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ABSTRACT
This paper outlines the main idea and approach of the H2020 ASSISTANT (LeArn-
ing and robuSt deciSIon SupporT systems for agile mANufacTuring environments)
project. ASSISTANT is aimed at the investigation of AI-based tools for adaptive
manufacturing environments, and focuses on the development of a set of digital twins
for integration with, management of, and decision support for production planning
and control. The ASSISTANT tools are based on the approach of extending gen-
erative design, an established methodology for product design, to a broader set of
manufacturing decision making processes; and to make use of machine learning, opti-
mization, and simulation techniques to produce executable models capable of ethical
reasoning and data-driven decision making for manufacturing systems. Combining
human control and accountable AI, the ASSISTANT toolsets span a wide range
of manufacturing processes and time scales, including process planning, production
planning, scheduling, and real-time control. They are designed to be adaptable and
applicable in a both general and specific manufacturing environments.

KEYWORDS
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1. Introduction

This paper presents the main scientific ideas of the European project ASSISTANT.
With a multidisciplinary consortium combining key skills in AI, manufacturing,
edge computing and robotics (Assistant, project EU, ICT 38: AI for manufacturing ,
n.d.), ASSISTANT is focused on the development of AI-based tools that capture and
streamline the workflows of adaptive manufacturing environments. In particular, AS-
SISTANT will design and develop a set of digital twins: AI systems that incorporate
manufacturing domain knowledge and utilize machine learning (ML), optimization,
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and simulation techniques to construct digital replicas of manufacturing environment
elements and tools capable of producing, reasoning on, and evaluating production
plans. To facilitate deep integration of systems and harness value from data, the digital
twins will structure and expose information in the form of knowledge graphs (domain
models) that allow data scientists and external end users to embed domain knowledge
in, and use the twins without detailed understanding of the underlying systems.
The ASSISTANT tools are aimed to facilitate integration of complex manufacturing
systems with diverse data sets into singular logical systems for automation and
operation of complex collaborative production systems that can be dynamically re-
configured on demand. The ASSISTANT project aims to make concrete contributions
towards increased productivity, flexibility, and robustness in manufacturing systems;
as well as making advances towards sustainable learning and knowledge transfer
in complex systems through integration of human experience and machine intelligence.

AI technologies are extensively used today for automation and learning in the de-
livery of digital services in the cloud computing offerings of companies such as Google,
Facebook, and Amazon. However, while these services are commercially successful,
scalable, and widely applicable in conventional ICT environments, large parts of the
underlying business models are based on harnessing the economy of scale effects of mas-
sive data centers which is not directly transferable to manufacturing. The reality and
needs of manufacturing industries that make this approach challenging include the fact
that manufacturing often targets production of dedicated products (instead of general-
ized services), using specialized tools (instead of generic ICT platforms), and addresses
small markets (instead of broad ICT-based or integrated business segments). Certain
AI-related technologies have since long been adapted and developed for manufacturing,
e.g., automated machine tuning and predictive quality inspection, but manufacturing
AI tends to be applied at fine-grained decision making levels which makes it hard to
scale these efforts. To extend the capabilities of manufacturing AI systems and make
them more applicable in broader scenarios, ASSISTANT employs a combination of pre-
dictive and prescriptive analytics techniques to embed AI technologies in higher-level
manufacturing decision making such as process planning, production planning, and
scheduling. To retain human control and system accountability, ASSISTANT develops
a generative design framework for optimal interaction between human decision making
and AI-based decision support. As defined in (Aameri, Cheong, & Beck, 2019), gener-
ative design is an approach to iterative design where users can specify goals expressed
in terms of objectives and mathematical constraints, and software applications develop
sets of feasible and/or optimal design solutions for human evaluation. While generative
design was originally developed for iterative product design, the ASSISTANT project
develops tools to extend the technique to other manufacturing decisions.

Application and use of AI technologies require extensive amounts of data. Use of
AI for production planning and control also places requirements for timely delivery
(real time) of high quality data. Manufacturing environments tend to be rich sources
of data, albeit typically diverse and heterogeneous in nature. A well-developed use of
such data would allow the extension or improvement of models and processes within
the manufacturing domain. In so doing, applications like Design for Six Sigma and
Design for Manufacturing, can use AI to extract the required knowledge from various
phases of the product life cycle.

The path to extract that information and produce the required knowledge has been
proposed following three possible links: (1) dynamically generate knowledge bases, (2)
determine minimum information requirements, and (3) data-interoperability support.
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The first two are strongly linked to AI. ASSISTANT can be linked to both processes
by considering that: knowledge graphs, model constructions, and generative design
are linked to (1), while an understanding of the minimum information needed to
construct sound models, and therefore providing them to the system, is linked to (2).
As expected, the linked behaviours to be constructed by AI should be provided with
enough representability and curated to produce useful knowledge.

