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This paper studies the suppression of an infectious disease in the canonical SIR model. It derives three results. First, if technically feasible, the optimal response to a sufficiently small outbreak is halting transmissions instead of building up immunity through infections. Second, the crucial tradeoff is not between health and economic costs but between the intensity and duration of control measures. A simple formula of observables characterizes the optimum.

Third, the total cost depends critically on the efficiency of contact tracing since it allows relaxing costly social distancing without increasing transmissions. A calibration to the COVID-19 pandemic illustrates the theoretical findings.

Introduction

What is the optimal response to a rapidly spreading and deadly infectious disease when no vaccine or effective medication is yet widely available? The epidemiological literature (e.g., Ferguson et al., 2020) defines two possible response strategies: mitigation and suppression. On the one hand, mitigation strategies control, but do not reverse, the spread of the disease in order to build up herd immunity in the population. 1 On the other hand, suppression strategies push the growth rate of the infected below zero in order to halt human-to-human transmission until a vaccine arrives. Contrary to mitigation, suppression strategies halt the pandemic within a country before the population acquires herd immunity through infections.

This paper studies suppression strategies in the standard SIR model augmented with economic interactions. The population consists of three groups: the Susceptible, the Infectious, and the Recovered. The disease transmits from the infectious to the susceptible. The policymaker controls the spread of the disease with the help of two costly measures: social distancing and contact tracing. Social distancing reduces the disease's growth rate by reducing social contact between all individuals in the population. Contact tracing reduces the growth rate by actively finding infectious individuals and isolating them from the susceptible population. The optimal policy combines these two tools to minimize the costs caused by control measures and infections. A key determinant of its properties is the efficiency of contact tracing. A contact tracing technology is efficient (inefficient) if the maximal detection rate of infectious individuals is larger (smaller) than the uncontrolled growth rate of the disease.

The first result of this paper shows that, if technically feasible, the optimal response to a sufficiently small outbreak is a suppression strategy halting transmissions and keeping the number of susceptible approximately constant. It is technically feasible, i.e., achievable at finite cost, if at least one out of two conditions holds: i) the disease can be locally eradicated; ii) the policymaker disposes of an efficient contact tracing technology. Under both conditions, because the number of infectious at the outbreak is small, the cost of pushing transmissions to zero is lower than the health costs caused by a further spread of the disease. Since, in the optimum, the number of susceptible is approximately constant, the SIR model collapses to a simple exponential model. Exploiting this model, results two and three characterize the optimal policy in closed form.

As a second result, I find that the critical tradeoff when eliminating the disease is not between health and economic costs but between the intensity of the cost from control measures and the time the population needs to endure them. Too extreme measures rapidly reduce the number of infectious in the population; however, they have very high instantaneous costs because even the most fundamental economic activities are on hold. Too weak measures have low instant costs; however, they must stay in place for a long time to eliminate transmissions. The optimal policy trades off these two margins at every point in time. I characterize the optimal policy by a simple formula of two observable sufficient-statistics: first, the instantaneous growth rate of the disease, and second, the instant flow of costs from control measures and health outcomes.2 A policy at a certain point in time is optimal if the elasticity of the current flow-cost to the current growth rate is equal to one. The condition gives specific and straightforward guidance on staying on the optimal elimination path over time, particularly how fast to relax social distancing measures. Health costs play only a secondary role since they converge to zero on the optimal path, along with the number of infectious.

While result two characterizes the optimal pace of suppression, result three shows how to combine the two control measures optimally. I find that the combination of efficient contact tracing and social distancing is crucial to limiting the overall cost of suppression. Relying only on social distancing poses two problems. First, social distancing affects all individuals in a population, making it very costly. Second, because the decrease in infectious follows an exponential decay process, reducing infectious by social distancing becomes very inefficient when their number is low. For example, it takes the same time and intensity of social distancing to reduce the number of infectious from 20,000 to 10,000, like reducing it from 20 to 10. At the end of a pandemic, it is necessary to impose costly measures on the whole population just to avoid one last transmission of the disease. Mathematically, the cost of reducing the infectious by one unit goes to infinity as their number goes to zero.

Contrary to the cost of social distancing, the cost of detecting a certain fraction of infectious individuals scales with their overall number. Consequently, the optimal control shifts from social distancing to contact tracing as the number of infectious decreases over time. When tracing is efficient, optimal social distancing converges to zero. Therefore, the unit cost of suppression is bounded. In contrast, when tracing is inefficient, the policymaker needs to complement it with social distancing to achieve control even when case numbers are low. Therefore, the unit cost converges to infinity, just like when no tracing is used. These results show that the efficiency of contact tracing is a crucial determinant of the optimal policy and the cost of suppression.

If halting transmissions is infeasible (i.e., local eradication is not possible and the tracing technology is inefficient), these results do not apply. In this case, it is optimal to build up at least some immunity in the population via a controlled spread of the disease. Note, however, that when the arrival probability of a vaccine is sufficiently high, the expected build-up in immunity is low because the vaccine suppresses the disease in expectation (see Piguillem and Shi, 2022 for a detailed exploration of this effect).

A quantitative application illustrates the theoretical findings. I calibrate the model to the first wave of the COVID-19 pandemic in Singapore and Italy from February to December 2020, caused by the wild-type of the virus SARS-CoV-2.3 I find that efficient contact tracing, as used in Singapore, allows for eliminating the disease at the cost of 1% of annual GDP. Inefficient contact tracing, as used in Italy, raises this cost to 4.5% of GDP. Singapore broadly followed the optimal policy and suppressed the disease, while Italy did not. The privacy costs of efficient contact tracing could justify forgoing its considerable advantages in controlling the pandemic; however, the quantitative findings show that such privacy costs would need to be extremely large. 4 The costs of simple suboptimal suppression policies are between 70% and 145 % higher than the costs of the respective optimal policies. 5 In contrast, the cost of mitigation strategies is at least 13% of GDP. The numbers suggest that choosing suppression over mitigation reduces costs by one order of magnitude while staying on the optimal suppression path further reduces costs considerably.

The results propose an explanation for the empirical findings in Oliu- Barton et al. (2021), who show that countries that eliminated SARS-CoV-2 fared better in terms of health, economy, and civil liberties. Several economists and public health experts advocated for the wider adoption of suppression strategies during the COVID-19 pandemic (see Aghion et al., 2021; Baker et al. (2020) ; Horton, 2021; Philippe and Marques, 2021; Priesemann et al., 2021; and Pollinger, 2020). 6 My paper provides further evidence for the benefits of using suppression as a first response to the COVID-19 pandemic.

Related literature This paper builds on the large recent literature on SIR models augmented with economic interactions. 7 Closest to my paper is the theoretical contribution by Gerlagh (2020) and the quantitative contributions by Piguillem and Shi (2022), Bethune and Korinek (2020), and Alvarez et al. (2021), who consider optimal suppression strategies. My paper contributes to this literature with the three novel theoretical insights outlined above. Moreover, it quantifies how the cost of suppressing COVID-19 depends on the efficiency of contact tracing. Result three confirms the quantitative result in Alvarez et al. (2021); contact tracing and social distancing are complementary in the sense that it is optimal to use them in combination. Alvarez et al. (2021) consider a tracing technology without bound on the maximal fraction of detectable cases, i.e., the efficiency of tracing. The epidemiological literature (see Ferretti et al., 2020) stresses that this fraction is bounded in practice and depends on the technology used. My paper explicitly studies how the efficiency of tracing affects the optimal policy and its cost, finding significant qualitative and quantitative effects.

1 The SIR Model I consider the standard SIR model augmented with economic interactions. The population has a mass of one and consists of three groups. I t denotes the mass of infectious at time t who are not in quarantine. I also refer to I t as prevalence. S t denotes the mass of the population susceptible to infection. R t denotes the rest of the population. It consists of three subgroups: the infected but effectively quarantined, the recovered, and the deceased. The mass of susceptible evolves following Ṡt = -(β 0 -β t )S t I t .

(1)

The rate of unrestricted meetings between susceptible and infectious is S t I t , and β 0 denotes the transmission rate of the disease. 8 The reduction in transmissions due to social distancing measures imposed by the government is β t S t I t . I assume the government controls β t , which I call the intensity of social distancing. It is equivalent to assuming the policymaker controls restrictions to social and economic activity in a more general model (see Appendix B.1).

A fraction γ 0 of infectious recover per unit of time. Moreover, the policymaker traces, tests, and quarantines a fraction γ t of infectious per unit of time. The policymaker controls γ t , which I call the detection rate. Each unit of time, a mass γ t I t of individuals leaves the infectious into quarantine. The mass of infectious and recovered evolve following

İt = ((β 0 -β t )S t -γ 0 -γ t )I t , (2) 
Ṙt = (γ 0 + γ t )I t .

I 0 and S 0 denote the initial fraction of infectious and susceptible. I denote by g 0 = β 0 S 0 -γ 0 the initial uncontrolled growth rate of the disease. The variables β t and γ t denote the value of β and γ at a certain point in time and (β t , γ t ) denotes the policy-functions β t and γ t for all t. The expression (β (I,S) , γ (I,S) ) denotes the policy-functions as a function of the state variables I t and S t .

Note that S t is strictly decreasing and bounded from below. Therefore, it converges to a limit S ∞ , which is a function of the policy (β t , γ t ) and the initial conditions. I t converges to zero eventually, under all policies and initial conditions.

The policymaker chooses functions (β t , γ t ) to minimize the sum of costs from social distancing, contact tracing, and health outcomes:

min (βt,γt) ∞ 0 c β (β t ) + c γ (γ t )I t + v(β 0 -β t )S t I t dt. (3) 
The function c β (.) denotes the cost of social distancing. It is zero at zero, strictly increasing, and convex. The marginal cost c ′ β (.) is zero at zero and goes to infinity as the intensity of social distancing β approaches a maximal value β < β 0 . These assumptions capture that the policymaker restricts social activities based on their welfare benefit per social contact and that it is not possible to reduce social contact to zero. Moreover, I assume β 0 -γ 0 < β, i.e., it is possible to reverse the growth of the disease by social distancing. Appendix B.1 derives the properties of c β (.) in a more general model of social and economic interactions.

The function c γ (.) denotes the cost of tracing per mass of infectious. Intuitively, it is the cost of tracing a fraction γ t of infectious per day in one cluster. 9 It is zero at zero, strictly increasing, and convex. In line with the epidemiological literature, I assume the detection rate has a maximum γ. Consequently, the marginal cost c ′ γ (.) is zero at zero and goes to infinity as γ approaches the maximum γ. These properties reflect that the difficulty of tracing within a cluster increases as the detection rate γ approaches its maximum. Besides the direct resource costs of tracing infectious, the function includes the indirect costs of tracing, e.g., the welfare costs from privacy loss or isolation borne by traced infectious and their contacts. The total cost of tracing per unit of time is c γ (γ t )I t . It is the cost per cluster times the number of clusters, which is proportional to prevalence I t . Appendix B.2 discusses the properties of the cost of tracing in further detail. Appendix B.8 discusses the case when contact tracing has a fixed cost. Appendix B.9.2 considers random testing.

Useful Definitions

A key determinant of the optimal policy is the efficiency of contact tracing: Definition 1. A detection technology is efficient if γ > g 0 , and inefficient if γ < g 0 .

Intuitively, when the tracing technology is efficient, it is technically feasible to immediately reverse the growth of the disease by contact tracing, which is not the case when the technology is inefficient.

I denote the expected health cost per infection by v. It includes all expected utility costs of infection, e.g., the cost of eventual death, hospitalization, foregone income, etc. Multiplication by the flow of infections gives the health cost per unit of time: v(β 0 -β t )S t I t .

One feature of the standard SIR model is that the transmission of the disease never ends. I t converges to zero but never reaches it. It implies that the disease cannot be eradicated -even locally and if strong control measures are permanent. This property is at odds with the successful temporary elimination of SARS-CoV-2 in several territories (see Baker et al., 2020) or the eradication of SARS-CoV-1. In the epidemiological literature, this feature is known as the atto-fox problem (see Mollison, 1991 and Moll, 2020 for a discussion). Note that a more realistic but less tractable model with a discrete number of individuals does not have this property. A way to benefit from the tractability of the standard model and allow for extinction is the introduction of an extinction threshold (see Gollier, 2020a and Piguillem and Shi, 2022): Definition 2. An extinction threshold is a small and positive mass of infected ι > 0 such that

I t = 0 for all t > T if I T ≤ ι.
The variable T denotes the time to extinction. If ι > 0, local eradication is possible. The pandemic ends when I t reaches it. In the standard model ι = 0, implying extinction is impossible.

In the following, I consider both cases. Appendix B.3 shows under which condition an extinction threshold emerges in a more general model of extinction.

When the number of susceptible is lower than the herd-immunity threshold, the number of infectious converges to zero without applying control measures. The herd immunity threshold S H is: S H = γ 0 β 0 . It is straightforward to see from Equation (2) that if β t = γ t = 0 and S t < S H , then İt < 0. From now on, assume that S 0 > S H ; otherwise, there is no pandemic because I t does not increase.

In line with Ferguson et al. (2020), I distinguish two response strategies to a pandemic: suppression and mitigation.

Definition 3. Given the initial conditions (I 0 , S 0 ), a policy-function (β t , γ t ) is a suppression strategy if it implies S ∞ > S H , and a mitigation strategy if it implies S ∞ ≤ S H .

The two strategies differ in the way the pandemic halts. A mitigation strategy halts the pandemic because the population reaches herd immunity. The policymaker controls the spread of the disease to achieve herd immunity cost-efficiently. A suppression strategy halts the pandemic before the population reaches herd immunity through infections. To this end, the policymaker applies control measures to halt the disease's transmission until a vaccine arrives. If extinction is possible, the policymaker pushes the number of infectious below the extinction threshold. After extinction, she protects the population from imported reinfections using border controls. For simplicity, I neglect the cost of border controls for now and treat them in Appendix B.7.

Denote by ∆S = S 0 -S ∞ the change in susceptible, i.e., the build-up of immunity in the population. It is a function of the initial condition I 0 and the applied policy. It is useful to sharpen the distinction between suppression strategies further and define the following: Definition 4. Given the initial condition S 0 , a policy-function

(β I,S , γ I,S ) is a strict suppression strategy if it implies lim I 0 →ι ∆S(I 0 ) = 0.
It is easy to see that for small I 0 a strict suppression strategy is a suppression strategy, while there exist suppression strategies that are not strict. I call them weak suppression strategies. Intuitively, strict suppression strategies do not build up immunity in the population when I 0 is small, while weak suppression strategies build up at least some immunity.

Suppression and Optimality

This section explores when strict suppression is optimal. Denote by ∆S * the change in susceptible in the optimum.

Proposition 1. If ι > 0 or γ > g 0 , the optimal policy is a strict suppression strategy: lim I 0 →ι ∆S * (I 0 ) = 0.

The proof of the proposition is in Appendix A.1. The intuition behind it is simple. Any change in susceptible ∆S causes a health cost v∆S. This cost can be avoided by policies that halt transmissions before the susceptible change by ∆S. Halting transmissions is feasible if one out of two conditions holds: i) it is possible to locally eradicate the disease (i.e., ι > 0); ii) contact tracing is efficient (i.e., γ > g 0 ). In the first case, the policymaker can apply control measures and revert the disease's growth until the mass of infectious hits the extinction threshold. If I 0 is close enough to ι, the cost of such policies is lower than the cost of policies that cause a change ∆S. Therefore, the latter cannot be optimal. In the second case, if ι = 0, strict suppression necessitates that control measures permanently revert the disease's growth. Reverting growth by contact tracing alone is possible because the technology is efficient. Moreover, its cost is proportional to the number of infectious, which decreases close to exponentially. The total cost is the integral of the flow-cost from time zero to infinity. This integral is bounded because, like the number of infectious, the flow-cost decreases to zero close to exponentially. Again, if I 0 is close enough to ι = 0, the cost of such a policy is lower than the cost of policies that cause a change ∆S. Therefore, the latter cannot be optimal.

Proposition 1 has a first important implication. When the number of infectious is small, and halting transmissions is feasible, it is optimal to suppress the disease. In particular, mitigation strategies, building up herd immunity, are not optimal in this case. Note that I t is small at the beginning and the end of a pandemic. Moreover, it might be small at other points in time because the policymaker applied some optimal or non-optimal policy. In this case, it is without loss of generality to redefine any I t as I 0 . 10 Indeed, even when governments do not follow an optimal policy, they typically keep I t small during a pandemic to avoid distress in the healthcare system.

For example, the quantitative application in Section 3 estimates that during the highly impactfull COVID-19 pandemic in Italy and Singapore in 2020, I t never exceeded one per cent of the population. 11 10 Consequently, S H < S 0 < 1, which is irrelevant for the results in Proposition 1. 11 See Figure 15. Note that these are estimates since the exact prevalence is unknown.

While the rest of this paper considers the case when Proposition 1 applies, Appendix B.9 considers the case when it does not (i.e., ι = 0 and γ < g 0 ). It shows that strict suppression strategies are not even feasible in this case because they are infinitely costly. Therefore, it is optimal to build up immunity in the population (i.e., lim I 0 →0 ∆S * (I 0 ) > 0). When, in addition, contact tracing is not available at all (i.e., γ = 0), the optimal policy is a mitigation strategy since optimal immunization moves towards herd immunity. These results hold even when the policymaker uses widespread random testing, which shows that contact tracing is not substitutable by random testing.

