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Robust Observer synthesis for Bilinear Parameter Varying system

L. Etienne*, K. A.A. Langueh*, H. Karkaba*, A. Iovine**

Abstract— In the present paper, sufficient conditions for
the synthesis of robust Unknown Input Observers (UIOs) are
proposed for a class of nonlinear systems, both in continuous
and discrete time. The considered class is general enough to
contain bilinear systems as well as Linear Parameter-Varying
(LPV) systems with no parameter variation on the output
matrix. The proposed conditions are numerically tractable,
and are expressed in terms of Linear Matrix Inequalities
(LMIs) or Linear Matrix Equalities (LMEs). Furthermore,
the gain synthesis problem is shown to be formulated as a
convex optimisation one, directly enabling the minimization of
the influence of noisy measurements and model uncertainty.
Simulations on energy systems are provided to illustrate the
proposed methodologies.

I. INTRODUCTION

In all engineering domains, one of the most popular
methods to reduce the costs associated to physical sensors
while maintaining robustness and performances of a control
system is the utilisation of observers. An observer is able
to estimate parameters that are difficult to measure, or to
ensure the redundancy of sensors. Since the 1960s, several
types of observers have been proposed in the literature, and
have considered broad classes of dynamical systems (see
for instance [1], [2]). When an unknown input is acting on
a dynamical system, the specific class of Unknown Input
Observers (UIOs) has been investigated. Their goal is to
reconstruct some variables of interests for any unknown input
with a given structure. Due to the practical relevance of the
problems the UIOs address , there are several contributions
to this field in the literature (e.g., [3])

While the early works on UIOs were initially focused on
linear systems [4], significant research effort has been dedi-
cated to their design for several classes of nonlinear systems,
namely LPV systems [5], [6], discrete Fuzzy systems [7]
or bilinear continuous Fuzzy systems, with single input [8],
[9] or multiple inputs [10]. Furthermore, a new approach as
the interval UIOs have been recently developed, as shown
in [11] for systems with non-noisy outputs and in [12], [13]
for systems with noisy outputs. It must to be noticed that the
aforementioned classes of systems are amenable to the use
of convex approaches for both control and observation (see
[14]). Additionally, during the last decade several researchers
have been interested in the topic of observer design for
bilinear systems with unknown input. For example, in [15],
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[16], the authors have considered the design of UIOs for
Discrete Time Uncertain Takagi-Sugeno Fuzzy System when
no noise is taken into account.

However, few results are nowadays available for the class
of bilinear parameter-varying (BLPV) dynamical systems,
despite the fact that several applications can be modeled as
such (e.g. power converters, as DC-DC or AC-DC ones).
Moreover, measurement noise and model uncertainty are
rarely taken into account, with some notable exception as
[12], [13] and [10]. In [12] and [13], the interval observer is
first designed, and a bound on the error is given a posteriori,
with the consequence that the sensitivity to noise is not
optimized. To the best of our knowledge, the synthesis of
an observer gain that minimizes the impact of noise and
uncertainty for either LPV or bilinear systems has not been
conducted.

By proposing a robust UIO (i.e., an UIO whose sensitivity
to noise and model uncertainty is minimized) for BLPV
system, the present paper contributes in filling this gap.
Indeed, we consider a large class of nonlinear systems
(including bilinear, switched bilinear [17] and LPV with
no parameter variation on the output matrix ones), and es-
tablish numerically tractable sufficient conditions for robust
UIO synthesis The proposed conditions are expressed in
terms of Linear Matrix Inequalities (LMIs) or Linear Matrix
Equalities (LMEs). Furthermore, the gain synthesis problem
is shown to be formulated as a convex optimisation one,
thus enabling the minimization of the influence of noisy
measurements and model uncertainty. The considered models
are close to the one discussed in [8] and [10], with the notable
difference that we consider a bilinear term between the
control input and the unknown input. Since no assumptions
are made on the variation of the parameter p, the proposed
methodology also applies to switched (linear and bilinear)
systems.

The suggested approach fits several application domains,
as the class of systems that is investigated describes a
large variety of physical devices, e.g., power converters or
photovoltaic systems.

The remaining of this paper is organized as follows. In
Section II, the models and the structures of the observers
under consideration are introduced, along with the relevant
convergence definitions. Sufficient conditions for the syn-
thesis of robust UIOs in terms of LMIs and LMEs are
presented in Section III. In Section IV, examples in the
electrical domain are provided. Lastly, Section V offers some
concluding comments.
Notation:

• For a vector or a matrix v, v′ denotes its transpose.