To meet the projects’ data management and curation needs, ASSISTANT defines
an architecture with a set of digital twins (to be embedded in manufacturing envi-
ronments) that make data available through a shared data management platform: the
ASSISTANT data fabric.

In summary, ASSISTANT employs a combination of generative design techniques
and machine learning to develop tools for data-driven production management deci-
sions. ASSISTANT goes beyond the current state of the art use of digital twins by:

(1) Incorporating machine learning to automate the development of digital twin
data models from IoT/ERP/MES data, including estimation and management
of model parameter uncertainties.

(2) Iteratively applying machine learning mechanisms to continuously retrain and
improve digital twin data models.

(3) Basing on the synergy between machine learning and digital twins, extending the
concept of generative design to cover a broader set of manufacturing processes,
including process planning itself.

ASSISTANT provides products and services that are usable in a wide range of
manufacturing processes leading to agile production processes and improved quality
of products and processes. First, ASSISTANT will foster the adoption of predictive
analytics in a wide range of manufacturing processes. Despite the short return on
investment of prescriptive analytics tools, most manufacturers are not using such
tools due to the high initial investment or lack of personalization. The implementation
of prescriptive analytics tools requires high consulting costs to adapt software. AS-
SISTANT will provide model acquisition from data that will reduce these costs since
the software will automatically adjust to the requirements of the shop floor. This will
result in the large-scale adoption of prescriptive analytics in manufacturing. Second,
ASSISTANT aims to transfer the recent development of adaptive stochastic/robust
optimization to manufacturing companies. Such techniques provide decisions (process
planning, production planning, scheduling) that are not only robust to various uncer-
tainties but select the states (resource usage, inventory level) to react appropriately
when unknown parameters unfold. The intelligent digital twin for process planning
(resp. production planning and scheduling) will lead to production systems (resp.
production plan and schedule) with the right level of agility. Finally, ASSISTANT
will provide an intelligent twin for flexible process planning that accounts for quality.
This tool assists the process engineer in selecting the resources and equipment of the
manufacturing system, as well as the fine-tuning of the operation parameters, and
deciding when and where to perform quality checks. Thanks to the availability of
historical process plans and their resulting product/process quality, the user will be
able to design a process plan that leads to high product/process quality and foresee
alternative process plans in case of defects or machine breakdown. Also, the real-time
controller will provide a real-time update in the production schedule and process plan
in case of a defective operation or machine breakdown.

Our objective is not to have AI systems replacing humans, but humans working
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together with AI systems in optimal complementarity. In ASSISTANT, through
the use of decision cockpits, wearable devices, and chatbots, humans will work in
collaboration with the AI modules, intervene in the process without disrupting it and
contribute seamlessly to the decision-making. The working environment will be human
friendly, providing comfort and promoting cooperation to achieve higher efficiency
levels in manufacturing. This goal will require an optimal distribution of workers
and machines on the shop floor. More precisely, ASSISTANT will provide tools for
supporting process engineers, the production managers, and the human operators.
The process planning twin will assist the process engineers with the design of a
reconfigurable manufacturing system, reducing the amount of expert work required
to set up the system and account for quality issues and the workers’ well-being. The
production managers will be able to track the status of the process in real-time, also
allowing them to validate recovery plans in case of unplanned events. In addition,
the production planning and scheduling twins help to plan manufacturing operations.
ASSISTANT’s AI modules will automate these processes. However, the production
managers can seamlessly interact, by entering targeted KPIs, and modifying solutions
by hand based on the human experience that AI lacks and on information/knowledge
absent from the computer system, resulting in efficient collaboration. Tools for
support of human operators provide a clear view of the operation status and give the
ability to interact with the process, allowing real-time decisions made by humans and
better human-robot interaction. ASSISTANT’s AI systems will reduce the strain on
the human workers by balancing tasks between the humans and the other available
resources. Particular focus will be given to allocating the strenuous and repetitive
tasks to the robots, allowing humans to work on more delicate operations with
confidence and comfort.

Our project’s outcomes leverage AI to impact employment and quality of jobs
positively and, at the same time, support the production of a legal and ethical
framework for AI at the European level. Reconfigurable production systems are
supposed to support humans in production but often lead to an increased required
skill set, which can easily lead to stress and overstrain. ASSISTANT wants to solve
these problems through AI-based methods by supporting and further including
humans with individual skill sets. As a result, humans have a heightened awareness
of critical and safety tasks in their job. This increases the on the job motivation due
to an assistive system, and it results in better human working conditions and health.
ASSISTANT aims to initiate the path of AI introduction into working environments
and systems that enhance human capabilities and empower individuals and society
while respecting human autonomy and self-determination. ASSISTANT will mobilize
a research landscape far beyond direct project funding, involve and engage European
industry, reach relevant social stakeholders, and create a unique reference point
within the AI4EU ecosystem that provides a manifold return on investment for the
European economy and society. ASSISTANT will contribute to building a unique
framework in which industry, SMEs, and academics in the manufacturing arena can
understand and apply the trustworthy AI guidelines requirements as an actionable
plan from the company’s workers to the business units.

