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FOR STOCHASTIC 3D

BRINKMAN-FORCHHEIMER-NAVIER-STOKES EQUATIONS

HAKIMA BESSAIH AND ANNIE MILLET

Abstract. We prove that some time Euler schemes for the 3D Navier-Stokes equations
modified by adding a Brinkman-Forchheimer term and a random perturbation converge
in L2(Ω). This extends previous results concerning the strong rate of convergence of
some time discretization schemes for the 2D Navier Stokes equations. Unlike the 2D
case, our proposed 3D model with the Brinkman-Forchheimer term allows for a strong
rate of convergence of order almost 1/2, that is independent of the viscosity parameter.

Dedicated to Istvan to celebrate his birthday

1. Introduction

An incompressible fluid flow dynamic can be described by the so-called incompressible
Navier-Stokes equations (NSEs). The fluid flow is defined by a velocity field u and a
pressure term π that evolve in a very particular way. These equations are parametrized by
the viscosity coefficient ν > 0. Many questions are open in the 3D setting. In this paper,
we will focus on the 3D incompressible Navier-Stokes equations with a smoothing term of
Brinkman-Forchheimer type, in a bounded domain D = [0, L]3 of R3, and subject to an
external forcing defined as:

∂tu− ν∆u+ (u · ∇)u+ a|u|2αu+∇π = G(u)dW in (0, T )×D, (1.1)

div u = 0 in (0, T )×D,

for a > 0, α ∈ [1,+∞) and some terminal time T > 0. The process u : Ω× [0, T ]×D → R3

is the velocity field with initial condition u0 in D, and periodic boundary conditions
u(t, x + Lvi) = u(t, x) on (0, T ) × ∂D, where vi, i = 1, 2, 3 denotes the canonical basis of
R3, and π : Ω× [0, T ]×D → R is the pressure. Note that similar computations using the
restriction to a bounded domain as a technical step would enable to deal with D = R3

(with no boundary condition). In order to focus on the main issue, this will not be treated
here.

Here G is a diffusion coefficient with global Lipschitz conditions and linear growth
and the driving noise W is a Wiener process defined of a filtered probability space
(Ω,F , (Ft),P). In 2D, there is an extensive literature concerning the deterministic NSEs
and we refer to the books of Temam; see [27, 28] for known results. The stochastic setting
has also been widely investigated in dimension 2, see [19] for some very general results
and the references therein. Unique global weak and strong solutions (in the PDE sense)
are constructed for both additive and multiplicative noise, and without being exhaustive,
we refer to [11, 15].
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Global well posedness in the 3D case is a famous open problem, and can be proved with
some additional smoothing term such as either a Brinkman Forchheimer nonlinearity to
model porous media, or some rotating fluid term. Let us mention that these models can be
used with some anisotropic viscosity, that is no viscosity in one direction (see e.g. [10] and
[14]). The stochastic case has been investigated as well by several authors among which
F. Flandoli, M. Röckner and M. Romito; see for example [18] for an account of remaining
open problems. The anisotropic 3D case with a stochastic perturbation has been studied
in [20] for rotating fluids, and in [6] for a Brinkman Forchheimer modification.

Numerical schemes and algorithms were introduced to best approximate and construct
solutions for PDEs. A similar approach has started to emerge for stochastic models,
in particular SPDEs, and has known a strong interest by the probability community.
Many algorithms based on either finite difference, finite elements or spectral Galerkin
methods (for the space discretization), and on either Euler, Crank-Nicolson or splitting
schemes (for the temporal discretization) have been introduced for both the linear and
nonlinear cases. Their rates of convergence have been widely investigated. The literature
on numerical analysis for SPDEs is now very extensive. Models having either linear, global
Lipschitz properties or more generally some monotonicity properties are well developed in
an extensive literature, see [3, 4]. In this case the convergence is proven to be in mean
square. When nonlinearities are involved that are not of Lipschitz or monotone type, a
rate of convergence in mean square is more difficult to obtain. Indeed, because of the
stochastic perturbation, there is no way of using the Gronwall lemma after taking the
expectation of the error bound because it involves a nonlinear term that is usually in a
quadratic form. One way of getting around it is to localize the nonlinear term in order
to get a linear inequality, and then use the Gronwall lemma. This gives rise to a rate of
convergence in probability, that was first introduced by J. Printems [26].

Discretizations of the 2D stochastic Navier-Stokes equations with a multiplicative noise
were investigated in several papers. The following ones provide a rate of convergence in
probability of time implicit Euler or splitting schemes [12], [13], [17] and [5]. The Euler
scheme is coupled with a finite element space discretization. Note that [17] tackles the
problem of weak convergence, that is convergence in distribution, while in case of an
additive noise [11] proves almost sure and mean square convergence without giving an
explicit rate.

Strong (i.e. L2(Ω)) convergence for a time splitting scheme, for an implicit time Euler
scheme - coupled with a finite elements approximation - of the stochastic 2D Navier-Stokes
equations were proven in [7], [8] for a multiplicative noise or “additive” noise. In the latter
case a polynomial (suboptimal) speed of convergence is proven.

In [9], strong convergence of a space-time discretization (implicit Euler scheme in time
and finite elements approximation in space) for stochastic 2D Navier-Stokes equations on
the torus with an additive noise is studied. The rate of convergence is ”optimal”, namely
almost 1/2 in time and 1 in space. However, since exponential moments of the H1-norm
of the solution is used, some constraints on the strength of the noise have to be imposed.
In the additive case, no localization is needed and the argument is based on a direct use
of the discrete Gronwall lemma.

In this paper, we study a time implicit Euler scheme (5.1) for a stochastic 3D Navier
Stokes equation with a modification, by adding a smoothing term of Brinkman Forch-
heimer type. Unlike the 2D case - and thanks to this extra term - neither localization nor
exponential moments are needed, and we obtain the “optimal” convergence rate with no
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constraint on the noise and the viscosity. For technical reasons, we only have to assume
that the exponent α of the Brinkman Forchheimer term |u|2αu in (1.1) belongs to the
interval [1, 3

2 ]. The proof is based on a careful study of the time regularity of the solution

in both the L2 and H1 norms, and the discrete Gronwall lemma.

The paper is organized as follows. Section 2 describes the functional setting of the model.
In Section 3 we describe the stochastic perturbation, state the global well posedness of the
solution to (1.1) and its moment estimates in various norms. If the exponent α = 1 we
have to impose that the coefficient a is “large”. The way the Brinkman-Forchheimer term
helps to obtain estimates for the bilinear part is described in Section 7.1 of the Appendix.
The proof of the existence and uniqueness relies on a Galerkin approximation. It is quite
classical, similar to the anisotropic case described in [6]. The proof is sketched in Sections
7.2 and 7.3 of the Appendix for the sake of completeness. Section 4 is devoted to the
moment time increments of the solution to (1.1) in L2 and H1; the results are crucial to
obtain the optimal strong convergence rate. In Section 5 we describe the fully implicit
time Euler scheme, prove its existence and some moment estimates. Finally, in Section 6
we prove the strong (that is L2(Ω)) convergence rate of this scheme.

As usual, except if specified otherwise, C denotes a positive constant that may change
throughout the paper, and C(a) denotes a positive constant depending on some parameter
a.

2. Notations and preliminary results

Let D = [0, L]3 with periodic boundary conditions, Lp := Lp(D)3 (resp. Wk,p :=
W k,p(D)3) be the usual Lebesgue and Sobolev spaces of vector-valued functions endowed
with the norms ‖ · ‖Lp (resp. ‖ · ‖Wk,p). If p = 2, set Hk := Wk,2 and we denote by ‖ · ‖k
the Hk norm, k = 0, 1, · · · ; note that ‖ . ‖0 = ‖ · ‖L2 . In what follows, we will consider
velocity fields that have zero divergence on D. Let H (resp. V ) be the subspace of L2

(resp. H1) defined by

H :={u ∈ L2 : div u = 0 weakly in D with periodic boundary conditions},
V :=H ∩W1,2.

H and V are separable Hilbert spaces. The space H inherits its inner product denoted
by (·, ·) and its norm ‖ · ‖H from L2. The norm in V , inherited from W1,2, is denoted
by ‖ · ‖V ; we let (·, ·)V denote the associated inner product. Moreover, let V ′ be the dual
space of V with respect to the pivot space H, and 〈·, ·〉 denotes the duality between V ′

and V .
Let Π : L2 → H denote the Leray projection, and set A = −Π∆ with its domain

Dom(A) = W2,2 ∩H.
Let b : V 3 → R denote the trilinear map defined by

b(u1, u2, u3) :=

∫
D

([
u1(x) · ∇

]
u2(x)

)
· u3(x) dx,

which by the incompressibility condition satisfies b(u1, u2, u3) = −b(u1, u3, u2) for ui ∈ V ,
i = 1, 2, 3. There exists a continuous bilinear map B : V × V 7→ V ′ such that

〈B(u1, u2), u3〉 = b(u1, u2, u3), for all ui ∈ V, i = 1, 2, 3.

The map B satisfies the following antisymmetry relations:

〈B(u1, u2), u3〉 = −〈B(u1, u3), u2〉, 〈B(u1, u2), u2〉 = 0 for all ui ∈ V. (2.1)
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For u, v ∈ V , set B(u, v) := Π
([
u · ∇

]
v
)
.

In dimension 3, the Gagliardo-Nirenberg inequality implies that for p ∈ [2, 6], H1 ⊂ Lp;
more precisely

‖u‖L4 ≤ C̄4 ‖u‖
1
4

L2 ‖∇u‖
3
4

L2 and ‖u‖L3 ≤ C̄3 ‖u‖
1
2

L2 ‖∇u‖
1
2

L2 , ∀u ∈ H1, (2.2)

for some positive constants C̄3 and C̄4.
Furthermore, the Gagliardo-Nirenberg inequality implies that H2 ⊂ Lp for any p ∈

[2,∞), and for u ∈ H2

‖u‖Lp ≤ C(p) ‖Au‖β(p)
L2 ‖u‖

1−β(p)
L2 for β(p) =

3

2

(1

2
− 1

p

)
. (2.3)

Note that for p = 6 we have β(6) = 1
2 . Furthermore, ‖u‖L∞ ≤ C‖u‖H2 for u ∈ H2.

Let α ∈ (1,+∞) and let f, g, h : D → R be regular functions. Given any positive
constants ε0 and ε1 and some constant Cα depending on α, the following upper estimates
are straightforward consequences of the Hölder and Young inequalities∫

D

∣∣f(x)g(x)h(x)
∣∣dx ≤ ∥∥|f ||g| 1α∥∥

L2α

∥∥|g|1− 1
α

∥∥
L

2α
α−1
‖h‖L2 . (2.4)

≤ ε0‖h‖2L2 +
ε1

4ε0

∥∥|f |αg∥∥2

L2 +
Cα

ε0ε
1

α−1

1

‖g‖2L2 . (2.5)

Let ΩT = Ω× [0, T ] be endowed with the product measure dP⊗ds on F ⊗B(0, T ). The
following functional notations will be used throughout the paper. Set

X0 = L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ L2α+2([0, T ]×D;R3), (2.6)

X0 = L4
(
Ω;L∞(0, T ;H)

)
∩ L2

(
Ω;L2(0, T ;V )

)
∩ L2α+2(ΩT ×D;R3), (2.7)

X1 = L∞(0, T ;V ) ∩ L2(0, T ; DomA) ∩
{
u : [0, T ]×D → R3 :∫ T

0

[
‖u(t)‖2α+2

L2α+2 +
∥∥|u(t)|α∇u(t)

∥∥2

L2

]
dt <∞

}
, (2.8)

X1 = L4
(
Ω;L∞(0, T ;V )

)
∩ L2

(
Ω;L2(0, T ; Dom A)

)
∩
{
u : ΩT ×D → R3 :

E
∫ T

0

[
‖u(t)‖2α+2

L2α+2 +
∥∥|u(t)|α∇u(t)

∥∥2

L2

]
dt <∞

}
. (2.9)

3. Global well posedness and first moment estimates

For technical reasons, we assume that the initial condition u0 belongs to Lp(Ω;V ) for
some p ∈ [2,∞], and only consider strong solutions in the PDE sense. We prove that the
stochastic 3D Navier-Stokes equation with Brinkman-Forchheimer smoothing (1.1) has a
unique solution on any time interval [0, T ] and prove moment estimates of this solution.
This requires some hypotheses on the driving noise W and the diffusion coefficient G.

3.1. The driving noise and the diffusion coefficient. Let (ek, k ≥ 1) be an orthonor-
mal basis of H whose elements belong to H2 := W 2,2(D;R3) and are orthogonal in V . Let

Hn = span (e1, · · · , en) and let Pn (resp. P̃n) denote the orthogonal projection from H
(resp. V ) onto Hn. Furthermore, given i 6= j we have

(Aei , ej) = (∇ei , ∇ej) = 0

since the basis {en}n is orthogonal in V . Hence Au ∈ Hn for every u ∈ Hn.
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We deduce that for u ∈ V we have Pnu = P̃nu. Indeed, for v ∈ Hn and u ∈ V :

(Pnu, v) = (u, v), and (∇Pnu,∇v) = −(Pnu,Av) = −(u,Av) = (∇u,∇v). (3.1)

Hence given u ∈ V , we have (Pnu, v)V = (u, v)V for any v ∈ Hn.
Let K be a separable Hilbert space and Q be a symmetric, positive trace-classe operator

on K. Let (W (t), t ∈ [0, T ]) be a K-valued Wiener process with covariance operator Q,
defined on the probability space (Ω,F , (Ft),P). Let {ζj}j≥1 denote an orthonormal basis
of K made of eigenfunctions of Q, with eigenvalues {qj}j≥1 and TrQ =

∑
j≥1 qj < ∞.

Then

W (t) =
∞∑
j=1

√
qj β

j(t) ζj , ∀t ∈ [0, T ],

where {βj}j≥1 are independent one-dimensional Brownian motions defined on (Ω,F , (Ft),P).
For details concerning this Wiener process we refer to [16].

Let L ≡ L(K;H) (resp. L̃ ≡ L(K;V )) be the space of continuous linear operators from
K to H (resp. V ) with norm ‖ . ‖L (resp. ‖ . ‖L̃).

