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Introduction

The ability to control the behaviour and interactions of neutral and charged particles with externally applied electric fields has significant implications for many areas of fundamental and applied science. [START_REF] Suehiro | Electrospray Deposition of 200 Oriented Regular-Assembly BaTiO3 Nanocrystal Films under an Electric Field[END_REF][START_REF] Mohammad | Spray coated europium doped PEDOT:PSS anode buffer layer for organic solar cell: The role of electric field during deposition[END_REF][START_REF] Wang | Experimental study of particle trajectory in electrostatics powder coating process[END_REF][START_REF] Jedrusik | Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design[END_REF][START_REF] Buzea | Control of power law scaling in the 51 growth of silicon nanocolumn pseudo-regular arrays deposited by glancing angle deposition[END_REF][START_REF] Walther | Janus particles: Synthesis, self-assembly physical properties, and applications[END_REF][START_REF] Bormashenko | Janus droplets: liquid marbles coated with dielectric/semiconductor particles[END_REF][START_REF] Gangwal | Induced-charge electrophoresis of metallodielectric particles[END_REF][START_REF] Dong | Dielectric response of graded spherical particles of anisotropic materials[END_REF][START_REF] Chen | Janus particle microshuttle: 1D directional selfpropulsion modulated by AC electrical field[END_REF] The use of electrospray to promote the surface assembly of nanoparticle films has been shown to yield regular arrays when undertaken in the presence of an electric field. [START_REF] Suehiro | Electrospray Deposition of 200 Oriented Regular-Assembly BaTiO3 Nanocrystal Films under an Electric Field[END_REF] The application of an electric field during the preparation of organic solar cells by spray deposition has been found to improve the efficiency of power conversion. [START_REF] Mohammad | Spray coated europium doped PEDOT:PSS anode buffer layer for organic solar cell: The role of electric field during deposition[END_REF] In electrostatic powder coating, the presence of an electric field can improve particle transfer efficiency and the control of film thickness. [START_REF] Wang | Experimental study of particle trajectory in electrostatics powder coating process[END_REF] Electric fields can also facilitate the separation and removal of charged particles from such environments as the flue gas in coal-fired power stations. [START_REF] Jedrusik | Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design[END_REF] The self-assembly, interactions, structure and dynamics of colloidal suspensions [START_REF] Van Blaaderen | Manipulating the self assembly of colloids in electric fields[END_REF] and binary nanoparticle crystals [START_REF] Kalsin | Electrostatic self-assembly of binary nanoparticle crystals with a diamondlike lattice[END_REF] can be manipulated in a controlled, and often reversible, manner using external electric fields.

Upon exposure to an external electric field, a dipole moment is induced on particles that may lead to a dramatic change in the macroscopic properties of their assemblies or suspensions. In suspensions, an applied external electric field may cause electrorheological effects where the viscosity of a suspension increases by several orders of magnitude leading to a liquid -solid phase transition, which is typically reversed as soon as the field is removed. [START_REF] Gast | Electrorheological fluids as colloidal suspensions[END_REF][START_REF] Parthasarathy | Electrorheology: mechanisms and models[END_REF] Dipole interactions induced by an applied field will alter the structure of a suspension causing changes in flow behavior. The possibility of rapid switching from one state to another has led to a variety of industrial applications, including nanoparticle-based displays [START_REF] Buzea | Control of power law scaling in the 51 growth of silicon nanocolumn pseudo-regular arrays deposited by glancing angle deposition[END_REF] and the use of Janus particles in biomedical applications and computer screens. [START_REF] Walther | Janus particles: Synthesis, self-assembly physical properties, and applications[END_REF] Janus particles, as both solid and liquid droplets, have demonstrated their potential for microsensors and actuators, microfluidics applications and the stabilisation of emulsions. [START_REF] Bormashenko | Janus droplets: liquid marbles coated with dielectric/semiconductor particles[END_REF] It has been demonstrated that Janus particles can be activated, oriented, 8,9 manipulated, [START_REF] Chen | Janus particle microshuttle: 1D directional selfpropulsion modulated by AC electrical field[END_REF] and rotated [START_REF] Bormashenko | Janus droplets: liquid marbles coated with dielectric/semiconductor particles[END_REF] by an electric field. An advantage of manipulating particle interactions by an applied electric field is that it does not require additional chemical modifications of the solvent or the particles, and the interactions remain adjustable, fully reversible and instantaneous. The interaction of charged dielectric (polarisable) particles with an external electric field represents an additional contribution to the electrostatic interaction energy, which comprises of Coulomb terms and charge induced, many-body, multipolar interactions. In contrast to isotropic Coulomb forces, induced many-body multipolar interactions are anisotropic in nature and can give rise to unique crystalline and non-crystalline structures, especially in an applied electric field. These induced charge interactions play an important role in a variety of fundamental processes, such as the nucleation, growth and melting of crystals, glass transitions, and various interfacial phenomena. [START_REF] Gasser | Real-space imaging of nucleation and growth of colloidal crystallization[END_REF][START_REF] Yethiraj | A colloidal model system with an interaction tunable from hard sphere to soft and dipolar[END_REF][START_REF] Van Blaaderen | Template-directed colloidal crystallization[END_REF][START_REF] Weeks | Three-dimensional direct imaging of structural relaxation near the colloidal glass transition[END_REF][START_REF] Aarts | Direct visual observation of thermal capillary waves[END_REF] Chemical and biological examples include atmospheric processes, such as dust particle agglomeration [START_REF] Baptiste | The influence of surface charge on the coalescence of ice and dust particles in the mesosphere and lower thermosphere[END_REF] and aerosol growth 21 in the planetary environments, the accumulation of red blood cells, [START_REF] Jan | Role of Surface Electric Charge in Red Blood Cell Interactions[END_REF] and the assembly of colloidal particles in dilute solutions. [START_REF] Naderi Mehr | Self-assembly behavior of oppositely charged inverse bipatchy microcolloids[END_REF] In many of these applications, charge may accumulate at certain positions on the surfaces of particles (functional groups, structure defects etc.) which can be represented by surface point charges.

Analytical methods for the accurate prediction of electrostatic interactions between dielectric particles are mainly restricted to the case of two particles. In the special cases of axial symmetry, an exact analytical solution of the two-body problem can be derived. [START_REF] Bichoutskaia | Electrostatic analysis of the interactions between charged particles of dielectric materials[END_REF][START_REF] Derbenev | Electrostatic interactions between spheroidal dielectric particles[END_REF] Analytical solutions have also been derived for simple two-body problems involving surface point charges in vacuum [START_REF] Filippov | Interaction between particles with inhomogeneous surface charge distributions: Revising the Coulomb fission of dication molecular clusters[END_REF] and in the presence of external solvents. [START_REF] Lindgren | Electrostatic self-assembly: Understanding the significance of the solvent[END_REF][START_REF] Derbenev | Electrostatic interactions between charged dielectric particles in an electrolyte solution[END_REF][START_REF] Stace | Absolute electrostatic force between two charged particles in a low dielectric solvent[END_REF][START_REF] Derbenev | Electrostatic interactions between charged dielectric particles in an electrolyte solution: constant potential boundary conditions[END_REF] However, the two-body expansion series of the electrostatic potential has to be truncated, which ultimately yields an approximation. By analogy with the mean-field theory, local expansions of the many-body problem (see, e.g., [START_REF] Freed | Perturbative many-body expansion for electrostatic energy and field for system of polarizable charged spherical ions in a dielectric medium[END_REF] ) have also been suggested. These expansions reduce the problem to a one-body system by considering the effect of the electric field induced by all but one particle, and by solving the one-body electrostatic problem for each particle iteratively and selfconsistently until the desired convergence is achieved. While this approach yields some insight into the description of a many-body system at a low computational cost, the iterative procedure can fail to converge especially at short separation. A mathematically more rigorous approach is to start with a global many-body formulation of the problem and interpret the many-body expansions as a block-Jacobi iteration scheme, where each block corresponds to one particle.

In a many-body formalism, the interaction of several dielectric particles can be described by a generalized Poisson equation, which, in turn, can be reduced to a Boundary Integral Equation (BIE) representing the induced surface charge on the particles. Numerical methods such as the Boundary Element Method (BEM) [START_REF] Barros | Efficient and accurate simulation of dynamic dielectric objects[END_REF][START_REF] Barros | Dielectric effects in the self-assembly of binary colloidal aggregates[END_REF] or the Method of Moments (MoM) [START_REF] Clercx | Many-body electrostatic in electrorheological fluids[END_REF][START_REF] Lotan | An analytical electrostatic model for salt screened interactions between multiple proteins[END_REF][START_REF] Linse | Electrostatics in the presence of spherical dielectric discontinuities[END_REF] can be viewed as a discretisation of an appropriate BIE. The method of image charges [START_REF] Messina | Image charges in spherical geometry: Application to colloidal systems[END_REF][START_REF] Xu | Electrostatic interaction in the presence of dielectric interfaces and polarizationinduced like-charge attraction[END_REF][START_REF] Qin | A theory of interactions between polarizable dielectric spheres[END_REF][START_REF] Qin | Image method for induced surface charge from manybody system of dielectric spheres[END_REF] can be also used or combined with MoM to offer a hybrid discretisation approach. [START_REF] Gan | A hybrid method for systems of closely spaced dielectric spheres and ions[END_REF] Nevertheless, it is important to provide a rigorous characterisation and mathematical framework of the exact solution which contains no discretisation errors. A mathematically well-founded approach to this problem has been proposed by Lindgren et al., [START_REF] Lindgren | An integral equation approach to calculate electrostatic interactions in many-body dielectric systems[END_REF] which formulates the many-body electrostatic problem in terms of a BIE of the second kind and uses a spectral Galerkin approximation to solve the resulting equations. This mathematical formalism allows for a rigorous convergence and complexity analysis of the induced surface charge, electrostatic interaction energy and net forces acting on each particle (see [START_REF] Hassan | An Integral Equation Formulation of the N -Body Dielectric Spheres Problem. Part I: Numerical Analysis[END_REF][44][45] ), since the continuous solution and the Galerkin approximation are both well characterized. In the same contribution, it is mathematically proven that the proposed method scales linearly in computational cost with respect to the number of particles and that the approximation error does not degrade as the system size increases. This paper extends the framework of Lindgren et al. [START_REF] Lindgren | An integral equation approach to calculate electrostatic interactions in many-body dielectric systems[END_REF] to include two fundamentally different physical effects, namely, the interaction of a many-body system with an external electric field and the presence of localised charge on the surface of a particle as described by point charges. The inclusion of these effects adds significant complexity to the mathematical model due to the non-decaying character of the external electric potential that does not vanish at infinity and the presence of singularities arising in the context of surface point charges. However, incorporating these important effects into the existing methodology broadens considerably its applicability and provides a versatile method for studying many important physical, chemical and industrial processes previously inaccessible to accurate computation.