The paper is an extension of Beldiceanu et al. (2021), and it successively presents
the objective and the main vision of the project in section 2, a state of the art in
section 3, the main scientific building blocks of the project (section 4, a discussion
(section 5), and a conclusion (section 6).
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2. Objective of the project

This section describes the current industrial challenges before providing the main
concept of our project.

2.1. Challenge for industry

The manufacturing industry is undergoing a paradigm shift from mass production to
mass customization and more recently mass individualization. As a result, companies
tend to increase the size of their product assortments, launch new products more fre-
quently, and constantly adjust their production processes (acquire new equipment). In
this context, their survival depends on their reconfigurability, adaptability, and flexibil-
ity. This paradigm shift has led to technological advances (such as reconfigurable man-
ufacturing systems and adaptable factories), where resources can be removed, added,
and replaced quickly. To manage such agile production systems smoothly, manufactur-
ing companies are increasingly adopting information technologies to have a complete
and accurate view of their processes on the shop floor. Such technologies are often
referred to as the ”internet of things” (IOT), and they include: RFID, various auto-
matic sensors on machines and products, and manufacturing execution systems, among
others. In addition, simulation tools that accurately describe the configuration of the
system are available for reliable offline testing without disturbing the online physical
environment.

ASSISTANT aims to rely on recent advances on optimization, simulation, predictive
analytics, prescriptive analytics, and machine learning to help manufacturing compa-
nies from various sectors to reduce costs, increase product and process quality, shorten
unplanned downtime, and increase production throughput.

ASSISTANT aims to tackle the following manufacturing challenges:

(1) Complex production planning challenge: production planning is more and more
complex because the number of end items and components increases, and ac-
counting for the capacity of flexible resources is difficult. In addition, with the
constant changes many parameters (e.g., demand, processing times, component
arrival dates) vary significantly, and they are difficult to forecast accurately.

(2) Product and process quality challenge: the lack of regularity and consistency
in the production process makes it difficult for manufacturers to ensure prod-
uct/process quality. In addition, new tools and equipment are frequently acquired
or modified, and their performance is difficult to predict.

(3) Hyper dynamic worker challenge: manufacturing systems are more and more
robotized, and most systems will become hybrid with humans and machines.
Typically, robots handle the regular flow, whereas operators bring flexibility. In
such a system, workers become hyper-dynamic, and they are more exposed to
injuries.

(4) Unsustainable industrial practices: the manufacturing industry must address en-
vironmental and social challenges. While industrial practices have focused on
economic performance, more and more industries consider sustainability assess-
ment methods and indicators to alter purely economic-based strategies.
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2.2. The intelligent digital twin concept

ASSISTANT aims to provide a set of related AI-based, explainable intelligent digital
twins that help process engineers and production planners to operate collaborative
production systems based on the data collected from IoT devices and external data
sources (see Fig 1).

As observed Fig 1, the data are perceived from sensors in the factory and external
sources, creating a real-time digital image of the factory. Second, the reasoning step
includes the three decision models (process planning/production planning/scheduling)
built from the real-time image of the factory, as well as advanced prescriptive analytics
techniques to create the plans that can be validated through simulation. Third, the
plan is then executed through a real-time control module. The blue arrows in the
above Figure represent this virtuous data circle, whereas the black arrows illustrate
the feedback loops between the twins.

Figure 1. Set of interrelated twins for decision aid

• Such a tool will be based on the synergy between digital twins and machine
learning to synthesize models for manufacturing

• In addition, the system monitors the production resources in real-time, ensuring
that all required resources are available, and allowing fast re-planning when
necessary.

ASSISTANT aims to make sustainable effective decisions while ensuring product
quality, the safety and well-being of workers, and managing the various sources of
uncertainty. The resulting intelligent digital twin systems will be data-driven, agile,
autonomous, collaborative and explainable, safe and reactive.
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These intelligent digital twins enhance advanced planning systems with machine
learning and data analytics not only to predict the values of uncertain parameters
based on data available from the shop and external sources, but also to enhance the
accuracy of the decision models by learning the behavior of a constantly changing shop
floor, and to estimate conditions outside normality that could cause problems.

