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Abstract—In decentralized decision-making problems, commu-
nicating agents choose their actions based on locally available
information and knowledge about decision rules or strategies of
other agents. In this work, we consider a strategic communication
game between an informed encoder and two decoders communi-
cating via a Gray-Wyner network. All three agents are assumed
to be rational and endowed with distinct objectives captured by
non-aligned cost functions. The encoder selects and announces
beforehand the compression scheme to be implemented. Then,
it transmits three signals: a public signal, and a private signal
to each decoder inducing a Bayesian game among the decoders.
We are interested in designing an achievable coding scheme that
minimizes the encoder’s long run cost function subject to the
challenges imposed by the Gray-Wyner network.

A full version of this paper is accessible at:
http://dx.doi.org/10.13140/RG.2.2.22521.95848

I. INTRODUCTION

We study the two-receiver strategic communication with
mismatched objectives via a Gray-Wyner network, as in Fig. 1.
This paper extends our work in [1] to the case where decoders
are mutually cost-dependent, i.e. the cost function of each
decoder depends on the action of the other decoder, and each
decoder observes one private signal in addition to the public
signal. Knowing the cost functions of all agents, the goal of
each player is to minimize its respective cost.

Originally referred to as the sender-receiver game, the
problem was formulated in the game theory literature with
no restrictions on the amount of information transmitted. The
Nash equilibrium solution of the cheap talk game was inves-
tigated by Crawford and Sobel in [2]. In [3], Kamenica and
Gentzkow formulate the Stackelberg version of the strategic
communication game. This setting, referred to as the Bayesian
persuasion game, is the one under study in this paper by
considering a Gray-Wyner network with two decoders. The
Gray-Wyner network was formulated in the seminal work [4]
with a characterization of the region of attainable rates. The
optimal region of second-order coding for the lossy Gray-
Wyner network was derived in [5].
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CNRS, DIM-RFSI, SRV ENSEA, UFR-ST UCP, The Paris Seine Initiative
and IEA Cergy-Pontoise. This research has been conducted as part of the
project Labex MME-DII (ANR11-LBX-0023-01).
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Fig. 1: Gray-Wyner network with cost-dependent decoders.

Information design with multiple designers interacting with
a set of agents is studied in [6]. In [7], [8], the Nash equi-
librium solution is investigated for multi-dimensional sources
and quadratic cost functions, whereas the Stackelberg solution
is studied in [9]. The strategic communication problem with
a noisy channel is investigated in [10], [11], [12], [13], and
[14]. The case where the decoder privately observes a signal
correlated to the state, also referred to as the Wyner-Ziv setting
[15], is studied in [16], [17] and [18]. Vora and Kulkarni in-
vestigate the achievable rates for the strategic communication
problem in [19], [20] where the decoder is the Stackelberg
leader.

In this paper, we assume that the encoder E commits to
and reveals an encoding strategy before observing the source
symbols. Each commitment of the encoder induces a Bayesian
game among the decoders D1 and D2. This Bayesian game
admits Bayes-Nash equilibria [21]. We assume that decoders
will select the pair of output sequences that minimizes their
respective costs and maximizes the encoder’s cost. Our goal is
to characterize the encoder’s minimal long-run cost function
subject to the optimal compression scheme that satisfies both
decoders incentives constraints.

A. Notations

Notations Un and V n
i denote the sequences of random

variables of source information un = (u1, ..., un) ∈ Un,
and decoder Di’s actions vni ∈ Vn

i respectively for i ∈
{1, 2}. Calligraphic fonts U and Vi denote the alphabets and
lowercase letters u and vi denote the realizations. Notation
X−
−Y −
−Z stands for the Markov chain PZ|XY = PZ|Y . The
information source U follows the independent and identically



distributed (i.i.d) probability distribution PU ∈ ∆(U), where
∆(U) denotes the probability simplex over U .

II. SYSTEM MODEL

In this section, we introduce the coding problem and for-
mulate the Bayesian game induced by each encoding function.