An additional aspect of this work is a derivation of the electrostatic interaction energy that is based only on quantities defined on the surfaces of particles, such that the negative gradient of this expression with respect to the positions of particle, yields the electrostatic force. The developed formalism can explain mechanisms underpinning the structural stabilisation of ionic colloidal crystals and their melting in an external electric field. Colloidal suspensions are widely used to study phase behaviour in real space as the constituent nano-to micro-metre size particles can be observed directly. [START_REF] Yethiraj | A colloidal model system with an interaction tunable from hard sphere to soft and dipolar[END_REF][START_REF] Pusey | Phase behaviour of concentrated suspensions of nearly hard colloidal spheres[END_REF][START_REF] Kegel | Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions[END_REF][START_REF] Pham | Multiple glassy states in a simple model system[END_REF] Versatile model colloidal systems of charged plymethylmethacrylate (PMMA) particles have been studied comprehensively in the literature due to the large range of size, charge and structure that can be formed, [START_REF] Kim | Spatially and temporally reconfigurable assembly of colloidal crystals[END_REF][START_REF] Habdas | Video microscopy of colloidal suspensions and colloidal crystals[END_REF][START_REF] Van Dommelen | Surface self-assembly of colloidal crystals for micro-and nano-patterning[END_REF] and their structures are analogous to atomic and molecular crystals with regards to symmetry and phase behaviour.

Leunissen et al. 52 showed that electrostatic interactions between PMMA particles of opposite charges can be tuned to form a diverse range of unique binary crystal structures. They demonstrated that these soft colloidal structures can be manipulated in a controlled and often reversible way using an external electric field, much as previously reported for electronic ink. [START_REF] Gelinck | Flexible active-matrix displays and shift registers based on solutionprocessed organic transist[END_REF] The model proposed here is capable of quantitative predictions of many-body electrostatic interactions in an applied external electric field, and reveals the fundamental principles driving the formation of interesting patterns in PMMA colloidal suspensions, as observed by Leunissen et al. 52 The presented work is organised as follows. In Section 2, we describe the basic concepts of the many-body electrostatic problem and introduce the methodology (Subsections 2.1 -2.3), which we extend to derive a single general expression for the electrostatic interaction energy between particles containing localised surface point charges and in the presence of an external electric field (Subsection 2.4). In calculations, these two additional features can be used independently. In Section 3, we present numerical results validating our method and show the limitations of the induced fixed dipoles approximation (Subsection 3.1). The proposed method is then applied to study the stability and melting of ionic colloidal crystals in an external electric field (Subsection 3.2). Final remarks and conclusions are followed by two appendices containing additional mathematical considerations and proofs.

Formulation of the electrostatic many-body framework

We consider a physical system of N non-overlapping dielectric spherical particles, defined by their radii {r i } N i =1 , centers {x i } N i =1 , and dielectric constants {κ i } N i =1 , immersed in a background medium (solvent) which has dielectric constant κ 0 > 0. The many-body system is considered at rest. The spherical particles are described as open balls denoted by {Ω i } N i =1 with surfaces

{∂Ω i } N i =1 .
The surfaces of the dielectric particles represent the boundary ∂Ω between the interior Ω -and the exterior Ω + of the particles. We assume that this surface ∂Ω carries a given free charge distribution σ f and that there is no charge in the interior of the particles, i.e., in Ω -(See Appendix A.1 for a precise mathematical description of these quantities). To account for the point-charge contribution to the surface free charge, the free charge σ f is split into two contributions

σ f = σ s + σ p . (1) 
Here, σ s ∈ L 2 (Ω) corresponds to the square-integrable part of the surface charge, whereas σ p is the point-charge contribution to the free charge represented by a linear combination of one or several Dirac delta distributions per particle:

σ p := N j =1 N j p k=1 q j ,k δ z j ,k
, where q j ,k ∈ R, z j ,k ∈ ∂Ω j and for all j = 1, . . . , N , k = 1, . . . , N j p .

(

) 2 
We define an external potential Φ ext with associated external electric field

E ext := -∇Φ ext ,
which is not limited by the constraint that Φ ext tends to zero at infinity. We consider the external potential to be harmonic, i.e., ∆Φ ext = 0, so that the charges creating the external field are not considered within the system. Furthermore, the electric field E ext is not restricted to be uniform. Finally, we assume that the system of dielectric particles does not affect the external field E ext , for instance, through polarisation, which justifies the use of our terminology external.

Our aim is to determine the total surface charge on each dielectric particle after taking into account both the free charge σ f as well as the bound charges resulting from polarisation effects due to the presence of charged neighbouring particles and the effects of an external electric field. Using the total surface charge, we are able to deduce other physical quantities of interest such as the electrostatic forces and energy resulting from the interaction of N charged dielectric spheres both with each other and with an external electric field.

In order to determine the total surface charge, we first derive equations governing the total electrostatic potential. We show that the total electrostatic potential can be used to deduce the required total surface charge as well as the subsequent physical quantities of interest. The main challenges in achieving our aim are to work with the singular nature of the point-charges σ p and the external potential Φ ext which does not decay to zero at infinity.

Formulation based on partial differential equations

The problem of the electrostatic interaction between N charged dielectric spheres can be described by a partial differential equation (PDE)-based transmission problem. To this end, we define the total potential Φ tot := Φ ext + Φ and the corresponding total electric field E tot := E ext +E, where E is the perturbation of E ext due to the presence of dielectric charged particles, and Φ is the corresponding perturbation potential so that E = -∇Φ. Standard arguments from the theory of electrostatics in dielectric media imply that the total potential Φ tot satisfies the following transmission problem:

-∆Φ tot = 0 in Ω -∪ Ω + , Φ tot = 0 on ∂Ω, κ∇Φ tot = σ f on ∂Ω. ( 3 
)
Here, κ is the dielectric function which takes the value of κ i on the spherical particle Ω i and κ 0 on Ω + (medium), and Φ tot and κ∇Φ tot are jump discontinuities defined by

Φ tot (x) :=Φ tot (x)| Ω i -Φ tot (x)| Ω + , for x ∈ ∂Ω i κ∇Φ tot (x) :=κ i ∇Φ tot (x)| Ω i • η(x) -κ 0 ∇Φ tot (x)| Ω + • η(x) for x ∈ ∂Ω i ,
where η(x) is the normal unit vector at x ∈ ∂Ω pointing towards the exterior of the particles.

In general, Equation ( 3) is ill-posed as can be seen, for instance, by observing that if σ f ≡ 0, then any constant function Φ tot will satisfy this equation. In order to obtain the correct total potential Φ tot , we make use of the relation Φ tot = Φ ext + Φ and first derive a well-posed equation for the perturbed electrostatic potential Φ. Using decomposition (1), elementary algebra shows that Φ satisfies the following transmission problem

-∆Φ = 0 in Ω -∪ Ω + , Φ = 0 on ∂Ω, κ∇Φ = σ s + σ p -(κ -κ 0 )∂ n Φ ext on ∂Ω, |Φ| → 0 as |x| → ∞, (4) 
where ∂ n Φ ext denotes the normal derivative of Φ ext on the boundary ∂Ω.

PDEs similar to the transmission problem (4) have previously been considered in the literature (see, e.g., [START_REF] Lindgren | An integral equation approach to calculate electrostatic interactions in many-body dielectric systems[END_REF][START_REF] Hassan | An Integral Equation Formulation of the N -Body Dielectric Spheres Problem. Part I: Numerical Analysis[END_REF] ), however the key novelty of Equation ( 4) is the addition of contributions due to an external electric field and the presence of point-charges on the surface of dielectric particles. These additional terms require significant modifications to earlier definitions [START_REF] Hassan | An Integral Equation Formulation of the N -Body Dielectric Spheres Problem. Part I: Numerical Analysis[END_REF][44][45] of the electrostatic force and interaction energy for the N -body charged dielectric spheres, and they present additional challenges in the efficient numerical implementation.

In addition to the presence of the highly non-regular point-charge term σ p , another difficulty in solving the transmission problem (4) is the fact that the equation is posed on the entire space R 3 . Indeed, since the potential Φ a priori decays only as |x| -1 , a naive truncation of the computational domain in an effort to use classical algorithms, such as the finite element method, leads to significant errors. The usual approach to circumventing this problem is to appeal to the theory of integral equations and reformulate the transmission problem (4) as a so-called boundary integral equation (BIE) posed on the interface ∂Ω. This is the subject of the next subsection.

Formulation based on boundary integral equations

In order to describe fully the integral equation-based approach to the problem of electrostatic interaction between charged dielectric spheres, we require additional notions. First, we define the single layer potential of some density ν, denoted S ν, as a mapping with the property that

(S ν)(x) := ∂Ω ν(y) 4π|x -y| d y, ∀x ∈ Ω -∪ Ω + . ( 5 
)
It can be shown that for any density ν, S ν is a harmonic function in Ω -∪Ω + , which additionally satisfies the following jump conditions

S ν = 0; ∇S ν = ν.
As a consequence, it is possible to consider a restriction of the single layer potential defined through Equation ( 5) on the boundary ∂Ω and thereby define the so-called single layer boundary operator, denoted V as the improper integral

(V σ)(x) := ∂Ω ν(y) 4π|x -y| d y, ∀x ∈ ∂Ω.
Note, that occasionally it will be necessary to consider the "local" single layer potential and boundary operators defined on an individual sphere i ∈ {1, . . . , N }. We will denote these as S i and V i respectively. Finally, let us remark that V is an invertible operator.

The surface electrostatic potential λ := Φ| ∂Ω is now described by the following boundary integral equation:

λ -V κ 0 -κ κ 0 DtNλ = 1 κ 0 V σ s + σ p + κ 0 -κ κ 0 V (∂ n Φ ext ). (6) 
Here, the notation DtN is used to denote the local Dirichlet-to-Neumann (DtN) map on the surface ∂Ω (see Appendix A for further details).

An equivalent reformulation of the BIE (6) for the induced surface charge can be achieved by applying V -1 to both sides of the equation, and defining ν := V -1 λ which yields the follow-

ing BIE ν - κ 0 -κ κ 0 DtNV ν = 1 κ 0 σ s + σ p + κ 0 -κ κ 0 (∂ n Φ ext ). (7) 
In Equation ( 7), the quantity of interest ν, which we call the induced surface charge, represents (up to a scaling factor) the total surface charge on each dielectric particle after taking into account both the free charge σ f and the bound charge resulting from polarisation effects due to the presence of any remaining charged particles and the effect of an external electric field.