Following recent trends, we can undoubtedly predict that future manufacturing sys-
tems will be highly digitalized and reconfigurable with hyper-dynamic workers. Con-
sequently, ASSISTANT focuses on factories with production processes, and assembly
lines where multiple product variants are processed and where digital twins already
partially exist. Such production systems are composed of multiple stations, where the
resources (workers/robots/tools) can move from one station to another.

The following intelligent twins will be developed:

• The process planning twin helps the process engineer design a manufacturing sys-
tem that can be re-configured while maintaining a high level of product/process
quality and without escalating costs. This twin computes the possible process
plans, and it selects the possible configuration of the shop floor. The goal is to
design a factory with enough configurations to deal with the various scenarios
of future demands. Machine learning approaches may automatically detect the
resources and equipment able to perform a certain process. Besides the ability
to perform a task, the tool may predict the speed and quality associated with a
process plan. We will use AI methods to analyze the data and to evaluate the
specific process plans. The goal is to develop AI techniques to predict the quality
and efficiency of a process plan. The resulting prediction model will be included
in the optimization algorithm to find a process plan that respects the takt time,
quality requirements, and other KPIs.

• The production planning twin helps the production manager to operate an ag-
ile factory. This intelligent twin adjusts the production capacity to the demand
(specifies the shop floor configuration, sets the worker requirement, subcontracts
labor, sets number of functional assembly lines), and places the orders of com-
ponents with the suppliers. In addition, this twin accounts for various sources of
uncertainties such as demand, production defects, process durations, etc.

• The scheduling twin allocates the operations to the resource, and it assigns a
precise moment to perform each operation.

• The real-time control twin executes the plans on the manufacturing systems in
real-time. It incorporates a hierarchical modelling approach to represent the re-
sources and their capabilities virtually, as well as the manufacturing tasks that
need to be executed. During the manufacturing process execution, this model
synthesizes real time sensor data coming from cameras, laser scanners, force sen-
sors, creating an enhanced model with autonomous, CNN based, 3D semantic
mapping. Based on this real time reconstruction of the environment and the
process, the intelligent twin detects anomalies in the process and products, and
it updates the parameters of the equipment when required. For instance, time
series analysis can be extended to consider data streams from captors on the ma-
chines. As a result, this twin can detect correct machine cycles, and it can detect
situations leading to product or process quality issues. In addition, the twin de-
tects deviations from the plan and triggers feedback to other twins to update the
plans when required. Finally, machine learning tools detect dangerous situations,
modifying the settled actuation of automated resources when required.

These aspiring digital twins will have the following characteristics:
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• Data-driven: The twins will ensure a continuous link from the data generated
by IoT devices to the decision aid tools and decision-makers. Data availability
is one of the main challenges for the use of AI in manufacturing, and we will
develop a data fabric for automatic data cleaning and reconstruction to manage
the full life cycle of the data. In addition, the data fabric uses domain knowledge
to integrate data from heterogeneous sources: IoT devices, industrial data, and
market data (e.g. demand, energy prices). The data allow a precise estimate (and
continuous updating) of the model parameters and their variability.

• Self-adaptive: The intelligent digital twins will self-adapt based on feedback from
the shop floor, past simulations, and user interactions. ASSISTANT will investi-
gate the possibility of automatically enhancing the prescriptive analytics models
by using AI adaptive representations. For example, decision-makers often mod-
ify solutions suggested by decision support systems manually. Algorithms will
be developed to learn these modifications to adapt the models.

• Collaborative: The intelligent twins offer graphical interfaces to help process
engineers and production directors make decisions through generative design,
with tools to visualize the solution pace, tools to compare different solutions,
and chatbots. In addition, the real-time digital twin helps workers input and
visualize the tasks to perform by means of wearable devices (augmented reality
glasses and smartwatches).

• Explainable: Human planners will remain responsible for all significant decisions.
Thus, decision aid models need to be explainable. More precisely, despite the
constant automated changes in the decision aid models, humans will continue to
understand and visualize them. Finally, the user will be able to interact easily
(e.g., add constraints, modify decisions) through the generative design approach.

• Ethical-by-design: Responsible AI considers the process in which AI is devel-
oped, incorporated, and its interactions with human operators. ASSISTANT will
be ethical-by-design and ethical-in-design. These ethical design approaches en-
sure compliance, security, data protection, privacy by design, fairness - including
gender, race and religious aspects of operators - and explicablity through formal
analysis and representation of regulatory principles as well as incorporating the
stakeholder’s inputs in the solution. Furthermore, “ethical in design” aims at
developing and using AI in proper and verifiable ways.