Definition 1. Let R0, R1, R2 ∈ R3
+ = [0,+∞[3, and n ∈

N⋆ = N\{0}. The encoding σ and the decoding τi of the
encoder E and decoders Di for i ∈ {1, 2} respectively, are
random functions given by

σ : Un 7→ ∆
(
{1, ..2⌊nR0⌋} × {1, ..2⌊nR1⌋} × {1, ..2⌊nR2⌋}

)
,

τi : ({1, 2, ..2⌊nR0⌋} × {1, 2, ..2⌊nRi⌋}) 7→ ∆(Vn
i ).

The coding triplets (σ, τ1, τ2) are stochastic and induce a
joint probability distribution

Pσ,τ1,τ2
UnM0M1M2V n

1 V n
2
=( n∏

t=1

PUt

)
Pσ
M0M1M2|UnPτ1

V n
1 |M0M1

Pτ2
V n
2 |M0M2

. (1)

Definition 2. Single-letter cost functions ce : U×V1×V2 7→ R
of the encoder and ci : U × V1 × V2 7→ R of decoder Di for
i ∈ {1, 2} induce long-run cost functions

cne (σ, τ1, τ2) = Eσ,τ1,τ2

[
1

n

n∑
t=1

ce(Ut, V1,t, V2,t)

]

=
∑

un,vn
1 ,vn

2

Pσ,τ1,τ2
UnV n

1 V n
2
(un, vn1 , v

n
2 ) ·

[
1

n

n∑
t=1

ce(ut, v1,t, v2,t)

]
,

cni (σ, τ1, τ2) = Eσ,τ1,τ2

[
1

n

n∑
t=1

ci(Ut, V1,t, V2,t)

]
.

where Pσ,τ1,τ2
UnV n

1 V n
2

denotes the marginal distributions of Pσ,τ1,τ2

over the n-sequences (Un, V n
1 , V n

2 ).

Each encoding function σ induces a Bayesian game
Gσ(M0,M1,M2, V

n
1 , V n

2 ) among the decoders which is de-
fined below. We introduce the concept of decoders types in
order to avoid hierarchy of Bayesian beliefs.

Definition 3. For each encoding σ, the finite Bayesian game
Gσ(M0,M1,M2, V

n
1 , V n

2 ) consists of:
• the decoders Di, i ∈ {1, 2} as the players of the game,
• Vn

i is the set of action sequences of Di,
• (M0,Mi) is the type of decoder Di,
• τi is a behavior strategy of decoder Di,
• the belief of decoder D1 (resp. D2) over the type of

decoder D2 (resp. D1) is given by Pσ
M2|M0M1

(resp.
Pσ
M1|M0M2

).
• Cσ

i : {1, 2, ..2⌊nR0⌋}×{1, 2, ..2⌊nR1⌋}×{1, 2, ..2⌊nR2⌋}×
Vn
1 × Vn

2 7→ R is the σ-cost function of Di such that

Cσ
i (m0,m1,m2, v

n
1 , v

n
2 ) =

∑
un

Pσ(un|m0,m1,m2)×[
1

n

n∑
t=1

ci(ut, v1,t, v2,t)

]
, ∀vn1 , vn2 ,m0,m1,m2.

• For a fixed strategy profile (τ1, τ2), the expected σ-costs
Ψσ

1 (τ1, τ2,m0,m1) of D1 with type (m0,m1) is given by

Ψσ
1 (τ1, τ2,m0,m1) =

∑
m2

Pσ(m2|m0,m1)×∑
vn
1 ,vn

2

Pτ1(vn1 |m0,m1)Pτ2(vn2 |m0,m2)×

Cσ
1 (v

n
1 , v

n
2 ,m0,m1,m2).

Similarly, Ψσ
2 (τ1, τ2,m0,m2) can be defined.