However, the appendix also shows that when a vaccine arrives with a sufficiently high probability, the expected build-up in immunity is low because the vaccine suppresses the disease in expectation.

See Piguillem and Shi (2022) for a detailed exploration of this effect.

Proposition 1 has a second important implication. When it applies, the number of susceptible S t is approximately constant in the optimum. Therefore, the SIR model collapses to a simple exponential growth model. Section 2 exploits this model to characterize the optimal policy and its properties.

The Exponential Model

Throughout this section I assume that ι > 0 or γ > g 0 . Moreover, I assume I 0 is small. Proposition 1 shows that S t is approximately constant in the optimum in this case. I use this property to simplify the model:

Assumption 1. Assume that S t = S 0 = const.
The mass of infectious I t becomes the only relevant state variable with an exponential law of motion:

İt = g 0 -β t S 0 -γ t I t .
I call the model for which Assumption 1 holds the exponential model, while I call the model for which S t follows Equation (1) the SIR model. The assumption simplifies the analysis considerably. I use it to derive the optimal policy in closed form and study its properties. To further justify the assumption, Appendix B.4 shows theoretically that, in the optimum, the exponential model approximates the SIR model when I 0 is small. In the limit, when I 0 converges to ι, the approximation is exact. Typically, prevalence is small during a pandemic (see Section 1.2). Appendix C.3 examines the quality of the approximation numerically. Calibrating the model to the COVID-19 pandemic in Italy and Singapore, I find that the optimum of the exponential model approximates the optimum of the SIR model extremely well. The approximation error in the minimized cost and optimal policy is less than 1%.

The Optimal Policy in the Exponential Model

In this section, I derive the optimal policy in the exponential model.

Lemma 1. Under Assumption 1, in the optimum İt < 0 for all t such that I t > 0 and lim t→∞ I t = 0.

The proof of Lemma 1 is in Appendix A.2. The result is intuitive. Policies for which I t does not converge to zero have infinite costs and cannot be optimal. Policies for which I t increases for some t have an additional health cost without rendering any benefit. Therefore, they cannot be optimal. The lemma has a direct policy implication. In the optimum, the policymaker should always apply strong enough control measures such that the number of infectious decreases.

In a next step, using Assumption 1 and Lemma 1 to change variable in Objective (3) from t to I simplifies the problem to

min β I ,γ I I 0 ι c β (β I ) + c γ (γ I )I + (β 0 -β I )vIS 0 (β I S 0 + γ I -g 0 )I dI, (4) 
where g 0 = β 0 S 0 -γ 0 denotes the uncontrolled growth rate of the disease. The minimum of the objective is simply the point-wise minimum. Denote the total flow-cost by c f = c β (β I )+c γ (γ I )I + (β 0 -β I )vIS 0 and the disease's growth rate by -g = β I S 0 + γ I -g 0 .

Proposition 2. A unique minimum of Objective (4) exists. A policy is optimal when its relative impact on the flow of costs from health outcomes and control measures c f is equal to its relative impact of the disease's growth rate -g:

c ′ β (β I ) -vIS 0 c β (β I ) + c γ (γ I )I + vIS 0 (β 0 -β I ) Rel. cost impact d ln(c f ) dβ I = S 0 β I S 0 + γ I -g 0 Rel. growth impact d ln(-g) dβ I , (5) 
Figure 1: The Problem of the Policymaker I 0 ι ∆I Note: The problem of the policymaker is to move prevalence from I 0 to ι in small steps ∆I. and

c ′ γ (γ I )I c β (β I ) + c γ (γ I )I + vIS 0 (β 0 -β I ) Rel. cost impact d ln(c f ) dγ I = 1 β I S 0 + γ I -g 0 Rel. growth impact d ln(-g) dγ I . ( 6 
)
The proof of Proposition 2 is in Appendix A.3. The representation of the problem in Objective (4) and its solution in Proposition 2 have an intuitive interpretation. When suppressing the disease, the policymaker needs to reduce prevalence from I 0 to ι. Consider splitting this distance into many small intervals ∆I, as illustrated in Figure 1:

Consider the case when ∆I is infinitely small and denote it as the infinitesimal δI. The cost δc of moving one step δI is the flow of costs from control policies and health outcomes times the time it takes to move one step δt: The problem of the policymaker is to minimize this cost at each step. Changing variable in Objective (3) is the same as looking at the problem through this lens. It provides several insights.

δc = c f × δt = c f × δI - İ = c β (β I ) + c γ (γ I )I + (β 0 -β I )
On the one hand, the policymaker faces a static tradeoff between health and economic costs at each point in time. 12 The cost of social distancing increases in β I while the health cost decreases in β I . Both cost components are part of the flow-cost. Therefore, it follows that the optimal intensity of social distancing is at least β I ≥ c ′ β -1 (vIS 0 ). However, this tradeoff is unimportant because vIS 0 is small. On the other hand, the policymaker faces a dynamic tradeoff. While the flow-cost increases when the intensity of control measures is above the static optimum, the time to move one step decreases. Therefore, raising control above the static optimum decreases the duration of future costs. This effect renders two benefits. First, more control today reduces health costs in the future.

Again, this tradeoff is unimportant because vIS 0 is small. Second, more control intensity today reduces the duration of future control measures. This intensity-duration tradeoff of control is key since the cost of control typically dominates the health cost.

The exponential model reveals an important policy insight: the tradeoff for suppressing the disease is between the intensity of instant costs and the time they need to be endured. The optimal policy trades off these two margins at every point in time. Intuitively, too extreme measures rapidly reduce the number of infections in the population; however, they have very high instant costs because even the most fundamental economic activities are on hold, and contact tracing devours large resources. Too weak measures have relatively low instant costs; however, they must stay in place for a long time until transmissions stop.

The cost of each step described in Equation ( 7) is at its minimum when the relative impact of a policy instrument on the flow-cost is equal to its relative impact on the time to move one step. This point follows from taking the logarithm and derivative in Equation (7). Equation ( 5) and ( 6) in Proposition 2 characterize the optimum; the right-hand sides are the relative cost impacts of each instrument, the left-hand sides are the relative impacts on time. Importantly, the time to move one step δt is inversely proportional to the instant growth rate:

δt ∝ 1 β I S 0 + γ I -g 0 .
Consequently, the optimality condition has a second insightful interpretation: in the optimum, the relative impact of a policy instrument on the flow-cost is equal to its relative impact on the growth rate of the disease. Or, said differently, the elasticity of the flow-cost to the growth rate is equal to one along the optimal path. This characterization is useful since the instantaneous growth rate and flow-cost are observable sufficient-statistics. 13 The condition gives specific and straightforward guidance on how to stay on the optimal path over time and, in particular, on how fast to relax social distancing measures. For instance, consider a policymaker who would like to reopen a certain sector, such as indoor dining. For deciding optimally, the policymaker only needs information on how many percentage points such a measure eases the current cost and how many percentage points it increases the disease's current growth rate. The sector should open if the relative cost impact is larger than the relative growth impact. 13 For a real-time estimation of these costs, see Adams-Prassl, Boneva, Golin, and Rauh (2020); Aspachs, Durante, Graziano, Mestres, Montalvo, and Reynal-Querol (2022); and Chetty et al. (2020).

Properties of the Optimal Policy

This section examines how the optimal combination of social distancing and contact tracing depends on the efficiency of the detection technology. Remember, a detection technology efficient if γ > g 0 , and inefficient if γ < g 0 . I define the unit cost of suppression as

dC dI = c β (β I ) + c γ (γ I )I + (β 0 -β I )vIS 0 (β I S 0 + γ I -g 0 )I
Intuitively, it is the cost to suppress one more infectious.

Proposition 3.

1. Optimal social distancing decreases over time while the optimal detection rate increases over time.

2. If tracing is efficient, optimal social distancing converges to zero when I converges to zero, while the optimal detection rate converges to a value γ lim > g 0 . The unit cost of suppression is bounded for all I.

3. If tracing is inefficient, the optimal detection rate converges to its maximum γ when I converges to zero, while optimal social distancing converges to a value β lim > g 0 -γ S 0 > 0. The unit cost of suppression converges to infinity.

The proof is in Appendix A.4. It is useful to consider the case when the policymaker relies only on social distancing (i.e., γ = 0) to understand the intuition behind the results in Proposition 3. Such a policy poses two problems. First, social distancing affects all individuals in a population equally and independently of prevalence I. Mathematically, the cost of β t does not depend on I. Second, because the decrease in prevalence follows an exponential decay process, reducing prevalence by social distancing becomes very inefficient when prevalence is low. For example, it takes the same time and intensity of social distancing to reduce the number of infected from 20,000 to 10,000, like reducing it from 20 to 10. Mathematically, the cost of reducing prevalence by one unit goes to infinity as prevalence goes to zero. However, social distancing also has an essential advantage. The example illustrates that the unit cost of suppression goes to zero when I goes to infinity. Therefore, social distancing is a very efficient control measure when I is large.

The cost of contact tracing is different in this respect: the necessary resources to detect a certain fraction of infectious scales in their overall number. When I is large, this cost is high because contact tracers need to follow up on cases in many clusters. When I is small, it is low because contact tracers can focus on a few clusters. Consequently, the comparative cost advantage of tracing increases when I decreases. Hence, the intensity of social distancing is the highest at the beginning of the optimal suppression path, while the detection rate is the highest at the end.

Contact tracing can fully control the disease if the maximal detection rate is larger than the uncontrolled growth rate. In this case, it is optimal to fully relax the more costly social distancing when I goes to zero. Consequently, combining the two policy-tools bounds the unit cost of suppression. In sharp contrast, social distancing must always complement inefficient detection to control the disease. Therefore, the unit cost converges to infinity, like when social distancing alone is used. Since the extinction threshold ι is larger than zero, the total cost of suppression is still bounded when tracing is inefficient. However, since ι is small, the result implies that the total cost of suppression is large in this case. Moreover, the result already foreshadows that when contact tracing is inefficient and ι = 0, strict suppression is not feasible because it is infinitely costly. Appendix B.9 further investigates this case.

Theoretical Extensions

I consider a series of extensions. Typically, the resources for contact tracing available to public health departments are fixed. I consider this case in Appendix B.5; it does not change the key results. Appendix B.6 considers an extension to discounting, the random arrival of a vaccine or cure, and a slow vaccine roll-out. I find that when the discount and arrival rate is low, the qualitative results of the main model do not change. In Appendix B.7, I incorporate the cost of border restrictions. They increase the cost of suppression strategies, but efficient contact tracing alleviates this cost.

Quantitative Application

The calibration exercise in this section illustrates the theoretical findings. I use data from the first wave of the COVID-19 pandemic in Singapore and Italy from February to December 2020; the wild-type of the virus SARS-CoV-2 caused this pandemic. I do not use data from later dates since a vaccine roll-out and the emergence of a mutant of SARS-CoV-2 called alpha-variant change the environment. Note, however, that latter mutants of the disease in a vaccinated population can be treated as a new pandemic. Before enacting control policies, the two countries had initial outbreaks of similar magnitudes. However, their response strategies differed. Singapore used metic-ulous contact tracing to control the disease, while Italy did not. Moreover, Singapore successfully suppressed the virus until most of its population was vaccinated, while Italy did not.

For the quantitative application, I assume the resources available for contact tracing are fixed and constant. They can be interpreted as the resources of the public health departments, which are fixed in the short term. The assumption implies that the detection rate becomes a mechanic function of prevalence γ(I). It is positive, decreasing, and has its maximum γ at zero. Moreover, contrary to above, I assume there is a maximal intensity of social distancing β f eas that is politically feasible: 1.5 2.

β t ≤ β f eas < β and c ′ β (β f eas ) < ∞.
2.5 3.

Prevalence (in %)

Detection rate

(in %)
Note: The solid red line shows the observed detection rate in Italy. The dashed blue line shows the calibrated function γ IE . The x-axis shows prevalence in %. The y-axis shows the detection rate in %.

higher than the uncontrolled growth rate, it gives an example of an efficient detection technology.

I denote it by γ E (.). The observed detection rate in Italy is low and roughly constant. It does not show an increasing pattern like in Singapore. Therefore, I assume it is constant and equal to the maximal observed value of 1.2%. It is lower than g 0 , giving an example of inefficient detection. I denote it by γ IE . As initial conditions, I use the estimated prevalence in Singapore at the outbreak's peak on April 20th, 2020. It is I 0 = 0.2%. Italy had the same prevalence on April 12th, 2020. For the initial level of susceptibility, I use S 0 = 98%, the average in the two countries on these dates.14 

Quantitative Results

As a first scenario, I consider the policymaker using the efficient tracing technology. Figure 4 shows the decrease in prevalence over time, and Figure 5 shows the optimal policy. The solid red line depicts optimal social distancing, while the dashed blue line depicts optimal contact tracing. The rates of the policies are in % and can be interpreted as the additive effect of the policy instrument on the uncontrolled growth. 15 At first, the policymaker imposes the maximally feasible amount of social distancing. As prevalence decreases, the detection rate increases because the average amount of resources for Note: The solid red line shows optimal social distancing over time while the dashed blue line shows optimal contact tracing. The x-axis shows time in months. The y-axis shows the value of the optimal policies in %. It is the additive effect of the policy instrument on the uncontrolled growth rate. detection within a cluster increases. As a consequence, optimal social distancing decreases and converges to zero. The total cost of the policy is 1.01 % of annual GDP; the time to extinction is 2.1 months.

As a second scenario, I consider the policymaker using the inefficient tracing technology. Figure 6 shows the decrease in prevalence over time, and Figure 7 shows the optimal policy. The policymaker simply imposes the maximally feasible amount of social distancing until the virus becomes extinct. It is not optimal to ease restrictions over time because the detection technology cannot take over control. The total cost of the policy is 4.95% of GDP, and the time to extinction is 2.8 months.

Next, I compare the cost of suppression to the cost of mitigation strategies. The cost of any Note: The solid red line shows optimal social distancing over time while the dashed blue line shows optimal contact tracing. The x-axis shows time in months. The y-axis shows the value of the optimal policies in %. It is the additive effect of the policy instrument on the uncontrolled growth rate.

mitigation strategy is at least as high as the health cost of reaching herd immunity, which is 13.1% of yearly GDP. 16 The results suggest that, for both tracing scenarios, suppression is the optimal strategy.

Like other European and North American countries, Italy did not use meticulous contact tracing. One justification for not using this option is the privacy cost imposed on traced infectious and their contacts. Comparing the cost of the two detection scenarios suggests that the opportunity cost of not using efficient tracing is high, which confirms the theoretical result in Section 2.2. To further quantify the opportunity cost, I assume that inefficient tracing has no privacy cost and that the only available options for tracing are the two considered technologies. It follows that not using efficient tracing is optimal if the average privacy costs per traced individual and her contacts are larger than 20 times yearly GDP per capita. That amounts to half the value of a statistical life. I derive these results for the case when traced individuals and their contacts bear the cost of contact tracing. Appendix B.8 discusses the case when, in addition, there are costs that fall on the general society or extend beyond the pandemic period. It increases the cost of contact tracing considerably. Therefore, it is crucial that the policymaker avoids imposing such costs.

Appendix C.2 gives further details of the comparison between the efficient and inefficient tracing scenarios. Moreover, I compare them to scenarios of moderate tracing efficiency and no tracing. Appendix C.4 discusses some simple suboptimal policies in both scenarios. Their costs are between 70 and 145 % higher than the optimum. In Appendix C.5, I compare the optimal policies to those observed in Singapore and Italy. Singapore broadly followed the optimal policy, while Italy did not.

Conclusion

This paper studies the suppression of an infectious disease in the canonical SIR model. It finds that, if technically feasible, suppression is the optimal response to a sufficiently small outbreak. The optimal policy, characterizable by a simple formula of sufficient-statistics, trades off the intensity of costs from health outcomes and control measures against the time they need to be endured. The total cost depends critically on the efficiency of contact tracing.

Policymakers face considerable uncertainty when a new pandemic breaks out. An interesting direction for future research is investigating how the uncertainty in the disease's parameters affects the optimal policy.17 

A Appendix: Proofs A.1 Proof of Proposition 1 Case 1, ι > 0: Denote by C * = ∞ 0 c β (β * t ) + c γ (γ * t )I t + v(β 0 -β * t )S t I t dt the cost of the optimal policy. This cost is larger or equal to the health cost v∆S * = v ∞ 0 (β 0 -β * t )S t I t dt. It follows that 0 ≤ ∆S * ≤ C * v .
Take an ad-hoc policy γt = 0 for all t; and βt = β > β 0 S 0 -γ 0 S 0 for all t such that I t ≥ ι and βt = 0 if I t = 0. Since S t ≤ S 0 , it follows that I t is strictly decreasing: İt < ((β 0 -β)S 0 -γ 0 )ι < 0. Denote the cost of this policy by C. To calculate this cost, change variable from t to I in the Objective (3):

C = ∞ 0 c β ( β) + v(β 0 -β)S t I t dt = ι I 0 c β ( β) + v(β 0 -β)S I I ((β 0 -β)S I -γ 0 )I dI.
The integrand is bounded since the numerator is smaller than c β ( β) + vI 0 S 0 (β 0 -β) and the denominator is smaller than

(β 0 -β -γ 0 )ι < 0. It follows that C goes to zero if I 0 goes to ι.
Because C * ≤ C it follows by the squeeze theorem that ∆S * goes to zero.