More precisely,

• σ f represents the free charge on each particle;

• σ b := (κ 0 -κ) DtNV ν + ∂ n Φ ext represents the bound charge on each particle;

• κ 0 ν = σ f + σ b represents the total surface charge on each particle.

A simple manipulation of Equation ( 7) yields the following relation between the surface charge ν and the surface electrostatic potential λ:

ν = κ 0 -κ κ 0 DtNλ + 1 κ 0 σ s + σ p + κ 0 -κ κ 0 (∂ n Φ ext ). (8) 
Equation (8) implies that once λ is known, the charge distribution ν can be computed using the purely local DtN map. We also remark here that the relation between the PDE (4) and the BIE ( 6) representations of the electrostatic potential can be clearly established since λ is simply the restriction (more precisely the Dirichlet trace) of the electrostatic potential Φ on the boundary ∂Ω. Thus, for any point x ∈ Ω -∪Ω + , we have Φ(x) = S V -1 λ (x) = (S ν)(x), and we therefore also have

Φ tot (x) = Φ ext (x) + (S ν)(x).
As emphasised above, an important technical difficulty in the analysis of Equation ( 6) is the presence of the low-regularity point-charge term σ p , which requires special treatment in the design of efficient numerical methods. The BIE (6) has previously been the subject of extensive analysis in a simpler case when surface point-charges and the external field are absent, i.e., when σ p ≡ 0 and Φ ext ≡ 0. We first briefly summarise this methodology and explain how the BIE (6) can be solved in this simple case before turning our attention (in Section 3) to the more complex problem of describing surface point-charges and an external electric field.

Methodology in the absence of surface point-charge and external field

In the absence of both the point-charge contribution to the surface free charge and an external electric field, the boundary integral equation ( 6) reads as

λ -V κ 0 -κ κ 0 DtN λ = 1 κ 0 V σ s . (9) 
Equation ( 9) is solved using a Galerkin discretisation with an approximation space constructed from the span of finite linear combinations of local spherical harmonics on each sphere ∂Ω i (exact definitions of the spherical harmonics and the approximation space W max can be found in Appendix A.1). More precisely, the Galerkin discretisation of the BIE ( 9) reads as follows: let max be a fixed discretisation parameter, we seek the Galerkin solution λ max ∈ W max which satisfies for all test functions ψ max ∈ W max the equation

λ max -V κ 0 -κ κ 0 DtN λ max , ψ max L 2 (∂Ω) = 1 κ 0 V σ s , ψ max L 2 (∂Ω) . ( 10 
)
The Galerkin solution λ max and the test function ψ max can be expanded as a finite linear com-bination of basis functions. This ansatz allows us to reduce the Galerkina discretisation (10) to a linear system of equations for the unknown expansion coefficients of λ max . Equation (10) thus yields the linear system

A λ = F , ( 11 
)
where the solution matrix A and the vector F are defined as

[A i j ] mm := Y j m -V κ 0 -κ κ 0 DtNY j m , Y i m L 2 (∂Ω i ) , [ F i ] m := 1 κ 0 V σ s , Y i m L 2 (∂Ω i ) , (12) 
where Y i m denotes the spherical harmonic of degree and order m on the sphere ∂Ω i and the indices i , j ∈ {1, . . . , N }, , ∈ {0, . . . , max } and |m| ≤ , |m | ≤ . A more detailed definition of Y i m can be found in Appendix A.1, and a detailed explanation of how to compute the entries in the solution matrix A and vector F can be found in Lindgren et al. [START_REF] Lindgren | An integral equation approach to calculate electrostatic interactions in many-body dielectric systems[END_REF] Here, we simply remark that apart from the diagonal terms (i = j ), computing the entries of the solution matrix and vector F requires evaluating a double integral on the unit sphere. This typically requires the use of numerical quadrature, for which purpose Lebedev grid points are used.

It is also possible to use a modification of the classical Fast Multipole Method (FMM) to speed up computation of the vector F and matrix-vector products involving the dense solution matrix A. Essentially, the FMM allows computing the action of the single layer boundary operator V on an arbitrary element of the approximation space with linear scaling computational cost (with respect to N ). Since the DtN map is a purely local operator (diagonal in the basis of local spherical harmonics), the solution matrix A does not need to be explicitly computed and stored, and its action on an arbitrary vector can be calculated with linear scaling cost. Further details on the FMM implementation can be found in Lindgren et al. [START_REF] Lindgren | An integral equation approach to calculate electrostatic interactions in many-body dielectric systems[END_REF] Once the vector F has been computed and the procedure for applying the solution matrix A to an arbi-trary vector in the approximation space is set up, the linear system (11) can be solved using a Krylov subspace solver such as GMRES (see Bramas et al 44 for a detailed convergence analysis of GMRES as applied to this linear system).

We can now turn our attention to calculation of the approximate electrostatic energy and force. The approximate electrostatic interaction energy of a dielectric N -body system is given by

E max int := 1 2 σ s , λ max L 2 (∂Ω) - 1 2 N j =1 σ s, j , λ j j max L 2 (∂Ω j ) , (13) 
where σ s, j = σ s | ∂Ω j and λ

j j max ∈ W max (∂Ω j )
is the approximate self-potential generated by the free charge σ s, j on sphere ∂Ω j in the absence of other spheres. More precisely, it is defined as the solution to the local Galerkin discretisation

λ j j max -V j DtN j κ 0 -κ j κ 0 λ j j max , ψ j j max L 2 (∂Ω j ) = 1 κ 0 V j σ s, j , ψ j j max L 2 (∂Ω j )
.

In Definition (13) of the electrostatic interaction energy, the first term can be interpreted as the total electrostatic energy of the system whilst the second term, involving the summation, can be seen as the self energy.

Next, we derive an expression for the approximate electrostatic forces. As a first step, if λ max denotes a solution to the Galerkin discretisation (10) for a given free charge σ s , then we define the approximate induced surface charge ν max as the unique element of the approximation space W max (defined in Appendix A.1) that satisfies

V ν max , ψ max L 2 (∂Ω) = λ max , ψ max L 2 (∂Ω). ( 14 
)
In other words, ν max is simply an approximation of the exact induced surface charge ν, which physically represents the total surface charge on the dielectric spheres that includes polarisation effects. We therefore use ν max to derive an expression for the approximate electrostatic force acting on the dielectric particles.

In practice, ν max is not determined using Equation ( 14), which requires the computationally expensive inversion of the single layer boundary operator V . Instead, a careful examination of the Galerkin discretisation (10) reveals that ν max satisfies the relation (c.f., Equation ( 8))

ν max = κ 0 -κ κ 0 DtN λ max + 1 κ 0 σ max s , (15) 
where σ max s is the best approximation of σ s in the approximation space W max . Consequently, once the linear system (11) has been solved, only purely local operations involving the Dirichletto-Neumann operator are required to obtain ν max .

The approximate electrostatic force acting on the dielectric particle is now given by

F max i := κ 0 ν max , E i exc L 2 (∂Ω i ) . ( 16 
)
E i exc is the i -excluded electric field generated by the approximate induced surface charge ν max , i.e., the vector field given by

E i exc (x) = -∇ S ν max -S i ν i , max (x), (17) 
where ν i , max := ν max | ∂Ω i , and ∇ denotes the usual gradient taken with respect to Cartesian coordinates. The i -excluded electric field E i exc is the part of the total electric field generated by the approximate induced charge ν max that interacts with (i.e., exerts a net electrostatic force on) the dielectric particle Ω i . A description of how to practically compute E i exc in the current boundary integral framework can be found in. 45 Consider Definitions ( 13) and ( 16) of the approximate electrostatic interaction energy and force, respectively. A key result 45 establishes that these are related by the identity

-∇ x i E max int = F max i ,
where ∇ x i denotes the gradient taken with respect to the location of the center x i of the sphere

∂Ω i .
The Galerkin nature of the method we present here allows for a precise mathematical analysis in terms of accuracy with respect to max and complexity with respect to N , which was previously discussed in Hassan et al [START_REF] Hassan | An Integral Equation Formulation of the N -Body Dielectric Spheres Problem. Part I: Numerical Analysis[END_REF][44][45] and also included the detailed description of the linear scaling of the method and the accuracy of predictions for the electrostatic energy and forces. 45 The model, however, is limited to the assumptions made at the beginning of Section 2.3, namely, it does not account for the presence of surface point-charge and the effect of an external electric field. This extension and generalisation is the subject of the following section.

Extension to include an external electric field and surface point-charges

Turning our attention to the boundary integral equation ( 6), which is central to this study and describes the electrostatic interaction of dielectric spheres in the presence of both an external electric field and point-charge contributions to the free charge residing on the particle surface.

To begin, we define the external charge as σ ext := -(κ -κ 0 )∂ n Φ ext , which is simply the external electric field contribution to the right-hand side of the boundary integral equation (6).

The Galerkin discretisation of the BIE (6) can be written as

λ max -V κ 0 -κ κ 0 DtNλ max , ψ max L 2 (∂Ω) = 1 κ 0 V σ s + σ ext + σ p , ψ max L 2 (∂Ω) . ( 18 
)
As before, this Galerkin discretisation (18) yields a linear system of equations for the unknown local spherical harmonics expansion coefficients of λ max of the form

Aλ = F , ( 19 
)
where the solution matrix A is defined precisely as before through Equation ( 12) and

[λ i ] m := λ max , Y i m L 2 (∂Ω i ) , (20) 
for i ∈ {1, . . . , N }, ∈ {0, . . . , max } and |m| ≤ . Determining the new vector F requires some additional work due to the presence of the point-charge term σ p . To this end, let z j ∈ ∂Ω j ⊂ ∂Ω. The definition of the single layer boundary operator V implies that for any q ∈ R and all x in ∂Ω with x = z j we have

V (qδ z j )(x) = ∂Ω j qδ z j (y) |x -y| d y = q |x -z j | .
Hence,

V (σ p )(x) = N j =1 N j p k=1 q j ,k |x -z j ,k | ,
and therefore the vector F in Equation ( 19) can be defined as

[F i ] m := 1 κ 0 V σ s + σ ext + V (σ p ) , Y i m L 2 (∂Ω i ) . ( 21 
)
Since the solution matrix A is exactly as before (see Section 2.3), one can use the same linear solver routine to approximate the solution to Equation (19). Having solved the underlying linear system, we can now compute further (approximate) physical quantities of interest.