• R+ denotes the set of non-negative real numbers.
• We define for a matrix A, He(A) := A + A′. For a

matrix M , λmin(M) and λmax(M) denote its smallest
and largest eigenvalues, respectively. Given a set of
matrices with identical number of lines A1, ..., AN , we
denote (A1, ..., AN ) as their concatenation.

• For two positive definite matrices (resp positive semi-
definite) P and Q, we write P ≻ Q if P −Q is positive
definite (resp P ⪰ Q if P −Q is positive semidefinite).

• For a finite set S, we use |S| to denotes its cardinal.
• Given p ∈ N, the set Λp denotes the unit simplex,

Λp :=

{
λ ∈ Rp

≥0 :

p∑
i=1

λi = 1

}
.

For a set of matrices Ri ∈ Rn×m, i = 1, . . . p,
Cov{Ri}i∈{1...p} denotes its closed convex hull:

Cov{Ri}
i∈{1...p}

=

{
Z ∈ Rn×m : ∃λ ∈ Λp,

p∑
i=1

λiRi = Z

}
.

II. MODELING OF SYSTEMS AND OBSERVERS

A. Dynamical Systems

In this work, we consider LPV bilinear systems in the
following form:

ẋ(t) = A(p)x+B(p)u(t)

+
∑m

i=1 uiGi(p)x(t) +D(p)v(t)

+
∑m

i=1 uiFi(p)v(t) + S(p) + Ω(p)ω(t),

y(t) = Cx(t) + ∆δ(t),

(1)


xk+1 = A(p)xk +B(p)uk

+
∑m

i=1 uk,iGi(p)xk +D(p)vk

+
∑m

i=1 uk,iFi(p)vk + S(p) + Ω(p)ωk,

yk = Cxk +∆δk,

(2)

where the model in (1) describes the continuous-time (CT)
case, while the one in (2) the discrete-time (DT) case.

In this setting, x ∈ Rn is the state, u ∈ U ⊂ Rm is
the known input, with uk,i the value of the ith component
of the input at time k, v ∈ Rr is the unknown input,
y ∈ Rq is the output, while ω ∈ Rnω and δ ∈ Rqδ are
respectively an unknown disturbance and a noise. In the rest
of this work we will furthermore assume that the noise is
differentiable and therefore that δ̇ is well defined. The matri-
ces A(p), B(p), Gi(p), D(p), Fi(p), S(p),Ω(p), C,∆ are of
appropriate dimensions, and p ∈ P ⊂ Rp denotes a known
scheduling parameter.

B. Unknown Input Observers

With respect to the models in (1) and (2), we consider the
following UIOs, respectively: ż(t) = N(p)z(t) + L(p)y(t) + J(p)u(t)

+
∑m

i=1 ui(t)Hi(p)y(t) +MS(p),
x̂(t) = z(t)− Ey(t),

(3)

 zk+1 = N(p)zk + L(p)yk + J(p)uk

+
∑m

i=1 uk,iHi(p)yk +MS(p),
x̂k = zk − Eyk.

(4)

We stress that the structure of the suggested UIOs is a direct
extension of classical UIOs (see [18]).

In the present paper, we refer to the following definitions:

Definition 1 (CT Exponential observer): A CT observer
x̂(t) is an exponential observer of x(t) with convergence
rate α > 0 if there exists M such that

||x(t)− x̂(t)|| ≤ M ||x(0)− x̂(0)||e−αt.

Definition 2 (DT Exponential observer): A DT observer
x̂k is an exponential observer of xk with convergence rate
α ∈]0, 1[ if there exists M such that

||xk − x̂k|| ≤ M ||x0 − x̂0||αk.

Definition 3 (CT Robust observer): An CT observer x̂(t)
is a robust observer, with respect to perturbation ν, of x(t)
with L2 gain γ if∫ ∞

0

(x(s)− x̂(s))′(x(s)− x̂(s))− γ2ν(s)′ν(s)ds < ∞.

Definition 4 (DT Robust observer): A DT observer x̂k is
a robust observer, with respect to perturbation ν, of xk with
L2 gain γ if

∞∑
l=0

(xl − x̂l)
′(xl − x̂l)− γ2ν′lνl < ∞.

C. Assumptions
We describe here some assumptions on the matrices of

the considered systems that will be used in the sequel of the
paper.