• Safe, reactive, and easily integrated: due to an adequate selection of computation
resources (cloud/fog/edge), the tool will allow the user to have control over the
resources used for computation in such a way that confidential data remains
within the company’s premise, or circulate in an encrypted fashion to fog or
cloud computers.

• Autonomous: The intelligent digital twin network autonomously actuates the
decision validated by the decision-makers. Moreover, a control loop may suggest
to the user to: (1) replan the production when the current plan is not imple-
mentable; (2) reconfigure the production system when the production capacity
is not adapted to the demand.

Fig. 2 illustrates the concept of ASSISTANT. The architecture of the intelligent dig-
ital twin networks follows the classical three-step framework (perception, reasoning,
actuation). The figure is related to Fig 1 by considering that the perception (IOT and
external sources) and the actuation (actions based on the process planning production
planning, scheduling, and real time components) are linked to the digital twin compo-
nents. The linkage between the digital twin and the actuation components (i.e. factory
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components) is through the reasoning performed by using the accumulated informa-
tion and reality representation. Further explanations of the perception, reasoning, and
actuation components are described next.

Figure 2. Concepts of ASSISTANT

(1) Perception: The real time perception of the factory is achieved through data
capturing by various sensors. The source of data varies from Internet of Things
(IoT) devices and Enterprise Resource Planning (ERP) data to the data cap-
tured from the intelligent digital twins. Once captured, those data are cleaned,
structured and stored. Then, the useful data are integrated in ontologies recon-
structing the real time scene of the shop floor. Finally, a set of simulation tools,
such as discrete event and multi-body simulation, are used to enhance the factory
perception by modelling the manufacturing system behavior.

(2) Reasoning: This component incorporates the following three steps:
(a) During the first step, the goal is twofold: a) to provide valuable predictions

for the future state of the manufacturing system in factory, production line
and resource level, and b) to assess the feasibility of a production plan
in terms of operating parameters and safety. To achieve that, information
processing and predictive analytics are implemented to learn the future
process parameters such as duration, resource availability, etc. On top of
that, user experience, related to stochastic parameters (e.g., the varying
demand profile), is captured and methods such as probability distribution
is used to model the uncertainty of such parameters.

(b) The second step facilitates the decision-making process utilizing prescrip-
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tive analytics based on an optimization data-driven model. Techniques such
as constraint programming are used in this step. The data-driven nature
of the model relies on the usage of the data available in the real time fac-
tory digital twins that are automatically updated based on the changes in
the shop floor. The explicability of the decision-making tool is achieved
through the deployment of a visualization interface. Thanks to this inter-
face, inexperienced users can assess the model and modify it based on their
experience, if needed. AI methods such as search based heuristics and meta
heuristics and optimization methods are used to generate optimal decisions
considering the factory uncertainty. Through the visualization interface the
user can study the suggested plan and filter the solutions by tightening
the targeted KPI values. Then, the selected solutions are validated through
the virtual factory simulation. While the simulation is negative, the models
are iteratively enriched through model acquisition techniques to learn to
represent the reality of shop floors better.

(c) The final step focuses on reactive decision-making in terms of generating
strategies to react in a fast and efficient way to unforeseen events. These
strategies vary from simple decision rules easily understandable by the pro-
duction manager, to fast re-optimization techniques based on the model
designed in step (b), or black box neural network policies.

(3) Actuation: After the validation of the generated plan, the real-time-control mod-
ule dispatches the scheduled tasks to the resources involved, including robots,
machines and human operators. Dedicated interfaces to each resource are de-
ployed to enable communication with the machine and robots, while wearable
devices are used to include the human operators in the loop. The execution
of the schedule is continuously monitored to track the progress and detect un-
expected events that may occur. In the latter case, the actuation attempts to
re-schedule the remaining work. An automatic alert is triggered if the schedule
cannot be modified autonomously, and human intervention is needed. The data
captured by the real-time-control module are used to update the real time digital
reconstruction of the factory.

3. State of the art

As ASSISTANT is a multi-disciplinary project, we provide below a short state of the
art in the main fields of the project, and we explain how this state of the art must be
extended to realize the vision of our project.

3.1. AI for high level manufacturing decisions

The adoption of data-driven modeling and the underpinning use of IoT and machine
learning technologies are widely considered to have revolutionized the manufacturing
industry. However, adoption and market penetration are slow and often incremental.
For example, ML techniques for smart manufacturing processes have been demon-
strated in shop floor control (Wang & Jiang, 2019), predictive maintenance (Yam, Tse,
Li, & Tu, 2001), and online scheduling (Hammami, Mouelhi, & Said, 2017), among
other tasks.

