law used at the wall. This is clear in
figures 3 and 4 where the point at which we have back-flow is shifted by the slip-law. We can also see that,
as expected, the power-law relation between Uav and ∆p in the solid-fluid transition is solely described by
the exponent in boundary conditions (24)-(26). For the stick-slip condition (27) we loose this power law
behaviour, below the slip-yield stress the material sticks and as soon as the stress is above this threshold but
under the bulk yield stress the material has to “make up” the low deformation rates that underwent under
non slip and increase exponentially the break up of the microstructure in order to reach the fluid transition
at the required threshold (bulk yield stress). Clearly then, yielding is strongly correlated to what happens at
the wall. The constitutive model though, falls short of predicting the inherent connection between slip and
a “steady” hysteretic behaviour of the material, i.e. with slip at the wall the material is truly thixotropic.
As it was shown in [38, 39] we can develop models that are thixotropic with or without slip but a different
approach has to be taken if the material is thixotropic if slip is present and non-thixotropic when there is no
slip at the wall. We believe that the inclusion of a diffusive process in equation (10) will be a step forward
into the development of a better understanding of the relation between yielding and slip. This is work that
we plan to do in the near future.
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