First, with respect to the matrices in (1), (2), (3) and (4),
let us name the matrix M as M = In +EC. Therefore, for
the system matrices ∀p ∈ P , ∀i = 1, ...m, we consider the
following:

Constraints on equality:
i : MA(p)−N(p)M − L(p)C = 0;
ii : MGi(p) = Hi(p)C;
iii : MB(p) = J(p);
iv : M(D(p) +

∑m
i=1 uiMFi(p)) = 0.

Then, for the parameter dependent matrices ∀p ∈ P, ∀i =
1, ...m, we consider the following:

Assumptions on convexity:
v : A(p) ∈ Cov{Aj}j∈If , B(p) ∈ Cov{Bj}j∈If ,

Gi(p) ∈ Cov{Gij}j∈If , Fi(p) ∈ Cov{Fij}j∈If ,
D(p) ∈ Cov{Dj}j∈If , Ω(p) ∈ Cov{Ωj}j∈If ,

where If ⊂ N is a finite set of indexes.

III. OBSERVER SYNTHESIS

In this Section we provide the main results of the present
paper. First, robust observers are designed in case of noise
both for CT and DT systems. Then, the particular noiseless
case is investigated, and the proposed observers are shown
to exponentially converge to the dynamical systems.

Preliminary computations of the observation error defined
as e = x− x̂ in CT or ek = xk − x̂k in DT follows.



1) CT - Observation error:

Since M = In + EC, it follows that

ė = ẋ+ ECẋ− ż + E∆δ̇ = Mẋ− ż + E∆δ̇,

which can be rewritten as

ė = M

(
A(p)x+B(p)u+D(p)v

+
∑m

i=1 ui

(
Gi(p)x+ Fi(p)v

)
+ S(p) + Ω(p)ω

)
−
(
N(p)z + L(p)Cx+ L(p)∆δ + J(p)u

+
∑m

i=1 uiHi(p)y +MS(p)

)
+ E∆δ̇.

By rearranging the terms, it results

ė = N(p)e+
(
MA(p)−N(p)M − L(p)C

)
x

+MD(p)v +
(
MB(p)− J(p)

)
u

+
∑m

i=1 ui

((
MGi(p)−Hi(p)C

)
x+MFi(p)v

)
+MΩ(p)ω + E∆δ̇
−
(
L(p) +NE +

∑m
i=1 uiHi(p)

)
∆δ.

Then, under Assumptions (i), (ii), (iii) and (iv), it is
possible to write

ė(t) = N(p)e(t) +R(p, u(t))ν(t) (5)

where

R(p, u) =(
MΩ(p),−(L(p) +N(p)E +

m∑
i=1

uiHi(p))∆, E∆

)
,

(6)

such that R(p, u) ∈ Rn×(2qδ+nω) and ν(t) =
(w(t)′, δ(t)′, δ̇(t)′)′. Note that due to its structure the UIO is
sensitive to measurement noises as well as the measurement
noise derivative.

2) DT - Observation error:

Similarly to the CT case, by the definition of the error as
ek = xk − x̂k and since M = In + EC, it results

ek+1 = xk+1 + ECxk+1 − zk+1 + E∆δk+1

= Mxk+1 − zk+1 + E∆δk+1

and therefore
ek+1 = N(p)ek
+
(
MA(p)−N(p)M − L(p)C

)
xk

+MD(p)vk +
(
MB(p)− J(p)

)
uk

+
∑m

i=1 uk,i

(
MGi(p)−Hi(p)C

)
xk

+MΩ(p)ω + E∆δk+1

−
(
L(p) +NE +

∑m
i=1 uk,iHi(p)

)
∆δk.

Likewise for (5) in the CT case, under Assumptions (i),
(ii), (iii) and (iv) it is possible to write

ek+1 = N(p)ek +R(p, uk)νk (7)

where R(p, uk) is defined similarly to R(p, u) in (6) for the
CT case, and νk = (w′

k, δ
′
k, δ

′
k+1)

′.

A. Observer design as convex optimisation problem

The aim of this section is to show how UIO synthesis
with robustness properties can be reformulated as a convex
optimization problem. For this problem, the constraints de-
scribed as LMEs will ensure that the unknown input has no
impact on the observation error, while the ones described
as LMIs will ensure convergence of the observation error.
Furthermore, the objective function to minimize is defined
as the sensitivity of the UIO to both noises and uncertainties.