In computing the approximate electrostatic forces, if λ max denotes a solution to the Galerkin discretisation (18) for a given free charge σ f = σ s + σ p and external electric field E ext , then we define, as in Equation ( 14), the approximate induced surface charge ν max that generates the surface electrostatic potential λ max as the solution to

V ν max , ψ max L 2 (∂Ω) = λ max , ψ max L 2 (∂Ω) . (22) 
In practice, ν max can be determined again using the following relation (c.f., Equation ( 15)), which can be deduced from the Galerkin discretisation (18): 

ν max = κ 0 -κ κ 0 DtNλ max + 1 κ 0 σ max s + σ max p + σ max ext , (23) 
F max i := κ 0 ν max , E i exc + E ext L 2 (∂Ω i ) , (24) 
where we remind the reader that E i exc is the i -excluded electric field which is defined analogously to Equation (17). Let us remark here that E i exc can practically be computed by adapting the procedure stated in 45 to the current setting of surface point charges and external electric field, which is not a difficult generalisation.

In contrast to the definition of the electrostatic forces, the definition of the electrotatic interaction energy is not straightforward in the current setting. On the other hand, in the chemical literature, the net force acting on a given dielectric particle is frequently defined as the negative-sphere centered gradient of the interaction energy. Keeping this relation in mind, the approximate electrostatic interaction energy of the system that corresponds to the approximate electrostatic force ( 24) is given by

E max int := 1 2 σ s + σ p + σ ext , λ max L 2 (∂Ω) + σ s + σ p , λ max ext L 2 (∂Ω) + 1 2 σ ext , λ max ext L 2 (∂Ω) (25) - 1 2 N j =1 σ s, j + σ p, j , λ j j max L 2 (∂Ω j ) ,
where we denote σ s, j = σ s | ∂Ω j , σ p, j := σ p | ∂Ω j and we write λ max ext for the best approximation of

λ ext := Φ ext | ∂Ω and λ j j max ∈ W max (∂Ω j )
for the approximate self-potential on sphere ∂Ω j in the absence of the external field E ext and all other spheres. The latter quantity is formally defined as the solution to the local Galerkin discretisation

λ j j max -V j DtN j κ 0 -κ j κ 0 λ j j max , ψ j j max L 2 (∂Ω j ) = 1 κ 0 V j σ s, j + σ p, j , ψ j j max L 2 (∂Ω j )
.

With Definitions ( 24) and ( 25) of the approximate electrostatic interaction force and energy, respectively, we can demonstrate that the electrostatic forces are indeed realised as the negative sphere-centered gradients of the interaction energy.

Theorem 2.1 Let E max int denote the approximate interaction energy and F max i , denote the approximate electrostatic force acting on the dielectric particle Ω i as given by Definitions (25) and ( 24) respectively. Then it holds that

-∇ x i E max int = F max i , ( 26 
)
where ∇ x i denotes the gradient taken with respect to the location of the center x i of the sphere ∂Ω i .

The proof of Theorem 2.1 can be found in Appendix A.2.

Let us return to Equation ( 25) that defines the electrostatic interaction energy of our system. Several comments are now in order.

First, it is important to emphasise that Equation ( 25) includes both the energy due to the interaction between the dielectric particles themselves as well as the energy arising from the interaction of particles with the external electric field.

Second, Equation ( 25) has an interpretation in terms of the total and self electrostatic energies. Indeed, the combination of the first three terms in Equation ( 25) can be interpreted as the total electrostatic energy of the system whilst the fourth term, involving the summation, can be seen as the self electrostatic energy of the system. We emphasise that, due to the presence of the point-charge contribution σ p , both the total energy and the self-energies are infinite as in the case of fixed Coulomb point-charges. However, when writing the interaction energy as

E max int := 1 2 N j =1 σ s, j + σ p, j , λ max -λ j j max L 2 (∂Ω j ) + 1 2 σ ext , λ max L 2 (∂Ω) + σ s + σ p , λ max ext L 2 (∂Ω) + 1 2 σ ext , λ max ext L 2 (∂Ω) ,
each of the terms is finite and thus the interaction energy is a well-defined quantity.

Finally, it is possible to re-write Equation (25) for the electrostatic interaction energy in a more physically intuitive form in terms of the electric fields that appear in the PDE formulations (3) and ( 4) leading to the following theorem. 

E int := 1 2 σ s + σ p + σ ext , λ L 2 (∂Ω) + σ s + σ p , λ ext L 2 (∂Ω) + 1 2 σ ext , λ ext L 2 (∂Ω) - 1 2 N j =1 σ s, j + σ p, j , λ j j L 2 (∂Ω j ) (27) = 1 2 B r κ(x)E tot (x) • E tot (x) d x - 1 2 N j =1 B r κ(x)E j j (x) • E j j (x) d x - 1 2 B r κ 0 E ext (x) • E ext (x) d x + 1 2 ∂B r κ 0 E(x) • η(x) Φ(x) - N j =1 E j j (x) • η(x) Φ j j (x) d x + ∂B r κ 0 E(x) • η(x) Φ ext (x) d x. ( 28 
)
Here, λ j j is the exact self-potential only on sphere ∂Ω j in the absence of an external field E ext and all other spheres, and it is defined as the solution to the local BIE

λ j j -V j DtN j κ 0 -κ j κ 0 λ j j = 1 κ 0 V j σ s, j + σ p, j .
Moreover, E j j and Φ j j are the "self electric field" and "self electrostatic potential" respectively of the j -th dielectric particle, i.e., the electric field and potential respectively produced only due to sphere ∂Ω j in the absence of both the external field E ext as well as the other spheres.

The proof of Theorem 2.2 can be found in Appendix A.2.

The five terms in Equation (28) which constitute E int all have physical interpretations. Indeed, the first integral can be seen as the total electrostatic energy associated with an electric field E tot . The second integral can be interpreted as the self-energy associated with the free charge σ f = σ s + σ p on the particle surface. The third term is the self energy of the external electric field E ext . Finally, the last two terms can be interpreted as the boundary terms that, in general, may not vanish at infinity but yield an expression independent of the positions of the particles. The Theorem 2.2 establishes that in the exact case, i.e. when the discretisation parameter max → ∞, the definition of the interaction energy, derived from the integral equation formalism and given by Equation ( 25), coincides with the definition of the interaction energy (up to some additional boundary terms) in any open ball B r that is large enough to contain Ω -as derived from the PDE picture and given through Equation (28).

Consider once again Equation ( 24) that defines the net electrostatic force acting on dielectric particle Ω i . It is possible that one could be interested only in a portion of this electrostatic force without the so-called 'self-force'. The 'self-force; is the force that acts on the dielectric particle Ω i in the absence of all other interacting particles but still in the presence of the external field E ext , i.e., the force that would act on the particle if it were the only one exposed to the external field. Mathematically, this new approximate net electrostatic force acting on the dielectric particle Ω i , i ∈ {1, . . . , N } is given by

F max i := κ 0 ν max , E i exc + E ext L 2 (∂Ω i ) -κ 0 ν i i max , E ext L 2 (∂Ω i ) , (29) 
where ν i i max is the total surface charge (including polarisation effects) on ∂Ω i in the absence of all other interacting particles but in the presence of the external electric field. Mathematically (c.f., Equation ( 23)),

ν i i max = κ 0 -κ κ 0 DtN i λ i i max + 1 κ 0 σ max s,i + σ max p,i + σ max ext,i ,
where λ i i max is the solution to the local Galerkin discretisation

λ i i max -V i DtN i κ 0 -κ κ 0 λ i i max , ψ i i max L 2 (∂Ω i ) = 1 κ 0 V i σ s,i + σ p,i + σ ext,i , ψ i i max L 2 (∂Ω i )
.

Corresponding to the approximate net electrostatic force given by Equation ( 29), we have the following approximate interaction energy

E max int := 1 2 σ s + σ p + σ ext , λ max L 2 (∂Ω) - 1 2 N j =1 σ s, j + σ p, j + σ ext, j , λ j j max L 2 (∂Ω j ) . ( 30 
)
The force (29) subtracts the force that each single particle would be exposed to due to the external field in absence of the other particles. The corresponding energy expression ( 30) is then such that the force (29) equals minus the sphere-centered gradients of the energy (30) following similar arguments as used in the proof of Theorem 2.1.

Case Studies and Discussion

In this section, we benchmark the developed methodology starting with a single particle in the external field. When a uniform external electrical field E ext is applied to a dielectric particle, redistribution of the surface charge creates a dipole aligned in the direction of the applied field. This effect is illustrated in Figure 1a where, for a neutral particle, the calculated variation in the surface charge density is shown for The dipole induced by the applied field is defined classically as 54

E ext = 1000 V/m.
p := 4π 0 -1 + 2 r 3 E ext , ( 31 
)
where r is the particle radius, 0 is the permittivity of free space, and is the relative permittiv-ity of the particle with respect to the medium ( = κ/κ 0 ). The dipole (31) can be represented by the surface charge distribution as

σ ext = 3 0 -1 + 2 cos αE ext . (32) 
A charged particle would also experience a force acting in the direction of the applied field, [START_REF] Stone | The theory of intermolecular forces[END_REF] and, in the case of an inhomogeneous distribution of free surface charge, the particle will rotate to minimise the interaction energy with the field. [START_REF] Feynman | Mainly electromagnetism and matter[END_REF] Figure 1c shows the distribution of the surface charge density as a function of the angle α defined in Figure 1a. These calculations were completed using a sufficient value of the discretisation parameter max to achieve the convergence of the interaction energy to the eighth decimal place. The value of max was evaluated for each study: particles with a surface point-charge (Figure 1c) required at least an approximation with max = 40 to achieve convergence (visually in the plots) at all angles α (a value of max = 45 was finally used with 3074 Lebedev integration points), whilst uniformly charged particles placed in an electrical field required at least max = 30 (and max = 35 was finally used with 1730 Lebedev integration points).

The interaction energy between two fixed dipoles defined by Equation ( 31) is given by

E int (p 1 , p 2 ) = R 2 (p 1 • p 2 ) -3(p 1 • R)(p 2 • R) 4π 0 κ 0 R 5 ,
where R is the separation distance between their centres denoted by the vector R. It is convenient to express the direction of the dipoles p 1 and p 2 with respect to the vector R using polar coordinates such that The interaction takes place in vacuum, i.e. κ 0 = 1.

p i • R = p i R cos(θ i )
and

p 1 • p 2 = p 1 p 2 (cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos(ϕ 2 -ϕ 1 )
).

E int can then be rewritten as

E int (p 1 , p 2 ) = - p 1 p 2 4π 0 κ 0 R 3 (2 cos θ 1 cos θ 2 -sin θ 1 sin θ 2 cos(ϕ 2 -ϕ 1 )). ( 33 
)

Separation-dependent particle polarisation

At short separation distances, we note a significant difference in the accuracy between the approximation of two fixed dipoles (Equation ( 33)) and the model derived here, which takes into account the separation-dependent particle polarisation. Figure 2 shows the calculated interaction energy between two neutral particles of identical size and composition (r 1 = r 2 = 5 µm and κ 1 = κ 2 = 10) exposed in vacuum to a uniform external electric field of varied strength.