In general, the incorporation of Machine Learning or Artificial Intelligence (AI)

10



components in manufacturing can be characterized by autonomous intelligent sens-
ing, interconnection, collaboration, learning, analysis, decision-making, and execution
of human, machine, material, environment, and information processes in the whole
system and its life cycle

Even though a direct adaptation of AI components could be made in the industrial
sector, several technical, ethical, legal, and security challenges need to be overcome.

At a higher level, these challenges include: (1) the need of processing data at speed,
(2) the need for skilled human resources who are able to operate and understand AI
techniques for supporting the acceleration of executions on heterogeneous systems,
(3) the ethical dimension of using AI in manufacturing environments, and (4) the
legal requirements that define a framework in which AI components can operate and
construct a dimensional landscape where the manufacturing sector can provision or
use techniques to fulfil internal and external needs.

At a lower level, challenges are different depending on the domain of application
and functionalities involved.

Key challenges include the complexity of aggregating and analyzing data in general,
yet meaningful, ways. In the bigger picture, ML and data analytics have not been suffi-
ciently explored for manufacturing system design, production planning, nor scheduling,
Shang and You (2019). Recently, to address such challenges, programming abstractions
based on regular expressions and quantitative aggregation iterators were formalized to
synthesize a safe code with performance guarantee: Abbas, Alur, Mamouras, Mang-
haram, and Rodionova (2018); and optimization components (Beldiceanu, Carlsson,
Douence, & Simonis, 2016).
ASSISTANT contributes to the use of AI methods for high-level manufacturing deci-
sions such as process and production planning. The resulting approaches will provide
the right level of reconfigurability since they hedge against uncertainties well charac-
terized through machine learning. Unlike most existing black-box AI methods, AS-
SISTANT relies on the acquisition of explicable models. To overcome the challenge
of data acquisition, data cleaning, and data confidentiality (which are related to the
higher-level challenge of processing data at speed) , ASSISTANT provides a standard-
ized data fabric, building on technology-neutral and highly efficient communication
patterns, it supports instrumentation and integration of diverse legacy systems, as
well as the use of distributed (edge/fog/cloud) computing resources for analysis and
training on data. Building on the data fabric and the interconnected digital twins, we
will adapt the framework to the manufacturing context, and improve the design and
operation of production systems.

To overcome the challenges related to the ethical dimensions, as we will describe
later on, specific approaches built into responsible AI considerations are included.

3.2. Acquire robust optimization parameterized models

Discrete optimization relies on models that are typically executed by solvers, e.g.
Mixed Integer Programming, Constraint Programming solvers. Technology indepen-
dent modeling languages like MiniZinc (Nethercote et al., 2007) incorporate global
constraints as building blocks (Beldiceanu, Carlsson, & Rampon, 2012) to come up
with concise models. While usually built by experts, a recent new line of research tends
to acquire models from data Bessiere, Koriche, Lazaar, and O’Sullivan (2017); Kumar,
Teso, and De Raedt (2019), where global constraints are used as a learning bias to
acquire models from a limited amount of data (Beldiceanu et al., 2016).
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ASSISTANT intends to advance the state of the art of model acquisition in two
ways. First, we will address the question of learning parameterized models that can
be transposed to several situations, i.e. a model should not become invalid if we
add/remove a machine: in the context of manufacturing, typical parameters are num-
bers/type/capacity/speed of machines, task characteristics, cost matrices and depen-
dency graphs. Second, we will initiate a line of research where model acquisition in-
teracts smoothly with digital twins to converge to more realistic models. It has been
shown that discrete optimization models have a strong structure which allows one to
acquire models from a restricted set of samples, Beldiceanu et al. (2016). To get more
realistic models we aim to integrate digital twins into the learning process in a smart
way: rather than considering the huge amount of simulated data generated by a digital
twin, we plan to use active learning, Bessiere et al. (2017), to query digital twins in a
focused way in order to converge to more robust models.

3.3. Machine learning to learn digital twin’s parameters and uncertainties

The digital twin has been introduced as a virtual representation of real objects
(Glaessgen & Stargel, 2012). In a manufacturing context, the digital twin is composed
of interconnected physical and functional models of resources, products and systems.
The purpose is to improve production by carrying out autonomous decision-making
in planning and operation (Boschert & Rosen, 2016). Feedback of the information
and decisions to the previous planning phases are part of the concept Kahlen,
Flumerfelt, and Alves (2017). The concept envisages a production-phase-spanning
use of the resulting models and information in different software tools for increased
flexibility and closed-loop operations. Digital twins were first introduced for product
design by using CAD models and simulations. Later, the concept was extended to
planning, operation and maintenance (Funk & Reinhart, 2017; Ivanov, Dolgui, Das,
& Sokolov, 2019). Digital twins consist of multiple models from various domains.
These domain models focus on conceptual modeling of a complex problem domain
in order to gain better understanding. Languages such as UML and SysML permit
automatic translation to executable/analyzable models. To tackle a specific domain
idiom, domain-specific languages (DSL) were created, (Kelly & Tolvanen, 2008) .
Major industry software providers such as IBM, ORACLE and SIEMENS already
offer digital twins (e.g., Watson Internet of Things), that incorporate a machine
learning aspect, especially in the context of IoT. Similarly, domain modeling is useful
for many AI tools, e.g. TensorFlow (Abadi et al., 2016).