Let us consider the convexity assumptions in (v). To-
gether with the equality assumptions in (i), (ii), (iii) and
(iv), it follows that the observer gains can be expressed
as convex combination of matrices to be determined (i.e.
N(p) ∈ Cov{Nj}j∈If , L(p) ∈ Cov{Lj}j∈If ,Hi(p) ∈
Cov{Hij}j∈If , R(p, u) ∈ Cov{Rj(u)}j∈If ).

Hence, using the aforementioned convexity property of the
matrices of the UIO, the complexity of its gain synthesis
problem is drastically reduced. In the sequel, we give suffi-
cient conditions to verify (i), (ii), (iii) and (iv) under the
assumption that (v) is verified.

1) CT - Convergence of the observer: First let us define

the following matrices inequalities:

Pc
j(u) =(

He
(
(P + SC)Aj −WjC

)
+ εI Πc

j(u)
⋆ −ρI2qδ+nω

)
≺ 0

(8)

with Πc
j(u) = [(P + SC)Ωj , (Wj −

∑
i uiVij)∆, S∆] and,

additionally,

(P + SC)(Dj +

m∑
i=1

uiFij) = 0, (9)

(P + SC)Bj = Oj , (10)

(P + SC)Gij = VijC, (11)

and the following matrices:

Q = P−1, E = QS, M = I + EC
Jj = QOj , Hij = QVij ,
Nj = MAj −QWjC, Lj = QWj −NjE.

(12)

Theorem 1: If there exist a P positive definite matrix,
S,Wj , Vij , Oj matrices of appropriate dimension and scalars
ρ, ε > 0, such that ∀ j ∈ If , i = 1, ...m and ∀u ∈ U a (8),(9),
(10), (11) are verified then, it is possible to synthesize an
observer of the form (3) with gain (12) that has a L2 gain
bounded by γ =

√
ρ
ε .

Proof:
From (9), (P + SC)(Dj +

∑m
i=1 uiFij) = 0. Since P is

invertible, from (P + SC) = P (I + EC) = PM , one has
M(Dj +

∑m
i=1 uiFij) = 0.



Furthermore since D(p) +
∑m

i=1 uiF (p)i =∑
j∈If

λj

(
Dj +

∑m
i=1 uiFij

)
for some (measurable)

λj ∈ Λ|If |. Therefore by convexity, (iv) holds.
From (10), P (I + EC)Bj = Oj = PJj so from the

fact that P is invertible one has MBj = Jj . Since B(p) =∑
j∈If

λjBj

)
for some (measurable) λj ∈ Λ|If |. So by

convexity, (iii) holds with J(p) =
∑

j∈If
λjJj .

From (11) P (I + EC)Gij = VijC = PHijC. By
assumption on Gi(p) =

∑
j∈If

λjGij for some (measurable)
λj ∈ Λ|If | and from the fact that P is invertible, by
convexity, (ii) holds with Hi(p) =

∑
j∈If

λjHij .
By definition of Lj and Nj , one has LjC = QWjC −

NjEC, so

NjM + LjC = Nj +NjEC + LjC,

NjM +LjC = MAj −QWjC+NjEC+QWjC−NiEC.

Therefore MAj − NjM − LjC = 0. By assumption
A(p) =

∑
j∈If

λjAj for some (measurable) λj ∈ Λ|If |.

So by convexity, (i) holds with L(p) =
∑

j∈If
λjLj and

N(p) =
∑

j∈If
λjNj .

Considering V (e) = e′Pe, one has

V̇ (e) = (N(p)e+R(p, u)ν)′Pe+ e′P (N(p)e+R(p, u)ν).

Remarking that by definition of Nj = MAj −QWjC so

PNj = PMAj −WjC = PAj + PECAj −WjC.

By definition of E = QS it follows that

PNj = PAj + SCAj −WjC.

By denoting

PRj(u) := (P + SC,−Wj −
m∑
i=1

uiVij , S)

and remarking that P + SC = PM , Wj +
∑m

i=1 uiVij =
PLj + PNjE +

∑m
i=1 uiPHij and PE = S, one has

PRj(u) = Πc
j(u). From (8) and convexity property, one has

V̇ (e) + εe′e− ρν′ν = V̇ (e) + ε(e′e− γ2ν′ν) ≤ 0. Since V
is positive definite integrating, the previous expression leads
to ∫ ∞

0

e(s)′e(s)− γ2ν(s)′ν(s)ds ≤ V (e(0))

ε
.

Therefore the observation error has an L2 gain bounded
by γ.