The noise intensity of the stochastic perturbation G : V → L̃ which we put in (1.1)
satisfies the following classical growth and Lipschitz conditions (i) and (ii). Note that due
to the 3D framework, we have to impose growth conditions both on the ‖ · ‖L and ‖ · ‖L̃
norms.

The diffusion coefficient G satisfies the following assumption:
Condition (G) Assume that G : V → L̃ satisfies the following conditions:

(i) Growth condition There exist positive constants Ki, K̃i, i = 0, 1, such that

‖G(u)‖2L ≤ K0 +K1‖u‖2H , ∀u ∈ H, (3.2)

‖G(u)‖2L̃ ≤ K̃0 + K̃1‖u‖2V , ∀u ∈ V. (3.3)

(ii) Lipschitz condition There exists a positive constant L such that

‖G(u)−G(v)‖2L ≤ L‖u− v||2H , ∀u, v ∈ H. (3.4)

We define a weak pathwise solution (that is strong probabilistic solution in the weak
deterministic sense) of (1.1) as follows:

Definition 3.1. We say that equation (1.1) has a strong solution if:

• u is an adapted V -valued process which belongs a.s. to X1,
• P a.s. we have u ∈ C([0, T ];V ), and(
u(t), φ

)
+ν

∫ t

0

(
∇u(s),∇φ

)
ds+

∫ t

0

〈
[u(s) · ∇]u(s), φ

〉
ds

+ a

∫ t

0

∫
D
|u(s, x)|2αu(s, x)φ(x)dxds =

(
u0, φ) +

∫ t

0

(
φ,G(u(s))dW (s)

)
for every t ∈ [0, T ] and every φ ∈ V .

3.2. Global well-posedness and moment estimates of the solution. We next prove
that if E(‖u0‖4V ) <∞, then (1.1) has a unique solution u in X1.

Theorem 3.2. Let α ∈ [1,+∞), and for α = 1 suppose that 4νa > 1. Let u0 ∈ L2p(Ω;V ),
for some p ∈ [1,∞), be independent of W , and G satisfy the growth and Lipschitz condi-
tions (G). Then equation (1.1) has a unique solution in X1 such that a.s. u ∈ C([0, T ];V ).
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Furthermore,

E
(

sup
t∈[0,T ]

‖u(t)‖2pV +

∫ T

0
‖Au(t)‖2L2dt+

∫ T

0
‖u(t)‖2α+2

L2α+2dt
)
≤ C

[
1 + E

(
‖u0‖2pV

)]
. (3.5)

The proof, which is quite classical, is sketched in Section 7.3 of the Appendix.

4. Moment estimates of time increments of the solution

In this section we prove moment estimates for various norms of time increments of the
solution to (1.1). This will be crucial to deduce the speed of convergence of numerical
schemes. Let u0 ∈ L2p(Ω;V ) for some p ∈ [2,∞) and u be the solution to (1.1), that is

u(t) =S(t)u0 −
∫ t

0
S(t− s)B(u(s), u(s))ds− a

∫ t

0
S(t− s)Π|u(s)|2αu(s)ds

+

∫ t

0
S(t− s)G(u(s))dW (s), ∀t ∈ [0, T ], P a.s. (4.1)

where S(t) = e−νtA is the analytic semi group generated by the Stokes operator A multi-
plied by the viscosity ν. Then (see e.g. [13], Lemma 2.2 and [26], Lemma 2.1), for b > 0
and t ∈ [0, T ], ∥∥Abe−νtA∥∥L(L2;L2)

≤ C(b, ν) t−b, (4.2)∥∥A−b(Id − e−νtA)∥∥L(L2;L2)
≤ C̃(b, ν) tb, (4.3)

for some positive constants C(b, ν) and C̃(b, ν).
The following regularity result for the bilinear term will be crucial in the proof of time

regularity.

Lemma 4.1. (i) There exists a positive constant M such that

‖A−
1
4B(u, u)‖L2 ≤M‖A

1
2u‖2L2 ≤M‖u‖2V , ∀u ∈ V. (4.4)

(ii) For δ ∈ (0, 3
4),

‖A−δB(u, u)‖L2 ≤ C‖Au‖
3
4
−δ

L2 ‖u‖
5
4

+δ

H1 , ∀u ∈ Dom(A). (4.5)

Proof. (i) Using [21, Lemma 2.2] we deduce that given positive constants δ, θ, ρ such that
0 ≤ δ < 1

2 + 3
4 , θ > 0, ρ > 0 such that ρ+ δ > 1

2 and δ+ θ+ ρ ≥ 5
4 , there exists a constant

M := M(δ, θ, ρ) such that for u, v regular enough

‖A−δB(u, v)‖L2 ≤M‖Aθu‖L2‖Aρv‖L2 .

Choosing δ = 1
4 , θ = ρ = 1

2 , we deduce (4.4).

(ii) For u ∈ H2, we have

‖A−δB(u, u)‖L2 = sup
{∫

D
|∇u| |u| |φ| dx; : ‖φ‖H2δ ≤ 1

}
.

In dimension 3, the Sobolev embedding theorem (see e.g. [1], Theorem 7.57 page 217)

implies Wβ,p(D) ⊂ Lq(D) if 3 > βp, β > 0, 1 < p < 3 and p ≤ q ≤ 3p
3−βp . Hence for

δ ∈ (0, 3
4), choosing β = 2δ, p = 2 and q = 6

3−4δ , we obtain W2δ,2(D) = H2δ(D) ⊂ Lq(D).

Let p̄ = 3
2δ ; then 1

p̄ + 1
2 + 1

q = 1, and the Hölder inequality yields

‖A−δB(u, u)‖L2 ≤ C‖∇u‖L2‖u‖Lp̄ .
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Since the Gagliardo Nirenberg inequality (2.3) implies ‖u‖Lp̄ ≤ C‖Au‖
3
4
−δ

L2 ‖u‖
1
4

+δ

L2 , this
concludes the proof of (4.5). �

The following result proves regularity of the Brinkman-Forchheimer term. To have a
regularity similar to that of the bilinear term, we have to impose some restriction on the
exponent α.

Lemma 4.2. Let α ∈ [1, 3
2 ].

(i) there exists a positive constant C such that∥∥A− 1
4
(
|u|2αu

)∥∥
L2 ≤ C‖u‖2α+1

V , ∀u ∈ V. (4.6)

(ii) Furthermore, for any δ ∈ (0, 3
4) there exists C > 0 such that∥∥A−δ(|u|2αu)∥∥L2 ≤ C‖Au‖

3
4
−δ

L2 ‖u‖
2α+ 1

4
+δ

V ∀u ∈ Dom(A). (4.7)

Proof. We use once more the Sobolev embedding theorem Wβ,p(D) ⊂ Lr(D) if 3 > βp,

β > 0, 1 < p < 3 and p ≤ r ≤ 3p
3−βp .

(i) Choosing β = 1
2 , p = 2 and r = 3, we obtain W

1
2
,2(D) = H

1
2 (D) ⊂ L3(D), while

β = 1, p = 2 and r ∈ [2, 6] yields H1(D) ⊂ Lr(D). Given u ∈ H1, we have∥∥A− 1
4
(
|u|2αu

)∥∥
L2 = sup

{∫
D
|u(x)|2αu(x)φ(x)dx : ‖φ‖

H
1
2
≤ 1
}
.

Using Hölder’s inequality with exponents 2,6 and 3, we obtain for δ ∈ [1
4 ,

3
4)∥∥A− 1

4
(
|u|2αu

)∥∥
L2 ≤ sup{‖u‖2αL4α‖u‖L6‖φ‖L3 : ‖φ‖

H
1
2
≤ 1} ≤ C‖u‖2α+1

V ,

where the last upper estimate is a consequence of the inequality 4α ∈ [4, 6]. This completes
the proof of (4.6).

(ii) As in the proof of Lemma 4.1 (ii) we choose q = 6
3−4δ to ensure H2δ ⊂ Lq and

p = 3
2δ . The Hölder and Gagliardo Nirenberg inequalities imply

‖A−δ(|u|2αu)‖L2 = sup
{∫
|u|2α|u|φ : ‖φ‖H2δ ≤ 1

}
≤ ‖u‖2αL4α‖u‖Lp‖φ‖Lq

≤C‖u‖2αL4α‖Au‖
3
4
−δ

L2 ‖u‖
1
4

+δ

L2 .

Since α ∈ [1, 3
2 ], the Sobolev embedding H1 ⊂ Lγ for γ ∈ [4, 6] concludes the proof. �

The following proposition gives upper estimates for moments of time increments of the
solution to the stochastic 3D modified Navier Stokes equation u defined in equation (4.1).

Proposition 4.3. Let u0 be F0-measurable and let α ∈ [1, 3
2 ] with 4νa > 1 if α = 1.

Suppose that the diffusion coefficient G satisfies Condition (G) and let u be the solution
to (1.1). Then for λ ∈ (0, 1

2) we have

(i) Suppose u0 ∈ L(2α+1)p(Ω;V ) for some p ∈ [2,∞). There exists a positive constant
C := C(T, a, p,TrQ) such that for 0 ≤ t1 < t2 ≤ T ,

E
(
‖u(t2)− u(t1)‖pH

)
≤ C |t2 − t1|λp

[
1 + E

(
‖u0‖(2α+1)p

V

)]
. (4.8)



8 H. BESSAIH AND A. MILLET

(ii) Let N ≥ 1 be an integer and for k = 0, · · · , N set tk = kT
N . Then there exists C :=

C(T, a,TrQ,λ) > 0 (independent of N) such that for p(λ) = 2+8α−2λ
1−λ and u0 ∈ Lp(λ)(Ω;V )

E
( N∑
j=1

∫ tj

tj−1

[
‖∇(u(s)− u(tj))‖2L2 + ‖∇(u(s)− u(tj−1))‖2L2

]
ds
)

≤ C
( T
N

)2λ [
1 + E

(
‖u0‖p(λ)

V

)]
. (4.9)

Proof. The proof relies on a semi-group argument.
(i) Let t1 < t2 belong to the time interval [0, T ]. Then u(t2)− u(t1) =

∑4
i=1 Ti, where

T1 =S(t2)u0 − S(t1)u0,

T2 =−
∫ t2

0
S(t2 − s)B(u(s), u(s))ds+

∫ t1

0
S(t1 − s)B(u(s), u(s))ds,

T3 =− a
∫ t2

0
S(t2 − s)

(
|u(s)|2αu(s)

)
ds+ a

∫ t1

0
S(t1 − s)

(
|u(s)|2αu(s)

)
ds,

T4 =

∫ t2

0
S(t2 − s)G(u(s))dW (s)−

∫ t1

0
S(t1 − s)G(u(s))dW (s).

Then using (4.3) and the upper estimate supt∈[0,T ] ‖S(t)‖L(L2;L2) <∞ we deduce

‖T1‖L2 =
∥∥S(t1)A−

1
2
[
S(t2 − t1)− Id

]
A

1
2u0

∥∥
L2

≤ C‖S(t1)‖L(L2;L2) |t2 − t1|
1
2 ‖A

1
2u0‖L2 ≤ C |t2 − t1|

1
2 ‖u0‖V .

Hence taking expected values, we deduce for every p ∈ [2,∞)

E
(
‖T1‖pL2

)
≤ Cp |t2 − t1|

p
2 E(‖u0‖pV ). (4.10)

Furthermore, T2 = −T2,1 − T2,2, where

T2,1 =

∫ t1

0
S(t1 − s)

[
S(t2 − t1)− Id

]
B(u(s), u(s))ds, T2,2 =

∫ t2

t1

S(t2 − s)B(u(s), u(s))ds.

Using the Minkowski inequality, (4.2), (4.3) and (4.4), we deduce that for ε ∈
(
0, 1

4

)
,

‖T2,1‖L2 ≤
∫ t1

0
‖A1−εS(t1 − s)A−( 3

4
−ε)[S(t2 − t1)− Id

]
A−

1
4B(u(s), u(s))‖L2ds

≤ C |t2 − t1|
3
4
−ε sup

s∈[0,t1]
‖u(s)‖2V

∫ t1

0
(t1 − s)−1+εds.

Hence (3.5) implies that if E(‖u0‖2pV ) <∞ for some p ∈ [1,∞), we have

E
(
‖T2,1‖pL2

)
≤ C(T ) |t2 − t1|(

3
4
−ε)p[1 + E‖u0‖2pV

]
. (4.11)

The Minkowski inequality, (4.2) and (4.4) imply

‖T2,2‖L2 ≤
∫ t2

t1

‖A
1
4S(t2 − s)A−

1
4B(u(s), u(s))‖L2ds ≤ C sup

s∈[t1,t2]
‖u(s)‖2V

∫ t2

t1

(t2 − s)−
1
4ds.

Using once more (3.5) we deduce that if E(‖u0‖2pV ) <∞ for some p ∈ [1,∞),

E
(
‖T2,2‖pL2

)
≤ C |t2 − t1|

3
4
p
[
1 + E‖u0‖2pV

]
. (4.12)
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A similar decomposition yields T3 = −a
(
T3,1 + T3,2

)
, where

T3,1 =

∫ t1

0
S(t1 − s)

[
S(t2 − t1)− Id

]
|u(s)|2αu(s)ds, T3,2 =

∫ t2

t1

S(t2 − s)|u(s)|2αu(s)ds.

The Minkowski inequality and the upper estimates (4.2), (4.3) and (4.6) imply that for
ε ∈

(
0, 1

4

)
,

‖T3,1‖L2 ≤
∫ t1

0
‖A1−εS(t1 − s)A−( 3

4
−ε)[S(t2 − t1)− Id

]
A−

1
4
(
|u(s)|2αu(s)

)
‖L2ds

≤ C|t2 − t1|
3
4
−ε sup

s∈[0,t1]
‖u(s)‖2α+1

V

∫ t1

0
(t1 − s)−(1−ε)ds,

and the upper estimate (3.5) implies that for p ∈ [1,∞),

E
(
‖T3,1‖pL2

)
≤ C |t2 − t1|(

3
4
−ε)p [1 + E‖u0‖(2α+1)p

V

]
. (4.13)

The Minkowski inequality and the upper estimates (4.2) and (4.6) imply

‖T3,2‖L2 ≤
∫ t2

t1

‖A
1
4S(t2 − s)A−

1
4
(
|u(s)|2αu(s)

)
‖L2ds

≤ C(T )

∫ t2

t1

(t2 − s)−
1
4 ‖u(s)‖2α+1

V ds ≤ C(T )|t2 − t1|
3
4 sup
s∈[t1,t2]

‖u(s)‖2α+1
V .