Case 2, ι = 0 and γ > g 0 :

Take an ad-hoc policy γ ∈ [g 0 , γ] for all t; and βt = 0 for all t. Since S t ≤ S 0 , it follows that

İt < (β 0 S 0 -γ -γ 0 )I t < 0.
Denote the cost of this policy by C. To calculate this cost, change variable from t to I in the Objective (3):

C = ∞ 0 c γ (γ)I t + vβ 0 S t I t dt = 0 I 0 c γ (γ) + vβ 0 S I β 0 S I -γ -γ 0 dI,
where I cancels. The integrand is bounded since the numerator is smaller than c γ (γ) + vβ 0 and the denominator is smaller than β 0 -γ -γ 0 < 0. It follows that C goes to zero if I 0 goes to 0.

Because C * ≤ C it follows by the squeeze theorem that ∆S * goes to zero. qed.

A.2 Proof of Lemma 1

By contradiction:

Note that Assumption 1 holds, and we consider the exponential model. Denote by

C(I 0 , (β t , γ t ))
the cost of policy (β t , γ t ) with initial condition I 0 . Denote by C * (I 0 ) its minimum, and by (β * t , γ * t ) its minimizer. Suppose there exists an optimal policy such that there exists an interval [t 1 , t 2 ] in which İt ≥ 0. Without loss of generality, assume t 1 = 0. It holds that

C * (I 0 ) = t 2 0 c β (β * t ) + c γ (γ * t )I t + (β 0 -β * t )vI t S 0 dt >0 + C(I t 2 , β * t-t 2 , γ * t-t 2 ) ≥C * (It 2 ) > C * (I t 2 ).
Note that I 0 ≤ I t 2 . Also, note that for a given policy

(β t , γ t ), if I 0 ≤ I ′ 0 , it follows that I t ≤ I ′ t for all t. Therefore, C(I 0 , (β t , γ t )) is monotone in I 0 . Denote by (β * t ′ , γ * t ′
) the optimal policy when the initial number of infectious is

I t 2 . It follows that C * (I t 2 ) = C(I t 2 , (β * t ′ , γ * t ′ )) ≥ C(I 0 , (β * t ′ , γ * t ′ )) ≥ C * (I 0 ),
which gives a contradiction. I t is strictly decreasing, and I t ≥ 0; hence, it converges. Suppose its limit is greater than zero.

It follows that C * = ∞. C * cannot be optimal since, when ι > 0 or γ > g 0 , policies with finite cost exist (see Appendix A.1). qed.

A.3 Proof of Proposition 2

Lemma 2. For all I ∈ [I 0 , ι], a minimum of the integrand in Objective (4) exists. Therefore, a minimum of Objective (4) exists.

PROOF:

Case 1, ι > 0:

For all I ∈ [I 0 , ι], the minimizer of the integrand in Objective (4) lies in the closed set

F = β I , γ I such that β I ≤ β; γ I ≤ γ; β I S 0 + γ I -g 0 ≥ 0 ,
where the last constraint follows from Lemma 1. Since g 0 < βS 0 , this set is not empty. Assume that c ′ β (β I ) = 0 for all β I < 0; make the same assumption for γ I . It follows that the integrand is a continuous function of β I , γ I at the interior of F ; it goes to infinity at the boundaries of F . Take an ad-hoc policy at the interior of F . Construct a closed set F ϵ ⊂ F that keeps a distance ϵ from the boundary of F and contains the ad-hoc policy. Make ϵ small enough such that all policies in F \ F ϵ have a higher value than the ad-hoc policy. F ϵ is a closed set, and the integrand is continuous for all its elements. Therefore, by the extreme value theorem, a minimum of the integrand on this set exists. This minimum is also the minimum on the set F since all policies in F \ F ϵ have a higher value than an ad-hoc policy in F ϵ . It follows that the integrand has a minimum at the interior of F .

Case 2, ι = 0 and γ > g 0 : When I goes to zero, the integrand goes to infinity if β I=0 > 0. It follows that at zero, the minimum of the integrand is in the closed set

F = β I=0 , γ I=0 s.t. β I=0 = 0; g 0 ≥ γ I=0 ≥ γ
Since tracing is efficient, this set is not empty. The integrand goes to infinity at the boundaries of this set. Therefore, by the same argument as in case 1, an interior minimum exists. qed.

Equations ( 5) and ( 6) in Proposition 2 follow from taking the first order conditions of the integrand in Objective (4).

Lemma 3. For all I ∈ [I 0 , ι], the optimal policy β I , γ I minimizing the integrand in Objective ( 4) is unique.

PROOF:

Rewrite Equations ( 5) and ( 6) in Proposition 2 as

c ′ β (β I ) -vIS 0 IS 0 = c β (β I ) + c γ (γ I )I + vIS 0 (β 0 -β I ) (β I S 0 + γ I -g 0 )I (8) c ′ γ (γ I ) = c β (β I ) + c γ (γ I )I + vIS 0 (β 0 -β I ) (β I S 0 + γ I -g 0 )I . ( 9 
)
The right-hand side in both equations is the value of the minimum of the integrand. It exists, is unique, and is greater or equal to zero. The marginal cost functions on the left-hand sides are strictly increasing from a value lower or equal to zero to infinity. Therefore, the equations characterize unique values of β I and γ I . qed.

A.4 Proof of Proposition 3

Point 1:

For better readability, I denote the function β I by β and the derivative dβ I dI by β ′ . I denote the corresponding functions for γ respectively. Take the derivative in Equation ( 8) and use the envelope theorem to get

c ′′ β (β)β ′ S 0 I - c ′ β (β) S 0 I 2 = c γ (γ) + vS 0 (β 0 -β) (βS 0 + γ -g 0 )I - c β (β) + c γ (γ)I + vIS 0 (β 0 -β) (βS 0 + γ -g 0 )I 1 I .
Multiply by I, use Equation ( 8) again to substitute the last term on the right, and cancel equal terms on both sides to get

c ′′ β (β)β ′ S 0 = c γ (γ) + vS 0 (β 0 -β) βS 0 + γ -g 0 + v.
All terms on the right are strictly positive, c ′′ β (β) > 0, and S 0 > 0. Therefore, β ′ > 0. Because I t decreases over time, β t decreases over time.

Take the derivative in Equation ( 9) and use the envelope theorem to get

c ′′ γ (γ)γ ′ = c γ (γ) + vS 0 (β 0 -β) (βS 0 + γ -g 0 )I - c β (β) + c γ (γ)I + vIS 0 (β 0 -β) (βS 0 + γ -g 0 )I 1 I .
Rearrange the terms on the right-hand side to get

c ′′ γ (γ)γ ′ = - c β (β) (βS 0 + γ -g 0 )I 2 .
The right-hand side is strictly negative and c ′′ γ (γ) > 0. Therefore, γ ′ < 0. Because I t decreases over time, γ t increases over time.

Point 2: Note that the function β I and γ I are continuous and monotone in I for all I > 0. Moreover, they are bounded. Therefore, their limit for I → 0 exists. Denote it by β lim and γ lim .

The limit of β I follows by contradiction. Assume β lim > 0 and take the limit of the integrand in Objective (4). Note that β I S 0 + γ I -g 0 is bounded. It follows that for any γ lim 

I→0 c β (β I ) + c γ (γ I )I + (β 0 -β I )vIS 0 (β I S 0 + γ I -g 0 )I = lim I→0 c β (β I ) (β I S 0 + γ I -g 0 )I + c β (β lim ) + c γ (γ lim ) + (β 0 -β lim )vS 0 (β lim S 0 + γ lim -g 0 ) = ∞.
Take an ad-hoc policy β I = 0 and γ I = γ where γ ∈ (g 0 , γ). It follows that for this policy, the limit of the integrand is bounded. Therefore, a policy with limit β lim > 0 cannot be optimal.

Since β lim = 0 and İ < 0 for all I, it holds that γ lim ∈ [g 0 , γ]. Suppose γ lim = γ or γ lim = g 0 .

Again, the limit of the integrand in Objective ( 4) is infinity in these cases, which shows it cannot be optimal. It follows that γ lim ∈ (g 0 , γ). To derive its value, take the limit in Equation ( 9), use l'Hoptial's rule, and β ′ derived above to get that γ lim solves

c ′ γ (γ lim ) = lim I→0 c β (β I ) I lim I→0 1 β I S 0 + γ I -g 0 + lim I→0 c γ (γ I ) + vS 0 (β 0 -β I I) β I S 0 + γ I -g 0 = c γ (γ lim ) + vβ 0 S 0 γ lim -g 0 .
By Equation ( 9), the unit cost of suppression is equal to c ′ γ (γ I ). Since γ ′ < 0 and γ lim < γ, it is bounded and has its maximum at zero.

Point 3:

Since β I S 0 + γ I -g 0 > 0, for all I, it follows that β I > g 0 -γ S 0 > 0. Take I to zero in Equation ( 9). Since β lim ≥ g 0 -γ S 0 > 0, the right hand side converges to infinity. Therefore, c ′ γ (γ I ) converges to infinity, which means γ I converges to γ. Equate the left hand sides of Equations ( 8) and ( 9) and take the limit to get

c ′ (β lim ) S 0 = lim I→0 c ′ γ (γ)I = lim I→0 c ′′ γ (γ)γ ′ -I -2 = c β (β lim ) β lim S 0 + γ -g 0 ,
where step three follows from l'Hopital's rule and step four follows from the value of γ ′ . It fol-

lows that β lim solves c ′ β (β lim )(β lim S 0 + γ -g 0 ) -S 0 c β (β lim ) = 0. The limit β lim > g 0 -γ S 0 since β lim ≤ g 0 -γ S 0 do not solve this equation. Moreover, since β I is increasing β lim < β I < β.
By Equation ( 9), the unit cost of suppression is equal to c ′ γ (γ I ). Since γ ′ < 0 and γ lim = γ, it converges to infinity. I denote β = β(L) and assume that β < β 0 , i.e., it is not possible to fully restrict social contacts.

Without loss of generality, I assume the policymaker controls β t directly. The change in the choice variable is without loss of generality because there is a one-to-one mapping between L t and β t . I call it the intensity of social distancing or simply social distancing.

Denote the cost of restricting a fraction L t of activities by c L (L t ). The function is zero at zero and strictly increasing. The ratio

c ′ L (L) β ′ (L)
gives the marginal cost per marginal transmission impact. Intuitively, it is the effective cost of changing L by an infinitesimal amount δL. It is optimal to restrict activities in such an order that this quotient is strictly increasing. Otherwise, the policymaker could improve welfare by first restricting an activity with a low ratio. Therefore, without loss of generality, index activities such that this property holds. Moreover, assume that

c ′ (0) β ′ (0) = 0 and c ′ (L) β ′ (L) = ∞, i.e.
, the relative marginal cost of restricting the first activity is zero, while it is infinite for the last feasible activity L. The cost of

β t is c β (.) = c L (β -1 (.)). It follows that c ′ β (.
) is the ratio from above, which is strictly increasing from zero to infinity. Therefore, c β (.) is strictly increasing and convex. It is zero at zero since c L (0) = 0 and β(0) = 0.

B.2 The Cost of Tracing

In this section, I derive the properties of the cost of tracing from a production function. Assume the mass of traced and quarantined infectious per unit of time is T t = T (I t , z t ). It is a function of two inputs: the mass of infectious I t and the resources invested in contact tracing z t , i.e., the cost of contact tracing. Assume the function has standard properties of a production function: it is zero when one of the inputs is zero; it is increasing and concave in both arguments reflecting decreasing returns when one input is fixed; the marginal productivity of an input goes to zero when the input goes to infinity. Assume that the technology has constant returns to scale: when the number of infectious and resources double, the number of traced infectious doubles. Intuitively, contact tracing begins with discovering a new cluster through the self-reporting of a symptomatic infected. Next, the policymaker deploys resources to find the unknown infectious linked to the symptomatic case, discovering a stream of infectious. Its value depends on the amount of deployed resources per cluster. When the number of infectious doubles, the number of new clusters doubles.

If the policymaker doubles resources, keeping resources per cluster constant, the number of traced individuals per unit of time doubles. To summarize, the mathematical properties of T (., .) are: It is more convenient to use the fraction of traced infectious γ t = Tt It as the choice variable of the policymaker instead of z t . Exploiting the constant returns to scale of T (., .) it follows that γ t = T 1, zt It . Inverting this function gives the cost of contact tracing as a function of γ t and I t : z t = c γ (γ t )I t , where the function c γ (.) is the inverse of T (1, .). It follows from the properties of T (., .) that c γ (.) is zero at zero, strictly increasing, and convex. Moreover, assuming

T (0, z) = 0, T (I, 0) = 0, ∂T (I,z) ∂I > 0, ∂T (I,z) ∂z > 0, ∂ 2 T (I,z) ∂I 2 < 0, ∂ 2 T (I,z)
lim z→0 ∂T (I,z) ∂z = ∞ renders c ′ γ (0) = 0.
The epidemiological literature (see Ferretti et al., 2020) stresses that, even under an optimal deployment of resources, tracing has a maximal efficiency γ.

It is the case if some transmissions are not traceable fast enough due to technological constraints. I allow for this property and study the impact of the maximal detection efficiency on optimal policy; the unconstrained case where γ = ∞ is a special case of the analysis. To this end, further assume that lim z→∞ T (I, z) = Iγ, which implies that lim γ→γ c ′ γ (γ) = ∞. To see that, note that

lim z→∞ T (I, z) = Iγ implies lim z→∞ T (1, z) = γ. It implies lim γ→γ c γ (γ) = ∞, which implies lim γ→γ c ′ γ (γ) = ∞.
Note that these properties of T (., .) are essential for deriving the paper's results. Appendix B.8 generalizes T (., .) including a fixed cost. I leave a further generalization for future research. 

lim I→0 c γ T I I = lim I→0 c ′ γ T I T = ∞, (10) 
where step one follows from l'Hopital's rule and step 2 follows from the property of c ′ γ (.). The result is very intuitive. When the number of infectious is small, it is very costly to find them. In contrast, the cost of tracing a constant fraction T I = γ of infectious goes to zero as I goes to zero: lim I→0 c γ (γ) I = 0. These two properties are the same as in Alvarez et al. (2021). They assume that the cost of tracing a mass T of agents per day is

T S + I I 1-ξ 2 . ( 11 
)
Consistent with the notation in my paper, I use the letter I to denote the undetected infectious.

Note that ξ ∈ [0, 1]. It follows that

lim I→0 T S + I I 1-ξ 2 = ∞, (12) 
as long as ξ < 1. For ξ = 1 the cost does not go to infinity, i.e., under this specification Alvarez the properties of the optimal policy depend on this parameter. I find that the parameter γ is an important determinant of the properties of the optimal policy and its total cost (see Section 2.2).

B.3 Extinction

This section derives the extinction threshold in a more general model of extinction. 19 Assume that at each point in time, there is a probability that the disease will become extinct. Importantly, it depends on the mass of infectious I. The function µ(I) denotes this probability per unit of time, where µ(.) is decreasing, lim I→0 µ(I) = ∞, and µ(I) converges very quickly to zero for larger I.

The policymaker minimizes min

(βt,γt) ∞ 0 e -µ(It)t c β (β t ) + c γ (γ t )I t + v(β 0 -β t )S t I t dt, (15) 
For simplicity, I assume that the arrival rate of extinction is

µ(I) = ∞ for I ≤ ι, (16) 
µ(I) = 0 for I > ι. ( 17 
)
The parameter ι is the extinction threshold. It follows that the government's objective is

min (βt,γt) ∞ 0 c β (β t ) + c γ (γ t )I t + v(β 0 -β t )S t I t dt, (18) 
subject to the condition in Definition (2) and the law of motion of I t and S t .

19 I thank Miquel Oliu-Barton and Bary Pradelski for suggesting this generalization.

B.4 Relation Between the Exponential and the SIR Model

This section theoretically compares the minimized cost and optimal policy in the exponential and the SIR model. Denote by C and (β t , γ t ) the minimized cost and optimal policy in the exponential model; denote by C * and (β * t , γ * t ) the minimized cost and optimal policy in the SIR model; denote by C(I 0 , (β t , γ t ) the cost of applying the optimal exponential policy to the SIR model. They are functions of I 0 . Denote by (β I , γ I ) and (β (I,S) , γ (I,S) ) the optimal policy functions as a function of the state variables in the exponential and the SIR model. 2. In the limit, the optimal policy functions in the exponential and SIR model are equal:

β ι = β (ι,S 0 ) ; γ ι = γ (ι,S 0 ) .
3. The welfare loss in applying the optimal exponential policy to the SIR model is smaller than the difference in the minimized cost in the two models. The speed of convergence between the costs is of order two:

0 ≤ C(I 0 , (β t (I 0 ), γ t (I 0 ))-C * (I 0 ) ≤ C(I 0 )-C * (I 0 ) = O ((I 0 -ι) 2 ) .
The proof of Lemma 4 is in Appendix B.4.1. The lemma shows that when I 0 is small, the optimum in the exponential model approximates the optimum in the SIR model. The closer I 0 is to the extinction threshold ι, the better the approximation; in the limit, it is exact. Moreover, point 3 shows that the convergence between the two optima is fast.