This classical result [START_REF] Stone | The theory of intermolecular forces[END_REF] is reproduced by the dashed lines in Figure 2 for three different values of the external electric field strength. When the dipoles are aligned with the vector R, i.e., when sin θ 1 = sin θ 2 = 0 and cos θ 1 = cos θ 2 = 1 (or -1), their interaction is attractive, i.e.,

E || int (p 1 , p 2 ) = - p 1 p 2 2π 0 R 3 .
If the dipoles are aligned perpendicular to vector R then sin θ 1 = sin θ 2 = 1 (or -1), cos θ 1 = cos θ 2 = 0, and the resulting interaction is repulsive with

E ⊥ int (p 1 , p 2 ) = p 1 p 2 4π 0 R 3 , which is
exactly a factor of two smaller in absolute value than E || int (p 1 , p 2 ) and of opposite sign. In both cases, the interaction energy decays as 1/R 3 and if the field strength is halved, the interaction energy is reduced by a factor of four.

Dielectric particles immersed in an external electric field also experience additional attractive forces at short separation distances due to induced multipolar interactions, which are taken into account in Equation (25). As Figure 2 shows, these induced attractions are much stronger in the case of E || int due to the close proximity of regions of surface charge density of opposite sign residing on neighbouring particles. The polarising effects of surface charge become more significant at separation distances comparable to the size of the particles. In the case of attraction, the interaction energy between particles can be twice as large as that predicted by the approximation of fixed dipoles (33). Consequently, at short separation distances, a quantitatively accurate account of the interaction energy (and the force) can only be achieved through a realistic description of surface charge polarisation, i.e., a description beyond the induced dipole max = 1 approximation as we describe here, where in the case of Figure 2, max = 30 with 1454 Lebedev integration points was used. The nature of the attraction at short separations is also critically influenced by polarisation of the medium, as shown in Figures 3 and4. When the dielectric constant of the medium κ 0 is greater than that of the particles κ i , shielding by the medium reduces the strength of the attractive interaction between particles. Figure 3a shows the most pronounced case of such a shielding effect at 10 -3 µm surface-to-surface separation. At a large separation, as shown in Figure 3c, the shielding effect becomes negligible. When κ 0 < κ i , the interaction is much stronger when particle polarisation is taken into account, as confirmed in Figures 3a and4a, and also in Figure 2. Figure 4 supplements these observations with calculations of the interparticle interaction energy for a large range of values of the dielectric constant of the mediumfrom 1 (vacuum) to 100. The simulations in both Figure 3 and 4 required spherical harmonics of the 30th degree (i.e., max = 30) with 1454 Lebedev integration points for the evaluation of equation 30. 25). The surface-to-surface separation is 10 -3 µm.

Angular dependence of particle interactions in an external electric field

Many chemical problems involving, for example, adsorption of ions and protonation or deprotonation of functional groups on surfaces, require consideration of particles with an inhomogeneous distribution of surface charge, where the interaction is also dependent on the orientation of the particles. The special case of a neutral surface containing a point charge has been discussed in Filippov et al, [START_REF] Filippov | Interaction between particles with inhomogeneous surface charge distributions: Revising the Coulomb fission of dication molecular clusters[END_REF] where the four extreme orientations of two point surface charges were considered in several different chemical scenarios; this work [START_REF] Filippov | Interaction between particles with inhomogeneous surface charge distributions: Revising the Coulomb fission of dication molecular clusters[END_REF] is in excellent agreement with the method presented here. For the general case κ i > κ 0 , the orientation of the particles shown in Figure 5 is the most attractive scenario in the absence of an external electric field. Furthermore, an inhomogeneous surface charge distribution, such as a point charge placed on a neutral sphere, breaks the axial symmetry (except for a few specific cases) thus presenting a more complex system.

As illustrated in Figure 2, the interaction between two particles in the presence of an ex-ternal electric field has a strong directional dependence. If the strength of the applied electric field is high, the interaction between particles containing surface point charge follows the trends seen in Figure 2. In this case, the dominant contribution to the interaction energy/force comes from a field-induced dipole-dipole interaction. When both particles have the same dielectric constant (solid and dashed lines in Figures 5a-5c), a strong attractive interaction occurs when the field is acting parallel to particle alignment (Figures 5a; θ = 0 and 5C; θ = π); however, if κ 0 > κ i (dashed line) the dipole-dipole interaction is reduced due to the medium shielding effect. In Figure 5b where the applied field acts in the direction perpendicular to particle alignment (θ = π/2), the interaction is driven by the repulsive dipole-dipole interaction. If κ 1 < κ 0 < κ 2 (dot-dashed lines) or κ 2 < κ 0 < κ 1 (dotted lines), the dominant dipole-dipole interaction is repulsive when the field is parallel to particle alignment, and it is attractive when the field is perpendicular to the particle alignment as in the latter case the dipoles point in opposite directions. At smaller magnitude of applied electric field, an additional contribution to the interaction energy from the surface point charges becomes significant leading to more subtle effects. The strength of the interaction in this case is governed by the total surface charge represented by fixed point charges and induced surface charge.

This behaviour can be understood through Equation ( 25) by realising that σ max p σ max ext for weak external fields and σ max p σ max ext for strong external fields. However, as these studies refer to charged particles, the interaction energies in both Figures 5 and6 are calculated via the evaluation of Equation ( 30) in order to only study the interaction of the particles with one another.

The effect of orientating an applied external field on the interaction energy between two particles is detailed in Figure 6. With reference to Figure 2 for neutral particles, the most attractive interaction corresponds to the field orientation where the induced dipoles are aligned parallel with vector R. As the applied field rotates, the repulsive interaction between the regions of polarised charge of the same sign becomes stronger. At the angle corresponding to zero interaction energy, the opposing attractive and repulsive interactions cancel out. At the point of smallest separation, the exact value of this angle deviates from that predicted by Equation ( 33) for two fixed-size dipoles as the induced polarisation affects the inter-particle interaction at all angles of rotation. Fixed dipole interactions go to zero at θ ≈ 0.96 rad, showing slight variations in the value of this angle if accounting for polarisation effects. Polarisation effects and the geometry of the problem are also responsible for the repulsion being smaller in magnitude than the attraction, which is expected given the results shown in Figure 2. For the case κ 2 < κ 0 < κ 1 , i.e., where one particle is less polarisable and the other more polarisable than the medium, the nature of the inter-particle interaction in the applied electric field is inverted as shown by dot-dashed line in Figure 6a. When the applied field is parallel to vector R, the two like charged regions residing on the surface of the particles are closest, thus causing repulsion; when the field is perpendicular to the particle alignment (θ = π/2), the closest regions of high charge density are of opposite sign and attractive in nature. This result can be readily understood by an analysis of the field induced dipole given by Equation (31) and by considering the resultant sign of the product p 1 • p 2 .

With the addition of a point charge to the surface of each particle, the interaction energy described by Equation ( 25) is again driven by the total surface charge density having both σ max ext and σ max p components. For the case of κ 1 = κ 2 = 20 polarisation due to the point charge leads to a more attractive interaction at θ = π where the total surface charge at 10 -3 µm surface-to-surface separation (s) increases due to the applied field; the interaction is less attractive at θ = 0 as the total charge at the closest s decreases due to the field. The same reasoning can be applied to the case of κ 1 = κ 2 < κ 0 but with the opposite overall effect. Similarly, in the case of κ 1 < κ 0 < κ 2 , the general shape can be attributed to the effects captured in Figure 6 (left) for neutral particles. The deviation in the interaction energy at θ = 0 and θ = π for the cases where κ 2 = κ 1 is due to the polarisation caused by the point charge on the surface of the neighboring particle. In conclusion, the results presented in Figures 23456agree with the classical picture of interaction between two fixed-size dipoles, whilst showing variations in the strength of such interaction due to particle polarisation, which are substantial when the inter-particle separation is comparable to the size of the particles. A quantitative description of charged particles with inhomogenous surface charge distributions interacting in an external electric field can be obtained readily using the formalism presented in Section 2.4.

Melting ionic colloidal crystals in external electric fields

A better understanding of opposite-charge colloidal interactions could facilitate the controlled production of binary crystals with nanometre sized constituent particles, which will ultimately find applications in advanced photonic materials. [START_REF] Vermolen | Fabrication of large binary colloidal crystals with a NaCl structure[END_REF] Leunissen et al. 52 investigated the forma-tion of apolar colloidal crystals consisting of polymethyl methacrylate (PMMA) particles with opposite, dissimilar charges and different sizes suspended in a density matching mixture of cyclohexyl bromide (CHB) and cis-decalin. The particle charge was regulated by the addition of tetrabutyl-ammonium bromide (TBAB) salt, which also controlled the Debye screening length. The authors 52 reported that for a broad range of particle sizes and charges, the PMMA particles formed body centred cubic type (Caesium Chloride) crystals, which could be reversibly destabilised by the application of an electric field.

The latter behaviour can be explained by calculating the electrostatic force that charged particles experience in an external electric field. A force acting in the direction of the applied field creates a surface charge distribution different from that in the absence of the field (see Figure 1). When exposed to a sufficiently high electrical field, the dipolar nature of the surface charge distribution leads to repulsion between particles in the plane perpendicular to the direction of the field, [START_REF] Stone | The theory of intermolecular forces[END_REF] behaviour similar to that shown in Figure 2.

If the movement of surface charge causes a colloidal crystal to destabilise then the energy required could be of significant practical interest, which would require the evaluation of Equation (25), however here we evaluate Equation (30). In the subsequent numerical results, the interaction energy between particles in the crystal only has the electrostatic component as described in Section 2.3 of this paper. We further assume a vanishingly small osmotic pressure, such that the crystals are self-supported by the cohesive energy; indeed, these were experimental conditions adopted by Leunissen et al. 52 Figure 7 presents the electrostatic energy of a PMMA crystal both in vacuum and in the presence of a solvent. The dielectric constant of the latter (κ 0 = 5) matches that reported in experiments by Leunissen et al. 52 The model crystal used in simulations contains 1024 particles making it smaller than single crystals formed in experiments. Due to the negative value of the electrostatic interaction energy, the PMMA crystals in vacuum are predicted to be stable over a wide range of charge on the constituent particles. An interesting result from the calcu-Figure 7: The interaction energy of PMMA colloidal crystal (κ P M M A = 3, r 1 = 1.08 µm, r 2 = 0.99 µm, lattice parameter a l = 2.4 µm) as a function of the applied electric field. The PMMA crystal is suspended in vacuum (κ 0 = 1) and in solvent (κ 0 = 5). The charge on PMMA particles is ±100e (a), ±10e (b), ±1e (c). In the absence of the external electric field, the interaction energy of the PMMA crystal is small but negative in all three cases. lations presented is that in vacuum the crystal can be stabilised even further with an increase of the strength of the applied field. This model also predicts that the PMMA crystal is stable in solvents in the absence of the applied electric field, but its structure can be destabilised by application of the field. Therefore, this model implies that if the solvent is more polarisable than the colloidal particles, then the crystal becomes unstable with increasing strength of the external field, as also seen in the experiments reported in Leunissen et al, 52 where κ 0 = 5 was greater than κ PMMA = 3.