Then using once more (3.5) we obtain for p ∈ [1,∞),

E(‖T3,2‖pL2) ≤ C(T, p)|t2 − t1|
3
4
p
[
1 + E‖u0‖(2α+1)p

V

]
. (4.14)

A similar decomposition of the stochastic integral yields T4 = T4,1 + T4,2, where

T4,1 =

∫ t1

0
S(t1 − s)

[
S(t2 − t1)− Id

]
G(u(s))dW (s), T4,2 =

∫ t2

t1

S(t2 − s)G(u(s))dW (s).

The Burkholder-Davis-Gundy inequality, the growth condition (3.2), (4.2) and (4.3) imply
for ε ∈

(
0, 1

2

)
and p ∈ [1,∞),

E(‖T4,1‖2pL2) ≤ Cp E
(∣∣∣ ∫ t1

0
‖S(t1 − s)

[
S(t2 − t1)− Id

]
G(u(s))‖2LTrQds

∣∣∣p)
≤Cp E

(∣∣∣ ∫ t1

0
‖A

1
2
−εS(t1 − s)‖2L(L2;L2)‖A

−( 1
2
−ε)[S(t2 − t1)− Id

]
‖2L(L2;L2)

× ‖G(u(s))‖2L TrQ ds
∣∣∣p)

≤Cp (TrQ)p |t2 − t1|(1−2ε)p
[
Kp

0 +Kp
1 E
(

sup
s∈[0,t1]

‖u(s)‖2H
)](∫ t1

0
(t1 − s)−1+2εds

)p
≤C(T, p,TrQ) |t2 − t1|(1−2ε)p

[
1 + E

(
‖u0‖2pV

)]
, (4.15)

where the last upper estimate is deduced from (3.5).
Finally, using once more the Burkholder-Davies-Gundy inequality, supt∈[0,T ] ‖S(t)‖L(L2;L2) <

∞, the growth condition (3.2) and (3.5), we obtain for p ∈ [1,∞)

E(‖T4,2‖2pL2) ≤Cp E
(∣∣∣ ∫ t2

t1

‖S(t2 − s)G(u(s))‖2LTr Qds
∣∣∣p)
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≤Cp (Tr Q)p E
(∣∣∣ ∫ t2

t1

‖S(t2 − s)‖2L(L2;L2)

[
K0 +K1‖u(s)‖2H

]
ds
∣∣∣p)

≤Cp (Tr Q)p |t2 − t1|p
[
1 + E

(
‖u0‖2pV

)]
. (4.16)

The upper estiimates (4.10)– (4.16) conclude the proof of (4.8).

(ii) For j = 1, · · · , N and s ∈ [tj−1, tj) we have ∇u(tj)−∇u(s) =
∑4

i=1 Ti(s, j), where

T1(s, j) = ∇S(tj)u0 −∇S(s)u0,

T2(s, j) =−
∫ tj

0
∇S(tj − r)B(u(r), u(r))dr +

∫ s

0
∇S(s− r)B(u(r), u(r))dr,

T3(s, j) =− a
∫ tj

0
∇S(tj − r)

(
|u(r)|2αu(r)

)
dr + a

∫ s

0
∇S(s− r)

(
|u(r)|2αu(r)

)
dr,

T4(s, j) =

∫ tj

0
S(tj − r)∇G(u(r))dW (r)−

∫ s

0
S(s− r)∇G(u(r))dW (r).

Using the upper estimates (4.2) and (4.3) we obtain

‖T1(s, j)‖L2 = ‖AδS(s) A−δ
[
S(tj − s)− Id

]
A

1
2u0‖L2 ≤ Cs−δ|tj − s|δ‖u0‖V

for any δ ∈ (0, 1]. Therefore, given any δ ∈ (0, 1
2), we deduce

N∑
j=1

∫ tj

tj−1

‖T1(s, j)‖2L2ds ≤ C
( T
N

)2δ
‖u0‖2V

∫ T

0
s−2δds = C(T, λ)

( T
N

)2δ
‖u0‖2V . (4.17)

As in the proof of (i), let T2(s, j) = −
(
T2,1(s, j) + T2,2(s, j)

)
, where

T2,1(s, j) =

∫ s

0
∇S(s− r)

[
S(tj − s)− Id

]
B(u(r), u(r))dr,

T2,2(s, j) =

∫ tj

s
∇S(tj − r)B(u(r), u(r))dr.

The Minkowski inequality and the upper estimates (4.2), (4.3) and (4.5) imply for δ ∈(
0, 1

2) and γ ∈ (0, 1
2 − δ)

N∑
j=1

∫ tj

tj−1

‖T2,1(s, j)‖2L2ds

≤
N∑
j=1

∫ tj

tj−1

ds
{∫ s

0
‖A

1
2

+δ+γS(s− r)A−γ
[
S(tj − s)− Id

]
A−δB(u(r), u(r))dr‖L2dr

}2

≤ C
( T
N

)2γ
N∑
j=1

∫ tj

tj−1

ds
{∫ s

0
(s− r)−( 1

2
+δ+γ)‖Au(r)‖

3
4
−δ

L2 ‖u(r)‖
5
4

+δ

V dr
}2

≤ C
( T
N

)2γ
∫ T

0
ds
(∫ s

0
(s− r)−( 1

2
+δ+γ)dr

)(∫ s

0
(s− r)−( 1

2
+δ+γ)‖Au(r)‖2( 3

4
−δ)

L2 dr
)

× sup
r∈[0,T ]

‖u(r)‖2( 5
4

+δ)

V (4.18)

where in the last upper estimate, we have used the Cauchy-Schwarz inequality with respect

to the measure (s− r)−
1
2
−δ−γ1(0,s)(r)dr.



STRONG CONVERGENCE OF TIME EULER SCHEMES FOR 3D NS 11

Since
∫ T
r (s − r)−( 1

2
+δ+γ)ds ≤

∫ T
0 s−( 1

2
+δ+γ)ds = C(T, δ, γ) for any r ∈ [0, T ), and∫ s

0 (s − r)−( 1
2

+δ+γ)dr ≤ C(T, δ, γ) for any s ∈ [0, T ), using the Fubini theorem, Hölder’s

and Jensen’s inequalities with respect to dP with conjugate exponents 1
1
4

+δ
and 1

3
4
−δ , we

deduce

E
N∑
j=1

∫ tj

tj−1

‖T2,1(s, j)‖2L2ds ≤ C
( T
N

)2γ
C(T, δ, γ)

× E
(

sup
r∈[0,T ]

‖u(r)‖2( 5
4

+δ)

V

∫ T

0
dr‖Au(r)‖2( 3

4
−δ)

L2

∫ T

r
(s− r)−( 1

2
+δ+γ)ds

)
≤ C

( T
N

)2γ
C(T, δ, γ)2

{
E
(

sup
r∈[0,T ]

‖u(r)‖
2(5+4δ)

1+4δ

V

)} 1
4

+δ{
E
(∫ T

0
‖Au(r)‖2L2dr

)} 3
4
−δ
.

Let λ ∈ (0, 1
2), δ = 1−2λ

4 ∈ (0, 1
4) and γ ∈ (0, 1

2 − 2δ). Using (3.5) we infer

E
( N∑
j=1

∫ tj

tj−1

‖T2,1(s, j)‖2L2ds
)
≤ C(T, δ)

( T
N

)2λ[
1 + E

(
‖u0‖

6−2λ
1−λ
V

)]
. (4.19)

Using the Minkowski inequality, (4.2), (4.5) and Hölder’s inequality for the measure
1[tj−1,tj ](s)ds with conjugate exponents p1 = 2

3
4
−δ and p2 = 2

5
4

+δ
we have p2(1

2 + δ) < 1 for

δ ∈ (0, 1
4), and deduce

N∑
j=1

∫ tj

tj−1

‖T2,2(s, j)‖2L2ds ≤ C
N∑
j=1

∫ tj

tj−1

ds
{∫ tj

s

∥∥A 1
2

+δS(tj − r) A−δB(u(r), u(r))
∥∥
L2dr

}2

≤ C
N∑
j=1

∫ tj

tj−1

ds
{∫ tj

s
(tj − r)−( 1

2
+δ)‖Au(r)‖

3
4
−δ

L2 ‖u(r)‖
5
4

+δ

V dr
}2

≤ C sup
r∈[0,T ]

‖u(r)‖
5
2

+2δ

V

N∑
j=1

∫ tj

tj−1

(∫ tj

s
(tj − r)−p2( 1

2
+δ)dr

) 2
p2

(∫ tj

s
‖Au(r)‖2L2dr

) 2
p1 ds

≤ C sup
r∈[0,T ]

‖u(r)‖
5
2

+2δ

V

( T
N

) 1
4
−δ N∑

j=1

∫ tj

tj−1

ds
(∫ tj

tj−1

‖Au(r)‖2L2dr
) 2
p1 .

The Hölder inequality for the counting measure on {1, ..., N} with conjugate exponents
p1

2 = 1
3
4
−δ and 1

1
4

+δ
yields

N∑
j=1

∫ tj

tj−1

‖T2,2(s, j)‖2L2ds ≤ C(T, δ)
( T
N

) 5
4
−δ

sup
r∈[0,T ]

‖u(r)‖
5
2

+2δ

V

{ N∑
j=1

∫ tj

tj−1

‖Au(r)‖2L2
dr
} 3

4
−δ
N

1
4

+δ

≤C(T, δ)
( T
N

)1−2δ
sup
r∈[0,T ]

‖u(r)‖
5
2

+2δ

V

{∫ T

0
‖Au(r)‖2L2

dr
} 3

4
−δ
.

Hölder’s inequality with respect to dP with conjugate exponents 1
3
4
−δ and 1

1
4

+δ
implies

E
N∑
j=1

∫ tj

tj−1

‖T2,2(s, j)‖2L2ds ≤ C(T, δ)
( T
N

)1−2δ{
E
(

sup
r∈[0,T ]

‖u(r)‖
10+8δ
1+4δ

V

)} 1
4

+δ
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×
{
E
(∫ T

0
‖Au(r)‖2L2dr

)} 3
4
−δ
. (4.20)

Let λ ∈ (0, 1
2) and δ = 1−2λ

4 ∈ (0, 1
4). The inequalities (4.19), (4.20) and (3.5) imply

E
N∑
j=1

∫ tj

tj−1

‖T2(s, j)‖2L2ds ≤ C(T, λ)
( T
N

)2λ[
1 + E

(
‖u0‖

6−2λ
1−λ
V

)]
. (4.21)

A similar decomposition yields T3(s, j) = −a
(
T3,1(s, j) + T3,2(s, j)

)
, where

T3,1(s, j) =

∫ s

0
∇S(s− r)

[
S(tj − s)− Id

](
|u(r)|2αu(r)

)
dr,

T3,2(s, j)=

∫ tj

s
∇S(tj − r)

(
|u(r)|2αu(r)

)
dr.

The Minkowski inequality and the upper estimates (4.2), (4.3), (4.7) imply for δ ∈ (0, 1
2)

and γ ∈ (0, 1
2 − δ),

‖T3,1(s, j)‖L2 ≤
∫ s

0

∥∥A 1
2

+δ+γS(s− r) A−γ
[
S(tj − s)− Id

]
A−δ

(
|u(r)|2αu(r)

)∥∥
L2dr

≤ C(tj − s)γ
∫ s

0
(s− r)−( 1

2
+δ+γ)‖Au(r)‖

3
4
−δ

L2 ‖u(r)‖2α+ 1
4

+δ

V dr.

Therefore, given δ ∈
(
0, 1

2

)
and γ ∈ (0, 1

2 − δ)

N∑
j=1

∫ tj

tj−1

‖T3,1(s, j)‖2L2ds ≤ C
( T
N

)2γ
∫ T

0

{∫ s

0
(s− r)−( 1

2
+δ+γ)‖Au(r)‖

3
4
−δ

L2 ‖u(r)‖2α+ 1
4

+δ

V dr
}2
ds,

which is similar to (4.18) replacing the exponent 5
4 +δ of ‖u(r)‖V by 2α+ 1

4 +δ. Therefore,

we deduce for δ ∈ (0, 1
4)

E
N∑
j=1

∫ tj

tj−1

‖T3,1(s, j)‖2L2ds ≤ C(T, δ)
( T
N

)1−4δ[
1 + E

(
‖u0‖

16α+2+8δ
1+4δ

V

)]
. (4.22)

The Minkowski inequality, (4.2) and (4.7) imply for δ ∈ (0, 1
4)

N∑
j=1

∫ tj

tj−1

‖T3,2(s, j)‖2L2 ds ≤
N∑
j=1

∫ tj

tj−1

ds
{∫ tj

s

∥∥A 1
2

+δS(tj − r) A−δ
(
|u(r)|2αu(r)

)∥∥
L2dr

}2

≤ C
N∑
j=1

∫ tj

tj−1

ds
{∫ tj

s
(tj − r)−( 1

2
+δ)‖Au(r)‖

3
4
−δ

L2 ‖u(r)‖2α+ 1
4

+δ

V dr
}2

The arguments for proving (4.20) imply

E
N∑
j=1

∫ tj

tj−1

‖T3,2(s, j)‖2L2ds ≤C(T, δ)
( T
N

)1−2δ{
E
(

sup
r∈[0,T ]

‖u(r)‖
16α+2+8δ

1+4δ

V

)} 1
4

+δ

×
{
E
(∫ T

0
‖Au(r)‖2L2dr

)} 3
4
−δ
. (4.23)
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The inequalities (4.22), (4.23) and (3.5) imply that for λ ∈ (0, 1
2) and δ = 1−2λ

4 ∈
(
0, 1

4

)
,

E
N∑
j=1

∫ tj

tj−1

‖T3(s, j)‖2L2ds ≤ C(T, a, λ)
( T
N

)2λ[
1 + E

(
‖u0‖p(λ)

V

)]
. (4.24)

Finally, the stochastic integral can be decomposed as follows: T4(s, j) = T4,1(s, j) +
T4,2(s, j), where

T4,1(s, j) =

∫ s

0
S(s−r)

[
S(tj−s)−Id

]
∇G(u(r))dW (r), T4,2(s, j) =

∫ tj

s
S(tj−r)∇G(u(r))dW (r).