Claim 1: The previous theorem can be restated as a con-
vex optimization problem targeting to optimise the observer
gains. The optimisation variables would be the P positive
definite matrix, the matrices S,Wj , Vij , Oj , and the positive
scalar ρ and ε > 0. Therefore, by solving the optimization
problem

min
(8)−(11)

ρ− ε (13)

it is possible to reduce the value of
√

ρ
ε , which is an upper

bound on the L2 gain of the observer in (3).

Remark 1: By minimizing γ2 = ρ
ε , one can minimize the

impact of both the noise and the model uncertainty on the
UIO. While γ2 is not convex, one can replace ρ

ε by ρ− ε if
the targeted goal is to have a value for ε thath is maximum
while the value for ρ is as small as possible. According to
[19], in order to find the optimal value of γ it is also possible
to solve a series of convex optimization problems.

2) DT - Convergence of the observer: First let us define
the matrix

Pd
j (u) =

 P PAj + SCAj −WjC Πd
j (u)

⋆ P − εIn 0n,2qδ+nω

⋆ ⋆ ρI2qδ+nω

 ≻ 0

(14)

Theorem 2: If there exist a P positive definite matrix,
matrices of appropriate dimension S,Wj , Vij , Oj and scalars
ρ, ε > 0 such that ∀ j ∈ If , i = 1, ...m and ∀u ∈ U (14),(9),
(10), (11) are verified then, it is possible to synthesize an
observer of the form (4) with gains (12) that has a L2 gain
bounded by γ =

√
ρ
ε .

The proof is mutatis mutandis identical to the previous one
(this is also true for the subsequent proof).

Note that Claim 1 applies also to Theorem 2.
Remark 2: Alternatively, the results in Theorem 1 (or

Theorem 2) hold also when considering specific controllers
that verify (8)-(11) , thus relaxing the conditions requiring
the necessity to hold ∀ u ∈ U. Note that in this case the
classic rank condition for UIOs, which is rank(CDj) =
rank(Dj) (i.e. (P + SC)Dj = 0)), is no longer required
in general, but is replaced by the condition (P +SC)(Dj +∑m

i=1 uiFij) = 0, for some specifically chosen inputs.
Remark 3: In Theorems 1 and 2, the convex optimization

problem is dependent on u. To check the proposed conditions
for all possible u, an infinite set of LMIs and LMEs is
not tractable. In the case that u ∈ U is bounded, it is
possible to consider a convex embedding where ∀ u ∈ U,
u =

∑
s∈S λsūs, where S is finite and (us)s∈S is a finite set

of vertices of a convex polytope containing U. In order to
ensure Pc

j(u) ≺ 0,∀u ∈ U, one can check a finite amount of
LMIs on Pc

j(u) ≺ 0,∀u ∈ (us)s∈S.
In the case where Vij∆ = 0, (P + SC)Dj = 0, (P +
SC)Fij = 0, the dependency of (8) (resp. (14)) vanishes
and the observer (3) (resp. (4)) converges for any control
input.

B. Observer synthesis: Noiseless case

Let us now focus on the noiseless case, thus assume
∆ = 0 and Ω(p) = 0. We show that it is possible to
derive conditions for the synthesis of exponential UIO. First
consider the following set of LMIs :

He

((
P + SC

)
Aj −WjC

)
+ α2P ≺ 0. (15)



Theorem 3: Given a positive scalar α, if there exist a P
positive definite matrix and matrices of appropriate dimen-
sions S, Wj , Oj , Vij such that ∀ j ∈ If ; i = 1...m,∀u ∈ U
the following relations are verified: (15), (9), (10), (11).

Then, it is possible to synthesize an observer of the form
(3) with gains given by (12). Furthermore, the obtained
observer is exponential with α as convergence rate and
overshoot

√
λmax(P )
λmin(P ) .

Claim 2: Theorem 3 can be restated as a convex op-
timization problem targeting to minimize the overshoot.
The optimisation variables would be the P positive definite
matrix and the matrices S,Wj , Vij , Oj . Therefore, by solving
the optimization problem

min
(15),(9),(10)(11)

trace(P ) (16)

it is possible to reduce the value of
√

λmax(P )
λmin(P ) , which is an

upper bound of the overshoot of the exponential observer in
(3).

Cosndiering the following set of LMIs(
α2P PAj + SCAj −WjC
⋆ P

)
≻ 0, (17)

Theorem 4: Given a positive scalar α ∈ [0, 1], if there
exist a P positive definite matrix and matrices of appropriate
dimension S, Wj , Oj , Vij such that ∀ j ∈ If ; i = 1...m
the following relations are verified : (17), (9), (10), (11),
then, it is possible to synthesize an observer of the form (4)
with gains given by (12). Furthermore, the obtained observer
is exponential with α as convergence rate and overshoot√

λmax(P )
λmin(P ) .