How accurate is the approximation for a given I 0 > ι? The next lemma presents bounds of the optimum in the SIR model that hold for any I 0 .

Lemma 5.

1. The minimized cost in the exponential model is an upper bound for the cost of applying the optimal exponential policy to the SIR model, which is an upper bound for the minimized cost in the SIR model:

C(I 0 ) ≥ C(I 0 , (β t (I 0 ), γ t (I 0 ))) ≥ C * (I 0 ) ≥ 0 for all I 0 > ι.
2. Denote by C(I 0 ) the minimized cost of an exponential model with S t = const. = S 0 -C(I 0 ) v . This value gives a lower bound for the minimized cost in the SIR model:

C(I 0 ) ≤ C * (I 0 ) for all I 0 > ι.
The proof of Lemma 5 is in Appendix B.4.1. Note that Lemma 5 also holds in the case when the optimal policy is a mitigation strategy. The bounds C and C can be evaluated quantitatively.

If they are close, the optimum in the exponential model approximates the optimum in the SIR model well. Moreover, the bounds can be used to evaluate if a suppression strategy dominates a mitigation strategy. The cost of any mitigation strategy is greater or equal to the health cost to reach herd immunity: v(S 0 -S H ). If C < v(S 0 -S H ), the optimal policy is a suppression strategy.

B.4.1 Proof of Lemma 4 and 5

Denote by C(I 0 , (β t , γ t )) the cost of policy (β t , γ t ) in the exponential model where S t = const. = S 0 ; denote by C(I 0 , (β t , γ t )) the cost in the SIR model.

For any (β t , γ t ) it holds that

C(I 0 , (β t , γ t )) ≥ C(I 0 , (β t , γ t )). ( 19 
)
To prove the inequality, note that S 0 ≥ S t for all t ≥ 0. Therefore, ((

β 0 -β t )S 0 -γ 0 -γ t ) ≥ ((β 0 -β t )S t -γ 0 -γ t ).
Denote by I t and I t prevalence in the exponential and the SIR model. It follows that

I t = I 0 e t 0 ((β 0 -β t)S 0 -γ 0 -γ t)d t ≥ I 0 e t 0 ((β 0 -β t)S t-γ 0 -γ t)d t = I t . (20) 
Since Objective (3) is monotone in S t and I t , the inequality above follows.

For a given (β t , γ t ) denote S ∞ = lim t→∞ S t the limit of susceptible in the SIR model. Assume that S t = S ∞ = const instead of S t = S 0 , which gives an alternative exponential model. All

properties of the exponential model remain the same. Denote the cost of a policy (β t , γ t ) in this model as C(I 0 , S ∞ , (β t , γ t )). I explicitly include the dependence on S ∞ , which will be useful later.

It follows that for any (β t , γ t ),

C(I 0 , S ∞ , (β t , γ t )) ≤ C(I 0 , (β t , γ t )). (21) 
To prove the inequality, note that S ∞ ≤ S t . Therefore, ((

β 0 -β t )S ∞ -γ 0 -γ t ) ≤ ((β 0 -β t )S t - γ 0 -γ t ).
Denote by I t and I t prevalence in the exponential and the SIR model. It follows that

I t = I 0 e t 0 ((β 0 -β t)S∞-γ 0 -γ t)d t ≤ I 0 e t 0 ((β 0 -β t)S t-γ 0 -γ t)d t = I t . (22) 
Since Objective (3) is monotone in S t and I t , the inequality above follows.

Denote by β t , γ t the policies minimizing C. Respectively, use β * t , γ * t , γ t , and β t for C and C. Denote by S * ∞ the limit of susceptible in the SIR model under the optimal policy. It follows from the derived inequalities and optimality that

C(I 0 , (β t , γ t )) ≥ C(I 0 , (β t , γ t )) ≥ C(I 0 , (β * t , γ t * )) ≥ C(I 0 , S * ∞ , (β * t , γ * t )) ≥ C(I 0 , S * ∞ , (β t , γ t )) ≥ 0. ( 23 
)
Point 1 of Lemma 5 follows directly from Inequality (23). Moreover, note that C * ≥ ∆S * v since the total cost in the optimum must be at least as large as the health cost. This inequality together with Inequality (23

) shows that S * ∞ ≥ S 0 -C v .
Next, note that it is possible to derive Inequality (23) for all S < S * ∞ instead of S * ∞ . To see that, simply use S instead of S ∞ in the derivation of Inequality (21). Therefore,

C(I 0 , (β * t , γ t * )) > C(I 0 , S 0 -C v , (β t , γ t ))
, which shows point 2 of Lemma 5.

Next, take the limit of I 0 to ι in Inequality (23). It follows from Objective (4) and Proposition 2 that lim I 0 →ι C(I 0 , (β t , γ t )) = 0. By the squeeze theorem lim

I 0 →ι C(I 0 , (β t , γ t )) = lim I 0 →ι C(I 0 , (β t , γ t )) = lim I 0 →ι C(I 0 , (β * t , γ t * )), (24) 
which proves the first point in Lemma 4.

In the next step, dividing Inequality ( 23) by I 0 -ι and taking the limit yields lim

I 0 →ι C(I 0 , (β t , γ t )) I 0 -ι ≥ lim I 0 →ι C(I 0 , (β * t , γ * t )) I 0 -ι ≥ lim I 0 →ι C(I 0 , S * ∞ , (β t , γ t )) I 0 -ι . ( 25 
)
Use Equation ( 8) in Objective (4) and l'Hopital's rule to show that the limit of C(I 0 ,(βt,γt))

I 0 -ι is lim I 0 →ι C(I 0 , (β t , γ t )) I 0 -ι = lim I 0 →ι I 0 ι c β (β I )+cγ (γ I )I+(β 0 -β I )vIS 0 (β I S 0 +γ I -g 0 )I dI I 0 -ι = (26) lim I 0 →ι c β (β I 0 ) + c γ (γ I 0 )I 0 + (β 0 -β I 0 )vI 0 S 0 (β I 0 S 0 + γ I 0 -g 0 )I 0 + (27) lim I 0 →ι I 0 ι ∂ ∂I 0 c β (β I ) + c γ (γ I )I + (β 0 -β I )vIS 0 (β I S 0 + γ I -g 0 )I dI =0 (28) = c β (β ι ) + c γ (γ ι )ι + (β 0 -β ι )vιS 0 (β ι S 0 + γ ι -g 0 )ι = c ′ β (β ι ) -vιS 0 ιS 0 , (29) 
where β ι and γ ι are the solution of Equation ( 5) and ( 6) at ι and S 0 .

The next part of the proof derives the limit of C(I 0 ,S * ∞ ,(βt,γt)) I 0 -ι using the mean value theorem:

lim I 0 →ι C(I 0 , S * ∞ , (β t , γ t )) I 0 -ι = lim I 0 →ι I 0 ι c β (β I )+cγ (γ I )I+(β 0 -β I )vIS * ∞ (β I S * ∞ +γ I -β 0 S * ∞ +γ 0 )I dI I 0 -ι = (30) 
lim

I 0 →ι (I 0 -ι) (I 0 -ι) c β (β Î + c γ (γ Î ) Î + (β 0 -β Î )v ÎS * ∞ (β Î S * ∞ + γ Î -β 0 S * ∞ + γ 0 ) Î (31) = c β (β ι ) + c γ (γ ι )ι + (β 0 -β ι )vιS 0 (β ι S 0 + γ ι -g 0 )ι = c ′ β (β ι ) -vιS 0 ιS 0 . (32) 
Step 1 follows by changing variable from t to I.

Step 2 follows from the mean value theorem. It applies because it follows from Proposition 2 that β I and γ I are continuous functions of I; hence, the integrand is continuous in I. Therefore, for any I 0 , there exists a Î ∈ [ι, I 0 ] such that the step follows.

Step 3 cancels the first quotient and takes the limit in the second quotient. The step exploits several properties to take the limit: by Proposition 1, lim I 0 →ι S * ∞ = S 0 ; lim I 0 →ι Î = ι; it follows from Proposition 2 that β I and γ I are implicit continuous functions of S * ∞ and I.

Step 4 follows from Proposition 2. Note that β ι and γ ι are again the solution of Equation ( 5) and ( 6) at ι and S 0 . Therefore, Expression ( 29) and (32) are equal.

It follows from Equation ( 29) and (32) and the squeeze theorem that lim 

I 0 →ι C(I 0 , (β t , γ t )) I 0 -ι = lim I 0 →ι C(I 0 , (β * t , γ * t )) I 0 -ι = lim I 0 →ι C(I 0 , S * ∞ , (β t , γ t )) I 0 -ι . ( 33 
C(I 0 ,(β * t ,γ * t )) I 0 -ι
. Moreover, the co-state C S (ι, S) = 0 because ι = I t at the boundary of the problem and S is a free state variable. 20 Evaluating the first order conditions at (ι, S 0 ) renders point 2 of Lemma 4.

From Equation ( 23) it follows that

C(I 0 ) -C(I 0 ) ≥ C(I 0 ) -C * (I 0 ) ≥ C(I 0 , (β t , γ t )) -C * (I 0 ) ≥ 0. (38) 
Moreover, Equation ( 24) and (33) show that C(ι) = C(ι) and C ′ (ι) = C ′ (ι). Use the Taylor-Theorem for C(I 0 ) and C(I 0 ) around ι to show that

C(I 0 ) -C(I 0 ) = 1 2 C ′′ (ι) -C ′′ (ι) + R( Ĩ) -R( Ĩ) (I 0 -ι) 2 , (39) 
where Ĩ ∈ [ι, I 0 ] and R( Ĩ), R( Ĩ) are the rest terms. Combing the two equations and taking the limit renders point 3 in Lemma 4. qed.

B.5 Constant Resources for Contact Tracing

This section considers a version of the model with fixed resources for contact tracing. They can be interpreted as the resources of the public health departments, which are fixed in the short term.

This version of the model is useful for the quantitative application and some theoretical extensions.

Note that I assume that ι > 0 or γ > g 0 . Moreover, I assume I 0 is small.

Assumption 2. Assume the resources available for contact tracing are fixed and constant: c γ (γ t )I t = z 0 = const.

The assumption implies that the detection rate becomes a mechanic function of prevalence

γ(I t ) = c -1 γ z 0
It . It is positive and decreasing. Its maximum γ is at zero, which reflects that at low prevalence, the resources for detection in each cluster are at their maximum.

Moreover, for the quantitative section, I slightly change the assumptions on feasible social distancing measures. I assume there is a maximal politically feasible intensity of social distancing:

β t ≤ β f eas < β with c ′ (β f eas ) < ∞.
The problem of the policymaker is

min (βt) ∞ 0 c β (β t ) + v(β 0 -β t )S t I t dt (40) 
such that

β t ≤ β f eas , (41) 
Ṡt = -(β 0 -β t )S t I t , (42) 
İt = (g 0 -β t S t -γ(I t ))I t , (43) 
I t = 0 for all t ≥ T , if I T = ι. (44) 

B.5.1 Results

The results only change slightly. While the results of Proposition 1 and Lemma 1 do not change, the proofs change slightly and are in Section B.5.2. Proposition 2 changes slightly to Proposition 4. Under Assumption 1, a unique minimum exists and solves

c ′ β (β I ) -vIS 0 c β (β I ) + vIS 0 (β 0 -β I ) = S 0 β I S 0 + γ(I) -g 0 if β I < β f eas , (45) 
β I = β f eas otherwise . ( 46 
)
The proof follows the same steps as the proof of Proposition 2 in Appendix A.3.

As in Section 2, I call a detection technology efficient if g 0 < γ and inefficient if g 0 > γ.

Proposition 3 changes slightly to Proposition 5. Under Assumption 1:

1. Optimal social distancing weakly decreases over time. The detection rate increases and converges to γ as I converges to zero.

2. If tracing is efficient, optimal social distancing converges to zero, and the unit cost of suppression is bounded for all I.

3. If tracing is inefficient, optimal social distancing converges to a value β lim > g 0 -γ S 0 . The unit cost of suppression converges to infinity.

The proof changes slightly compared to the proof of Proposition 3 and is in Section B.5.3. Lemma 4 and Lemma 5 do not change. However, their proof changes slightly and is in Section B.5.4.

B.5.2 Proof of Proposition 1 and Lemma 1

The proof for Case 1 (ι > 0) does not change. For Case 2, since γ > g 0 , it follows that there exists an Î such that for all I < Î, γ(I) > g 0 . Use the ad-hoc policy β I = β > g 0 for I > Î/2 and β I = 0 for I ≤ Î/2 in the proof for Case 2. In the proof of Lemma 1, the ad-hoc policy shows that there exists a policy with finite cost. qed.

B.5.3 Proof of Proposition 5

Point 1: By Lemma 1, I t is decreasing and converges to zero. Since γ(.) is decreasing and γ(0) = γ, γ(I t ) is increasing over time and converges to γ.

For better readability, I denote the function β I by β and the derivative dβ I dI by β ′ . When β = β f eas , β ′ = 0. For the interior solution, rewrite the first order condition as

c ′ β (β) -vIS 0 S 0 I = c β (β) + vIS 0 (β 0 -β) (βS 0 + γ(I) -g 0 )I , (47) 
and note that the right-hand side is the minimum of the integrand in the objective. Take the derivative with respect to I and use the envelope theorem to get

c ′′ β (β)β ′ S 0 I - c ′ β (β) S 0 I 2 = vS 0 (β 0 -β) (βS 0 + γ(I) -g 0 )I - c β (β) + vIS 0 (β 0 -β) (βS 0 + γ(I) -g 0 ) 2 I 2 (βS 0 + γ(I) -g 0 ) + γ ′ (I)I . ( 48 
)
Multiply by I, use Equation ( 47) again to substitute for the second term on the left, and cancel equal terms on both sides to get

c ′′ β (β)β ′ S 0 = vS 0 (β 0 -β) βS 0 + γ(I) -g 0 + v -γ ′ (I)I 2 c β (β) + vIS 0 (β 0 -β) (βS 0 + γ(I) -g 0 ) 2 I 2 . ( 49 
)
All terms on the right are positive because γ ′ (.) ≤ 0. Therefore, β ′ ≥ 0. Because I t decreases over time, β t decreases over time.

Point 2:

Note that the function β I is continuous and monotone in I for all I > 0. Moreover, it is bounded.

Therefore, its limit for I → 0 exists. Denote it by β lim .

The limit of β I follows by contradiction. Assume β lim > 0 and take the limit of the integrand.

Note that β I S 0 + γ(I) -g 0 is bounded. It follows that

lim I→0 c β (β I ) + (β 0 -β I )vIS 0 (β I S 0 + γ(I) -g 0 )I = ∞. (50) 
Since γ > g 0 , it follows that there exist an Î such that for all I < Î, γ(I) > g 0 . Take an ad-hoc policy β I = β > g 0 for I > Î/2 and β I = 0 for I ≤ Î/2. It follows that for this policy, the limit of the integrand is bounded. Therefore, a policy with a limit β lim > 0 cannot be optimal. The integrand is equal to the unit cost of suppression. Since it is bounded for an ad-hoc policy, it must be bounded for the optimal policy.

Point 3:

Since β I S 0 + γ(I) -g 0 > 0, for all I, it follows that β I > g 0 -γ S 0 > 0. Take I to zero to follow that β lim ≥ g 0 -γ S 0 > 0. Therefore, the unit cost of suppression goes to infinity:

lim I→0 c β (β I ) + (β 0 -β I )vIS 0 (β I S 0 + γ(I) -g 0 )I = ∞. (51) 
Take the limit in the first order condition to get that c ′ β (β lim )(β lim S 0 + γ -g 0 ) -S 0 c β (β lim ) = 0. The limit β lim > g 0 -γ S 0 since β lim ≤ g 0 -γ S 0 do not solve this equation. Moreover, since β I is increasing β lim ≤ β I ≤ β. qed.

B.5.4 Proof of Lemma 4 and 5 when Resources for Contact Tracing are Constant

The proof follows the same steps as the proof in Appendix B.4.1. It only differs in the proof of inequalities ( 20) and ( 22).

Denote by İt = S 0 β 0 -S 0 β t -γ 0 -γ(I t ) I t , the dynamics of prevalence in the exponential model. Denote by İt = (S t β 0 -S t β t -γ 0 -γ(I t )) I t , the dynamics of prevalence in the SIR model. It follows that I t ≥ I t for all t ≥ 0.

(52)

Proof by contradiction:

Suppose there exists a t such that I t > I t . Because I t and I t are continuous and I 0 = I 0 , there exists a τ ≥ 0 such that I τ = I τ . Moreover, there exists a τ 2 > τ such that for all ϵ ∈ (0, τ 2 -τ ) it holds that I τ +ϵ > I τ +ϵ . It follows that

lim ϵ→0 log I τ +ϵ -log I τ +ϵ 1 2 ϵ 2 ≥ 0. ( 53 
)
Use l'Hopital's rule to derive that

lim ϵ→0 log I τ +ϵ -log I τ +ϵ 1 2 ϵ 2 = (54) lim ϵ→0 S τ +ϵ -S 0 ϵ lim ϵ→0 (β 0 -β τ +ϵ ) -lim ϵ→0 γ(I τ +ϵ ) -γ(I τ +ϵ ) ϵ = (β 0 -β τ ) Ṡτ + (-1)γ ′ (I τ )I τ (β 0 -β τ )(S τ -S 0 ) < 0, (55) 
which gives a contradiction. The last inequality follows since β 0 -β τ > 0, Ṡτ < 0, (-1)γ(I τ ) > 0, I τ > 0, and (S τ -S 0 ) ≤ 0.