Definition 4. Given σ, for each behavior strategy τ2, decoder
D1, computes the sets BRσ

1 (τ2) of best-response strategies

BRσ
1 (τ2) =

{
τ1,Ψ

σ
1 (τ1, τ2,m0,m1) ≤ Ψσ

1 (τ̃1, τ2,m0,m1),

∀ τ̃1,m0,m1

}
.

Similarly, D2 computes BRσ
2 (τ1).

The Bayesian game Gσ(M0,M1,M2, V
n
1 , V n

2 ) is finite,
the players use behavioral strategies and Nash Theorem [22]
ensures the existence of at least one Bayes-Nash equilibrium.
In the following, we define the set of such equilibria.

Definition 5. For each encoding strategy σ, we define
the set BNE(σ) of Bayes-Nash equilibria (τ1, τ2) of
Gσ(M0,M1,M2, V

n
1 , V n

2 ) as follows

BNE(σ) = {(τ1, τ2), τ1 ∈ BRσ
1 (τ2) and τ2 ∈ BRσ

2 (τ1)}.

The communication game goes in the following order:

• The encoder E chooses, announces the encoding σ.
• The sequence Un is drawn i.i.d with distribution PU , and

the game Gσ(M0,M1,M2, V
n
1 , V n

2 ) begins.
• The messages (M0,M1,M2) are encoded according to

Pσ
M0M1M2|Un .

• Knowing σ, the decoders select the worst BNE(σ) for
the encoder’s cost.

• The cost values are given by cne (σ, τ1, τ2),
Ψσ

1 (τ1, τ2,m0,m1), Ψσ
2 (τ1, τ2,m0,m2).

For (R0, R1, R2) ∈ R3
+ and n ∈ N⋆, the encoder has to

solve the following coding problem.

Γn
e (R0, R1, R2) = inf

σ
max

(τ1,τ2)∈BNE(σ),
cne (σ, τ1, τ2). (2)

III. MAIN RESULT

We consider three auxiliary random variables W0 ∈ W0,
W1 ∈ W1 and W2 ∈ W2 with |W0| = |V1| × |V2| + 1, and
|Wi| = |Vi|, for i ∈ {1, 2}.



Definition 6. For (R0, R1, R2) ∈ R3
+, we define

Q0(R0,R1, R2) =

{
QW0|UQW1|UW0

QW2|UW0
,

R0 ≥ I(U ;W0), R1 ≥ I(U ;W1|W0),

R2 ≥ I(U ;W2|W0)

}
, (3)

Q̂0(R0,R1, R2) =

{
QW0W1W2|U ,

R0 ≥ I(U ;W0), R0 +R1 ≥ I(U ;W1,W0),

R0 +R2 ≥ I(U ;W2,W0)

}
. (4)

Definition 7. For each distribution QW0W1W2|U ∈ ∆(W0 ×
W1 × W2)

|U|, the auxiliary single-letter Bayesian game is
given as follows:

• (w0, wi) is the type of decoder Di, i ∈ {1, 2},
• the belief of decoder D1 (resp. D2) over the type of

decoder D2 (resp. D1) is given by QW2|W0W1
(resp.

QW1|W0W2
).

• C⋆
i : W0 ×W1 ×W2 ×V1 ×V2 7→ R is the single-letter

cost of Di such that ∀w0, w1, w2, v1, v2

C⋆
i (w0, w1, w2, v1, v2) =

∑
u

Q(u|w0, w1, w2)ci(u, v1, v2).

• for each pair (QV1|W0W1
,QV2|W0W2

) and
profile (w0, w1), the single-letter expected costs
Ψ⋆

1(QV1|W0W1
,QV2|W0W2

, w0, w1) of D1 is given by

Ψ⋆
1(QV1|W0W1

,QV2|W0W2
, w0, w1) =∑

w2

Q(w2|w0, w1)
∑
v1,v2

Q(v1|w0, w1)×

Q(v2|w0, w2)C
⋆
1 (w0, w1, w2, v1, v2).