If the external field is switched on, the average electrostatic forces on oppositely charged particles act in opposite directions along the applied field, eventually causing the crystal structure to break apart and melt (see Figure 8). A more subtle change in the electrostatic force due to polarisation occurs in directions perpendicular to the applied field. Figure 8a exhibits several interesting features, including the value of the field strength at which the average force on a particle in the direction of the applied field is zero and the point at which it crosses forces acting in the two directions perpendicular to the field. As Figure 8 shows, in the absence of an external field all three components of the net force on each particle have the same magni-tude. At low field strength, the three components of the force are comparable in magnitude, and when the net force in the direction of the field is zero, the crystal particles still experience opposing and equal forces acting in the perpendicular directions (Figures 8b,c). Eventually, the direction of the force components parallel to the field change sign and become dominant with a further increase in the field strength, causing displacement of the oppositely charged particles in opposite directions along the field. Experimental studies 52 have reported observations of PMMA crystal melting through the application of an electrical field. At low values of the field strength, approximately 7 kV/m, a large CsCl-type crystal was found to be generally disordered. However, with the increase of the field strength to about 20 kV/m, lane formation was observed. These findings can be explained using the calculations presented here (using spherical harmonics of the 13th degree with 266 Lebedev integration points). Disorder and melting of crystals occurs in the range of electric field values which are greater than the field strength corresponding to zero interaction energy in Figure 7 (positive interaction energies indicate unstable structures) but less than the value of the field at which the force components in Figure 8a are all equal in magnitude. Lane formation is observed at much higher fields, exceeding the value at which the force components in Figure 8a are equal. In this case, strong average forces acting on each particle, either in the direction of the field (positively charged particles) or anti-parallel to the field (negatively charged particles), cause their spatial separation and lane formation. 

Linear scaling and accuracy

In these final numerical tests, we benchmark the performance of the FMM-based implementation of the method. We consider an arrangement of particles on a regular lattice of size n × n × n, for n = 5, 7, 9, . . . , 17, thus ranging from 125 to 4913 particles. A uniform electric field of magnitude E ext = 0.5 V/m along the x-axis is applied, and each particle contains a unit point-charge at the north and south pole alternately. The radii and dielectric constants are alternating as well with values 3 and 2, and 50 and 300, respectively. The interaction takes place in a medium with κ 0 = 10 and we use max = 10. The tolerance for the linear solver was set to a conservative threshold of 10 -10 . The results presented in Figure 9a were performed on a 2016 MacBook laptop with a 2.6 GHz Intel Core i7 processor and 16GB of 2133 MHz LPDDR3 memory. We observe that the execution time increases linearly. The change of regime between the first four data points and the last three is due to FMM adding one more layer in the tree-structure.

We finish this section with a numerical study on the accuracy in calculating the forces with respect to the discretization parameter max . The tolerance for the linear solver was set to a very conservative threshold of 10 -13 . Figure 9b shows the relative error in the calculation of the force vector, with respect to a reference computation with large enough max for the 5 × 5 × 5 lattice structure, for a uniform surface charge distribution and with a surface point charge. In the presence of (singular) point charges, we observe an algebraic error decay with respect to max while the scenario with a uniform charge distribution shows super-algebraic convergence which matches the theoretical result of exponential convergence for the case without external field. 45

Conclusion and Outlook

In this article, a theoretical framework based on boundary integral equations, suitable for computing the electrostatic interactions between particles undergoing mutual polarisation, has been generalised to include two important physical effects: external, harmonic, nondecaying electric fields and point-like charges localised on the particles' surface. Analytical expressions for the interaction energy and the net electrostatic forces have been derived that allow computing these properties in linear scaling complexity with respect to the number of interacting particles. The derived expressions ensure that the negative gradient of the interaction energy with respect to the location of any given particle equals precisely the net force acting on this particle. The longstanding computational challenges concerning singularities due to the presence of surface point-charges and a non-decaying external field, both of which formally lead to infinite energy if no special mathematical treatments are applied to the standard formalism, have been successfully resolved in this work. The developed formalism has been validated and tested using several numerical problems and applied to study the stability and melting of ionic colloidal suspensions in external electric fields.

The proposed methodology can be used in conjunction with other computational models to include the entropy associated with thermal effects and determine crystal stability at different temperatures, or it can be readily combined with estimations of the van der Waals forces where appropriate. In applications related to ionic crystals, however, the cohesive energy is dominated by Coulomb interactions, which are accurately described in the developed formalism. In this work, the net electrostatic force on each particle in a crystal has been computed by taking into account their separation -dependent polarisation. This provides a rigorous and quantitatively accurate method, which allows to explain the mechanisms underpinning electric field induced melting processes in ionic colloidal crystals and compare these predictions with existing experimental data. Approaches based on the fixed dipole approximation are not suitable in such cases as they only describe the energetics of a chemical (or physical) process at long separations and are inaccurate when the interaction takes place at distances comparable to the particle size.

Concerning future work, the non-uniform nature of the surface charge distribution implies that the interacting particles can no longer be seen as homogeneous. Consequently, rotational degrees of freedom needs to be accounted for in particle dynamics simulations based on the proposed formalism. Whilst the methodology presented here can handle a single computation of the interaction energy (and force) for a given geometric configuration, the additional degrees of freedom need to be updated during a time-dependent, dynamic simulation while respecting the torques acting on the particles. This will be the subject of a further contribution which will provide a complete generalisation of the proposed method.

description of trace operators and fractional Sobolev spaces is beyond the scope of this article and can, for instance, be found in. [START_REF] Sauter | Boundary Element Methods[END_REF] Concerning the mapping properties of the single layer potential and boundary operators, it can be shown that for any s ∈ R, the mapping S extends as a bounded linear map from the Sobolev space H s (∂Ω) to H s+ 3 /2 loc (R 3 ) and the operator V extends as an invertible, bounded linear map from H s (∂Ω) to H s+1 (∂Ω) (see, e.g., [START_REF] Sauter | Boundary Element Methods[END_REF] for a concise exposition on Sobolev spaces and for precise definitions and properties of the single layer potential). "Local" versions of the single layer potential and boundary operators which we have used frequently in this article are formally defined as follows: For each i ∈ {1, . . . , N }, we have

(S i ν i )(x) := ∂Ω i ν i (y) 4π|x -y| d y, ∀x ∈ Ω i ∪ R 3 \ Ω i , ∀ν i ∈ H s (∂Ω i ), s ∈ R, (V i ν i )(x) := ∂Ω i ν i (y) 4π|x -y| d y, ∀x ∈ ∂Ω i , ∀ν i ∈ H s (∂Ω i ), s ∈ R.
In addition, we have used extensively in this article, the so-called Dirichlet-to-Neumann map, denoted DtN. Mathematically, the map DtN : H s (∂Ω) → H s-1 (∂Ω), s ∈ R is defined as follows:

Given some boundary function λ ∈ H s (∂Ω), let u λ denote the harmonic extension of λ in Ω -.

Then DtNλ ∈ H s-1 (∂Ω) is the normal derivative (more precisely, the Neumann trace) of u λ on the boundary ∂Ω. We emphasise that in contrast to the single layer potential and boundary operator, the DtN map is a purely local operator, i.e., for any λ ∈ H s (∂Ω), DtNλ| ∂Ω i depends only on λ| ∂Ω i .

Concerning the regularity of solutions to the BIE (6), we recall from Equation ( 2) that the point-charge contribution σ p to the free surface charge is assumed to be a linear combination of Dirac delta distributions. It is possible to show therefore that σ p is an element of the Sobolev space H r (∂Ω) for every r < -1. In view of the regularising property of the single layer boundary operator V , we can conclude that the right-hand side of the BIE ( 6) is, in general, an element of H r (∂Ω) for every r < 0. This implies in particular that solutions to the BIE (6) are not, in general, square integrable functions. On the other hand, we recall that σ s ∈ L 2 (∂Ω)

by assumption so that solutions to the BIE ( 9) can be readily understood as elements of the Sobolev space H 1 (∂Ω).

Finally, let us state the definition of the approximation space used in the proposed Galerkin discretisation.

Definition (Spherical Harmonics)

For every integer ∈ N ∪ {0} and m ∈ {-, . . . , } we define Y m : S 2 → R as the real-valued L 2 -orthonormal spherical harmonic of degree and order m on the unit sphere S 2 (see [START_REF] Hassan | Mathematical Analysis of Boundary Integral Equations and Domain Decomposition Methods with Applications in Polarisable Electrostatics[END_REF] for a precise, constructive definition).

The set of spherical harmonics is dense in L 2 (S 2 ) and is therefore well-suited for the choice of basis functions in the Galerkin discretisation of BIE (9).

Definition (Approximation Spaces)

Let max ∈ N be a discretisation parameter. First, on each sphere ∂Ω i , i = 1, . . . , N we define a local approximation space W max (∂Ω i ) as

W max (∂Ω i ) := u : ∂Ω i → R such that u(x) = max =0 m=+ m=- [u] m Y i m (x) with [u] m ∈ R ,
where we introduced for notational convenience the basis functions Y i m : ∂Ω i → R as

Y i m (x) := Y m x -x i |x -x i | ∀x ∈ ∂Ω i .
Next, we define the global approximation space W max as

W max := u : ∂Ω → R such that ∀i ∈ {1, . . . , N } : u| ∂Ω i ∈ W max (∂Ω i ) .

A.2 Mathematical Proofs of Theorems 2.2 and 2.1

In this section we provide proofs of Theorems 2.2 and 2.1 from Section 2.4, beginning with the proof of Theorem 2.2. This result shows that the definition of the interaction energy that we have provided in this article using quantities of interest from the integral equation ( 6) is consistent with the electric field-based definition of the interaction energy as derived directly from the PDEs (3) and (4). Throughout this section, we will use the notation and setting introduced in Sections 2.1, 2.2 and 2.4.