Denote by İt = S ∞ β 0 -S ∞ β t -γ 0 -γ(I t ) I t , the dynamics of prevalence in the exponential model with S t = S ∞ = const. It follows that

I t ≤ I t for all t ≥ 0. (56) 
Proof by contradiction:

Suppose there exists a t such that I t < I t . Because I t and I t are continuous and I 0 = I 0 , there exists a τ ≥ 0 such that I τ = I τ . Moreover, there exists a τ 2 > τ such that for all ϵ ∈ (0, τ 2 -τ ) it holds that I τ +ϵ < I τ +ϵ . It follows that

lim ϵ→0 log I τ +ϵ -log I τ +ϵ ϵ ≤ 0. ( 57 
)
Use l'Hopital's rule to derive that

lim ϵ→0 log I τ +ϵ -log I τ +ϵ ϵ = (58) lim ϵ→0 (S τ +ϵ -S ∞ )(β 0 -β τ +ϵ ) -lim ϵ→0 γ(I τ +ϵ ) + lim ϵ→0 γ(I τ +ϵ ) = (β 0 -β τ )(S τ -S ∞ ) > 0.,
which gives a contradiction. The last inequality follows since β 0 -β τ > 0 and S τ -S ∞ > 0.

qed.

B.6 Discounting, Vaccine, and Cure

Suppose the planner discounts the future at a positive time-discount rate. Additionally, a vaccine or cure that immediately ends the pandemic arrives stochastically at a positive and constant Poisson rate. Together, the two phenomena give rise to a total discount factor of i. For simplicity, I assume the resources for contact tracing are fixed and constant, like in Section B.5. Note that ι > 0 or γ > g 0 . The planner's problem is:

min (βt) ∞ 0 e -it c β (β t ) + v(β 0 -β t )S 0 I t dt, (59) 
such that,

İt = -(β t S 0 + γ(I t ) -g 0 )I t . (60) 
Moreover, the model can also be interpreted as a model of a slow vaccine roll-out. To this end, assume the roll-out of the vaccine reduces the cost of social distancing and the health cost deter-

ministically by e -it over time.

Consider solutions which converge to ι and İt < 0 for all t. Change variable from t to I. Note that

t(I) = I I 0 1 İ( Ĩ) d Ĩ. ( 61 
)
It follows that the planner solves

min β I ι I 0 e -i I I 0 1 İ( Ĩ) d Ĩ c β (β I ) + v(β 0 -β I )S 0 I İ(I) dI. ( 62 
)
Proposition 6. 1. For every I, the solution β I of Problem (62) fulfills

c ′ β (β I ) -vS 0 I c β (β I ) + vIS 0 (β 0 -β I ) + + iS 0 (c β (β I ) + vIS 0 (β 0 -β I ))(-g(β I , I)) C(I) = S 0 -g(β I , I) , ( 63 
)
where C(I) denotes the value function and g(β I , I) the growth rate.

2. The optimal policy for discount rate i, denote it by β I (i), is smaller than the optimal policy for discount rate i = 0, denoted by β I (0) (policy β I (0) is characterized in Proposition 4).

3. For i close to zero or I 0 close to ι, the optimal policy for discount rate i, β I (i), is close to the optimal policy for discount rate i = 0, β I (0). In the limit when i = 0 or I = ι the policies are equal.

4. For i close to zero or I 0 close to ι the solution β I of Problem (62) exists.

5. There exist parameters i, γ(.), and I 0 , such that Problem (59) has local minima where preva-lence converges to a constant steady-state level I ss : lim t→∞ I t = I ss ̸ = ι.

6. For i close to zero or I 0 close to ι, the solution β I of Problem ( 62), converging to ι, is a global minimum of Problem (59).

The proposition shows that for small enough discount rates, the qualitative results in Proposition 4 and 5 do not change. This is the relevant case. Typically, a pandemic moves fast such that the relevant time discount rate is the daily or weekly rate. This rate is very low. Similarly, the daily or weekly probability of an effective cure or mass vaccine arrival is typically low. Point 2 shows that quantitatively, social distancing is less intense under discounting. This result is intuitive. Under discounting, costs can be reduced to some extent by deferring them into the future. To this end, suppression needs to progress slower, so β is smaller. The effect is driven by the second summand on the left in Condition (63).

Point 5 shows that the suppression solution may not be the only local minimum of the problem.

It may not even exist for some I 0 , γ(I), and i. One or several other local minima exist where prevalence converges to some steady-state value I ss . In this case, the question of which local minimum is the global minimum is a quantitative question. In some cases, the global minimum is a path that converges to a steady-state level of prevalence. This second solution is a mitigation strategy.

However, a steady-state level of prevalence is at odds with the initial assumption that the number of susceptible is approximately constant. Consequently, mitigation needs to be studied in the SIR model, which has already been done in the literature. Therefore, it is beyond the scope of this paper.

PROOF of Proposition 6:

Point 1:

Take the derivative of ( 62) with respect to each β I :

(c ′ β (β I ) -vS 0 I) 1 İ(I) + c β (β I ) + vIS 0 (β 0 -β I ) 1 İ(I) 2 IS 0 e -i I I 0 1 İ( Ĩ) d Ĩ + + ι I e -i Ĩ I 0 1 İ( Ĩ) d Ĩ - 1 İ(I) 2 IS 0 i c β (β I ) + vIS 0 (β 0 -β I ) İ( Ĩ) d Ĩ = 0. ( 64 
)
The FOC simplifies to

(c ′ β (β I ) -vS 0 I) 1 -İ(I) -c β (β I ) + vIS 0 (β 0 -β I ) IS 0 İ(I) 2 + iIS 0 İ(I) 2 C(I) = 0, (65) 
where C(I) is the value function.

To show that it is a local minimum, consider the SOC. Rearrange the FOC to

S 0 (β I S 0 + γ(I) -g 0 ) 2 I -c β (β I ) -vIS 0 (β 0 -β I ) + iC(I) + 1 S 0 (c ′ β (β I ) -vIS 0 ) β I S 0 + γ(I) -g 0 (66)
Take the derivative to get the second order condition. Note that it is equal to a ′ b + ab ′ where a is the first factor above, and b is the second factor. If the FOC holds, b is zero. Also, a is positive.

The sign of the SOC only depends on the sign of b

′ . b ′ = c ′′ β (β I ) 1 S 0 (β I S 0 + γ(I) -g 0 ), because dC(I)
dβ I = 0. b ′ > 0, therefore, the SOC>0 and the FOC characterizes a local minimum.

Rewrite the FOC to get

c ′ β (β I ) -vS 0 I c β (β I ) + vIS 0 (β 0 -β I ) + iS 0 (c β (β I ) + vIS 0 (β 0 -β I ))(-g(β I , I)) C(I) = S 0 -g(β I , I) ,
which is the condition in the proposition.

Point 2:

Rewrite the FOC to

1 S 0 (c ′ β (β I ) -vS 0 I) β I S 0 + γ(I) -g 0 -(c β (β I ) + vIS 0 (β 0 -β I )) = -iC(I). ( 67 
)
The right-hand side is negative. For i = 0, the left-hand side is equal to zero. The left-hand side is increasing in β (see the SOC in Point 1 above). Therefore, β I (i) < β I (0). It follows since, for smaller I, the system converges to 0. Moreover, C ss (i) > vS 0 (β 0 -β)Iss i ; the value C ss is at least as large as the implied health costs. Therefore, it goes to infinity as i goes to zero. Take i small enough such that C ι (i) exists and C ss (i) > C ι (i). It follows that the saddle path to ι is the global minimum.

qed.

B.7 Border Controls and Infections from Abroad

The model in Section 1 considers a closed economy in which the disease cannot reemerge once it is eradicated. For example, it is a model of global suppression. Global eradication of a disease is hard to achieve because coordination among independent countries is difficult. Suppose the policymaker of a country suppresses the disease, but other countries do not. In that case, she needs to protect her population from a reintroduction of the disease until an effective vaccine or cure arrives.

One way to avoid the disease's reintroduction is to control travellers that arrive from countries where the disease is prevalent, i.e., mandatory tests and quarantines upon arrival. While Section 1 neglects the cost of such border controls, I explicitly consider them in this section. Suppose the policymaker can implement such border controls at a cost c B per unit of time. Moreover, assume that at time t V , an effective vaccine arrives and ends the pandemic immediately. Assume that the arrival of the vaccine is not in the immediate future. The policymaker can prevent the reintroduction of the disease by imposing border controls from the discovery of the outbreak until the vaccine arrives. Such a policy increases the cost of suppression by c B t V . Therefore, an upper bound for the cost of a suppression policy is c B t V + C(I 0 ), which follows from Lemma 5. 21 The optimal policy is a suppression policy if

(S 0 -S H )v > c B t V + C(I 0 ), (76) 
where the left-hand side is a lower bound for the cost of mitigation strategies (see the discussion in Section B.4 for its derivation). It follows that the welfare cost of a suppression strategy depends on the cost of border controls c B .

The cost of the border controls c B depends on how many countries follow a suppression strategy. Countries that follow a suppression strategy can allow free cross-border movements between their territories, i.e., travel bubbles. They only need to restrict movements from outside the bubble.

Hence, controls create a strong coordination motive. Countries or territories with large unrestricted cross-border movements have a strong incentive to suppress the disease as a group and only control their external borders. Large closed economies have a lower cost of following a suppression strategy since, relative to their population, they have lower cross-border movements and, hence, lower costs for restricting them. The same is true for isolated countries such as islands. The behaviour of countries during the COVID-19 pandemic confirms this result. The countries that opted for elimination are mainly islands (e.g., Taiwan, Singapore, and New Zealand), isolated countries (e.g. South Korea), or large closed economies (e.g., China). 22 Large closed economies with limited central governance, such as the EU, the US, and India, did not manage to coordinate on a suppression strategy. The result suggests that coordinated central governance has considerable benefits for disease control.

This paragraph shows that efficient contact tracing alleviates part of the cost of border controls.

Suppose the policymaker can implement mild border controls that cannot prevent the reintroduction of the disease but limit the inflow of new infections to a low level I b per unit of time. Assume Consider the case where the policymaker does not use further control measures, such as strict border controls or social distancing, after suppressing the disease. It follows that prevalence in the medium run I m is constant and fulfils:

g 0 + I b I m = γ(I m ), (77) 
which follows from Equation 2. The equation has a solution if I b is small. Moreover, I m is small if I b is small. Consequently, Ṡ is small, and S is approximately constant. In addition, health costs are small. The arrival of the vaccine at t V ends the regime. It follows that the policymaker does not need to use further control measures to avoid a new outbreak after suppression. Efficient contact tracing controls a small inflow of cases from abroad until the vaccine arrives.

B.8 Fixed Costs of Contact Tracing

The model in Section 1 considers the case when contact tracing has only variable costs. This section discusses the case when contact tracing has a fixed cost.

Suppose the contact tracing technology has a fixed flow-cost of c F per unit of time. The policymaker uses contact tracing until a vaccine at time t V arrives. This problem is similar to the one with a fixed cost of border controls treated in Section B.7. Therefore, the analysis follows the same steps as above. Again, it follows that an upper bound for the cost of a suppression policy is

c F t V + C(I 0 )
and the optimal policy is a suppression policy if

(S 0 -S H )v > c F t V + C(I 0 ). ( 78 
)
This fixed cost includes the physical fixed costs of running the contact tracing technology.

Moreover, it may include the cost of a privacy loss that falls on the general population. For instance, this is the case when there is a risk that the government uses contact data for purposes that do not benefit citizens (e.g., political repression). If these privacy costs are high, c F t V is high. Therefore, they substantially increase the cost of suppression strategies using contact tracing. Furthermore, the government may continue to misuse sensitive contact data even after a vaccine arrives. In this case, the fixed cost accrues for an infinite amount of time. Consequently, the cost of suppression policies using contact tracing is infinitely high. These results underline the importance of using contact data solely for the benefit of the population. In particular, they highlight the importance of a legal framework that prevents misuse.

In contrast to the cost of contact tracing, the cost of random testing does not scale in the number of infectious.

Lemma 7. If γ = 0 and ι = 0, suppression strategies are not feasible, i.e., they are infinitely costly.

Therefore, the optimal policy is a mitigation strategy.

The proof is in Section B.9.6. Note that the result also applies when random testing is not available. The intuition for Lemma 7 is similar as for Lemma 6. Halting the disease above the herd immunity threshold necessitates permanent control. However, the cost of social distancing and random testing does not depend on prevalence making permanent control infinitely costly.

Therefore, suppression cannot be optimal because mitigation strategies with a finite cost exist, e.g., a policy with no interventions.

B.9.3 Suppression and Mitigation as the Optimal Policy in the Related Literature

The results in the lemmas above clarify why the literature finds that suppression is the optimal policy under some conditions and mitigation is the optimal policy under other conditions. Whether the optimal policy is a mitigation or suppression strategy is an important qualitative difference. In one case, the policymaker builds up herd immunity in the population; in the other case, she eradicates the disease before the population reaches herd immunity. Lemma 7 explains why mitigation emerges as the optimal policy in models that do not include the possibility of extinction or efficient tracing. For example, in the main specification of Alvarez et al. ( 2021), ι = 0, and the policymaker does not have access to efficient contact tracing. They use a small I 0 as the initial condition and find that mitigation is the optimal policy. Their finding is the same when they consider random testing. Proposition 1 shows that these results are not robust to introducing the possibility of extinction or efficient contact tracing. Indeed, Alvarez et al. ( 2021) find that suppression is optimal when they consider efficient tracing.

B.9.4 Mitigation and the Arrival of a Vaccine

The interpretation of the results in Lemma 6 and 7 changes when the arrival probability of a vaccine is sufficiently high. Denote by i the Poisson rate of vaccine arrival.

Lemma 8. The expected optimal build-up in immunity converges to zero when the arrival rate of the vaccine converges to infinity:

lim i→∞ E [∆S * ] = 0.
PROOF:

lim i→∞ E [∆S * ] = lim i→∞ ∞ 0 e -it (β 0 -β t )I t S t dt ≤ lim i→∞ ∞ 0 e -it β 0 S 0 dt = 0. (83) qed. 
The lemma shows that when the arrival probability is high, the expected build-up in immunity is low because the vaccine suppresses the disease in expectation. See Piguillem and Shi (2022) for a detailed exploration of this effect in a quantitative model. Further theoretical characterization of the optimal policy, in this case, is an interesting direction for future research.

B.9.5 Proof of Lemma 6

Take a strict suppression strategy. It follows that their exists a I ′ 0 such that for all I 0 < I ′ 0 it holds that β 0 (S 0 -∆S) -γ 0 -γ > 0. For all such I 0 and the respective policy, the total cost C(I 0 , (β t , γ t )) > C(I 0 , S 0 -∆S, (β t , γ t )) > C(I 0 , S 0 -∆S, (β t , γ t )), where C(I 0 , S 0 -∆S, (β t , γ t )) denotes the total cost of the policy in the exponential model with S t = S 0 -∆S = const. and (β t , γ t ) denotes the optimal policy in this model. See Section B.4.1 for the detailed exposition of this argument. It follows that these policies have an infinite cost:

C(I 0 , S 0 -∆S, (β t , γ t )) = I 0 0 c β (β I ) + c γ (γ I )I + vI(S 0 -∆S)(β 0 -β I ) ((β 0 -β I )(S 0 -∆S) -γ 0 -γ I )I dI = = I 0 0 c ′ β (β I ) -vI(S 0 -∆S) (S 0 -∆S)I dI > c ′ β (β lim ) (S 0 -∆S) I 0 0 1 I dI -vI 0 = ∞. (84) 
Step one follows by changing variable from t to I; step two uses Equation (8); step three uses that β I is increasing; step four uses that lim I→0 β I = β lim > 0. Strict suppression cannot be optimal since policies with a finite cost exist. For example, a no-intervention policy β t = γ t = 0 for all t has a finite cost smaller than S 0 × v, which is the cost of infecting all susceptible. qed.

B.9.6 Proof of Lemma 7

Consider a suppression strategy, i.e., a policy (β t , ρ t ) such that S ∞ > S H . By the proof of Lemma 5, the total cost

C(I 0 , (β t , ρ t )) > C(I 0 , S ∞ , (β t , ρ t )) > C(I 0 , S ∞ , (β t , ρ t )), where C(I 0 , S ∞ , (β t , ρ t ))
denotes the total cost of the policy in the exponential model with S t = S ∞ = const. and (β t , ρ t )

denotes the optimal policy in this model. The fact that there is random testing does not change the solution of the exponential model and its properties. 23 It follows that suppression strategies have an infinite cost:

C(I 0 , S ∞ , (β t , ρ t )) = I 0 0 c β (β I ) + c ρ (ρ I ) + vIS ∞ (β 0 -β I ) (β I S ∞ + ρ I -(β 0 S ∞ -γ 0 ))I dI = = I 0 0 c ′ β (β I ) -vIS ∞ S ∞ I dI > c ′ β (β lim ) S ∞ I 0 0 1 I dI -vI 0 = ∞. (86) 
Step one follows by changing variable from t to I; step two uses Equation (8); step three uses that β I is increasing; step four uses that lim I→0 β I = β lim > 0. Suppression cannot be optimal since mitigation policies with a finite cost exist. For example, a no-intervention policy β t = ρ t = 0 for all t has a finite cost smaller than S 0 × v, which is the cost of infecting all susceptible.

qed.