Similarly, we get Ψ⋆
2(QV1|W0W1

,QV2|W0W2
, w0, w2).

For each distribution QW0W1W2|U ∈ ∆(W0×W1×W2)
|U|,

the auxiliary set of Bayes-Nash equilibria is given by

BNE(QW0W1W2|U ) =
{
(QV1|W0W1

,QV2|W0W2
),

∀w0, w1, w2,Ψ
⋆
1(QV1|W0W1

,QV2|W0W2
, w0, w1) ≤

Ψ⋆
1(Q̃V1|W0W1

,QV2|W0W2
, w0, w1) ∀ Q̃V1|W0W1

,

and Ψ⋆
2(QV1|W0W1

,QV2|W0W2
, w0, w2) ≤

Ψ⋆
2(QV1|W0W1

, Q̃V2|W0W2
, w0, w2) ∀ Q̃V2|W0W2

,
}
.

The encoder’s optimal cost is defined w.r.t. Q0(R0, R1, R2)
and Q̂0(R0, R1, R2) respectively as follows

Γ⋆
e(R0, R1, R2) =

inf
QW0|UQW1|W0U

QW2|W0U∈Q0(R0,R1,R2)

max
(QV1|W0W1

,QV2|W0W2
)∈

BNE(QW0|UQW1|W0UQW2|W0U )

E
[
ce(U, V1, V2)

]
,

(5)

Γ̂e(R0, R1, R2) =

inf
QW0W1W2|U

∈Q̂0(R0,R1,R2)

max
(QV1|W0W1

,QV2|W0W2
)∈

BNE(QW0W1W2|U )

E
[
ce(U, V1, V2)

]
, (6)

where the distribution in (5) satisfies the following Markov
chain

W1 −
− (U,W0)−
−W2.

The expectation in (6) is evaluated with respect to
PUQW0W1W2|UQV1|W0W1

QV2|W0W2
.

Remark 1. The random variables U,W0,W1,W2, V1 and V2

satisfy the following Markov chains

(U,W2, V2)−
− (W0,W1)−
− V1,

(U,W1, V1)−
− (W0,W2)−
− V2.

Theorem 1. Let (R0, R1, R2) ∈ R3
+, we have

∀ε > 0,∃n̂ ∈ N,∀n ≥ n̂,

Γn
e (R0, R1, R2) ≤ Γ⋆

e(R0, R1, R2) + ε,

∀n ∈ N,Γn
e (R0, R1, R2) ≥ Γ̂e(R0, R1, R2).

Lemma 1. Let (R0, R1, R2) ∈ R3
+, and consider ce1 :

U × V1 7→ R, and ce2 : U × V2 7→ R. If for all (u, v1, v2),
ce(u, v1, v2) = ce1(u, v1) + ce2(u, v2), then

Γ⋆
e(R0, R1, R2) = Γ̂e(R0, R1, R2) (7)

Using Fekete’s Lemma for the sub-additive sequence(
nΓn

e (R0, R1, R2)
)
n∈N⋆ [1, Lemma 1] we get

lim
n→∞

Γn
e (R0, R1, R2) = inf

n
Γn
e (R0, R1, R2) = Γ⋆

e(R0, R1, R2).

IV. SKETCH OF ACHIEVABILITY PROOF OF THEOREM 1

The full proof of achievability can be found in [23, Section
IV]. We restrict the optimization to a dense subset of target
distributions inducing essential equilibria in order to ensure
convergence. Then, for a given essential target distribution, we
generate the codebook and show that the probability of error
over the codebook is small. Finally, we outline the passage
from the block game to the single-letter game by analyzing
Bayes-Nash equilibria of all intermediate Bayesian games.