A.2.1 Proof of Theorem 2.2

Let j ∈ {1, . . . , N } and let B r be an open ball large enough so that Ω -⊂ B r . We begin by defining precisely E j j , i.e., the electric field produced only due to the sphere ∂Ω j in the absence of both the external field E ext as well as the other spheres. Maxwell's equations imply that E j j := -∇Φ j j where the self-potential Φ j j satisfies the PDE (c.f., Equation ( 4))

-∆Φ j j = 0 in Ω j ∪ R 3 \ Ω j Φ j j = 0 on ∂Ω j , κ∇Φ j j = σ s, j + σ p, j on ∂Ω j , |Φ j j | → 0 as |x| → ∞, (34) 
where we remind the reader that σ s, j := σ s | ∂Ω j and σ p, j := σ p | ∂Ω j .

Next, to aid the subsequent exposition, we define the auxiliary quantity

E r PDE,int := B r κ(x)E tot (x) • E tot (x) d x - N j =1 B r κ(x)E j j (x) • E j j (x) d x - B r κ 0 E ext (x) • E ext (x) d x. (35) 
We may now use simple algebra and the fact that Φ tot = Φ+Φ ext (see Section 2.1) to deduce that

E r PDE,int = B r κ(x) ∇Φ(x) 2 d x + 2 B r κ(x)∇Φ(x) • ∇Φ ext (x) d x - N j =1 B r κ(x) ∇Φ j j (x) 2 d x + B r (κ(x) -κ 0 ) ∇Φ ext (x) 2 d x.
Next, we recall from the PDEs (3) and ( 4) that Φ is harmonic on Ω -∪ Ω + , Φ ext is harmonic on R 3 , and Φ j j is harmonic on Ω j ∪ (R 3 \ Ω j ). Therefore we can appeal to Green's first identity to simplify the above integrals as

B r κ(x) ∇Φ(x) 2 d x = ∂Ω [κ∇Φ (x)Φ(x) d x + ∂B r κ 0 ∂ n Φ(x)Φ(x) d x, 2 B r κ(x)∇Φ ext (x) • ∇Φ(x) =2 ∂Ω [κ∇Φ (x)Φ ext (x) d x + 2 ∂B r κ 0 ∂ n Φ(x)Φ ext (x) d x, B r N j =1 κ(x) ∇Φ j j (x) 2 d x = N j =1 ∂Ω j (κ j -κ 0 )∂ n Φ j j (x)Φ j j (x) d x + N j =1 ∂B r κ 0 ∂ n Φ j j (x)Φ j j (x) d x, B r (κ(x) -κ 0 ) ∇Φ ext (x) 2 d x = ∂Ω (κ(x) -κ 0 )∂ n Φ ext (x)Φ ext (x) d x.
Recalling the interface conditions from the PDEs (4) and (34), we can further simplify several of these integral as

∂Ω [κ∇Φ (x)Φ(x) d x = σ s + σ p + σ ext , Φ L 2 (∂Ω) , 2 ∂Ω [κ∇Φ (x)Φ ext (x) d x =2 σ s + σ p + σ ext , Φ ext L 2 (∂Ω) , N j =1 ∂Ω j (κ j -κ 0 )∂ n Φ j j (x)Φ j j (x) d x = N j =1 σ s, j + σ p, j , Φ j j L 2 (∂Ω j ) , ∂Ω (κ(x) -κ 0 )∂ n Φ ext (x)Φ ext (x) d x = -σ ext , Φ ext L 2 (∂Ω) ,
where we remind the reader that σ ext = -(κ -κ 0 )∂ n Φ ext . Using the fact that λ, λ ext and λ j j are the restrictions on the spheres of the potentials Φ, Φ ext , and Φ j j respectively, we can deduce that

E r PDE,int = σ s + σ p + σ ext , λ L 2 (∂Ω) + 2 σ s + σ p , λ ext L 2 (∂Ω) + σ ext , λ max ext L 2 (∂Ω) - N j =1 σ s, j + σ p, j , λ j j L 2 (∂Ω j ) + ∂B r κ 0 ∂ n Φ(x)Φ(x) - N j =1 ∂ n Φ j j (x)Φ j j (x) d x + 2 ∂B r κ 0 ∂ n Φ(x)Φ ext (x) d x = E int .
Comparing this final expression with Equation ( 35) allows us to deduce the required result (28).

Next, we will prove Theorem 2.1 which shows that Definition (24) of the approximate electrostatic forces is consistent with the usual notion in the chemistry literature of the forces as the negative sphere-centered gradients of the electrostatic interaction energy. In order to present a concise and well-structured proof, we will first prove two lemmas.

Lemma A.1 Let λ max denote the solution to the Galerkin discretisation (18) for a given free charge σ f = σ s + σ p and external electric field E ext . Additionally, let ν max denote the approximate induced surface corresponding to λ max and let E i exc , i ∈ {1, . . . , N } denote the i -excluded electric fields generated by ν max as defined through Definition 17. Then for each i ∈ {1, . . . , N } it holds that

1 2 ∇ x i σ s + σ p + σ ext , λ max L 2 (∂Ω) = -κ 0 ν max , E i exc L 2 (∂Ω i ) + ∇ x i σ ext , λ max L 2 (∂Ω i ) .
Proof: Let i ∈ {1, . . . , N } be fixed. A simple application of the product rule yields that

1 2 ∇ x i σ s + σ p + σ ext , λ max L 2 (∂Ω) = 1 2 ∇ x i σ s + σ p + σ ext , λ max L 2 (∂Ω) + 1 2 σ s + σ p + σ ext , ∇ x i λ max L 2 (∂Ω) .
Using the fact that both σ s and σ p are independent of changes in the locations {x i } N i =1 of the so that we obtain the expression

1 2 ∇ x i σ s + σ p + σ ext , λ max L 2 (∂Ω) = 1 2 ∇ x i σ ext , λ max L 2 (∂Ω i ) + 1 2 σ s + σ p + σ ext , ∇ x i λ max L 2 (∂Ω) . (36) 
Consequently, it remains to compute the sphere-centred gradient of λ max . This is a slightly technical task so to aid the subsequent exposition, we first introduce some additional notation.

Notation: We define the vectors and matrices σ, σ ext , D t N κ and V as

[σ i ] m := σ s + σ p , Y i m L 2 (∂Ω i ) , [σ ext i ] m := σ ext , Y i m L 2 (∂Ω i ) , [D t N κ i j ] mm :=δ i j κ j -κ 0 κ 0 DtNY j m , Y i m L 2 (∂Ω i ) , [V i j ] mm := V Y j m , Y i m L 2 (∂Ω i )
, where i , j ∈ {1, . . . , N }, , ∈ {0, . . . , max } and |m| ≤ , |m | ≤ . Additionally, we recall that

1 2 σ s + σ p + σ ext , ∇ x i λ max L 2 (∂Ω) = 1 2 σ + σ ext , ∇ x i λ 2 = 1 2 σ + σ ext , A -1 ∇ x i V ν 2 + 1 2 σ + σ ext , 1 κ 0 A -1 V ∇ x i σ ext 2 = 1 2 A T -1 σ + σ ext , ∇ x i V ν 2 + 1 2 1 κ 0 A T -1 σ + σ ext ,V ∇ x i σ ext 2 .
Next, a direct calculation and comparison with the Galerkin discretisation (18) reveals that

A T -1 σ + σ ext = κ 0 ν.
Using the definition of ν max as given by Equation ( 22), we obtain that

1 2 σ s + σ p + σ ext , ∇ x i λ max L 2 (∂Ω) = 1 2 κ 0 ν, ∇ x i V ν 2 + 1 2 ν,V ∇ x i σ ext 2 = 1 2 κ 0 ν, ∇ x i V ν 2 + 1 2 λ, ∇ x i σ ext 2 = 1 2 κ 0 ν max , ∇ x i V ν max L 2 (∂Ω) + 1 2 λ max , ∇ x i σ ext L 2 (∂Ω) = 1 2 κ 0 ν max , ∇ x i V ν max L 2 (∂Ω) + 1 2 λ max , ∇ x i σ ext L 2 (∂Ω i ) (39) 
Finally, a direct but tedious computation can be used to show that 45,58

1 2 κ 0 ν max , ∇ x i V ν max L 2 (∂Ω) = -κ 0 ν max , E i exc L 2 (∂Ω i ) . ( 40 
)
Combining therefore the developments (39) and (40) with Equation (36) now completes the proof. Since Φ ext is harmonic in R 3 and therefore in particular on Ω i , it follows that we can write

∇ x i σ ext , Ψ L 2 (∂Ω i ) = -(κ i -κ 0 ) ∇ x i ∂ n Φ ext , Ψ L 2 (∂Ω i ) = -(κ i -κ 0 ) (DtNλ ext , Ψ) L 2 (∂Ω i ) = -(κ i -κ 0 )r 2 i =∞ =0 m=+ m=- ∇ x i r i [λ ext,i ] m [Ψ i ] m = -(κ i -κ 0 )r 2 i =∞ =0 m=+ m=- ∇ x i [λ ext,i ] m r i [Ψ i ] m
= -(κ i -κ 0 ) ∇ x i λ ext , DtNΨ L 2 (∂Ω i ) .

A.2.2 Proof of Theorem 2.1

We are now ready to state the proof of Theorem 2.1. Before proceeding to the proof, let us simply remark that the relation (26) in Theorem 2.1 remains true if exact quantities are considered, i.e., if the force defined by ( 24) is built upon the exact induced charge ν being solution to the BIE (7) and where the energy corresponds to E int as defined by (27).

Let i ∈ {1, . . . , N } be fixed. By the definition of the approximate electrostatic interaction energy, we have .

-∇ x i E max int = -
We now simplify each of the terms (I), (II), (III), and (IV). First, we observe that the self energy term (IV) is defined entirely through functions that are independent of changes in the location of the center x i of the sphere ∂Ω i , even in the case j = i . This can be seen by noticing that σ s,i + σ p,i , λ ii max L 2 (∂Ω i ) remains constant as one displaces x i by any translation. Consequently, we obtain that (IV) ≡ 0.

The term (I) can be simplified using Lemmas A. 

where the second line follows from a similar calculation as done to obtain Equation (40).

dent of changes in the location of the center x i of the sphere ∂Ω i . Consequently, we obtain (II) = -∇ x i σ s + σ p , λ max ext L 2 (∂Ω) = -σ s + σ p , ∇ x i λ max ext L 2 (∂Ω) = -σ s + σ p , ∇ x i λ max ext L 2 (∂Ω) i .