B.10 The Theoretical Properties of Suboptimal Policies

One might raise the concern that when I 0 ≈ ι, it does not matter how the policymaker suppresses the disease since, intuitively, the welfare costs of the pandemic are close to zero in this case. This section presents four counterexamples of this concern. In stark contrast to the optimal policy, there exist suppression policies with a total cost that does not vanish as I 0 converges to ι. There even exist strict suppression policies that are infinitely costly. Note that I assume ι > 0 or γ > g 0 throughout this section.

The first counterexample is a policy ( βI , γI ) such that S∞ = S H + I 0 -ι. Note that the policy is a suppression policy. The cost of such a policy is at least as high as the implied health cost:

C ≥ v((S 0 -S H ) -(I 0 -ι)).
Intuitively, this policy suppresses the disease but has a large health cost because the system lands very close to the herd immunity threshold. In the limit

lim I 0 →ι C ≥ v(S 0 -S H ) > 0.
In stark contrast, the cost of the optimal policy C * (I 0 ) is zero in the limit: lim I 0 →ι C * (I 0 ) = 0 (see Equation ( 24) in Section B.4.1). This policy is an example of too-slow suppression. The policymaker could increase welfare by imposing stricter measures, which eradicate the disease faster. 23 The optimality condition for random testing is

c ′ ρ (ρ I ) c β (β I ) + c ρ (ρ I ) + vIS ∞ (β 0 -β I ) = 1 β I S ∞ + ρ I -g . (85) 
More generally, a large class of policies has the same undesirable property as the first counterexample. As a second counterexample, consider any weak suppression strategy. Remember, these are policies that imply lim I 0 →ι ∆ S(I 0 ) > 0, where ∆ S(I 0 ) denotes the change in susceptible implied by the policy. Denote by C the cost of the policy and by C * the cost of the optimal policy.

It follows that relative to the optimal policy, such policies are infinitely costly in the limit:

lim I 0 →ι C(I 0 ) C * (I 0 ) = ∞. (87) 
It follows since lim I 0 →ι C * (I 0 ) = 0, while lim I 0 →ι C(I 0 ) > v lim I 0 →ι ∆ S > 0 because the total cost is at least as large as the health cost.

The third counterexample is policies that immediately revert the disease's growth by strict social distancing. Moreover, the intensity of social distancing converges quickly to the upper bound β as the number of infectious decreases to ι. Such policies are strict suppression policies (i.e., lim I 0 →ι ∆ S = 0). Nevertheless, they are infinitely costly (i.e., lim I 0 →ι C = ∞). Specifically, consider the policy

βI = c -1 β   c β β 0 -γ 0 + β-(β 0 -γ 0 ) 2 (1 -ι) 2 (I -ι) 2   (88) 
and

γI = 0. (89) 
The function βI is decreasing in I. It implies that İt < 0 for all I t and S t since βI ≥ β1 > β 0 -γ 0 > β 0 -γ 0 St . The policy is a strict suppression policy since lim

I 0 →ι ∆ S = lim I 0 →ι ∞ 0 (β 0 -β t )S t I t dt = lim I 0 →ι I 0 ι (β 0 -βI )S t(I) I (γ 0 -(β 0 -βI )S t(I) )I dI < < lim I 0 →ι (I 0 -ι) 1 γ 0 (β 0 -β1 )S 0 -1 = 0. (90) 
Step 2 follows from changing variable from t to I; step 3 follows from the monotonicity of βI and S t . This policy is infinitely costly even when I 0 converges to ι:

lim I 0 →ι C(I 0 ) = lim I 0 →ι ∞ 0 c β ( βIt ) + v(β 0 -βIt )S t I t dt = lim I 0 →ι I 0 ι c β ( βI ) + v(β 0 -βI )S t(I) I (γ 0 -(β 0 -βI )S t(I) )I dI > > lim I 0 →ι I 0 ι c β ( βI 0 ) γ 0 I 0 dI = lim I 0 →ι (I 0 -ι) c β ( βI 0 ) γ 0 I 0 = lim I 0 →ι c β β 0 -γ 0 + β-(β 0 -γ 0 ) 2 (1 -ι) 2 (I 0 -ι)γ 0 I 0 = ∞. ( 91 
)
This policy is an example of a strict suppression policy that suppresses the disease too quickly.

The policymaker imposes a too-high instant cost, which is not outweighed by a swift end of the pandemic.

More generally, as a fourth counterexample, consider suboptimal policies ( β(I,S) , γ(I,S) ) such that lim I→ι İ(I, S 0 ) < 0. For simplicity, only consider policies continuous in I and S. Such policies are strict suppression policies:

lim I 0 →ι ∆ S = I 0 ι (β 0 -β(I,S I ) )S I (γ 0 + γ(I,S I ) -(β 0 -β(I,S I ) )S I ) dI = 0. (92) 
It follows that relative to the optimal policy, these policies are more costly in the limit:

lim I 0 →ι C(I 0 ) C * (I 0 ) > 1. (93) 
PROOF: 

lim I 0 →ι C(I 0 ) C * (I 0 ) = lim I 0 →ι C(I 0 ) I 0 -ι C * (I 0 ) I 0 -ι = lim I 0 →ι I 0 ι c β ( β(I,S I 
C * (I 0 ) I 0 -ι = (94) = c β ( β(ι,S 0 ) )+cγ (γ (ι,S 0 ) )ι+(β 0 -β(ι,S 0 ) )vιS 0 ( β(ι,S 0 ) S 0 +γ (ι,S 0 ) +γ 0 -β 0 S 0 )ι c β (β (ι,S 0 ) )+cγ (γ (ι,S 0 ) )ι+(β 0 -β (ι,S 0 ) )vιS 0 (β (ι,S 0 ) S 0 +γ (ι,S 0 ) +γ 0 -β 0 S 0 )ι > 1. (95) 
Step 2 follows from changing variable from t to I in the cost function C.

Step 3 follows from the mean value theorem and continuity. See the derivation of Equation (32) in Section B.4.1 for the detailed argument. The expression in the denominator follows from Equation (33).

Step 4 follows since Lemma 3 shows that the quotient in the numerator and denominator has a unique minimum.

qed.

The argument shows that, relative to the optimal policy, these suboptimal strict suppression policies are more costly. The ratio ( 93) is close to one, if the suboptimal policy is close to the optimal policy. However, the third counterexample above shows that there exist even strict suppression policies in this class such that this ratio goes to infinity. Hence, the cost of the pandemic does not automatically vanish when I 0 goes to ι. The cost of the pandemic depends on I 0 but also very crucially on the applied policy. The precise way of suppression is important for welfare concerns, both in absolute and relative terms. I parametrize the maximal detection rates for different contact tracing technologies using estimates from Ferretti et al. (2020). They estimate that manual contact tracing can control a pandemic with an R0 of 1.7 if the effectiveness of isolating symptomatic individuals and infected contacts is 80%. That implies that such contact tracing has a growth impact of 10%. Therefore, I assume the maximal detection rate of a moderately efficient detection scenario using efficient manual contact tracing is γ M E = 10% per day. 24 They estimate that digital contact tracing, since it is much faster, can control a pandemic with an R0 of 3.5 if the effectiveness of isolating symptomatic individuals and infected contacts is 80%. That implies the maximal detection rate of an efficient detection scenario using digital tracing is γ E = 35% per day. The estimated incidence (i.e., the new infections per day) in Singapore does not consider that some of the confirmed cases are imported. They are detected in the rigorous border controls of the country, are directly isolated, and do not contribute to community transmission. Since the estimates from Murray et al. (2020) are partly based on confirmed cases, I need to control for this effect in the estimated incidence. Singapore claims to have eliminated the virus from the community on October 13th, and it has kept the community transmission very close to zero until the end of the year. 27 To account for the effect of imported cases on the estimated incidence, I use the average incidence between October 13th and December 31st. It should be zero, but it is not, which is exactly the effect of cases confirmed at the border. Therefore, I subtract this average from the estimated incidence. Since Italy did not use active border management, I do not account for this effect in the Italian data. The γ 0 = 14% implies that agents are infectious for approximately seven days. I construct the number of potentially infectious J as the sum of the new infections in the previous seven days. Note that the average number of days that individuals remain infected is around 18 days (see Wang et al. (2020)). It implies that there is a period where individuals are still infected but not infectious. In my model, these individuals are counted as recovered.

Next, I construct an estimate for detected cases using the number of confirmed cases. I smooth confirmed cases in both countries using a 14-day rolling average. In Singapore, I control for the fact that some of the confirmed cases are reports from the border management in the same way as for the estimated incidence above. Part of the confirmed cases is symptomatic agents who selfreport. They are not detected, and reporting them does not influence the number of infectious since these individuals would otherwise self-isolate or are already past their contagious period. These effects are already accounted for by γ 0 , i.e., the uncontrolled growth rate would be higher without this behaviour. To avoid counting the effect twice, I subtract the number of these individuals from the number of confirmed cases. To do so, I use the confirmed cases in Italy. At the peak of the first wave, Italy did not use contact tracing. Around 10% of the peak in estimated incidence on March 10th is reported on the peak of confirmed cases on March 26th. Therefore, I subtract 10% of the incidence 16 days before from the number of confirmed cases in both countries. Moreover, some confirmed cases are traced when they are already past their infectious period. Again, I have to subtract them from the confirmed cases since they are not detected infectious. I find that from the peak of new infections to the peak of confirmed cases in Singapore during the first wave, five days pass. It suggests that, on average, cases are detected after five days. I assume that half of the cases are detected between days 0 and 5 after infection, and half of the cases are detected between days 5 and 10. Moreover, I assume an equal likelihood of detection on each day. It implies that 7/10 of confirmed cases are detected while still being infectious. In Italy, I estimate the average time of detection as the time from peak to peak during the second wave in November. It is 14 days.

Making the same assumptions as for Singapore suggests that Italy detects 1/4 of confirmed cases while they are still infectious.

Next, I construct the number of quarantined infectious Q as the sum of detected cases in the previous seven days. I subtract it from the number of potential infectious, which gives an estimate for prevalence I. I use the rounded average prevalence in the five days before this number becomes negative in Singapore to calibrate the extinction threshold: ι = 0.001%. Since incidence is approximately proportional to prevalence, I estimate the growth rate of prevalence g t by calculating the growth rate of incidence. I calculate the mass of susceptible by subtracting the incidence in previous periods from 1. I use it to calculate the uncontrolled growth rate over time which is g 0 t = β 0 S t -γ 0 . I construct the detection rate γ t as the number of detected cases per prevalence. I assume that the rate cannot be larger than the theoretical maximal value for digital tracing from Ferretti et al. (2020), and I smooth it using a 30-day moving average. I calculate the intensity of social distancing β t = g 0 t -gt-γt St

. Again, I smooth it using a 30-day moving average.

C.1.4 Calibration Cost Function

I assume the daily cost of social distancing is a power function c β (β t ) = ζ 0 β ζ 1 t , where ζ 1 is an integer. It follows that the ratio between the cost of social distancing in two yearly quarters Q A and Q B is

t∈Q A β ζ 1 t t∈Q B β ζ 1 t . (96) 
I use Italy's estimated β t to calculate this ratio for power-functions of power 2, 3, and 4. Moreover, I calculate this ratio using estimated GDP loss in quarters 2 to 4 in 2020 in Italy. I take the ratios Q2/Q3 and Q3/Q4. 

C.1.5 The Cost of the Observed Policies

To estimate the cost of the observed policy, I use the observed intensity of social distancing and evaluate it using the cost functions of the model. I use this model-based cost estimate for two reasons: First, Singapore is a small open economy. Therefore, the observed loss in GDP depends strongly on the policy of its trading partners and is not a good measure of the cost of social distancing. Second, Singapore successfully limited the spread of the disease in its elderly population.

Therefore, observed casualties do not give a cost measure consistent with the uniform mortality rate in my model. For consistency, I estimate the costs of the Italian policy in the same way. To compare the four scenarios, I examine their total minimized cost in percentage of yearly GDP, the time it takes to reach the extinction thresholds in months, the number of casualties per million inhabitants, and the number of infections in per cent. The results are in Table 3. As expected, the total cost increases when tracing is less efficient. Time shows a weaker dependence on tracing efficiency. Casualties are not monotone in tracing efficiency. The same is true for the number of infections, which is proportional to casualties. 28 Note that the policymaker's objective function is to minimize total cost, i.e., health costs and the economic costs of control measures. It is not minimizing the time to extinction or the number of casualties. Therefore, increased tracing efficiency may increase the time to extinction and the number of casualties if that reduces the total cost. Consequently, the relation between tracing efficiency on the one side and time and casualties on the other side may not be monotone. Section C.6 investigates in detail how a change in tracing efficiency affects the time to extinction and the number of casualties.

In this paragraph, I discuss the moderate tracing scenario in more detail. Since the maximal detection rate is 10%, hence lower than the uncontrolled growth rate g 0 = 14%, this scenario is an example of an inefficient detection technology. Figure 8 shows the decrease in prevalence over time, and Figure 9 shows the optimal policy. The red line depicts optimal social distancing, while the blue line depicts optimal contact tracing. The rates of the policies are in % and can be interpreted as the additive effect of a policy on the uncontrolled growth rate. 29 As in the efficient tracing scenario, the policymaker imposes the maximally feasible amount of social distancing in the beginning. As prevalence decreases, the detection rate increases. As a consequence, optimal social distancing decreases. However, in contrast to the efficient tracing scenario and as predicted theoretically, β t converges to some value larger than g 0 -γ. Note: The solid red line shows optimal social distancing over time, while the dashed blue line shows optimal contact tracing. The x-axis shows time in months. The y-axis shows the value of the optimal policies in %. It is the additive effect of the policy instrument on the uncontrolled growth rate. for all t. Prevalence decays exponentially at rate g 0 -S 0 β f eas ≈ -5%. The y-axis shows the cost of reducing prevalence by 0.01% in daily GDP. As predicted by theory, the unit cost in the efficient tracing scenario is bounded, while the unit cost in the inefficient scenario converges to infinity. Note: The figure compares the unit cost of suppression in the efficient and inefficient tracing scenarios. The x-axis shows prevalence in %. The y-axis shows the cost of reducing prevalence by 0.01% in daily GDP. As predicted theoretically, the unit cost is bounded in the efficient tracing scenario and converges to infinity in the inefficient tracing scenario.

C.3 The Quality of the Approximation

This section examines numerically how well the optimum of the exponential model approximates the optimum of the SIR model.

C.3.1 Bounds on the Costs in the SIR Model

Lemma 5 derives bounds for the minimized cost in the SIR model and the cost of applying the optimal exponential policy to the SIR model. Table 4 presents these bounds. They are tight, in particular in the efficient tracing scenario. It suggests that, in the optimum, the exponential model approximates the SIR model well. 

β -β * = ∞ 0 β t -β * t dt ∞ 0 |β * t | dt . (98) 
Intuitively, it measures the difference between the two policies relative to the optimal policy in the SIR model. This section shows how to derive the quantitative results. I solve for the optimal policy in the SIR model presented in Section B.5 using the Hamiltonian:

H(β t , S t , I t , λ S t , λ I t ) = (99) c β (β t ) + (β 0 -β t )vS t I t + λ S t (-(β 0 -β t )S t I t ) + λ I t ((β 0 -β t )S t -γ 0 -γ(I t ))I t (100) 
Together with the law of motion of the state variables, the necessary conditions for optimality are:

-λS t = (β 0 -β t )I t v -λ S t (β 0 -β t )I t + λ I t (β 0 -β t )I t ; (101) 
-λI t = (β 0 -β t )S t v -λ S t (β 0 -β t )S t + λ I t ((β 0 -β t )S t -γ 0 -γ(I t ) -γ ′ (I t )I t ); (102) 0 = c ′ β (β t ) -S t I t v + (λ S t -λ I t )S t I t , (103) 
with boundary conditions S 0 , I 0 , I T = ι, and λ S T = 0. Since ∂H ∂t = 0, in the optimum

H = 0 for all t. (104) 
I use this condition to eliminate λ S as a co-state variable, which renders:

λI t = c β (β t ) I + λ I t γ ′ (I t )I t ; (105) 
λ I t = c ′ β (β t )(β 0 -β t ) + c β (β t ) (γ 0 + γ(I t ))I t . (106) 
Differentiating the second equation with respect to time gives:

βt = λI t I t (γ 0 + γ(I t )) + λ I t İt (γ 0 + γ(I t )) + λ I t I t γ ′ (I t ) İt c ′′ β (β t )(β 0 -β t ). (107) 
Substituting λ I t , λI t , and İt in the equation above, together with the law of motion of the state variables, gives a system of differential equations in I t , S t , and β t . I solve the system forward using a grid of initial conditions for β 0 . I calculate the total cost of each solution to find the global minimum.