A. Essential Equilibria

Definition 8. Given QW0W1W2|U ∈ ∆(W0×W1×W2)
|U|, an

equilibrium (QV1|W1,W0
,QV2|W2,W0

) ∈ BNE(QW0W1W2|U )
is said to be essential if for all ε > 0, there exists an
open neighborhood Ω of QW0W1W2|U such that for all
Q̂W0W1W2|U ∈ Ω,

(Q̂V1|W1,W0
, Q̂V2|W2,W0

) ∈ BNE(Q̂W0W1W2|U ) =⇒
||QV1|W0,W1

− Q̂V1|W0,W1
||+ ||QV2|W0,W2

− Q̂V2|W0,W2
|| ≤ ϵ.

We denote by EBNE(QW0W1W2|U ) the set of essential Bayes-
Nash equilibria.



Definition 9. For (R0, R1, R2) ∈ R3
+, we define the set

Q̃0(R0, R1, R2) =
{
QW0|UQW1|W0UQW2|W0U ,

min
u,w0,w1,

w2

Q(w0|u)Q(w1|w0, u)Q(w2|w0, u) > 0,

R0 > I(U ;W0), R1 > I(U ;W1|W0), R2 > I(U ;W2|W0),

BNE(QW0|UQW1|W0UQW2|W0U ) =

EBNE(QW0|UQW1|W0UQW2|W0U )
}
.

Lemma 2. For (R0, R1, R2) ∈ R3
+, we have

Γ⋆
e(R0, R1, R2) =

inf
QW0|UQW1|W0UQW2|W0U

∈Q̃0(R0,R1,R2)

max
(QV1|W0W1

,QV2|W0W2
)∈

EBNE(QW0|UQW1|W0UQW2|W0U )

E
[
ce(U, V1, V2)

]
.

The proof of Lemma 2 follows from [21, Theorem 4.2],
[23, Lemma 3], and since Q̃0(R0, R1, R2) is dense in
Q0(R0, R1, R2) [23, Lemma 4].

For simplicity, we denote by T n
δ the sets

of typical sequences evaluated with respect to
PUQW0|UQW1|UW0

QW2|UW0
.

B. Codebook Generation

Fix a conditional probability distribution
QW0|UQW1|UW0

QW2|UW0
∈ Q̃0(R0, R1, R2). There exists

η > 0 such that

R0 =I(U ;W0) + η, (8)
R1 =I(U ;W1|W0) + η, (9)
R2 =I(U ;W2|W0) + η. (10)

Randomly and independently generate 2⌊nR0⌋ sequences
wn

0 (m0) for m0 ∈ [1 : 2⌊nR0⌋], according to the i.i.d distribu-
tion Πn

t=1Q̃W0
(w0t). For each (m1,m0) ∈ [1 : 2⌊nR1⌋]× [1 :

2⌊nR0⌋] generate a sequence wn
1 (m1,m0) randomly and con-

ditionally independently according to the i.i.d conditional dis-
tribution Πn

t=1QW1|W0
(w1t|w0t(m0)). For each (m2,m0) ∈

[1 : 2⌊nR2⌋] × [1 : 2⌊nR0⌋] generate a sequence wn
2 (m2,m0)

randomly and conditionally independently according to the
i.i.d conditional distribution Πn

t=1QW2|W0
(w2t|w0t(m0)).

Coding algorithm: Encoder E observes un and looks in the
codebook for a triplet (m0,m1,m2) such that
(un, wn

1 (m1,m0), w
n
2 (m2,m0), w

n
0 (m0)) ∈ T n

δ . If such a
jointly typical tuple doesn’t exist, the source encoder sets
(m0,m1,m2) to (1, 1, 1). Then, it sends (m0,m1) to decoder
D1, and (m0,m2) to decoder D2 Decoder D1 declares vn1 and
decoder D2 declares vn2 according to τ1 and τ2.

C. Analysis of error probability

We define the following error events

F0 ={(Un,Wn
0 (m0)) /∈ T n

δ , ∀m0},
∀m0, F1(m0) ={(Un,Wn

0 (m0),W
n
1 (m1,m0)) /∈ T n

δ ∀m1},
∀m0, F2(m0) ={(Un,Wn

0 (m0),W
n
2 (m2,m0)) /∈ T n

δ ∀m2}.