The L2(Ω)-isometry, (4.2), (4.3) and the growth condition (3.3) imply for δ ∈
(
0, 1

2

)
E

N∑
j=1

∫ tj

tj−1

‖T4,1(s, j)‖2L2ds

≤ E
N∑
j=1

∫ tj

tj−1

∫ s

0

∥∥S(s− r)
[
S(tj − s)− Id

]
A

1
2G(u(r))

∥∥2

LTrQdrds

≤ E
N∑
j=1

∫ tj

tj−1

ds

∫ s

0

∥∥A 1
2
−δS(s− r)

∥∥2

L(L2;L2)

∥∥A−( 1
2
−δ)[S(tj − s)− Id

]∥∥2

L(L2;L2)

× ‖G(u(r))‖2L̃TrQdr

≤ TrQ E
∫ T

0
ds

∫ s

0
(s− r)−1+2δ(tj − s)1−2δ

[
K̃0 + K̃1‖u(r)‖2V

]
dr

≤ TrQ
[
K̃0 + K̃1 E

(
sup
r∈[0,T ]

‖u(r)‖2V
)]( T

N

)1−2δ
∫ T

0
s2δds

≤ C(T,Tr Q, δ)
( T
N

)1−2δ[
1 + E(‖u0‖2V )

]
, (4.25)

Finally, the L2(Ω)-isometry, supr ‖S(r)‖L(L2;L2) and the growth condition (3.3) and (3.5)
imply

E
( N∑
j=1

∫ tj

tj−1

‖T4,2(s, j)‖2L2ds
)
≤ E

N∑
j=1

∫ tj

tj−1

∫ tj

s
‖S(tj − r)‖2L(L2;L2)‖G(u(r))‖2L̃Tr Qdrds

≤ Tr Q E
N∑
j=1

∫ tj

tj−1

ds

∫ tj

s

[
K̃0 + K̃1‖u(r)‖2V

]
dr

≤ C(T,Tr Q)
T

N

[
1 + E(‖u0‖2V )

]
. (4.26)

For α ∈ [1, 3
2 ] and λ ∈ (0, 1

2), 2 < 6−2λ
1−λ < p(λ) := 2+8α−2λ

1−λ . Therefore, the upper estimates

(4.17), (4.21), (4.24)–(4.26) imply for λ ∈ (0, 1
2)

E
N∑
j=1

∫ tj

tj−1

‖∇(u(s)− u(tj))‖2L2ds ≤ C(T, a,Tr Q,λ)
( T
N

)2λ[
1 + E

(
‖u0‖p(λ)

V

)]
.
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Small changes in the proof of this upper estimate prove that under similar assumptions

E
N∑
j=1

∫ tj

tj−1

‖∇(u(s)− u(tj−1))‖2L2ds ≤ C(T,TrQ,λ)
( T
N

)2λ[
1 + E

(
‖u0‖p(λ)

V

)]
.

This completes the proof of (4.9). �

Remark 4.4. Note that the above proof shows that when time increments of the gradient
of the solution are dealt with, due to the term containing the initial condition, one cannot
obtain moments of E(‖u(t)− u(s)‖2V ) uniformly in s, t with 0 ≤ s < t ≤ T . Furthermore,

in order to obtain the ”optimal” time regularity, that is almost 1
2 , we also need a time

integral.

5. Well-posedness and moment estimates of the implicit time Euler scheme

We first prove the existence of the fully time implicit time Euler scheme. Fix N ∈
{1, 2, ...}, let h := T

N denote the time mesh, and for j = 0, 1, ..., N set tj := j TN .

The fully implicit time Euler scheme {uk; k = 0, 1, ..., N} is defined by u0 = u0 and for
ϕ ∈ V (

uk − uk−1 + hνAuk + hB
(
uk, uk

)
+ h a |uk|2αuN (tk), ϕ

)
=
(
G(uk−1)[W (tk)−W (tk−1)] , ϕ), k = 1, 2, ..., N. (5.1)

Set ∆jW := W (tj)−W (tj−1), j = 1, ..., N .

The following proposition states the existence and uniqueness of the sequence {uk}k=0,...,N

and provides moment estimates which do not depend on N .

Proposition 5.1. Let α ∈ [1, 3
2 ] and Condition (G) be satisfied. The time fully implicit

scheme (5.1) has a solution {uk}k=1,...,N ∈ V ∩H2 Furthermore,

sup
N≥1

E
(

max
k=0,...,N

‖uk‖2V +
T

N

N∑
k=1

‖Auk‖2L2

+
T

N

N∑
k=1

[
‖uk‖2α+2

L2α+2 + ‖|uk|α∇uk‖2L2

])
<∞. (5.2)

Proof. The proof is divided in two steps.
Step 1: Existence of the scheme We first prove that for fixed N ≥ 1 (5.1) has a
solution in V ∩ L2α+2. For technical reasons we consider a Galerkin approximation. As
in Section 3 let {el}l denote an orthonormal basis of H made of elements of H2 which
are orthogonal in V . Since α ∈ [1, 3

2 ], the Gagliardo Nirenberg inequality implies that

H1 ⊂ L2α+2.
For m = 1, 2, ... let Vm = span (e1, ..., em) ⊂ H2 and let Pm : V → Vm denote the
projection from V to Vm. In order to find a solution to (5.1) we project this equation on Vm,
that is we define by induction a sequence {uk(m)}k=0,...,N ∈ Vm such that u0(m) = Pm(u0),
and for k = 1, ..., N and ϕ ∈ Vm(

uk(m)− uk−1(m), ϕ
)

+ h
[
ν
(
∇uk(m),∇ϕ) +

〈
B
(
uk(m), uk(m)

)
, ϕ
〉

+ a
(
|uk(m)|2αuk(m), ϕ

)]
=
(
G(uk−1(m))∆kW , ϕ

)
. (5.3)
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For almost every ω set R(0, ω) := ‖u0(ω)‖L2 . Fix k = 1, ..., N and suppose that for
j = 0, ..., k − 1 the Ftj - measurable random variables uj(m) have been defined, and that

R(j, ω) := sup
m≥1
‖uj(m,ω)‖L2 <∞ for almost every ω.

We prove that uk(m) exists and satisfies a.s. supm≥1 ‖uk(m,ω)‖L2 <∞. The argument is
based on the following result [22, Cor 1.1] page 279, which can be deduced from Brouwer’s
theorem.

Proposition 5.2. Let H be a Hilbert space of finite dimension, (., .)H denote its inner
product, and Φ : H → H be continuous such that for some µ > 0,(

Φ(f), f
)
H
≥ 0, for all f ∈ H with ‖f‖H = µ.

Then there exists f ∈ H such that Φ(f) = 0 and ‖f‖H ≤ µ.

For ω ∈ Ω let Φk
m,ω : Vm → Vm be defined for f ∈ Vm as the solution of(

Φk
m,ω(f), ϕ

)
=
(
f − uk−1(m,ω), ϕ

)
+ h
[
ν
(
∇f,∇ϕ

)
+
〈
PmB(f, f), ϕ

〉
+ a
(
Pm(|f |2αf), ϕ

)]
−
(
PmG(uk−1(m,ω)∆kW (ω), ϕ

)
, ∀ϕ ∈ Vm.

Then (
Φk
m,ω(f), f

)
= ‖f‖2L2 −

(
uk−1(m,ω), f

)
+ hν‖∇f‖2L2 + h a‖f‖2α+2

L2α+2

−
(
G(uk−1(m,ω)

)
∆kW (ω), f

)
.

The Young inequality implies
∣∣(uk−1(m,ω), f

)
≤ 1

2‖f‖
2
L2 + 1

2‖u
k−1(m,ω)‖2L2 and the

growth condition (3.2) implies∣∣(G(uk−1(m,ω)∆kW (ω), f
)∣∣ ≤ ∥∥G(uk−1(m,ω)

)
‖L‖∆kW (ω)‖K ‖f‖L2

≤ 1

4
‖f‖2L2 +

[
K0 +K1‖uk−1(m,ω)‖2L2

]
‖∆kW (ω)‖2K .

Hence(
Φk
m,ω(f), f

)
≥ 1

4
‖f‖2L2 −

1

2
‖uk−1(m,ω)‖2L2 −

[
K0 +K1‖uk−1(m,ω)‖2L2

]
‖∆kW (ω)‖2K ≥ 0

if

‖f‖2L2 = R2(k, ω) := 4
[
K0‖∆kW (ω)‖2K +R2(k − 1, ω)

(1

2
+K1‖∆kW (ω)‖2K

)]
.

Proposition 5.2 implies the existence of uk(m,ω) ∈ Vm such that Φk
m,ω

(
uk(m,ω)

)
= 0,

and ‖uk(m,ω)‖2L2 ≤ R2(k, ω); note that this element uk(m,ω) need not be unique. Fur-

thermore, the random variable uk(m) is Ftk -measurable.
The definition of uk(m) implies that it is a solution to (5.3). Taking ϕ = uk(m) in (5.3)

and using the Young inequality, we obtain

‖uk(m)‖2L2 + h ν‖∇uk(m)‖2L2 + h a‖uk(m)‖2α+2
L2α+2

=
(
uk−1(m), uk(m)

)
+
(
G(uk−1(m)∆kW,u

k(m)
)

≤ 1

4
‖uk(m)‖2L2 + ‖uk−1(m)‖2L2 +

1

4
‖uk(m)‖2L2 +

[
K0 +K1‖uk−1(m)‖2L2

]
‖∆kW‖2K .

Hence a.s.

sup
m≥1

[1

2
‖uk(m,ω)‖2L2 + h ν‖∇uk(m,ω)‖2L2 + h a‖uk(m,ω)‖2α+2

L2α+2

]
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≤ R2(k − 1, ω)
[
1 +K1‖∆kW (ω)‖2K

]
+K0‖∆kW (ω)‖2K ,

Therefore, for fixed k and almost every ω, the sequence {uk(m,ω)}m is bounded in V ∩
L2α+2; it has a subsequence (still denoted {uk(m,ω)}m) which converges weakly in V ∩
L2α+2 to φk(ω). The random variable φk is Ftk -measurable.

Since D is bounded, the embedding of V in H is compact; hence the subsequence
{uk(m,ω)}m converges strongly to φk(ω) in L2.

Then by definition u0(m) converges strongly to u0. We next prove by induction on
k that φk solves (5.1). Fix a positive integer m0 and consider the equation (5.3) for
k = 1, ..., N , ϕ ∈ Vm0 , and m ≥ m0. As m→∞ we have a.s.(

uk(m)− uk−1(m), ϕ)→
(
φk − φk−1, ϕ).

Furthermore, the antisymmetry of B (2.1) and the Gagliardo-Nirenberg inequality ‖g‖L4 ≤
C‖∇g‖

3
4

L2‖g‖
1
4

L2 yield a.s.∣∣〈B(uk(m), uk(m)
)
−B(φk, φk), ϕ

〉∣∣
≤
∣∣〈B(uk(m)− φk, ϕ

)
, uk(m)

〉∣∣+
∣∣〈B(φk, ϕ), uk(m)− φk

〉∣∣
≤ ‖∇ϕ‖L2‖uk(m)− φk‖L4

[
‖uk(m)‖L4 + ‖φk‖L4

]
≤C ‖ϕ‖L2

[
max
m
‖uk(m)‖

7
4
V + ‖φk‖

7
4
V

]
‖uk(m)− φk‖

1
4

L2 → 0

as m→∞. The inequality (7.8) implies∣∣(|uk(m)|2αuk(m)−|φk|2αφk, ϕ
)∣∣ ≤ C

∫
|uk(m)− φk|

(
|uk(m)|2α + |φk|2α

)
|ϕ| dx

≤C‖ϕ‖L∞‖uk(m)− φk‖L2

(
‖uk(m)‖4αL4α + ‖φk‖4αL4α

)
≤ C‖ϕ‖H2

(
max
m
‖uk(m)‖4αV + ‖φk‖4αV

)
‖uk(m)− φk‖L2 → 0

as m → ∞. Note that the last upper estimate follows from the inclusion H1 ⊂ Lp
for p ∈ [2, 6] and α ∈ [1, 3

2 ]. Finally, the Cauchy-Schwarz inequality and the Lipschitz
condition (3.4) imply∣∣(G(uk−1(m)

)
∆kW,ϕ

)
−
(
G
(
φk−1

)
∆kW,ϕ

)∣∣ ≤ ‖ϕ‖L2‖G(uk−1(m)−G(φk−1)‖L‖∆kW‖K
≤
√
L ‖ϕ‖L2 ‖uk−1(m)− φk−1‖L2 ‖∆kW‖K → 0

as m→∞. Therefore, letting m→∞ in (5.3), we deduce(
φk − φk−1 + hνAφk + hB

(
φk, φk

)
+ h a |φk|2αφk, ϕ

)
=
(
G(φk−1)∆kW , ϕ), ∀ϕ ∈ Vm0 .

Since ∪m0Vm0 is dense in V , we deduce that φk is a solution to (5.1).
Step 2: Moment estimates We next prove (5.2) for any solution {uk}k=0,...,N to (5.1).