As ASSISTANT needs to deal with the complex, heterogeneous domains (i.e., sev-
eral aspects of production lines), we will start from the above-described approaches
combining AI and domain modeling. Contrary, to existing twins who use ML primarily
for specific prediction tasks, we will enhance digital twins with machine learning for
prescriptive analytics in manufacturing to make decisions leading to flexible and ro-
bust manufacturing decisions in the design, operation, and real-time stages. Further-
more, we will use human-understandable AI, by incorporating white-box modelling
techniques in domain modeling, including behavioral models of schedules, machine
behavior. Another aspect is that these domain models and AI algorithms explicitly
need to take into consideration uncertainties. Therefore, we will extend domain model-
ing languages to support the modeling of uncertainties. In addition, we will use digital
twins to produce more realistic explicable decision aid models based on reinforcement
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learning (e.g., learning physical restrictions) that optimize the entire process globally.

3.4. The extension of generative design to all manufacturing decisions

We would like to be able to generate suitable/optimal process plans, production plans,
schedules, etc. In order to explore the possibilities in an automated way, we need to
be able to model the ”design space”, i.e., the possible production plans, schedules,
etc. This is a research challenge, given the multitude of domains that are joined in
a manufacturing system. We tackle this challenge by creating a domain model that
covers this design space (see also the citations). This domain model serves as input for
both coarse grained learning (structure of the model, i.e., execution order of schedule),
as well as fine-grained learning (i.e., learning exact parameter values).

Coarse grained “learning and inference” (in fact not an ML approach) will be done
by optimization algorithms. For examples:

• determining an optimal process plan or schedule based on cost, throughput etc.
This uses optimization algorithms based on a decision problem in combination
with cost/throughput/... simulation

• determining an optimal schedule. This uses an optimization that heavily relies
on uncertainties (availability of an operator, chance of breakdown, etc.).

Fine grained learning and inference will be done to determine model parameters.
For examples:

• statistical analysis of historical data to determine distributions representing un-
certainty.

• estimation of parameter distributions. This is achieved based on statistical anal-
ysis of the historical data. Parameters can be predicted using e.g., Bayesian
networks.

The process of developing such AI solutions will be supported by a knowledge graph
that contains a domain model and links it to data, models and other existing artefacts
within a manufacturing context. This knowledge graph can be explored and queried
for data, information, models. Examples are:

• scattered data can be easily queried to perform statistical analysis. The results
can be stored as parameters with uncertainty in the knowledge graph (e.g., like-
lihood of a machine breaking down as a probability distribution).

• a Bayesian network can be extracted from the parameters in the knowledge graph
that are modelled with uncertainty.

• a process plan outline (what resources, skills, tasks, etc. exist) can be extracted
to serve as input for finding an optimal process plan.

Generative design is automated by a technique called computational design synthe-
sis (CDS), (Chakrabarti et al., 2011). CDS aims at assisting designers through rapid
exploration of the space of possible designs. The use of CDS in the early conceptual
design phase requires the use of abstractions and formal models, and builds on do-
main modeling (Helms, Shea, & Hoisl, 2009) and DSL, in particular for the design
of manufacturing/assembly lines, (Herzig, Berx, Gadeyne, Witters, & Paredis, 2016).
The methods return optimal solution with regard to cost and throughput, outputted
as formal architectural models. To the best of our knowledge, generative design has
only been used to design products and production systems. We will extend the use of
generative design to production planning and scheduling, allowing the user to specify
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targeted KPI, while the software returns solutions within a specified range.