By the covering lemma [24, Lemma 3.3], P(F0) tends to zero
as n −→ ∞ if R0 ≥ I(U ;W0) + η, P(F1(M0)|Fc

0) goes

to zero by the covering lemma if R1 ≥ I(U ;W1|W0) + η,
and P(F2(M0)|Fc

0) goes to zero by the covering lemma if
R2 ≥ I(U ;W2|W0) + η.

The expected probability of error over the codebook being
small means that for all ε2 > 0, for all η > 0, there exist
δ̄ > 0 and n̄ ∈ N, such that for all δ ≤ δ̄, and for all n ≥ n̄,
we have:

E
[
P(F0)

]
≤ ε2, E

[
P(F1(m0)|Fc

0)
]
≤ ε2, (11)

E
[
P(F2(m0)|Fc

0)
]
≤ ε2, (12)

D. Analysis of Bayes-Nash Equilibria

For each encoding σ, we denote by
Gσ,t(M0,M1,M2, V1,t, V2,t) the Bayesian game of stage
t ∈ {1, 2, ...n}, where (M0,Mi) is the type of decoder
Di, the respective beliefs of the decoders are given by
Pσ
M2|M0M1

and Pσ
M1|M0M2

, their actions by V1,t, V2,t, and
the σ-cost functions are given for all (m0,m1,m2, v1,t, v2,t)
by

∑
ut

Pσ(ut|m0,m1,m2)× ci(ut, v1,t, v2,t), i ∈ {1, 2}.
We denote by BNE(σ, t) its set of Bayes-Nash equilibria

(τ1,t, τ2,t) at stage t [23, Def. 11].

Lemma 3. 1. If (τ1, τ2) ∈ BNE(σ), then (τ1,t, τ2,t) ∈
BNE(σ, t) for all t ∈ {1, 2, ..., n}.
2. If (τ1,t, τ2,t) ∈ BNE(σ, t) for all t ∈ {1, 2, ..., n}, then
(
∏n

t=1 τ1,t,
∏n

t=1 τ2,t) ∈ BNE(σ).

The proof of Lemma 3 is stated in [23, Lemma 5].
We introduce the indicator of error events Eδ ∈ {0, 1}

defined as follows

Eδ =

{
1, if (un, wn

1 , w
n
2 , w

n
0 ) /∈ T n

δ .

0, otherwise.

We control the Bayesian belief of decoder D1 (resp.
D2) about the type of D2 (resp. D1). Let Pwn

0 ,wn
1

W2,t
=

PW2,t|Wn
0 ,Wn

1
(.|wn

0 , w
n
1 ) ∈ ∆(W2) and Pwn

0 ,wn
2

W1,t
=

PW1,t|Wn
0 ,Wn

2
(.|wn

0 , w
n
2 ) ∈ ∆(W1). In a similar fash-

ion, we denote by Qw0,w1

W2
and Qw0,w2

W1
the distributions

QW2|W0,W1
(.|w0, w1) and QW1|W0,W2

(.|w0, w2) respectively.

Lemma 4. For all wn
0 , w

n
1 , w

n
2 , w0, w1, w2, we have

lim
n 7→∞

E
[ 1
n

n∑
t=1

D(Pwn
0 ,wn

1

W2,t
||Qw0,w1

W2
)
∣∣∣Eδ = 0

]
= 0, (13)

lim
n 7→∞

E
[ 1
n

n∑
t=1

D(Pwn
0 ,wn

2

W1,t
||Qw0,w2

W1
)
∣∣∣Eδ = 0

]
= 0. (14)

Proof. The proof of Lemma 4 is stated in [23, App. A].
We denote the Bayesian posterior beliefs

Pσ
Ut|M1M2M0

(·|m1,m2,m0) ∈ ∆(U) by Pm1m2m0

Ut
, and by

Qw1w2w0

U the single-letter belief QU |W1W2W0
(·|w1, w2, w0).