We first study the L2-norm of the sequence. Write (5.1) with ϕ = uk and use the iden-
tity (f, f − g) = 1

2

[
‖f‖L2 − ‖g‖2L2 + ‖f − g‖2L2

]
. Using the Cauchy-Schwarz and Young

inequalities, and the growth condition (3.2), this yields for k = 1, ..., N

1

2
‖uk‖2L2 −

1

2
‖uk−1‖2L2 +

1

2
‖uk − uk−1‖2L2 + hν‖∇uk‖2L2 + ha‖uk‖2α+2

L2α+2

=
(
G(uk−1)∆kW ,uk − uk−1

)
+
(
G(uk−1)∆kW ,uk−1

)
≤ 1

2
‖uk − uk−1‖2L2 +

1

2

[
K0 +K1‖uk−1‖2L2

]
‖∆kW‖2K +

(
G(uk−1)∆kW ,uk−1

)
.
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For any K = 1, ..., N , adding the above inequalities for k = 1, ...,K we deduce

‖uK‖2L2 + 2hν

K∑
k=1

‖∇uk‖2L2 + 2ha

K∑
k=1

‖uk‖2α+2
L2α+2

≤ ‖u0‖2L2 +
K∑
k=1

[
K0 +K1‖uk−1‖2L2

]
‖∆kW‖2K + 2

K∑
k=1

(
G(uk−1)∆kW ,uk−1

)
. (5.4)

Therefore,

E
(

max
1≤K≤N

‖uK‖2L2

)
+ 2hE

( N∑
k=1

[
ν‖∇uk‖2L2 + a‖uk‖2α+2

L2α+2

])

≤ 2E
(

max
1≤K≤N

[
‖uK‖2L2 + 2h

K∑
k=1

(
ν‖∇uk‖2L2 + a‖uk‖2α+2

L2α+2

)])

≤ 2E(‖u0‖2L2) + 2hTr(Q)

N−1∑
k=0

[
K0 +K1E(‖uk‖2L2)

]
+ 4E

(
max

1≤K≤N

K∑
k=1

(
G(uk−1)∆kW ,uk−1

))
.

The Davis and then Young inequalities imply

E
(

max
1≤K≤N

K∑
k=1

(
G(uk−1)∆kW ,uk−1

))
≤ 3E

({N−1∑
k=0

‖uk‖2L2

[
K0 +K1‖uk‖2L2

]
hTrQ

} 1
2
)

≤ 1

4
E
(

max
0≤k≤N−1

‖uk‖2L2

)
+ 9E

(
hTrQ

N−1∑
k=0

[
K0 +K1‖uk‖2L2

])
.

Hence we deduce

1

2
E
(

max
1≤K≤N

‖uK‖2L2

)
+ 2hE

( N∑
k=1

[
ν‖∇uk‖2L2 + a‖uk‖2α+2

L2α+2

])

≤ 2E(‖u0‖2L2) + 74TK0TrQ+ 74K1TrQ
N−1∑
k=0

hE(‖uk‖2L2). (5.5)

Neglecting the sum in the left hand side and using the discrete Gronwall lemma, we obtain

sup
N≥1

E
(

max
1≤K≤N

‖uK‖2L2

)
≤ C(T,TrQ, ‖u0‖2L2 ,K0,K1).

Plugging this upper estimate in (5.5), we obtain

sup
N≥1

E
(

max
k=0,...,N

‖uk‖2L2 +
T

N

N∑
k=1

[
ν‖∇uk‖2L2 + a‖uk‖2α+2

L2α+2

])
<∞.

A similar argument with ϕ = Auk, integrating by parts, and using Lemma 7.2 and in-
equality (7.14) yields proves

sup
N≥1

E
(

max
1≤K≤N

‖∇uK‖2L2 +
T

N

N∑
k=1

[
‖Auk‖2L2 + ‖|uk|α∇uk‖2L2

])
= C2(α) <∞.
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This completes the proof of the proposition. �

6. Strong convergence of the implicit time Euler scheme

Let u be the solution to (1.1) and {uj := uN (tj)}j=0,...,N solve the fully implicit time
Euler scheme defined in (5.1). Let ej := u(tj) − uj . Using (1.1) and (5.1), we deduce
e0 = 0 and for j = 1, ..., N and ϕ ∈ V(
ej − ej−1 , ϕ

)
+ ν

∫ tj

tj−1

(
∇u(s)−∇uj , ∇ϕ

)
ds+

∫ tj

tj−1

〈
B(u(s), u(s))−B(uj , uj) , ϕ

〉
ds

+ a

∫ tj

tj−1

(
|u(s)|2αu(s)− |uj |2αuj , ϕ

)
ds =

∫ tj

tj−1

(
[G(u(s))−G(uj−1)]dW (s) , ϕ

)
. (6.1)

Note that since α ∈ [1, 3
2 ] and H1 ⊂ Lp for p ∈ [2, 6], Hölder’s inequality with exponents 2, 3

and 6 implies that the space integral defining the inner product
(
|u(s)|2αu(s)−|uj |2αuj , ϕ

)
is converging for u(s), uj , ϕ ∈ V . The following convergence theorem is one of the main
results of this paper.

Theorem 6.1. Suppose that condition (G) holds. Let α ∈ [1, 3
2 ]; when α = 1, suppose

that 4νa(1 ∧ κ) > 1, where κ > 0 is the constant defined in inequality (7.9).

Fix λ ∈ (0, 1
2) and set p(λ) = 2+8α−2λ

1−λ . Let u0 ∈ Lp(λ)(Ω;V ), u be the solution to (1.1)

and {uN (tj)}j=0,...,N solve the fully implicit scheme (5.1). Then there exists a positive
constant C := C(ν, α, a, κ,TrQ) independent of N such that for N large enough

E
(

max
1≤j≤N

‖u(tj)− uj‖2L2 +
T

N

N∑
j=1

‖∇[u(tj)− uj ]‖2L2

)
≤ C

( T
N

)2λ[
1 + E

(
‖u0‖p(λ)

V

)]
. (6.2)

Remark 6.2. Note that the various parameters of the model ν, α, a,Tr (Q) only appear
in the multiplicative constant C in the right hand side of (6.2), but not in the exponent λ
which can be chosen arbitrarily close to 1

2 if u0 ∈ V is deterministic, or if u0 is a V -valued
Gaussian random variable independent of W .

Proof of Theorem 6.1
(i) We first suppose that α ∈ (1, 3

2 ].

Using the identity (6.1) with ϕ = ej , the equality (f, f−g) = 1
2

[
‖f‖2L2−‖g‖2L2+‖f−g‖2L2

]
and the estimate (7.18), we deduce that for some κ > 0 we have for j = 1, ..., N

1

2

(
‖ej‖2L2 − ‖ej−1‖2L2

)
+

1

2
‖ej − ej−1‖2L2 + νh‖∇ej‖2L2

+ aκh‖|u(tj)|αej‖2L2 + aκh‖|uj |αej‖2L2 ≤
7∑
l=1

Tj,l, (6.3)

where by the antisymmetry property (2.1) we have

Tj,1 =−
∫ tj

tj−1

〈
B
(
u(s)− u(t(j)), u(s)

)
, ej
〉
ds, Tj,2 = −

∫ tj

tj−1

〈
B
(
ej , u(s)

)
, ej
〉
ds,

Tj,3 =−
∫ tj

tj−1

〈
B
(
uj , u(s)− uj

)
, ej
〉
ds = −

∫ tj

tj−1

〈
B
(
uj , u(s)− u(tj)

)
, ej
〉
ds,



STRONG CONVERGENCE OF TIME EULER SCHEMES FOR 3D NS 19

Tj,4 =− ν
∫ tj

tj−1

(
∇(u(s)− u(tj)),∇ej

)
ds,

Tj,5 =− a
∫ tj

tj−1

(
|u(s)|2αu(s)− |u(tj)|2αu(tj), ej

)
ds,

Tj,6 =

∫ tj

tj−1

(
[G(u(s))−G(uj−1)dW (s), ej − ej−1

)
,

Tj,7 =

∫ tj

tj−1

(
[G(u(s))−G(uj−1)

]
dW (s), ej−1

)
.

We next prove upper estimates of the terms Tj,l for l = 1, ..., 5, and of the expected value
of Tj,6 and Tj,7.

Using the Hölder inequality with exponents 2, 3, 6, the Sobolev embedding H1 ⊂ L6 and
the Gagliardo Nirenberg inequality (2.2), we deduce for ε1 > 0

|Tj,1| ≤
∫ tj

tj−1

‖u(s)− u(tj)‖L3‖∇u(s)‖L2‖ej‖L6ds

≤C6C3‖ej‖H1

∫ tj

tj−1

‖u(s)− u(tj)‖
1
2

L2‖∇[u(s)− u(tj)]‖
1
2

L2‖∇u(s)‖L2ds

≤ε1νh‖ej‖2H1

+
(C6C3)2

4ε1ν
sup
s∈[0,T ]

‖u(s)‖2V
(∫ tj

tj−1

‖u(s)− u(tj)‖2L2ds
) 1

2
(∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds
) 1

2

≤ε1νh
[
‖ej‖2L2 + ‖∇ej‖2L2

]
+

(C6C3)4

64ε21ν
2

sup
s∈[0,T ]

‖u(s)‖4V
∫ tj

tj−1

‖u(s)− u(tj)‖2L2ds

+

∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds, (6.4)

where the last inequalities are deduced from the Cauchy Schwarz and Young inequalities.
Let Tj,2 = −Tj,2,1 − Tj,2,2 + Tj,2,3, where

Tj,2,1 =

∫ tj

tj−1

〈
B
(
ej , u(tj)

)
, ej
〉
ds, Tj,2,2 =

∫ tj

tj−1

〈
B
(
ej , u(s)− u(tj)

)
, u(tj)

〉
ds,

Tj,2,3 =

∫ tj

tj−1

〈
B
(
ej , u(s)− u(tj)

)
, uj
〉
ds.

The antisymmetry (2.1) implies〈
B
(
ej , u(tj)

)
, ej
〉

= −
〈
B
(
ej , ej

)
, u(tj)

〉
= −

3∑
k,l=1

∫
D

(ej)k∂k(ej)lu(tj)ldx.

Hence the upper estimate (2.5) with f = u(tj)l, g = (ej)k and h = ∂k(ej)l yields for
ε2, ε̄2 > 0 ∣∣〈B(ej , u(tj)

)
, ej
〉∣∣ ≤ε2ν∑

k,l

‖∂k(ej)l‖2L2 +
∑
k,l

ε̄2aκ

4ε2ν
‖|u(tj)l|α(ej)k‖2L2

+
Cα

ε2ν(ε̄2aκ)
1

α−1

‖(ej)k‖2L2 ,
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which implies

|Tj,2,1| ≤ ε2ν h ‖∇ej‖2L2 +
ε̄2aκ

4ε2ν
h ‖|u(tj)|αej‖2L2 +

C(α, ν, a, κ)

ε2(ε̄2)
1

α−1

h ‖ej‖2L2 .

Using a similar computation based on (2.5) with f = u(tj)l, g = (ej)k and h = ∂k[u(s)−
u(tj)]l for k, l = 1, 2, 3, summing on k, l and integrating on the time interval [tj−1, tj ], we
obtain for ε̃2 > 0

|Tj,2,2| ≤
∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds+
ε̃2aκ

4
h ‖|u(tj)|αej‖2L2 +

C̄(α, a, κ)

(ε̃2)
1

α−1

h ‖ej‖2L2 .

Replacing f = u(tj) by f = uj in the above estimate, we obtain

|Tj,2,3| ≤
∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds+
ε̃2aκ

4
h ‖|uj |αej‖2L2 +

C̄(α, a, κ)

(ε̃2)
1

α−1

h ‖ej‖2L2 .

The three previous inequalities imply for ε2, ε̄2, ε̃2 > 0,

|Tj,2| ≤
[C(α, ν, a, κ)

ε2(ε̄2)
1

α−1

+
2C̄(α, a, κ)

(ε̃2)
1

α−1

]
h ‖ej‖2L2 + ε2ν h ‖∇ej‖2L2 +

ε̃2
4
aκh ‖|uj |αej‖2L2

+
[ ε̄2

4ε2ν
+
ε̃2
4

]
aκh ‖|u(tj)|αej‖2L2 + 2

∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds. (6.5)

Using once more (2.5) with f = (uj)k, g = (ej)l and h = ∂k
(
[u(s)−u(tj)]l

)
for k, l = 1, 2, 3,

and summing on k, l, we obtain for ε3 > 0,∣∣〈B(uj , u(s)− u(tj)
)
, ej
〉∣∣ ≤ ‖∇[u(s)− u(tj)|‖2L2 +

ε3aκ

4
‖|uj |αej‖2L2 +

Cα

(ε3aκ)
1

α−1

‖ej‖2L2 .

Integrating on [tj−1, tj ] we deduce for ε3 > 0

|Tj,3| ≤
Cα

(ε3aκ)
1

α−1

h ‖ej‖2L2 +
ε3aκ

4
h ‖|uj |αej‖2L2 +

∫ tj

tj−1

‖∇[u(s)− u(tj)|‖2L2ds. (6.6)

The Cauchy-Schwarz and Young inequalities imply that for ε4 > 0,

|Tj,4| ≤ ε4ν h ‖∇ej‖2L2 +
ν

4ε4

∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds. (6.7)

Since
∣∣|f |2αf − |g|2αg∣∣ ≤ C(α)|f − g|

(
|f |2α + |g|2α

)
, the Hölder inequality with exponents

2,3 and 6 implies∣∣(|u(s)|2αu(s)− |u(tj)|2αu(tj), ej
)∣∣ ≤C(α)

∫
R3

[
|u(s)|2α + |u(tj)|2α

]
|u(s)− u(tj)||ej |dx

≤C(α)
[
‖u(s)‖2αL4α + ‖u(tj)‖2αL4α

]
‖u(s)− u(tj)‖L3‖ej‖L6 .

The Sobolev embedding H1 ⊂ L6 and the Gagliardo Nirenberg inequality (2.2) yield for
ε5 > 0

|Tj,5| ≤C(α) sup
s∈[0,T ]

‖u(s)‖2αV
∫ tj

tj−1

‖ej‖H1‖u(s)− u(tj)‖
1
2

L2‖∇[u(s)− u(tj)]‖
1
2

L2ds

≤ε5ν h
[
‖ej‖2L2 + ‖∇ej‖2L2

]
+
C(α)2

8ε5ν
sup
s∈[0,T ]

‖u(s)‖8αV
∫ tj

tj−1

‖u(s)− u(tj)‖2L2ds
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+
C(α)2

8ε5ν

∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds, (6.8)

where the last upper estimate is deduced from the Hölder inequality with exponents 2,4
and 4 and the Young inequality.