It is difficult to handle the inequality constraint β t ≤ β f eas in Section 3.1 using the Hamiltonian approach. To circumvent this problem, I use the cost function

c β (β t ) = ζ 0 β ζ 1 t if β t ≤ β f eas , (108) c β (β t ) = d 0 + d 1 β t + d 2 β 2 t + d 3 β 3 t if β t > β f eas . (109) 
I choose d 0 , d 1 , d 2 , and d 3 such that c β (.), c ′ β (.), and c ′′ β (.) are continuous and c β (β f eas + 0.01) = f a × c β (β f eas ), where f a is large. The function is the same cost function as in the constraint problem up to β f eas . Intuitively, the cost function in the constraint problem jumps to infinity discontinuously above β f eas . Contrary to the cost function in the constraint problem, the cost function in this section is continuous at β f eas but increases very fast above. For f a = ∞ the two functions, and, hence, the two problems are the same. I use a very large f a = 100 to make the two problems very similar. Note that since I relax the inequality constraint, the cost in the optimum is lower than in the problem with a strict constraint. Therefore, it works in my disfavour when comparing the minimized cost between the exponential and the SIR model.

Nevertheless, I also solve the exponential model using the relaxed problem and the Hamiltonian approach. I follow the same steps as for the SIR model outlined above:

H(β t , S t , I t , λ I t ) = (110) c β (β t ) + (β 0 -β t )vS t I t + λ I t ((β 0 -β t )S t -γ 0 -γ(I t ))I t . (111) 
The differential equation for S changes to Ṡt = 0. Together with the law of motion of the state variables, the necessary conditions for optimality are:

-λI t = (β 0 -β t )S t v + λ I t ((β 0 -β t )S t -γ 0 -γ(I t ) -γ ′ (I t )I t ); (112) 0 = c ′ β (β t ) -S t I t v + (-λ I t )S t I t , (113) 
with boundary conditions S 0 , I 0 , and I T = ι. Since ∂H ∂t = 0, in the optimum

H = 0 for all t. (114) 
I use this condition to derive:

λI t = c β (β t ) I + λ I t γ ′ (I t )I t ; (115) λ I t = c ′ β (β t )(β 0 -β t ) + c β (β t ) (γ 0 + γ(I t ))I t . (116) 
Note that these equations are the same as in the SIR model. It follows that the differential equations for β and I are the same in the two models. The only difference is in the differential equation for S. Moreover, the initial conditions I 0 and S 0 are the same. Note that the optimal starting value β 0 differs in the two models. As above, I solve the system forward using a grid of initial conditions for β 0 . I calculate the total cost of each solution to find the global minimum.

As expected, the cost of the exponential model with the relaxed inequality constraint presented in Table 5 is very close to but lower than the cost in the model when the constraint binds strictly in Table 3.

C.4 Suboptimal Suppression Policies

In this section, I calculate the cost of suboptimal suppression policies. How costly is it if the policymaker deviates from the optimality condition in Proposition 4?

In the first exercise, I consider the efficient tracing scenario. I consider two suboptimal policies:

1. The circuit breaker: the policymaker imposes constant and strict social distancing of intensity 18.5% such that the virus becomes extinct after one month. The scenario has a cost of 1.7% of yearly GDP. That is 70% higher than the optimum.

2. Lukewarm restrictions: the policymaker uses a policy such that the virus becomes extinct after one year. To do so, she imposes social distancing to keep the growth rate equal to -0.7%. As soon as contact tracing alone achieves a lower growth rate, social distancing is equal to zero. The policy has a cost of 2.5% of yearly GDP. That is 145% higher than the optimum.

In a second exercise, I consider the inefficient tracing scenario. In this case, the optimal policy is a circuit breaker policy; β t is constant at its maximum. It is not feasible to suppress the disease faster. I consider lukewarm restrictions with a constant β t = 14% such that the virus becomes Note: The figure compares the optimal and the observed detection rate in Singapore. The x-axis shows time in months. The y-axis shows the detection rate in %. The number is the daily fraction of detected infectious, which is equal to the reduction in the uncontrolled growth rate due to contact tracing. Note: The figure compares the optimal and the observed intensity of social distancing in Singapore. The x-axis shows time in months. The y-axis shows the intensity of social distancing in %. The number is the reduction in the uncontrolled growth rate due to social distancing.

C.5.2 Italy

Italy did not suppress the disease. Therefore, there is no natural time point to stop the analysis. I use December 31st, 2020, as the final date for two reasons. First, in January 2021, the vaccine rollout started. Second, in January 2021, the spread of a mutant of SARS-CoV-2 called alpha-variant started. These events change the parameter values of the model. By December 31st, 2020, the estimated cost of the Italian policy is around 10% of yearly GDP. Moreover, the number of susceptible is 86%, which is still far from the herd immunity threshold of 50%. Prevalence on December 31st, 2020, is 0.52%, which is higher than I 0 . It means that Italy neither reached herd immunity nor succeeded in suppressing the disease. The health cost alone for reaching herd immunity from this point is an additional 9.8% of GDP. I use Lemma 5 to derive a lower bound of the cost of suppressing the disease from this point. It is an additional 3.6% of GDP.

Figure 15 compares the observed prevalence with prevalence under the optimal policy. In the beginning, Italy broadly followed the optimal policy. Prevalence decreased and reached a relatively low level of around 0.01% after three months. This date corresponds to mid-summer in 2020. At this point, cases rose again. They never returned to such a low level until the end of the observation period. Note: The figure compares the optimal and observed path of prevalence in Italy. The x-axis shows time in months. The y-axis shows prevalence in % and on a logarithmic scale.

Again, I calculate the optimal policy as a function of observed prevalence in Italy. Figure 16 shows the observed and optimal detection rate. Again, they are relatively close, which is not surprising given the calibration. Figure 17 reveals that, initially, Italy's social distancing policy was close to optimal. However, two to four months after the outbreak, the policymaker deviates from optimality and relaxes social distancing. It corresponds to the easing of restrictions in the summer of 2020. Given the observed detection rate, it was not optimal to ease restrictions before reaching the extinction threshold. The model predicts that cases will rise again, which is what I observe.

Another viable strategy would have been to compensate for the easing in social distancing with an increase in the detection rate. Figure 17 shows that the policymaker failed to do so. 

C.6.1 Time to extinction

Note that the policymaker minimizes the total cost of suppression and not the time to extinction.

While the total cost of suppression is monotone in the tracing efficiency, the time to extinction may not be. Consider the time it takes to reduce infections by an infinitesimal amount δI when the tracing efficiency γ I is exogenous:

δt = 1 β I S 0 + γ I -g 0 δI I , (117) 
which follows from δI/δt = -İ. Consider a change in efficiency:

dδt dγ I = 1 (β I S 0 + γ I -g 0 ) 2 δI I -1 -S 0 dβ I dγ I . ( 118 
)
There are two opposing effects at work. First, increasing γ I mechanically reduces δt by increasing the decay rate. Second, increasing γ I reduces the optimal amount of social distancing β I :

dβ I dγ I = -S 0 c(β I )+vI(β 0 -β I ) I(S 0 β I +γ I -g 0 ) c ′′ (β I )(S 0 β I + γ I -g 0 ) if β I < β, (119) 
dβ I dγ I = 0 if β I = β, (120) 
which follows from taking the derivative and using the envelope theorem in Proposition 4. It is negative in some cases; hence an increase in γ I may indirectly increase δt. Which effect dominates depends on whether (119) is larger or smaller than -1/S 0 . Note that the numerator in (119) is the unit cost of suppression in the optimum. When tracing is inefficient, it is optimal to complement it with a large amount of social distancing. Therefore, the numerator is large. Assume the parameters are such that -S 0 dβ I dγ I > 1. The unit cost of suppression is high; hence it is optimal to suppress the disease quickly. The larger γ I , the lower the optimal amount of social distancing, the lower the unit cost, and the smaller this effect. Hence time is increasing in an increase in γ I . When tracing is efficient, the unit cost of suppression is small since it is not necessary to complement tracing with social distancing. Assume the parameters are such that -S 0 dβ I dγ I < 1. The mechanical effect dominates. An increase in γ I speeds up the decay and time decreases in γ I .

Figure 18 plots dδt dγ I along the optimal path in the efficient tracing scenario. For high values of I, the effect is negative since dβ I dγ I = 0, and there is only the mechanical effect at work. Once β I < β the solution is interior and time increases when γ I increases. The indirect effect dominates.

For low values of I, the mechanical effect dominates again, and dδt dγ I is negative. The overall effect depends on the exact parameter values. Prevalence (in %) Derivative delta t wrt gamma Note: The figure shows how the optimal duration of measures depends on the efficiency of contact tracing along the optimal path in the efficient tracing scenario. The x-axis shows prevalence in %. The y-axis shows the derivative of the optimal time to suppress an infinitesimal unit with respect to the detection rate. The sign of this derivative depends on prevalence.

To gain further insight consider the simple case where v = 0, c β (β I ) is quadratic, S 0 = 1, and γ is exogenous and constant for all I. The optimal amount of social distancing is β = 2(g 0 -γ) for γ < g 0 , (121)

β = 0 for γ > g 0 . ( 122 
)
which follows from the first order condition. Note that when γ > g 0 the solution is a corner solution.

I follows a simple exponential decay with constant rate. The time to extinction T is T = ln I 0 I ϵ (g 0 -γ) -1 for γ < g 0 (123)

T = ln I 0 I ϵ (γ -g 0 ) -1 for γ > g 0 . ( 124 
)
It follows that the time to extinction is decreasing in γ for γ < g 0 and increasing for γ > g 0 .

C.6.2 Casualties and the Number of Infections

Note that the number of casualties m is proportional to the number of infections: m = δ × ∆S.

Therefore, I only discuss how ∆S depends on tracing efficiency. Note that ∆S here is the number of infections in the exponential model and not the change in susceptible in the SIR model. I use the same symbol since, in the SIR model, the number of infections is equal to the change in the number of susceptible. In the exponential model, the number of susceptible cannot change.

The policymaker minimizes the total cost of suppression and not the number of infections.

Again, while the former is monotone in the tracing efficiency, the latter is not. Consider the number of infections when reducing infections by an infinitesimal amount δI and an exogenous tracing Which effect dominates depends again on their relative magnitudes. When tracing is inefficient dβ I dγ I is large and may dominate. Hence δS is increasing in γ I . When tracing is efficient -dβ I dγ I is small, and the mechanic effect may dominate. Hence δS is decreasing in γ I .

Figure 19 plots dδS dγ I along the optimal path in the efficient tracing scenario. For high values of I, the effect is negative since dβ I dγ I = 0, and there is only the mechanical effect at work. Once β I < β the solution is interior and δS increases when γ I increases. The indirect effect dominates.

For low values of I, the mechanical effects dominate again, and dδS dγ I is negative. The overall effect depends on the exact parameter values. Note: The figure shows how the optimal number of infections depends on the efficiency of contact tracing along the optimal path in the efficient tracing scenario. The x-axis shows prevalence in %. The y-axis shows the derivative of the optimal number of infections when suppressing an infinitesimal unit with respect to the detection rate. The sign of this derivative depends on prevalence.

To gain further insight consider again the simple case where v = 0, c β (β I ) is quadratic, S 0 = 1, and γ is exogenous and constant for all I. Note that ∆S = I 0 ι δS. Use Equation ( 121), (122), and (125) to show that ∆S = (I 0 -I ϵ ) 2γ -g 0 + γ 0 g 0 -γ for γ < g 0 (127) ∆S = (I 0 -I ϵ ) g 0 -γ 0 -g 0 + γ for γ > g 0 .

(128)

It follows that ∆S is increasing in γ for γ < g 0 and decreasing for γ > g 0 .

vIS 0 f

 0 low of control and health costs × δI (β I S 0 + γ I -g 0 )I time to move one step . (7)

  These assumptions do not change the key theoretical results. Appendix B.5 gives a detailed derivation. The details of the parametrization and calibration are in Appendix C.1. I parameterize all epidemiological and health-related parameters to values in the literature. The uncontrolled growth rate g 0 = 14%. In line with the epidemiological findings (see Baker et al., 2020), I assume locally eradicating the wild-type is feasible. I calibrate ι to the mass of infected in the days before Singapore achieved the local eradication of the disease. To calibrate the cost of social distancing, I use estimated intensities of social distancing and estimated GDP loss in Italy in 2020. I calibrate the detection function γ(.) using estimated detection rates in Italy and Singapore. Figures 2 and 3show the functions.
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  and T (λI, λz) = λT (I, z).

B. 2

 2 .1 Further Properties of the Cost of Tracing and Relation toAlvarez et al. (2021) In this section, I derive further properties of the cost of tracing. The purpose is to build a better intuition for its properties and compare it to cost functions used in the literature. The cost of tracing a constant mass T of agents per unit of time is c γ T I I, since c γ (γ)I is the cost of tracing per unit of time and γ = T I . The cost goes to infinity when the number of infectious I goes to zero:

I

  et al. (2021) assume it is possible to trace a constant number of infectious T per unit of time even though the overall number of infectious in the population is close to zero. My assumption is more conservative in this respect. Moreover, like under my assumptions, the cost of tracing a fraction γ of infectious per day goes to zero: ξ > 0. The case ξ = 0 corresponds to random testing and not contact tracing. I consider random testing in Section B.9.Alvarez et al. (2021) consider a tracing technology without bound on the detection rate. In their framework, increasing the detection rate to infinity becomes feasible when prevalence converges to zero. To see that assume γ(I) = I -ξ 2 , where ξ 2 < ξ. It follows that γ(I) converges to infinity when I converges to zero while the cost lim I→0 . It means that tracing becomes infinitely efficient at controlling the disease, and the cost of doing so becomes zero.Ferretti et al. (2020) stress that the detection rate is bounded in practice and depends on the technology in use. Therefore, I assume that there is a maximal detection rate γ, which depends on the detection technology in use. It allows me to study how

  I 0 converges to ι, the minimized cost in the SIR model, the minimized cost in the exponential model, and the cost of applying the optimal exponential policy in the SIR model converge to each other: lim I 0 →ι C * (I 0 ) = lim I 0 →ι C(I 0 ) = lim I 0 →ι C(I 0 , (β t (I 0 ), γ t (I 0 ))).

)

  Denote by C ′ (.) the derivative of the value function in the exponential model and by C I (., .) and C S (., .) the partial derivatives of the value function in the SIR model. The first order conditions of the Hamilton Jacobi Bellaman Equation (HJB) in the two models are c ′ β (β (I,S) ) -SIv + (C S (I, S) -C I (I, S))SI = 0, (34) c ′ γ (γ (I,S) )I -C I (I, S)I = 0; Equation (32) that C I (ι, S) = C ′ (ι) since C ′ (ι) = lim I 0 →ι C(I 0 ,(βt,γt)) I 0 -ι and C I (ι, S) = lim I 0 →ι

  ) is bounded. If i goes to zero, iC(I)S 0 goes to zero and condition (63) goes to the Condition in Proposition 4. Therefore, β I (i) goes to β I (0). Similarly, when I goes to ι, C(I) goes to zero. Therefore, iC(I)S 0 goes to zero, and the same argument applies. it. It is larger than zero. Denote by C ι (I 0 ) the value function of reaching ι from I 0 . Point 4 shows that it exists. C ι (I 0 ) goes to zero if I 0 goes to ι. Choose I 0 low enough such that C ss (ι) > C ι (I 0 ). It follows that the saddle path to ι is the global minimum. Consider a fixed I 0 . Denote by C ι (i) the value function of reaching ι. Point 4 shows that it exists for i small enough. If another saddle path to a steady state I ss > 0 exists, denote by C ss (i) the value function to reach it. If ι > 0, I ss > ι. If γ > g 0 , I ss ≥ Î where Î is defined by γ( Î) = g 0 .

  these controls have a low cost c b << c B that can be neglected. Assume that the public health department of the country has fixed and constant resources for contact tracing as discussed in Section B.5. Following the notation in Section B.5, denote by γ(I) the detection rate as a function of prevalence I. Moreover, assume the country uses an efficient contact tracing technology: γ > g 0 .