Lemma 5. For all ε > 0, for all m0,m1,m2, we have

lim
n 7→∞

E
[ 1
n

n∑
t=1

D(Pm0m1m2

Ut
||Qw1w2w0

U )
∣∣∣Eδ = 0

]
≤ ε. (15)

Proof. The proof of Lemma 5 is stated in [23, App. B].



Denote by G̃σ,t(M0,M1,M2, V1,t, V2,t) the essential
Bayesian game of stage t ∈ {1, 2, ...n}, where
(M0,Mi) is the type of decoder Di, the respective
beliefs of the decoders are given by Pσ

M2|M0M1
and

Pσ
M1|M0M2

, their actions by V1,t, V2,t, and the σ-cost
functions are given for all (m0,m1,m2, v1,t, v2,t) by∑

ut
Qσ(ut|w0,t(m0), w1,t(m0,m1), w2,t(m0,m2) ×

ci(ut, v1,t, v2,t). We denote by EBNE(σ, t) its set of
essential Bayes-Nash equilibria (τ1,t, τ2,t). It follows
from Lemma 5 that for all σ, t, every equilibrium in
BNE(σ, t) induces an equilibrium in EBNE(σ, t).
Similarly, denote by Gσ,t

w (W0,t,W1,t,W2,t, V1,t, V2,t) the
game of stage t where the type of Di is W0,t,Wi,t,
and respective beliefs are the marginals Pσ

W2,t|W0,tW1,t

and Pσ
W1,t|W0,tW2,t

. This game directly derives from
G̃σ,t(M0,M1,M2, V1,t, V2,t) by considering components
W0,t, W1,t and W2,t of Wn

0 (M0), Wn
1 (M0,M1) and

Wn
2 (M0,M2) respectively. Finally, consider the game

G̃σ,t
w (W0,t,W1,t,W2,t, V1,t, V2,t) of stage t where the

type of Di is W0,t,Wi,t, and respective beliefs are
QW2,t|W0,tW1,t

and QW1,t|W0,tW2,t
. It follows from Lemma 4

that equilibria of both games Gσ,t
w (W0,t,W1,t,W2,t, V1,t, V2,t)

and Gσ,t
w (W0,t,W1,t,W2,t, V1,t, V2,t) are arbitrarily close.

This concludes the achievability proof of Theorem 1. More
details are provided in [23, Section IV].

V. CONVERSE PROOF OF THEOREM 1
Let (R0, R1, R2) ∈ R3

+ and n ∈ N⋆. Fix (σ, τ1, τ2),
and consider a random variable T uniformly distributed over
{1, 2, ..., n} and independent of (Un,M0,M1,M2, V

n
1 , V n

2 ).
We introduce the auxiliary random variables W0 = (M0, T ),
W1 = M1, W2 = M2, (U, V1, V2) = (UT , V1,T , V2,T ),
distributed according to Pστ1τ2

UW0W1W2V1V2
defined for all

(u,w0, w1, w2, v1, v2) = (ut,m0,m1,m2, t, v1,t, v2,t) by

Pστ1τ2
UW0W1W2V1V2

(u,w0, w1, w2, v1, v2) =

Pστ1τ2
UTM0M1M2TV1TV2T

(ut,m0,m1,m2, t, v1,t, v2,t)

=
1

n

∑
ut−1

un
t+1

∑
v
t−1
1 ,vn

1,t+1

v
t−1
2 ,vn

2,t+1

( n∏
t=1

PU (ut)

)
Pσ
M0M1M2|Un(m0,m1,m2|un)

×Pτ1
V n
1 |M0M1

(vn1 |m0,m1)Pτ2
V n
2 |M0M2

(vn2 |m0,m2).