Therefore, using a calculation similar to the one used to obtain Equation ( 43 = κ 0 ν max , E i exc L 2 (∂Ω i ) + κ 0 ν max , E ext L 2 (∂Ω i ) .

where the last equality follows from Equation ( 23). This completes the proof.

  where σ max s , σ max p , and σ max ext are the best approximations or projections (in the L 2 -sense) of σ s , σ p , and σ ext in the approximation space W max defined in Appendix A.1. The approximate net electrostatic force acting on the dielectric particle described by the open ball Ω i , i ∈ {1, . . . , N } is now given by

Theorem 2 . 2

 22 Let λ ext denote the restriction of Φ ext to ∂Ω, and let λ denote the solution to the boundary integral equation (6) for a given free charge σ f = σ s + σ p and external electric field E ext . Then for any open ball B r of radius r > 0 which is large enough to contain Ω -, the

Figure 1 :

 1 Figure 1: a) Surface charge density on a neutral dielectric particle (κ = 10, r = 5µm) placed in an external electrical field of E ext = 1000 V/m; b) Surface charge density on the neutral particle (a) calculated at different external electrical field strengths: E ext = 600 V/m, 1000 V/m, and 2000 V/m; c) Surface charge density on the particle (a) with a model surface point charge of 0.2e placed at α = π/2, as indicated by a small dotted circle.

Figure 2 :

 2 Figure 2: The interaction energy between two neutral dielectric particles (r 1 = r 2 = 5 µm and κ 1 = κ 2 = 10) in an applied electric field as a function of the separation distance. Dashed line: approximation of two fixed dipoles as defined by Equation (33); solid line: calculation using Equation (25) taking into account the separation-dependent particle polarisation. The strength of the applied electric field is 100 kV/m (red), 200 kV/m (blue) and 300 kV/m (black). The interaction takes place in vacuum, i.e. κ 0 = 1.

Figure 3 :

 3 Figure 3: The interaction energy between two neutral particles (r 1 = r 2 = 5 µm) in an external electric field of 200 kV/m as a function of their dielectric constant. Dashed line: approximation of two fixed dipoles as defined by Equation (33); solid line: calculation using Equation (25). The surface-to-surface separation distance is 10 -3 µm (a), 5 µm (b), 100 µm (c). The interaction takes place in a medium with κ 0 = 10. Note change of scale along the y-axis.

Figure 4 :

 4 Figure 4: The interaction energy between two neutral particles (r 1 = r 2 = 5 µm and κ 1 = κ 2 = 10) in an external electric field of 200 kV/m as a function of the dielectric constant of medium: a) κ 0 ranging from 1 (vacuum) to 100; b) expansion of the region for κ 0 values between 10 and 45, highlighting minor extrema. Dashed line: approximation of two fixed dipoles as defined by Equation (33); solid line: calculation using Equation (25). The surface-to-surface separation is 10 -3 µm.

Figure 5 :

 5 Figure 5: The interaction energy between two dielectric particles (r 1 = r 2 = 5µm) containing a surface point charge of 50e as a function of the strength of the applied external field: κ 1 = κ 2 = 20 (solid line), κ 1 = κ 2 = 5 (dashed line), κ 1 = 20 and κ 2 = 5 (dotted line), and κ 1 = 5 and κ 2 = 20 (dot-dashed line). The interaction takes place in a dielectric medium with κ 0 = 10 at the surface-to-surface separation of 10 -3 µm. Illustrations alongside each graph show the orientation of the external electric field: parallel with (a and c) and perpendicular to (b) the alignment of the interacting particles.

Figure 6 :

 6 Figure 6: The interaction energy between two particles (r 1 = r 2 = 5 µm) in an external electric field of 200 kV/m as a function of the angle of the field rotation: a) neutral dielectric particles; b) dielectric particles with a point surface charge of 50e, as shown in Figure 5. Dashed line: κ 1 = κ 2 = 5; solid line: κ 1 = κ 2 = 20; dot-dashed line: κ 1 = 20, κ 2 = 5; dotted line: κ 1 = 5, κ 2 = 20. The interaction takes place in a medium with κ 0 = 10 at the surface-to-surface separation of 10 -3 µm. Note that in the case of uniform surface charge distribution (a) the cases of κ 1 = 20, κ 2 = 5 and κ 1 = 5, κ 2 = 20 are identical.

Figure 8 :

 8 Figure 8: The average force acting on PMMA particles in the crystal (z 1,2 = ±10e, r 1 = 1.08 µm; r 2 = 0.99 µm) suspended in solvent (κ 0 = 5): a) in the direction of the applied field (solid lines) and in the directions perpendicular to the field (dashed lines), b) and c) scale up of the forces acting in the directions perpendicular to the field. The force on negative particles is depicted in blue and on positive particles in red.

Figure 9 :

 9 Figure9: a) Wall time for the computation of the energy and forces with respect to the number of particles; b) relative accuracy of the forces with respect to the discretization parameter max for systems with a free charge distribution consisting of uniform charge distributions and with point charges.

Lemma A. 2 1 2(

 21 For a given external electric fieldE ext = -∇Φ ext ∈ L 2 loc (R 3 ), let σ ext = -(κ-κ 0 )∂ n Φ ext , ∇ x i σ ext , Ψ L 2 (∂Ω i ) = -(κ i -κ 0 ) ∇ x i λ ext , DtNΨ L 2 (∂Ω i ) . (41)Proof: Recall the notationλ ext := Φ ext | ∂Ω ∈ H ∂Ω) and let [λ ext,i ] m and [Ψ i ] m , ∈ N 0 , |m| ≤denote the local spherical harmonics expansion coefficients of λ ext and Ψ on the sphere ∂Ω i .

1 2 ∇ 2

 122 x i σ s + σ p + σ ext , λ max L 2 (∂Ω) :=(I) -∇ x i σ s + σ p , λ max ext L j + σ p, j , λ j j max L 2 (∂Ω j ) :=(IV)

2 ∇

 2 x i σ s + σ p + σ ext , λ max L 2 (∂Ω) = κ 0 ν max , E i exc L 2 (∂Ω i ) -∇ x i σ ext , λ max L 2 (∂Ω i ) (Using Lemma A.1) = κ 0 ν max , E i exc L 2 (∂Ω i ) :=(IA) + (κ i -κ 0 ) ∇ x i λ ext , DtNλ max L 2 (∂Ω i ) :=(IB) . (Using Lemma A.2) (42)Next, we simplify the term (IB). Indeed, a direct calculation shows that(IB) = (κ i -κ 0 ) ∇ x i λ ext , DtNλ max L 2 (∂Ω i ) = (κ i -κ 0 ) ∂Ω i (∇ x i Φ ext )DtNλ max d x = (κ i -κ 0 ) ∂Ω i (∇ x Φ ext )DtNλ max d x = -(κ i -κ 0 ) ∂Ω i E ext DtNλ max d x = -(κ i -κ 0 ) DtNλ max , E ext L 2 (∂Ω i ) ,

  

  1 2 ∇ x i σ s + σ p + σ ext , λ max L 2 (∂Ω) = 1 2 ∇ x i σ ext , λ max L 2 (∂Ω) + 1 2 σ s + σ p + σ ext , ∇ x i λ max L 2 (∂Ω) .Finally, it is straightforward to see that in fact1 2 ∇ x i σ ext , λ max L 2 (∂Ω) = 1 2 ∇ x i σ ext , λ max L 2 (∂Ω i )

  ), we deduce that(II) = -σ s + σ p , ∇ x i λ max ext L 2 (∂Ω i ) = σ max ∇ x i σ ext , λ max ext L 2 (∂Ω i ) -1 2 σ ext , ∇ x i λ max ext L 2 (∂Ω i ) =(κ i -κ 0 ) DtNλ ext , ∇ x i λ max ext L 2 (∂Ω i ) -1 2 σ ext , ∇ x i λ max ext L 2 (∂Ω i ) = -σ ext , ∇ x i λ max ext L 2 (∂Ω i ) .Once again, a direct calculation of the form used to obtain Equation (43) allows us to conclude that(III) = -σ ext , ∇ x i λ max ext L 2 (∂Ω i ) = σ max ext , E ext L 2 (∂Ω i ) . (45)50Combining now Equations (42), (43), (44), and (45) we obtain that-∇ x i E max int = (IA) + (IB) + (II) + (III) = κ 0 ν max , E i exc L 2 (∂Ω i ) -(κ i -κ 0 ) DtNλ max , E ext L 2 (∂Ω i ) ext L 2 (∂Ω i ) + σ max ext , E ext L 2 (∂Ω i ) = κ 0 ν max , E i exc L 2 (∂Ω i ) + -(κ i -κ 0 )DtNλ max + σ max max ext , E ext L 2 (∂Ω i )

	+ σ max s	+ σ max	
	gether with Lemma A.2 yields that	
	(III) = -	1 2	∇ x i σ ext , λ max ext L 2 (∂Ω) = -	1 2	∇ x i σ ext , λ max ext L 2 (∂Ω i )
	= -	1 2		

s + σ max p , E ext L 2 (∂Ω i ) ,

(44)

where σ max s and σ max p are the best approximations in W max of σ s and σ p respectively. Next, we attempt to simplify the term (III). A simple application of the product rule to-p , E s + σ max p + σ

(∂Ω) be arbitrary. Then for each i ∈ {1, . . . , N } it holds that
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A Appendix

A.1 Mathematical considerations

This section contains some additional mathematical considerations such as more details about our mathematical assumptions, the properties of the mathematical objects used in this article and a precise definition of the Galerkin approximation space that we use.

To begin with, we assume that the external harmonic potential we consider satifies Φ ext ∈ H 1 loc (R 3 ) with the associated external electric field

and H 1 loc (R 3 ) denote the spaces of locally square integrable functions and locally square integrable functions with locally square integrable first derivatives, respectively. Next, we emphasise that, as is common in the mathematical literature, the solution to the PDE (4), i.e., the perturbed electrostatic potential Φ, is typically understood as an element of the space

) and is therefore not, in general, continuous. Strictly speaking therefore, the transmission conditions in Equation ( 4) must be understood in the sense of so-called Dirichlet and Neumann traces in the Sobolev spaces H 1 2 (∂Ω) and H -1 2 (∂Ω) respectively. A detailed the Galerkin discretisation ( 18) is equivalent to the linear system of equations

where λ and F are defined by ( 20) and ( 21) respectively.

Equipped with notation introduced above, we now take the gradient on both sides of Equation (37). Using the product rule together with the fact that the Dirichlet-to-Neumann map is independent of changes in the locations {x i } N i =1 of the sphere centers, we obtain that

or equivalently, after collecting terms

Next, recalling that ν max satisfies Equation (23), it is easy to deduce that

where

, with indices i ∈ {1, . . . , N }, ∈ {0, . . . , max } and |m| ≤ . We therefore conclude from Equation (38) that