  ) )+cγ (γ (I,S I ) )I+(β 0 -β(I,S I ) )vIS I ( β(I,S I ) S I +γ (I,S I ) +γ 0 -β 0 S I )I dI I 0 -ι lim I 0 →ι

  Section C.4 shows that these results are empirically relevant. It quantifies the cost of simple suboptimal suppression policies in the context of the COVID-19 pandemic. It finds that their cost, although in the same order of magnitude, is substantially higher than the cost of the optimal policy. C Online Appendix: Details Quantitative Application C.1 Calibration C.1.1 Parameters Literature I use estimates of the uncontrolled growth rate and the reproduction number from Ferretti et al.(2020): g 0 = 14% and R 0 = 2. Since g 0 = β 0 -γ 0 and R 0 = β 0 γ 0 it implies β 0 = 28% and γ 0 = 14%.To parameterize the health cost, I focus only on mortality. FollowingAlvarez et al. (2021), I use a mortality rate of δ = 0.68% and a value of statistical life vsl of 40 times the annual output per capita. It follows that the health cost v in daily GDP is v = vsl × 365 × δ = 99.

  data from the Institute for Health Metrics and Evaluation (IHME) at the University of Washington. 25 They provide a time series of confirmed cases. Moreover, they provide estimates for the real number of daily infections taking underreporting into account. Their estimates are based on Murray et al. (2020). I use their data for Italy and Singapore. Moreover, I use Italian GDP estimates for 2020 from the Italian National Statistical Agency ISTAT. 26 C.1.3 Estimation of Prevalence, Detection Rate, and Intensity of Social Distancing
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  Figure shows the unit cost of detection in the efficient and the inefficient tracing scenarios.
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 11 Figure 11: Prevalence Over Time: Optimal vs Observed Policy Singapore Observed Optimal
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  Figure 13: Optimal vs Observed Detection Rate Singapore Observed Optimal
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 14 Figure 14: Optimal vs Observed Social Distancing Singapore Observed Optimal
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  Figure 16: Optimal vs Observed Detection Rate Italy Observed Optimal
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 17 Figure 17: Optimal vs Observed Social Distancing Italy Observed Optimal
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 18 Figure 18: dδt/dγ I Along the Optimal Path

  efficiency γ I : δS = (β 0 -β I )IS 0 (S 0 β I + γ I -g 0 )I δI = 1 γ I +γ 0 (β 0 -β I )S 0 -1 δI,(125)since δS = (β 0 -β I )IS 0 δt, and using the property of δt from above. Consider a change in efficiency: 0 -β I )S 0 -(γ I + γ 0 ) dβ I dγ I (β 0 -β I ) are two opposing effects at work. First, increasing γ I mechanically reduces δt, which decreases δS. Second, increasing γ I decreases the optimal amount of social distancing β I , which, through increasing δt, increases δS. Moreover, decreasing β I directly increases δS since it increases contacts.
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 19 Figure 19: dδS/dγ I Along the Optimal Path

  ).In this section, I derive the properties of social distancing policies from a model of social and economic interactions. FollowingAlvarez et al. (2021), L t denotes the fraction of the economy in lockdown. It is an element of the interval [0, L], where L ≤ 1 is an upper bound on how many sectors can be locked down. The interval [0, L] can be interpreted more generally as social activities. For example, it includes meeting people without wearing a mask, meeting friends in the evening, or travelling to other country regions. The variable L t denotes the share of these activities that are restricted at a certain point in time. The function β(L t ) = β t gives the effect of L
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t on the transmission of the disease. The product β(L t )S t I t gives the reduction in transmissions due to social distancing measures. The function β(.) is zero at zero and strictly increasing; the more activities are restricted, the larger the reduction in transmissions. 18 I do not restrict the functional form of β(.). It captures that some social activities have a larger effect on transmissions than others.

  Table 1 compares these ratios. It shows that the quadratic cost matches the data best: ζ 1 = 2. Next, I calibrate ζ 0 to match the Italian GDP loss in quarters two to four. I find that ζ 1 = 5.93. To calibrate the maximal feasible intensity of social distancing, I use the maximal observed intensity during the first lockdown in Italy: β f eas = 19%.Note:The table shows the ratio of cost for different cost elasticities ζ 1 and compares it to the observed ratio in the data. The case ζ 1 = 2 fits the data best.

	Table 1: The Calibration of the Cost Elasticity ζ 1
	ζ 1 = 2 ζ 1 = 3 ζ 1 = 4 Data
	GDP loss Q2/Q3 3,31	5,68	9,50	3,33
	GDP loss Q3/Q4 0,71	0,57	0,47	0,82

Table 2

 2 

		: Parameters	
	Parameter	Symbol Value	Matched Moment or Source
	Factor cost function	ζ 0	5.93	GDP loss 2020 Italy
	Cost-elasticity	ζ 1	2	GDP loss 2020 Italy
	Maximal intensity soc. dist.	β f eas	19%	Maximal observed rate Italy
	Maximal rate digital tracing	γ E	35%	Ferretti et al. (2020)
	Maximal rate manual tracing	γ M E	10%	Ferretti et al. (2020)
	Rate inefficient tracing	γ IE	1.2%	Maximal observed rate Italy
	Scalability tracing	α	1.3	Observed rate Singapore
	Flow value of casualties	v	99	Alvarez et al. (2021)
	Uncontrolled infection rate	β 0	28%	Ferretti et al. (2020)
	Uncontrolled recovery rate	γ 0	14%	Ferretti et al. (2020)
	Initial Prevalence	I 0	0.2%	Estimated peak Singapore
	Initial Susceptible	S 0	98%	Estimate Singapore and Italy
	Extinction Threshold	ι	0.001%	Estimate Singapore
	Note: The table summarizes all parameters. Column four cites the source or the data used for
	calibration.			
	which is the estimate from Ferretti et al. (2020) for efficient manual tracing.
	3. Inefficient tracing: the tracing technology has a low and constant detection rate calibrated to
	the maximal observed rate in Italy		
	4. No tracing: the detection rate is zero.		

Table 3 :

 3 Comparison Tracing Scenarios Efficient trac. Moderate trac. Inefficient trac. No trac. The table compares the four different tracing scenarios. It shows the total cost, the time to extinction, the number of casualties, and the number of infections.

	Total cost [annual GDP]	1.01%	3.17%	4.95%	6.09%
	Time [months]	2.1	2.7	2.8	3.4
	Casualties [ppm]	23.8	18.2	18.7	23.0
	Number Infections	0.35%	0.27%	0.28%	0.34%
	Note:				

Table 4 :

 4 Bounds on the Costs in the SIR ModelNote: The table shows the bounds on the cost of the optimal policy in the SIR model and the cost of applying the optimal exponential policy in the SIR model.C.3.2 The Optimal Policy in the SIR ModelNext, I numerically solve for the optimal policy in the SIR model to further investigate whether the optimum in the exponential model renders a good approximation to the optimum in the SIR model. This section presents the quantitative results, while Section C.3.3 presents the derivation of the results. Table5compares the minimized cost in the exponential model C with the minimized cost in the SIR model C * . Moreover, I compare the optimal policy in the exponential model β t to the optimal policy in the SIR model β * t by calculating[START_REF] Ugarov | Inclusive Costs of NPI Measures for COVID-19 Pandemic: three Approaches[END_REF] 

	Efficient trac. Moderate trac. Inefficient trac.	No trac.
	Bounds Cost [% GDP] [0.94, 1.01]	[2.44, 3.17]	[3.92, 4.95]	[4.37, 6.09]

Table 5 :

 5 Comparison Exponential and SIR model Efficient trac. Moderate trac. Inefficient trac. No trac.Note: The table compares the cost and policy in the exponential and the SIR model. I find that in all four specifications, the optimum in the exponential model approximates the optimum in the SIR model extremely well. The difference in the minimized cost and the policy between the two models is less than 1%. The policy functions of the SIR model are visually indistinguishable from the policy functions of the exponential model in Figure5, 7, and 9. Next, consider the cost of applying the optimal exponential policy to the SIR model C(β t ). It follows from Lemma 4 that its difference to the minimized cost in the SIR model C * is even smaller than the difference in minimized costs in Table5:C(βt) C

	C [% GDP]	1.007	3.17	4.94	6.08
	C * [% GDP]	1.004	3.16	4.93	6.06
	C/C * -1 [% ]	0.32	0.36	0.314	0.473
	β -β * [% ]	0.35	0.68	0.313	0.468

* -1 ≤ C C * -1.

C.3.3 The Optimal Policy in the SIR Model: Derivation

A population reaches herd immunity when a large enough fraction is immune to infection, i.e., not susceptible. The fraction is large enough when, on average, one infected individual meets and transmits the disease to less than one susceptible individual.

For a real-time estimation of these costs, see Adams-Prassl, Boneva, Golin, and Rauh (2020); Aspachs, Durante, Graziano, Mestres, Montalvo, and Reynal-Querol (2022); and[START_REF] Chetty | The Economic Impacts of COVID-19: evidence from a New Public Database Built Using Private Sector Data[END_REF].

In line with the epidemiological findings (seeBaker et al., 2020), I assume local eradication is feasible when borders are closed.

I.e., 3.5% of yearly GDP. It implies an average privacy cost per traced individual and her contacts of 20 times yearly GDP per capita, a figure of around half the value of a statistical life.

E.g., I consider strict and constant economic restrictions for one month or moderate and constant restrictions for one year. Given that the policymaker faces considerable uncertainty, the results suggest that such simple policies can be a robust alternative to the optimal policy.

Some authors call strategies that eliminate human-to-human transmission before the population reaches herd immunity Zero COVID, No COVID, or elimination. I follow[START_REF] Ferguson | (NPIs) to reduce COVID19 mortality and healthcare demand[END_REF] and call it suppression.

See Acemoglu et al. (2021), Assenza et al. (2020), Atkeson (2020), Atkeson (2021), Atkeson et al. (2021), Azzimonti et al. (2020), Berger et al. (2022), Brotherhood et al. (2020), Chari et al. (2021), Contreras et al. (2021), Dorn et al. (2022), Eichenbaum et al. (2021), Eichenbaum et al. (2022), Farboodi et al. (2021), Favero et al. (2020), Fernández-Villaverde and Jones (2020), Garibaldi et al. (2020), Gollier (2020a), Gonzalez-Eiras and Niepelt (2020), Hornstein (2020), Jones et al. (2021), Kaplan et al. (2020), Krueger et al. (2022), Makris and Toxvaerd (2020), Miclo et al. (2022), Obiols-Homs (2022),[START_REF] Rachel | An Analytical Model of Covid-19 Lockdowns[END_REF],[START_REF] Toxvaerd | Equilibrium social distancing[END_REF][START_REF] Rachel | An Analytical Model of Covid-19 Lockdowns[END_REF],[START_REF] Scherbina | Determining the optimal duration of the COVID-19 suppression policy: a cost-benefit analysis[END_REF],[START_REF] Toda | Susceptible-infected-recovered (SIR) dynamics of Covid-19 and economic impact[END_REF],[START_REF] Ugarov | Inclusive Costs of NPI Measures for COVID-19 Pandemic: three Approaches[END_REF][START_REF] Wang | An Analytical SIR model of Epidemics and A Sustainable Suppression Policy: testing[END_REF]. This list is far from exhaustive.

 8 This assumption corresponds to assuming quadratic matching between groups. Matches with the quarantined or deceased remain without consequence.

A cluster is a fraction of the population where the mass of infectious is normalized to one.

Assenza et al. (2020) make the same point.

Note that there is considerable uncertainty about the value of all parameters.

I.e., growth is g 0 -γ I -β I S 0 . To be precise, the growth impact of social distancing is S 0 β t . However, S 0 = 0.98 ≈ 1, Therefore, β t can be interpreted directly as the percentage reduction in growth caused by social distancing.

See Section B.4 for the detailed derivation.

Gollier (2020b) investigates the special case of uncertainty about the uncontrolled growth rate using a simplified version of this paper's model. He finds that the optimal intensity of control is lower under uncertainty. It would be interesting to generalize this result.

For example, in Alvarez et al. (2021) this function is β 0 (2L t -L 2 t ).

I.e., the final state S ∞ is not fixed. Therefore, the final value of the respective co-state variable is zero.

This expression is an upper bound for two reasons. First, C(I 0 ) is an upper bound of the optimal policy in the SIR model. Second, for simplicity, I only consider a border policy that starts at time zero and ends when the vaccine arrives.

See Oliu-Barton et al. (2021) and Baker et al. (2020).

g = β0 -γ 0 -γ M E = R0 γ 0 -γ 0 -γ M E = 0, which I solve for γ M E .

Institute for Health Metrics and Evaluation (IHME), 2020; Access Date: November 7th, 2021

Istituto nazionale di statistica (ISTAT) (2021); Access Date: November 10th, 2021.

See Ministry of Health, Singapore (2020) and Channel News Asia (2020).

To be precise, the growth impact of social distancing is S 0 β t . However, S 0 = 0.98 ≈ 1, Therefore, β t can be interpreted directly as the percentage reduction in growth caused by social distancing.

I do not calculate the respective norm for γ t because it is not a choice variable in the calibrated model (seeAppendix B.5 and C.3.3.) 

See Ministry of Health, Singapore (2021).
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Point 4:

The solution exists if İ < 0 for all I ∈ [ι, I 0 ]. When I 0 is close to ι or i is close to 0, then β I (i) is close to β I (0). By Proposition 4, the zero discount solution exists. Therefore İ(β I (0)) < 0, which by continuity is also true for all β close to β I (0).

Point 5:

Use the Hamiltonian to solve Problem (59):

İt = -(β t S 0 + γ(I t ) -g 0 )I t (70)

lim t→∞ e -it λ t = 0 (71)

The two equations give two loci. İ is zero if

One or several steady states with positive I may exist, dependent on if the above system has a solution, i.e., the two loci cross at least once. Choose i and γ(.) such that the two loci cross at least once and I 0 equal to the corresponding steady-state prevalence I ss .

Point 6:

If a saddle path from ι to the steady state I ss exists, denote by C ss (ι) the value function to reach

B.9 The Infeasibility of Strict Suppression

While the rest of this paper considers the case when halting transmissions is feasible (i.e., ι > 0 or γ > g 0 ), this section considers the case when ι = 0 and γ < g 0 .

B.9.1 Inefficient tracing Lemma 6. If γ < g 0 and ι = 0, strict suppression strategies are not feasible, i.e., they are infinitely costly. Therefore, building up immunity in the population is optimal: lim I 0 →0 ∆S * > 0.

The proof is in Section B.9.5. Intuitively, when ι = 0 and γ < g 0 , strict suppression is only possible if some degree of permanent social distancing complements contact tracing. However, the cost of social distancing does not depend on prevalence. Therefore, the cost of such permanent control does not converge to zero when prevalence converges to zero. Hence, it is infinitely costly.

Therefore, strict suppression cannot be optimal because policies with a finite cost exist. For example, the policymaker can build up immunity until uncontrolled growth is lower than γ and suppress the disease at that point.

B.9.2 Social Distancing and Random Testing

Suppose the policymaker does not dispose of a contact tracing technology, i.e., γ = 0. Instead, assume the policymaker uses random testing to detect and isolate infectious individuals. Assume that she does not know who is recovered and tests the entire population randomly at rate ρ t per unit of time. It follows that the flow of quarantined individuals is ρ t I t . The cost of such a policy per unit of time is c ρ (ρ t ), where c ρ (.) is a standard cost function (i.e., positive, convex, the marginal cost increases from zero to infinity). The laws of motion of the disease do not change, except that γ t is replaced by ρ t :

The objective changes slightly to In the efficient tracing scenario, I use γ E derived above. I calibrate ξ 1 such that at a prevalence level of 10%, i.e., 10% of the population is infected at the same time, T ′ (I) = γ E /10000, which is close to zero. It means that at a prevalence level of 10%, the system is so overloaded that any further increase in the number of infected will not lead to more traced cases. To calibrate α, I match the estimated detection rate in Singapore at peak prevalence: γ E (0.002, α) = 3%. It follows that α = 1.3. For the moderately efficient tracing scenario, I use γ M E . For the inefficient tracing scenario, I assume γ IE (I) = const. = 1.2%, which is Italy's maximal observed detection rate.

C.1.7 Summary Parameters

C.2 Detailed Results

In this section, I present detailed results for four different tracing scenarios:

1. Efficient tracing: the tracing technology is calibrated to the observed detection rate in Singapore.

2. Moderately efficient tracing: the tracing technology has a maximal detection rate of 10%, extinct after one year. It costs 11.9% of GDP, which is 141% higher than the optimum.

The two exercises illustrate the tradeoff between the intensity of control measures and the time they need to stay in place. Too extreme measures rapidly reduce the number of infectious; however, they have high instantaneous costs. As a consequence, the total cost is high. Too weak measures have low instant costs; however, they need to stay in place for a long time to eliminate transmissions. Again, as a consequence, the total cost is high. The optimal policy trades off these two margins, which minimizes the total cost.

C.5 Comparison Between Observed and Optimal Policy

In this section, I compare the observed policies in Singapore and Italy with the optimal policies in the efficient and inefficient tracing scenarios.

C.5.1 Singapore I find that the observed policy in Singapore has a cost of around 2% of yearly GDP. Moreover, Singapore reached the extinction threshold after 4.7 months. These values compare to 1.01% and 2.1 months under the optimal policy. The estimates show that Singapore broadly followed an optimal suppression strategy. Figure 11 compares the observed prevalence in Singapore with prevalence under the optimal policy. It shows that suppression in Singapore was slower than at the optimum.

In particular, Singapore had periods with growing case numbers. Theoretically, these periods are not optimal. In practice, they may be the consequence of random super spreader events and, therefore, hard to avoid. In Figure 12, I take out periods of positive growth. The resulting time series is surprisingly close to the optimum.

Next, I calculate the optimal policy as a function of observed prevalence in Singapore and compare it to the observed policy. Intuitively, it gives the optimal time path of β t and γ t taking into account that the past policy was not optimal. Therefore, it differs from the optimal paths in Figure 5. Figure 13 shows the observed and optimal detection rate. They are very close, which is not surprising since I calibrated the detection function using observed detection rates. Figure 14 shows the intensity of social distancing. Overall, the observed policy is not very far from the optimal policy. However, the figure illustrates that Singapore could have improved welfare by imposing stricter social distancing in some periods.