Lemma 6. The distribution Pστ1τ2
UW0W1W2V1V2

has marginal on
∆(U) given by PU and satisfies the Markov chain properties

(U, V2)−
− (W0,W1)−
− V1;

(U,W1, V1)−
− (W0,W2)−
− V2.

Proof. [Lemma 6] The i.i.d. property of the source ensures
that the marginal distribution is PU . By the definition of the
decoding functions τ1 and τ2 we have

(UT , V2,T )−
− (M1,M0, T )−
− V1,T ,

(UT ,M1, V1,T )−
− (M2,M0, T )−
− V2,T .

Therefore Pστ1τ2
UW0W1W2V1V2

=
PUPσ

W0|UP
σ
W1|W0U

Pσ
W2|W0U

Pτ1
V1|W0W1

Pτ2
V2|W0W2

.

Lemma 7. Given (R0, R1, R2) ∈ R3
+, for all σ, the distribu-

tion Pσ
W0W1W2|U ∈ Q0(R0, R1, R2).

Proof. [Lemma 7] We consider an encoding strategy σ, then

nR0 ≥H(M0) ≥ I(M0;U
n) (16)

=

n∑
t=1

I(Ut;M0|U t−1) = nI(UT ;M0|UT−1, T ) (17)

=nI(UT ;M0, U
T−1, T ) ≥ nI(UT ;M0, T ) (18)

=nI(U ;W0). (19)

Similarly,

nR1 ≥H(M1) ≥ I(Un;M1|M0) (20)
≥nI(UT ;M1|M0, T ) = nI(U ;W1|W0). (21)

Similarly, nR2 ≥ nI(U ;W2|W0).

Lemma 8. For all (σ, τ1, τ2) and i ∈ {1, 2}, we have

cne (σ, τ1, τ2) =E
[
ce(U, V1, V2)

]
, (22)

cni (σ, τ1, τ2) =E
[
ci(U, V1, V2)

]
. (23)

evaluated with respect to PUPσ
W0W1W2|UP

τ1
V1|W0W1

Pτ2
V2|W0W2

.
Moreover, for each (m0,m1,m2, v

n
1 , v

n
2 ), we have

Cσ
i (m0,m1,m2, v

n
1 , v

n
2 ) = C⋆

i (w0, w1, w2, v1, v2), (24)

Ψσ
i (τ1, τ2,m0,mi) = EPU

[
Ψ⋆

i (P
τ1
V1|W0W1

,Pτ2
V2|W0W2

, w0, wi)
]
.

The proof of Lemma 8 is provided in [23, Lemma 15].

Lemma 9. For all σ, we have

BNE(Pσ
W0W1W2|U ) =

{
(QV1|W0W1

,QV2|W0W2
),

∃(τ1, τ2), τ1 ∈ BRσ
1 (τ2), τ2 ∈ BRσ

2 (τ1),

QV1|W0W1
= Pτ1

V1|W0W1
,QV2|W0W2

= Pτ2
V2|W0W2

}
. (25)

The proof of Lemma 9 is provided in [23, Lemma 16]. For
any strategy σ, we have

max
τ1,τ2

cne (σ, τ1, τ2) = max
τ1,τ2

E Pσ
W0W1W2|U

Pτ1
V1|W0W1

Pτ2
V2|W0W2

[
ce(U, V1, V2)

]
(26)

= max
(QV1|W0W1

,QV2|W0W2
)∈

BNE(Pσ
W0W1W2|U )

E Pσ
W0W1W2|U

QV1|W0W1
QV2|W0W2

[
ce(U, V1, V2)

]
(27)

≥ inf
QW0W1W2|U

∈Q̂0(R0,R1,R2)

max
(QV1|W0W1

,QV2|W0W2
)∈

BNE(Pσ
W0W1W2|U )

E
[
ce(U, V1, V2)

]
(28)

=Γ̂e(R0, R1, R2). (29)

Equations (26) and (27) follow from Lemma 8, whereas (28)
comes from Lemma 7. This concludes the converse proof of
Theorem 1.
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