Note that Claim 2 also applies to the discrete time case.

IV. SIMULATIONS

This section provides two numerical examples imple-
mented in Matlab, one in CT and one in DT, to show
the effectiveness of the proposed observers. Without loss of
generality, for simplicity of exposition we will consider the
case where nominal parameters are used, thus dealing with
bilinear systems. Note that for both examples, a more precise
modeling should include parameter variation.

A. Continuous time: DC-DC converter

Due to the increase in the utilisation of renewable en-
ergy, current research literature is recently focusing on the
modeling and control of power converters, which models
are bilinear and parameter varying (see for instance [20]).
Indeed, converters can be described as BLPV systems, as
shown in [21]. To test the proposed robust UIOs, we consider
a bilinear DC–DC converter as in [21], which system is in
the form of

ẋ = Ax+Bu(t) + uGx+Dv + uFv +Ωω(t),
y = Cx+∆δ.

(18)
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Fig. 1: system states (plain), estimated states (dashed)
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Fig. 2: Norm of the estimation error ||x(t)− x̂(t)||

The numerical values of the matrices are taken from equation
(4) in [21] (using the nominal values of the parameters). In
addition to them, and differently from [21] where a noiseless
model with full state measurement is considered, here we
choose:

C =

(
1 0 0
0 1 1

)
,∆ =

(
0.01
0.01

)
, Ω = 10−2 (1, 1, 1)

′
.

In this example, we consider the reference voltage to be
the unknown input. To obtain Figure 1 and Figure 2, the
input is a stabilizing controller while the unknown input is
a step function starting at time 1s. Figure 1 shows that the
UIO converges to the real system. Furthermore, Figure 2
highlights that the observation error is not influenced by the
unknown input while the noise has a limited impact.

B. Discrete time: PhotoVoltaic/Thermal (PVT) system

Nowadays, renewable energy for electricity production is
rapidly developing, especially solar and wind energies. Solar
energy can be used for electricity production through photo-
voltaic (PV) cell, or for thermal purposes through solar
panels (SP).

We consider a complex continuous time nonlinear model
using the Dymola software, then PVT model in Dymola is
exported to MATLAB/Simulink as an S-function hardware
in the loop platforms after being translated as a C code.
The UIO system is connected to the Dymola block via
MATLAB/Simulink.
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A simplified bilinear model is identified from the data
generated by Dymola, in the following form:{

x1
k+1 = (1− a)x1

k + cx2
k − bukx

1
k + cvk + 0.02ωk

x2
k+1 = x2

k + vkyk = x1
k + 0.1δk

The state x is composed by the temperature difference x1
k

(in K◦) between the ambient temperature and the temper-
ature of the solar panel, and by the solar irradiance x2

k (in
W/m2). The considered sampling time is 32 seconds, a is the
thermal loss, b is the cooling induced by forced convection
of air trough the panel and c capture the heating induced by
solar irradiance on the panel. The input uk is the controlled
mass flow rate of air due to forced convection. The unknown
input vk is the change in solar irradiance while ωk account
for model uncertainty and δk is a bounded noise between
−0.5 and 0.5 (K◦) on the temperature sensors. The mass
flow rate u belongs the the interval [0, 0.1]kg/s.

By solving the conditions of Theorem 2, the unknown
input observer exhibits good properties in estimating the
unmeasured solar irradiance when considering a noisy (in
the temperature sensor) and uncertain model. Note that the
bilinear model used for observation is a discretized and
simplified model of the real system, which is a more complex
nonlinear model with respect to the one used for simulations.

V. CONCLUSION

In this work, we have considered the problem of synthe-
sizing UIOs for BLPV systems with modeling uncertainties
and measurement noise, in both continuous and discrete time.
The proposed methodology relies on convex optimization,
and allows for finding UIO gains that minimize the effect
of the noise while ensuring that the unknown input has
no impact on the observation error dynamics. In absence
of noise, the proposed results can be simplified to ensure
exponential convergence of the UIOs. The effectiveness of
the proposed methods has been illustrated on both contin-
uous and discrete time energy systems. Since the proposed
methodology relies on the existence of a common Lyapunov
function, it is not straightforward to extend it to cases where

the output is parameter dependent. Future research will focus
on alleviating such restrictions.
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