Fix J ∈ {1, 2, ..., N}; adding the inequalities (6.3) for j = 1, ..., J , using the identity
e0 = 0 and the upper estimates (6.4)–(6.8) we deduce that for any positive numbers
εj , j = 1, ..., 5, ε̄2 and ε̃2, we have

1

2
‖eJ‖2L2 +

1

2

J∑
j=1

‖ej − ej−1‖2L2 + ν h
J∑
j=1

‖∇ej‖2L2 + aκh
J∑
j=1

[
‖|u(tj)|αej‖2L2 + ‖|uj |αej‖2L2

]

≤
J∑
j=1

7∑
l=6

Tj,l +
[
ε1ν +

2 C̄(α, a, κ)

(ε̃2)
1

α−1

+
C(α, ν, a, κ)

ε2ν(ε̄2)
1

α−1

+
Cα

(ε3aκ)
1

α−1

+ ε5ν
]
h

J∑
j=1

‖ej‖2L2

+
(
ε1 + ε2 + ε4 + ε5

)
ν h

J∑
j=1

‖∇ej‖2L2 +
( ε̄2

4ε2ν
+
ε̃2
4

)
aκh

J∑
j=1

‖|u(tj)|αej‖2L2

+
ε̃2 + ε3

4
aκh

J∑
j=1

‖|uj |αej‖2L2 +
(C6C3)4

64ε21ν
2

sup
s∈[0,T ]

‖u(s)‖4V
J∑
j=1

∫ tj

tj−1

‖u(s)− u(tj)‖2L2ds

+
C(α)2

8ε5ν
sup
s∈[0,T ]

‖u(s)‖8αV
J∑
j=1

∫ tj

tj−1

‖u(s)− u(tj)‖2L2ds

+
[
4 +

ν

4ε4
+
C(α)2

8ε5ν

] J∑
j=1

∫ tj

tj−1

‖∇[u(s)− u(tj)|‖2L2ds. (6.9)

Choose positive ε1, ε2, ε4 and ε5 such that ε1 + ε2 + ε4 + ε5 ≤ 1
2 ; then choose positive ε̄2,

ε̃2 and ε3 such that ε̄2
4ε2ν

+ ε̃2
4 ≤ 1 and ε̃2+ε3

4 ≤ 1. We deduce the existence of positive
constants Ci, i = 1, 2, 3 depending on ν, a, κ, εj for j = 1, ..., 5, ε̄2 and ε̃2, such that

1

2
‖eJ‖2L2 +

1

2

J∑
j=1

‖ej − ej−1‖2L2 +
ν

2
h

J∑
j=1

‖∇ej‖2L2 ≤ C1 h

J∑
j=1

‖ej‖2L2

+ C2

[
1 + sup

s∈[0,T ]
‖u(s)‖8αV

] J∑
j=1

∫ tj

tj−1

‖u(s)− u(tj)‖2L2ds

+ C3

J∑
j=1

∫ tj

tj−1

‖∇[u(s)− u(tj)‖2L2ds+

J∑
j=1

7∑
l=6

Tj,l.

LetN be large enough to ensure C1
T
N < 1

4 . Note that for non negative numbers {x(J), y(J);

J = 1, ..., N} we have 1
2

[
supJ≤N a(J) + supJ≤N b(J)

]
≤ supJ≤N [a(J) + b(J)]. Therefore,

using this upper estimate and then taking expected values in the above inequality, using
the Cauchy-Schwarz and Hölder inequalities with conjugate exponents p, q ∈ (1,∞), we
deduce

1

8
E
(

max
J≤N
‖eJ‖2L2

)
+

1

4

N∑
j=1

E(‖ej − ej−1‖2L2) +
ν

4
h

N∑
j=1

E(‖∇ej‖2L2) ≤ C1 h

N−1∑
j=0

E(‖ej‖2L2)
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+ C2

{
1 + E

(
sup
s∈[0,T ]

‖u(s)‖16α
V

)} 1
2
{
N h

N∑
j=1

E
∫ tj

tj−1

‖u(s)− u(tj)‖4L2ds
} 1

2

+ C3E
( N∑
j=1

∫ tj

tj−1

‖∇[u(s)− u(tj)‖2L2ds
)

+ E
( N∑
k=1

|Tj,6|
)

+ E
(

max
K≤N

K∑
j=1

Tj,7

)
. (6.10)

We next find upper estimates of the expected value of the sum of the stochastic terms
Tj,l, l = 6, 7.

For j ∈ {1, ..., N}, the Cauchy-Schwarz and Young inequalities, the Lipschitz condition
(3.4), the Cauchy-Schwarz and Young inequalities imply for ε6 > 0

E
∣∣Tj,6∣∣ ≤ E

(∥∥∥∫ tj

tj−1

[
G(u(s))−G(uj−1)

]
dW (s)

∥∥∥
L2
‖ej − ej−1‖L2

)
≤ ε6 E

(
‖ej − ej−1‖2L2

)
+

2

4ε6
E
∫ tj

tj−1

[
L‖u(s)− u(tj−1)‖2L2 + L‖ej−1‖2L2

]
TrQds

≤ ε6 E
(
‖ej − ej−1‖2L2

)
+ h

LTr Q

2ε6
E(‖ej−1‖2L2) +

LTrQ

2ε6
E
∫ tj

tj−1

‖u(s)− u(tj−1)‖2L2 ds.

(6.11)

Using the Davis inequality and the Lipschitz condition (3.4), we deduce that for ε7 > 0

E
(

max
K≤N

N∑
j=1

Tj,7

)
≤ 3E

({ J∑
j=1

∫ tj

tj−1

‖G
(
u(s)

)
−G

(
uj−1

)
‖2L ‖ej−1‖2L2 TrQds

} 1
2
)

≤ 3 E
(

max
0≤j≤N−1

‖ej‖L2

{ N∑
j=1

∫ tj

tj−1

‖G
(
u(s)

)
−G

(
uj−1)

)
‖2LTrQ ds

} 1
2
)

≤ ε7 E
(

max
1≤j≤N

‖ej‖2L2

)
+

18LTrQ

4ε7
E
( N∑
j=1

∫ tj

tj−1

[
‖u(s)− u(tj−1)‖2L2 + ‖ej−1‖2L2

]
ds
)
,

(6.12)

where in the last inequality we have used e0 = 0 and Young’s inequality.
Choose ε6 = 1

4 and ε7 = 1
16 ; the upper estimates (6.10) – (6.12) imply

1

16
E
(

max
J≤N
‖eJ‖2L2

)
+
ν

4
h

N∑
j=1

E(‖∇ej‖2L2) ≤
(
C1 + 74LTrQ

)
h
N−1∑
j=0

E(‖ej‖2L2)

+ C2T
{

1 + E
(

sup
s∈[0,T ]

‖u(s)‖16α
V

)} 1
2
{ N∑
j=1

E
∫ tj

tj−1

‖u(s)− u(tj)‖4L2ds
} 1

2

+ C(T, L,Tr Q)

N∑
j=1

∫ tj

tj−1

E
(
‖u(s)− u(tj−1)‖2L2

)
ds

+ C3E
( N∑
j=1

∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds
)
.
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Let λ ∈ (0, 1) and set δ = 1
4(1− λ). The moment estimates (4.8) and (4.9) imply

1

16
E
(

max
j≤N
‖ej‖2L2

)
+
ν

4
h

N∑
j=1

E(‖∇ej‖2L2) ≤
(
C1 + 74LTrQ

)
h
N−1∑
j=0

E(‖ej‖2L2)

+ C(T )
{

1 + E(‖u0‖16α
V )

} 1
2 hλ + C

[
1 + E

(
‖u0‖

16α+2+8δ
1+4δ

V

)]
hλ (6.13)

for some constant C := C(T, ν, α, a, p,TrQ). Note that for δ ∈
(
0, 1

32α−4

)
we have

16α+2+8δ
1+4δ ≥ 16α. Neglecting the second term in the left hand side of (6.13) and using

the discrete Gronwall lemma, we deduce that, for some positive constants C (resp. C1)

depending on T, ν, α, a,Tr Q and E
(
‖u0‖

16α+2+8δ
1+4δ

V

)
(resp. depending on ν, α, a, κ) such

that

E
(

max
j≤N
‖ej‖2L2

)
≤ C hλ e16(C1+74LTrQ)T .

Plugging this inequality in (6.13) we deduce(6.2); this completes the proof when α ∈ (1, 3
2 ].

(ii) We next let α = 1 and assume 4νa > 1 and 4νaκ > 1; we only point out the
differences in the proof.

We have to use a different argument to obtain upper estimates of the terms {Tj,2,i, i =
1, 2, 3} and Tj,3. The Cauchy-Schwarz and Young inequalities prove that for ε2, ε̄2, ε̃2 > 0,

|Tj,2,1| ≤ ε2ν h ‖∇ej‖2L2 +
1

4ε2ν
h ‖|u(tj)|ej‖2L2 ,

|Tj,2,2| ≤ ε̄2 h ‖|u(tj)|ej‖2L2 +
1

4ε̄2

∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds,

|Tj,2,3| ≤ ε̃2 h ‖|uj |ej‖2L2 +
1

4ε̃2

∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds.

This implies

|Tj,2| ≤ ε2ν h ‖∇ej‖2L2 +
( 1

4ε2ν
+ ε̄2

)
h ‖|u(tj)|ej‖2L2 + ε̃2 h ‖|uj |ej‖2L2

+
( 1

4ε̄2
+

1

4ε̃2

)∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds. (6.14)

Using once more the Cauchy-Schwarz and Young inequalities, we obtain for ε3 > 0

|Tj,3| ≤ ε3 h ‖|uj |ej‖2L2 +
1

4ε3

∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds. (6.15)

The upper estimates (6.4), (6.14), (6.15), (6.7) and (6.8) imply for any positive numbers
εj , j = 1, ..., 5, ε̄2 and ε̃2

1

2
‖eJ‖2L2 +

1

2

J∑
j=1

‖ej − ej−1‖2L2 + ν h
J∑
j=1

‖∇ej‖2L2 + aκh
J∑
j=1

[
‖|u(tj)|ej‖2L2 + ‖|uj |ej‖2L2

]

≤
J∑
j=1

7∑
l=6

Tj,l +
[
ε1ν + ε5ν

]
h

J∑
j=1

‖ej‖2L2 +
(
ε1 + ε2 + ε4 + ε5

)
ν h

J∑
j=1

‖∇ej‖2L2
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+
( 1

4ε2ν
+ ε̄2

)
h

J∑
j=1

‖|u(tj)|ej‖2L2 +
(
ε̃2 + ε3

)
h

J∑
j=1

‖|uj |ej‖2L2

+
(C6C3)4

64ε21ν
2

sup
s∈[0,T ]

‖u(s)‖8V
J∑
j=1

∫ tj

tj−1

‖u(s)− u(tj)‖2L2ds

+
[
1 +

1

4ε̄2
+

1

4ε̃2
+

1

4ε3
+

ν

4ε4
+
C(α)2

8ε5ν

] J∑
j=1

∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds. (6.16)

Fix ε ∈ (0, 1
2) such that (1 − 2ε)24νaκ > 1, let ε2 = 1 − 2ε, and then choose positive

numbers ε1, ε4 and ε5 such that ε1 + ε2 + ε4 + ε5 = 1− ε. Choose ε̄2 ∈ (0, εaκ), ε̃2 + ε3 ≤ aκ.
The choice of ε2 and ε̄2 implies 1

4ε2ν
+ ε̄2 < aκ. Therefore,

1

2
‖eJ‖2L2 +

1

2

J∑
j=1

‖ej − ej−1‖2L2 + εν h
J∑
j=1

‖∇ej‖2L2 ≤ C1 h
J∑
j=1

‖ej‖2L2 +
J∑
j=1

7∑
l=6

Tj,l

+ C2 sup
s∈[0,T ]

‖u(s)‖8V
J∑
j=1

∫ tj

tj−1

‖u(s)− u(tj)‖2L2ds+ C3

J∑
j=1

∫ tj

tj−1

‖∇[u(s)− u(tj)‖2L2ds

As in the case α ∈ (1, 3
2 ], using (6.11) and (6.12) with ε6 = 1

4 and ε7 = 1
16 , we deduce

1

16
E
(

sup
J≤N
‖eJ‖2L2

)
+
εν

4
h

N∑
j=1

E(‖∇ej‖2L2) ≤
(
C1 + 74LTrQ

)
h

N−1∑
j=0

E(‖ej‖2L2)

+ C2T
{

1 + E
(

sup
t∈[0,T ]

‖u(s)‖16
V

)} 1
2
{ N∑
j=1

E
∫ tj

tj−1

‖u(s)− u(tj)‖4L2ds
} 1

2

+ C3E
( N∑
j=1

∫ tj

tj−1

‖∇[u(s)− u(tj)]‖2L2ds
)
.

We conclude the proof as in the case α ∈ (1, 3
2 ]. 2

7. Appendix

In this section, we provide the proof of the well-posedness result stated in section 3.

7.1. Proofs of preliminary estimates. The following results gather some estimates of
the bilinear term, and more generally of the non linear part in (1.1). They are deduced
from the Brinkman Forchheimer smoothing term. The proofs are somewhat similar to the
corresponding ones in [6] in a different functional setting.

The next lemma gathers further properties of B.

Lemma 7.1. Suppose that α ∈ [1,+∞).
(i) Let u ∈ L∞(0, T ;H) ∩ L2α+2([0, T ]×D;R3), v ∈ X0. Then∫ T

0

∣∣〈B(u(t), u(t)), v(t)〉
∣∣dt ≤ ‖∇v‖L2(0,T ;L2) ess sup

t∈[0,T ]
‖u(t)‖

α−1
α

L2 ‖u‖
α+1
α

L2α+2([0,T ]×D;R3)
T
α−1
2α .

(7.1)∫ T

0

∣∣〈B(u(t), u(t))−B(v(t), v(t)), u(t)− v(t)〉
∣∣dt ≤ ‖∇v‖L2(0,T ;H)
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× ess sup
t∈[0,T ]

‖(u− v)(t)‖
α−1
α

H ‖u− v‖
α+1
α

L2α+2([0,T ]×D;R3)
T
α−1
2α . (7.2)

(ii) Let u ∈ L4(Ω;L∞(0, T ;H)) ∩ L2α+2(ΩT ×D;R3) and v ∈ X0. Then

E
∫ T

0

∣∣〈B(u(t), u(t)), v(t)〉
∣∣dt ≤ {E∣∣∣ ∫ T

0
‖∇v(t)‖2L2dt

∣∣∣2} 1
4
{
E
(

ess sup
t∈[0,T ]

‖u(t)‖4H
)}α−1

4α

×
{
E
∫ T

0
dt

∫
D
|u(t, x)|2α+2dx

} 1
2α
T
α−1
2α , (7.3)

E
∫ T

0

∣∣〈B(u(t), u(t))−B(v(t), v(t)), u(t)− v(t)〉
∣∣dt ≤ T α−1

2α

{
E
∣∣∣ ∫ T

0
‖∇v(t)‖2L2dt

∣∣∣2} 1
4
,

×
{
E
(

ess sup
t∈[0,T ]

‖(u− v)(t)‖4H
)}α−1

α
{
E
∫ T

0
dt

∫
D
|(u− v)(t, x)|2α+2dx

} 1
2α
. (7.4)

Proof. (i) Suppose α > 1. Using (2.4) with h = ∂ivj , f = ui and g = uj , we deduce

|〈B(u, u), v〉| = | − 〈B(u, v), u〉| ≤
3∑

i,j=1

∫
D
|ui(x)∂ivj(x)uj(x)|dx

≤
∥∥|u| |u| 1α∥∥L2α

∥∥|u|1− 1
α

∥∥
L

2α
α−1
‖∇v‖L2 .

Integrating on the time interval [0, T ] and using the Cauchy-Schwarz inequality, we obtain∫ T

0

∣∣〈B(u(t), u(t)), v(t)〉
∣∣dt ≤ ess sup

t∈[0,T ]
‖u(t)‖

α−1
α

H

(∫ T

0
‖u(t)‖

2α+2
α

L2α+2dt
) 1

2
(∫ T

0
‖∇v(t)‖2L2dt

) 1
2
.

Hölder’s inequality implies∫ T

0
‖u(t)‖

2α+2
α

L2α+2dt ≤ ‖u‖
2α+2
α

L2α+2([0,T ]×D;R3)
T
α−1
α .

This completes the proof of (7.1) for α > 1.

If α = 1, since |〈B(u, u), v〉| ≤
∥∥u∥∥2

L4 ‖∇v‖L2 , a straightforward computation implies
(7.1).

Since 〈B(u, u)−B(v, v) , u− v〉 = 〈B(u− v, v) , u− v〉, using the antisymmetry (2.1) it
is easy to see that the upper estimate (7.1) implies (7.2).

(ii) For α > 1 > 2
3 , we have 4α

3α−2 > 1. Using Hölder’s inequality for the expected value

with exponents 4, 4α
3α−2 and 2α in (7.1), we deduce

E
∫ T

0

∣∣〈B(u(t), u(t)), v(t)〉
∣∣dt ≤{E(‖∇v‖4L2(0,T ;L2)

)} 1
4
{
E
(

ess sup
t∈[0,T ]

‖u(t)‖
4(α−1)
3α−2

L2

)} 3α−2
4α

×
{
E

∫ T

0
dt

∫
D
|u(t, x)|2α+2 dx

} 1
2α
T
α−1
2α .

Since α > 1
2 we have 4(α−1)

3α−2 < 4; this completes the proof of (7.3) for α > 1.

For α = 1, using the antisymmetry (2.1), and twice the Cauchy-Schwarz inequality, we
deduce

E
∫ T

0

∣∣〈B(u(t), u(t)), v(t)〉
∣∣dt ≤ {E∫ T

0
‖∇v(t)‖2L2dt

} 1
2
{
E
∫ T

0
‖u(t)‖4L4dt

} 1
2
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≤
{
E
∣∣∣ ∫ T

0
‖∇v(t)‖2L2dt

∣∣∣2} 1
4
{
E
∫ T

0
‖u(t)‖4L4dt

} 1
2
.

This completes the proof of (7.3).
A similar argument based on the identity 〈B(u, u)−B(v, v) , u−v〉 = 〈B(u−v, v) , u−v〉

shows (7.4). �

We next prove upper estimates for the gradient of the bilinear term.

Lemma 7.2. (i) There exists a positive constant C such that for α ∈ (1,∞), some constant
Cα > 0, any constants ε0, ε1 > 0 we have for u ∈ X1,

|〈A1/2B(u, u) , A1/2u〉| ≤ C
[
ε0‖Au‖2L2 +

ε1

4ε0

∥∥|u|α∇u∥∥2

L2 +
Cα

ε0ε
1

α−1

1

‖∇u‖2L2

]
. (7.5)

(ii) Let α = 1; for every ε > 0, we have for some constant C > 0 and any u ∈ X1

|〈A1/2B(u, u) , A1/2u〉| ≤ ε‖Au‖2L2 +
1

4ε

∥∥|u|∇u∥∥2

L2 . (7.6)

Proof. (i) Let α > 1 and u ∈ X1. Then

〈A1/2B(u, u) , A1/2u〉 =

3∑
i,j,k=1

∫
D
∂k
[
ui ∂iuj

]
∂kujdx = T1 + T2,

where, using the antisymmetry property (2.1), we get

T1 =
3∑

i,j,k=1

∫
D
∂kui ∂iuj ∂kujdx,

T2 =
3∑

i,j,k=1

∫
D
ui ∂k∂iuj ∂kujdx =

3∑
k=1

〈B(u, ∂ku) , ∂ku〉 = 0.

Using integration by parts, we deduce T1 = T1,1 + T1,2, where since div u = 0

T1,1 =−
3∑

j,k=1

∫
D
∂k

( 3∑
i=1

∂iui

)
uj ∂kujdx = 0,

T1,2 =−
3∑

i,j,k=1

∫
D
∂kui uj ∂i∂kujdx.

The inequality (2.5) applied with f = uj , g = ∂kui and h = ∂i∂kuj implies

|T1,2| ≤
3∑

i,j,k=1

ε0‖∂i∂kuj‖2L2 +
3∑

i,j,k=1

ε1

4ε0

∥∥|uj |α∂kui‖2L2 +

3∑
i,j,k=1

Cα

ε0ε
1

α−1

1

‖∂kui‖2L2 .

This completes the proof of (7.5).
(ii) Let α = 1 and u ∈ X1. Then an integration by parts implies

〈A1/2B(u, u) , A1/2u〉 =
3∑

i,j,k=1

∫
D
∂k
[
ui ∂iuj

]
∂kujdx = −

3∑
i,j=1

∫
D
ui ∂iuj ∆uj dx.

The Cauchy-Schwarz and Young inequalities imply (7.6). �
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For ϕ ∈ X0, set
F (ϕ) = −νAϕ−B(ϕ,ϕ)− aΠ|ϕ|2αϕ. (7.7)

Lemma 2.2 page 415 in [2] provides upper and lower bounds of the non linear Brinkman
Forchheimer term. Let α ∈ [1,∞); there exist positive constants C and κ such that for
u, v ∈ R3 ∣∣|u|2αu− |v|2αv∣∣ ≤ C|u− v| (|u|2α + |v|2α

)
, (7.8)(

|u|2αu− |v|2αv
)
· (u− v) ≥ κ|u− v|2

(
|u|+ |v|

)2α
. (7.9)

The following lemma gives upper bounds of F for any α ∈ [1,∞).

Lemma 7.3. Let α ∈ [1,+∞).
(i) Let u ∈ X0, v ∈ L2(0, T ;V ) ∩ L2α+2([0, T ]×D;R3). Then∫ T

0
|〈F (u(t)), v(t)〉|dt ≤ C

[
‖v‖L2(0,T ;V )‖u‖L2(0,T ;V ) + ‖v‖L2α+2([0,T ]×D;R3)‖u‖2α+1

L2α+2([0,T ]×D;R3)

+ ‖v‖L2(0,T ;V ) ess sup
t∈[0,T ]

‖u(t)‖
α−1
α

H ‖u‖
α+1
α

L2α+2([0,T ]×D;R3)
T
α−1
2α
]

(7.10)

for some positive constant C.
(ii) Let u ∈ X0, v ∈ L4(Ω;L2(0, T ;V )) ∩ L2α+2(ΩT ×D;R3). Then

E
∫ T

0
|〈F (u(t)), v(t)〉|dt ≤ C

[
‖v‖L2(ΩT ;V )‖u‖L2(ΩT ;V ) + ‖v‖L2α+2(ΩT×D;R3)‖u‖2α+1

L2α+2(ΩT×D;R3)

+ ‖v‖L4(Ω;L2(0,T ;V ))

{
E
(

ess sup
t∈[0,T ]

‖u(t)‖4H
)}α−1

α ‖u‖
α+1
α

L2α+2(ΩT×D;R3)
T
α−1
2α

]
(7.11)

for some positive constant C.

Proof. Integration by parts and the Cauchy-Schwarz inequality imply

ν

∫ T

0
|〈Au(t) , v(t)〉|dt =

∫ T

0

∣∣∣− ν ∫
D
A

1
2u(t, x)A

1
2 v((t, x)dx

∣∣∣dt ≤ ν‖u‖L2(0,T ;V )‖v‖L2(0,T ;V ).

Furthermore, Hölder’s inequality with conjugate exponents 2α+ 2 and 2α+2
2α+1 yields∫ T

0

∣∣∣ ∫
D
|u(t, x)|2αu(t, x)v(t, x)dx

∣∣∣dt ≤ ∥∥|u|2αu‖
L

2α+2
2α+1 ([0,T ]×D;R3)

‖v‖L2α+2([0,T ]×D;R3).

Using the above upper estimates with the inequality (7.1) concludes the proof of (7.10).
(ii) The upper estimate (7.11) is a straightforward consequence of the upper estimates

(7.3) ,(7.10), the Cauchy-Schwarz and Hölder inequalities. �

The next lemma provides estimates of the gradient of F (u) for α ∈ [1,+∞). Note that
when α = 1, this requires that the coefficient a in front of the Brinkman-Forchheimer
smoothing term is “not too small” compared to the viscosity ν.

Lemma 7.4. (i) Let α > 1. For η ∈ (0, ν), ã ∈ (0, a), there exists a positive constant
C := C(α, η, ã) such that for u ∈ X1 and t ∈ [0, T ],∫ t

0
〈A1/2F (u(s)), A1/2u(s)〉ds

≤ −η
∫ t

0
‖Au(s)‖2L2ds− ã

∫ t

0

∥∥|u(s)|α∇u(s)
∥∥2

L2ds+ C

∫ t

0
‖∇u(s)‖2L2ds. (7.12)
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(ii) Let α = 1 and suppose 4νa > 1. Then for η ∈
(
0, ν − 1

4a

)
and ã = a− 1

4(ν−η) we have∫ t

0
〈A1/2F (u(s)), A1/2u(s)〉ds ≤ −η

∫ t

0
‖Au(s)‖2L2ds− ã

∫ t

0

∥∥|u(s)|α∇u(s)
∥∥2

L2ds. (7.13)

Proof. (i) Let α ∈ (1,∞). For u ∈ X1, integration by parts implies for a.e. s ∈ [0, t],

ν〈A
1
2 ∆u(s), A

1
2u(s)〉 = −ν‖Au(s)‖2L2 .

Furthermore,∫
D
∇
(
|u(s)|2αu(s)

)
· ∇u(s)dx =

∫
D

[
|u(s)|2α∇u(s) · ∇u(s) + 2α|u(s)|2(α−1)

(
u(s) · ∇u(s)

)2]
dx

≥
∫
D
|u(s)|2α∇u(s) · ∇u(s)dx =

∥∥|u(s)|α∇u(s)
∥∥2

L2 . (7.14)

Hence, using (7.5) with C ε0 ∈ (0, ν − η), then ε1 such that C ε1
4ε0
∈ (0, a− ã), we deduce

that for a.e. s ∈ [0, T ],

〈A1/2F (u(s)), A1/2u(s)〉 ≤ −η‖Au(s)‖2L2 − ã
∥∥|u(s)|α∇u(t)‖2L2 + C(α, η, ã)‖∇u(s)‖2L2 .

(7.15)
Integrating this inequality on the time interval [0, t] concludes the proof of (7.12).

(ii) Let α = 1. Then using (7.6) and (7.14), we deduce for ε > 0 and s ∈ [0, T ]

〈A1/2F (u(s)), A1/2u(s)〉 ≤ −(ν − ε)‖Au(s)‖2L2 +
1

4ε
‖|u(s)|∇u(s)‖2L2 − a‖|u(s)|∇u(s)‖2L2 .

Since 4aν > 1, for η ∈
(
0, ν − 1

4a

)
and ε = ν − η and ã = a− 1

4(ν−η) we deduce

〈A1/2F (u(s)), A1/2u(s)〉 ≤ −η‖Au(s)‖2L2 − ã
∥∥|u(s)|α∇u(s)‖2L2 . (7.16)

Integrating on the time interval [0, t], we deduce (7.13). �

We finally prove upper estimates of increments F (u)− F (v) for α ∈ [1,∞).

Lemma 7.5. There exists a positive constant κ depending on α ∈ [1,+∞), and for η ∈
(0, ν) a positive constant C̄(η), such that for u, v ∈ V ∩ L2α+2(D;R3),

〈F (u)−F (v), u−v〉 ≤ −η‖∇(u−v)‖2L2−aκ
∥∥(|u|+ |v|)α(u−v)

∥∥2

L2 + C̄(η)‖∇v‖4L2‖u−v‖2L2 .
(7.17)

Proof. Using integration by parts, we obtain ν〈∆(u− v), u− v〉 = −ν‖∇(u− v)‖2L2 . The
monotonicity property (7.9) implies

a

∫
D

(
|u(x)|2αu(x)− |v(x)|2αv(x)

)
·
(
u(x)− v(x)

)
dx ≥ aκ

∥∥(|u|+ |v])α(u− v)
∥∥2

L2 . (7.18)

Finally, Hölder’s inequality and the Gagliardo-Nirenberg inequality (2.2) for the L4 norm
imply

|〈B(u, u)−B(v, v), u− v〉| =|〈B(u− v, v), u− v〉|

≤‖u− v‖2L4‖∇v‖L2 ≤ C̄2
4‖u− v‖

1
2

L2‖∇(u− v)‖
3
2

L2‖∇v‖L2

≤3

4
ε

4
3 ‖∇(u− v)‖2L2 +

1

4

1

ε4
C̄8

4‖∇v‖4L2‖u− v‖2L2 ,

where the last inequality holds for any ε > 0 by Young’s inequality. Choosing 3
4ε

4
3 ∈

(0, ν − η), we conclude the proof of (7.17). �
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We next prove that (1.1) has a unique strong solution in X1. The outline is quite
classical, based on some Galerkin approximation and a priori estimates.

7.2. Galerkin approximation and a priori estimates. Recall that D is periodic do-
main of R3. Let (en, n ≥ 1) be the orthonormal basis of H defined in section 3.1 (that
is made of functions in H which are also orthogonal in V ). For every integer n ≥ 1 we

set Kn := span(ζ1, · · · , ζn). Let Πn denote the projection from K onto Q1/2(Kn), and let
Wn(t) =

∑n
j=1
√
qjζjβj(t) = ΠnW (t).

Recall that if Hn = span(e1, ..., en), the orthogonal projection Pn of H onto Hn re-
stricted to V coincides with the orthogonal projection of V onto Hn.

Fix n ≥ 1 and consider the following stochastic ordinary differential equation on the
n-dimensional space Hn defined by un(0) = Pnu0, and for t ∈ [0, T ] and v ∈ Hn:

d(un(t), v) =
〈
PnF (un(t)), v

〉
dt+ (PnG(un(t)) Πn dW (t), v), P a.s., (7.19)

where F is defined in (7.7). Then for k = 1, · · · , n we have for t ∈ [0, T ]:

d(un(t), ek) =
〈
PnF (un(t)), ek

〉
dt+

n∑
j=1

q
1
2
j

(
PnG(un(t))ζj , ek

)
dβj(t), P a.s.

Note that for v ∈ Hn the map u ∈ Hn 7→ 〈F (u) , v〉 is locally Lipschitz. Indeed, H2 ⊂
L2α+2 and there exists some constant C(n) such that ‖v‖H2 ≤ C(n)‖v‖L2 for v ∈ Hn. Let
ϕ,ψ, v ∈ Hn; integration by parts implies that

|〈∆ϕ−∆ψ, v〉| ≤ ‖ϕ− ψ‖V ‖v‖V ≤ C(n)2‖ϕ− ψ‖L2 ‖v‖L2 .

In the polynomial nonlinear term, the upper estimate (7.8), the Hölder inequality with
exponents α+1

α , 2α+ 2, and 2α+ 2, and the Sobolev embedding H2 ⊂ L2α+2 imply∣∣∣ ∫
D

(
|ϕ(x)|2αϕ(x)−|ψ(x)|2αψ(x)

)
v(x)dx

∣∣∣
≤ C

(
‖ϕ‖2αL2α+2 + ‖ψ‖2αL2α+2

)
‖ϕ− ψ‖L2α+2 ‖v‖L2α+2

≤ C C(n)2(α+1)
(
‖ϕ‖2αL2 + ‖ψ‖2αL2

)
‖ϕ− ψ‖L2 ‖v‖L2 .

Finally, using integration by parts, the Hölder and Gagliardo-Nirenberg inequalities, we
deduce:

|〈B(ϕ,ϕ)−B(ψ,ψ), v〉| =
∣∣− 〈B(ϕ− ψ, v) , ϕ〉 − 〈B(ψ, v) , ϕ− ψ〉

∣∣
≤ C ‖ϕ− ψ‖L4

(
‖ϕ‖L4 + ‖ψ‖L4

)
‖∇v‖L2 ≤ CC(n)3‖ϕ− ψ‖L2

(
‖ϕ‖L2 + ‖ψ‖L2

)
‖v‖L2 .

Condition (G) implies that the map u ∈ Hn 7→
(√
qj
(
G(u)ζj , ek

)
: 1 ≤ j, k ≤ n

)
satis-

fies the classical global linear growth and Lipschitz conditions from Hn to n× n matrices
uniformly in t ∈ [0, T ]. Hence by a well-known result about existence and uniqueness of
solutions to stochastic differential equations (see e.g. [24]), there exists a maximal solution
un =

∑n
k=1(un , ek

)
ek ∈ Hn to (7.19), i.e., a stopping time τ∗n ≤ T such that (7.19) holds

for t < τ∗n and if τ∗n < T , ‖un(t)‖L2 →∞ as t ↑ τ∗n.
The following proposition shows that τ∗n = T a.s., and provides a priori estimates on

norms of un, which do not depend on n.

Proposition 7.6. Let α ∈ [1,∞), and if α = 1, suppose that 4νa > 1.
(i) Let u0 be F0-measurable such that E

(
‖u0‖2H

)
< ∞, T > 0 and G satisfy (3.2) and

(3.4). Then the evolution equation (7.19) with initial condition Pnu0 has a unique global
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solution on [0, T ] (i.e., τ∗n = T a.s.) with a modification un ∈ C([0, T ];Hn). Furthermore,

if E
(
‖u0‖2pH

)
<∞ for some p ∈ [1,∞), we have un ∈ X0 and

sup
n

E
(

sup
t∈[0,T ]

‖un(t)‖2pH +

∫ T

0

[
‖un(t)‖2V +‖un(t)‖2α+2

L2α+2

]
‖un(t)‖2p−2

H dt
)
≤ C

[
1+E(‖u0‖2pH )

]
.

(7.20)

(ii) If E(‖u0‖2pV ) <∞ for some p ∈ [1,∞) and G satisfies also (3.3), we have furthermore

sup
n

E
(

sup
t∈[0,T ]

‖un(t)‖2pV +

∫ T

0

[
‖Aun(t)‖2L2 + ‖|un(t)|α∇un(t)‖2L2

]
‖un(t)‖2p−2

V dt
)

≤ C
[
1 + E(‖u0‖2p0

V )
]
. (7.21)

Proof. (i) For fixed N > 0 set τN := inf{t ≥ 0 : ‖un(t)‖H ≥ N} ∧ τ∗n. Itô’s formula and
the antisymmetry property of B imply

‖un(t∧ τN )‖2H = ‖Pnu0‖2H − 2

∫ t∧τN

0

[
ν‖∇un(s)‖2L2 +a‖un(s)‖2α+2

L2α+2

]
ds+

2∑
i=1

Ti(t), (7.22)

where

T1(t) = 2

∫ t∧τn

0

(
G(un(s)) dWn(s) , un(s)

)
, T2(t) =

∫ t∧τn

0
‖PnG(un(s))Πn‖2L ds.

Apply once more the Itô formula to z 7→ zp and z = ‖un(t ∧ τN )‖2H for p ∈ [2,∞). We
obtain

‖un(t ∧ τN )‖2pH = ‖Pnu0‖2pH − 2p

∫ t∧τN

0

[
ν‖∇un(s)‖2L2 + a‖un(s)‖2α+2

L2α+2

]
‖un(s)‖2p−2

H ds

+

3∑
i=1

T̄i(t), (7.23)

where

T̄1(t) = 2p

∫ t∧τN

0

(
PnG(un(s)) dWn(s) , un(s)

)
‖un(s)‖2p−2

H ,

T̄2(t) = p

∫ t∧τN

0
‖PnG(un(s))Πn‖2L ‖un(s)‖2p−2

H ds,

T̄3(t) = 2p(p− 1)

∫ t∧τN

0
‖
(
G(un(s)) Πn

)∗
un(s)

∥∥2

K
‖un(s)‖2p−4

H ds.

The growth condition (3.2) implies

T̄2(t) + T̄3(t) ≤ p(2p− 1)

∫ t

0
[K0 +K1‖un(s ∧ τN )‖2H ] ‖un(s ∧ τN )‖2p−2

H Tr Qds.

Using the Davis inequality, the growth condition (3.2) and Young’s inequality, we deduce
for β ∈ (0, 1),

E
(

sup
s≤t∧τn

T̄1(s)
)
≤ 6p E

({∫ t∧τN

0
‖G(un(s))‖2L ‖un(s)‖4p−2

H TrQds
} 1

2
)

≤ β E
(

sup
s≤t
‖un(s ∧ τN )‖2pH

)
+

9p2

β
E
∫ t

0

[
K0 +K1‖un(s ∧ τN )‖2H

]
‖un(s ∧ τN )‖2p−2

H Tr Qds.
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Neglecting the first integral in the right hand side of (7.23), using the above upper esti-
mates of T̄i and the Gronwall lemma, we deduce that for β ∈ (0, 1),

sup
n≥1

E
(

sup
s≤T
‖un(s ∧ τN )‖2pH

)
≤ C(β, p,K0,K1,TrQ)

[
1 + E(‖u0‖2pH

]
. (7.24)

As N → ∞, the sequence of stopping times τN increases to τ∗n and on the set {τ∗n < T},
we have sups∈[0,τN ] ‖un(s)‖H → ∞. Hence (7.24) implies P (τ∗n < T ) = 0 and for almost

every ω, for N(ω) large enough we have τN(ω)(ω) = T . Plugging the upper estimate (7.24)
in (7.23), we conclude the proof of (7.20).

Note that the above argument based on (7.22) instead of (7.23) proves that if E(‖u0‖2H) <
∞ we have once more τN(ω)(ω) = T for N(ω) large enough and a.e. ω, and that (7.20)
holds for p = 1.

We next prove that un ∈ X0. Plugging the above upper estimate for p = 1 in (7.22),
taking expected values and using Condition (3.2), we obtain

E
∫ T

0

[
‖un(s)‖2V + ‖un(s)‖2α+2

L2α+2

]
ds <∞.

A similar argument using (7.24) in (7.23) completes the proof of (7.20) when the H-norm
of the initial condition has 2p moments.

(ii) Taking the gradient of both hand sides of (7.19), using the Itô formula and (3.1),
we deduce for τ̃N := inf{s ≥ 0 : ‖un(s)‖V ≥ N} ∧ T ,

‖A
1
2un(t∧τ̃N )‖2L2 = ‖A

1
2Pnu0‖2L2 + 2

∫ t∧τ̃N

0
〈A

1
2PnF (un(s)), A

1
2un(s)〉 ds

+ 2

∫ t∧τ̃N

0

(
A

1
2PnG(un(s))dWn(s),∇un(s)

)
+

∫ t∧τ̃N

0
‖A

1
2PnG(un(s))Πn‖2L ds

= ‖A
1
2Pnu0‖2L2 + 2

∫ t∧τ̃N

0
〈A

1
2F (un(s)), A

1
2un(s)〉 ds

+ 2

∫ t∧τ̃N

0

(
A

1
2G(un(s))ΠndW (s), A

1
2un(s)

)
+

∫ t∧τ̃N

0
‖A

1
2PnG(un(s))Πn‖2L ds.

Indeed, since un(s) ∈ V for s ≤ t∧ τ̃N , we have A
1
2un(s) ∈ H and A

1
2G(un(s)) ∈ L(K,H).

Using once more the Itô formula for the function z 7→ zp for p ∈ [2,∞), we obtain

‖A
1
2un(t ∧ τ̃N )‖2pL2 ≤ ‖A

1
2u0‖2pL2 + 2

∫ t∧τ̃N

0
〈A

1
2∇F (un(s)), A

1
2un(s)〉 ‖∇un(s)‖2(p−1)

L2 ds

+
3∑
i=1

T̃i(t), (7.25)

where

T̃1(t) = 2p

∫ t∧τ̃N

0

(
A

1
2G(un(s))dWn(s) , A

1
2un(s)

)
‖A

1
2un(s)‖2(p−1)

L2 ds,

T̃2(t) = p

∫ t∧τ̃N

0
‖G(un(s))Πn‖2L̃ ‖A

1
2un(s)‖2(p−1)

L2 ds,

T̃3(t) = 2p(p− 1)

∫ t∧τ̃N

0
‖
(
A

1
2G(un(s)) Πn

)∗
A

1
2un(s)‖2K ‖A

1
2un(s)‖2(p−2)

L2 ds.
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Since

‖
(
A

1
2G(un(s)) Πn

)∗‖L(H;K) ≤ ‖A
1
2G(un(s))‖L(K;H) ≤ ‖G(un(s))‖L(K;V ),

the growth condition (3.3) and Young’s inequality imply

T̃2 + T̃3(t) ≤ C(p, T,Tr Q, K̃0, K̃1)
[
1 +

∫ t∧τ̃N

0
‖un(s)‖2pH + ‖∇un(s)‖2pL2ds

]
.

The growth condition (3.3), the Gundy and Young inequalities imply that for β̃ ∈ (0, 1),

E
(

sup
s≤t

T̃1(s)
)
≤ C(p)E

({∫ t∧τ̃N

0

[
K̃0 + K̃1‖un(s)‖2V

]
‖∇un(s)‖4p−2

L2 Tr Qds
} 1

2
)

≤ β̃E
(

sup
s≤t
‖un(s ∧ τ̃N )‖2pL2

)
+ β̃E

(
sup
s≤t
‖∇un(s ∧ τ̃N )‖2pL2

)
+ C(β̃,Tr Q, K̃0, K̃1)

[
1 + E

(∫ t

0
‖∇un(s ∧ τ̃N )‖2pL2ds

)]
.

Let ρ ∈ (0, ν) and ã ∈ (0, a). Using (7.12) for α > 1 and (7.13) for α = 1, (7.20) and the
Gronwall lemma, we deduce

E
(

sup
s≤τ̃N

‖un(s)‖2pV
)
≤ C

[
1 + E(‖u0‖2pV )

]
.

for some positive constant C which does not depend on N and n. For fixed n, letting N →
∞ and using the monotone convergence theorem we deduce un ∈ L2p(Ω;L∞(0, T ;V )).
Plugging this in (7.25) and taking expected values, we conclude the proof of (7.21). �

7.3. Proof of global well-posedness of the solution. The proof of Theorem 3.2 is
classical and uses the upper estimates (7.2) and (7.4) for the uniqueness; see e.g. [6] for
details.
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