3.5. Data driven optimization in manufacturing

Automatic decision support in tactical and operational manufacturing decisions relies
on optimization/operation research techniques. With the development of computing
technologies, software providers started to propose Advanced Planning Systems
(APS) (Stadtler, 2005) to model the production process. The future of APS lies in
the incorporation of data analytics techniques, to represent the possible values that
uncertain data can take better, (Thevenin, Adulyasak, & Cordeau, 2021). Techniques
to include data analytics into the linear program classically used in APS have been
developed (Bertsimas, Gupta, & Kallus, 2018; Thevenin, Adulyasak, & Cordeau,
2022), but their application in manufacturing remains scarce (Zhao, Ning, & You,
2019). While APSs have a large added value for companies, they remain largely
under-utilized because of their costs, and because it requires qualified planners to
ensure the APS receive accurate data, and to analyze the output of the plan.
Similarly, many approaches have been developed to design conventional manufac-
turing lines, they can be adapted or replaced to meet the new challenges posed by
reconfigurable manufacturing systems (Hashemi-Petroodi, Dolgui, Kovalev, Kovalyov,
& Thevenin, 2020; Koren, Gu, & Guo, 2018; Yelles-Chaouche, Gurevsky, Brahimi, &
Dolgui, 2020). While different approaches have been developed to use the flexibility
of RMS efficiently by automatizing process planning (Battäıa, Dolgui, & Guschinsky,
2020), the issues of designing reconfigurable lines have not yet been sufficiently studied.

On the one hand, the discrepancy between the data used by the system and what
is happening in the company leads to poor decisions from APS. In ASSISTANT, the
intelligent digital twins make decisions based on real-time data. On the other hand,
historical data analyzed with machine learning techniques allow predictions about the
values of various unknown parameters to be obtained. We aim to integrate the resulting
characterization of the uncertainties of such parameters to create plans that are robust
to the uncertainties. Finally, to be aligned with the requirements and changes of the
shop floor ASSISTANT aims to develop a tool to automatically build the scheduling
models based on data. ASSISTANT will provide a method to design reconfigurable
production lines with the right level of reconfigurability, while maintaining the required
product/process quality. This will be achieved by using data analytics techniques to
build the uncertainty sets, and by using machine learning to learn the implication of
a process plan on the quality of the products and process.

3.6. Human interaction and safe human-robot collaboration

There are more and more robots in the manufacturing industry, and they take over
regular the regular flow of operations, whereas human workers handle the production
peaks Thevenin, Mebarki, and Chatellier (2021). In this context, the human factor
plays a crucial part in manufacturing systems (Hashemi-Petroodi, Thevenin, Kovalev,
& Dolgui, 2020). As such, robotic support of humans for a collaborative assembly
greatly enhances those systems (Michalos et al., 2014). There are several industrial
applications regarding humans in manufacturing systems, e.g. BMW and Audi AG
introduced cooperative robots to work near human operators in Spartanburg and
Ingolstadt plants. Indirect Human Robot Collaboration (HRC) is achieved by various
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human detection applications Liu and Wang (2017); Lv, Feng, Ran, and Zhao (2014),
while direct HRC can be achieved through the use of wearable devices that provide
real-time data Michalos, Karagiannis, Makris, Tokçalar, and Chryssolouris (2016).
Apart from some small-scale experimental installations where humans have a more
active role, most of the above applications have not reached the production site.

ASSISTANT aims to improve the support of the human operator both in the con-
text of indirect and direct interaction with robots: i) we aim at more reliable human
recognition than previous applications, extracting the human’s status and intentions in
order to adapt to their behavior, entering a ii) direct interaction state when required:
wearable devices, such as AR glasses or smart watches will provide a set of sensors
giving input data for deep learning methods to extract models of humans’ status and
intentions. ASSISTANT will comply fully with ethics requirements concerning human
safety in collaborative manufacturing systems.

3.7. Sustainable metrics in manufacturing companies.

Manufacturing companies measure managing metrics (KPIs) related to each sustain-
able pillar, namely economic, environmental, and social components. The optimization
at the different levels (e.g. strategic, tactical, or operational plan generation) will ac-
count for these sustainability pillars, and the company’s stakeholders will fix the levels
of participation of each pillar.

Manufacturing companies have broad know-how in expressing their interest on eco-
nomic representative KPIs. These KPIs will be evaluated based on the net benefits
associated with the decisions, which are linked directly or indirectly to objective func-
tions variables established in the optimization processes,

The social perspective KPIs will be evaluated based on, but not limited to, the eth-
ical frameworks. These KPIs are fundamentally based on Organizational values-based
KPIs, Ethical requirements based KPIs (i.e., derived from the European Trustworthy
guidelines), Risk-based AI considerations linked to the social pillar and other socially
based considerations and constraints that do not violate regulatory considerations
specified by the previously defined instruments.

Finally, the environmental perspectives will be evaluated based on standardized
tools or KPIs correlated to environmental concerns. Different approaches and met-
rics are currently used in the manufacturing sector (e.g. Life Cycle Assessment) that
enforce the use of energy sustainable features, such as carbon emission and energy con-
sumption. Therefore, our approach seeks to include such metrics during the reasoning
processes.

4. Main scientific building blocks of the project

This section describes the tools requires to realize our vision. As shown in Figure 3,
the framework requires the following components: (1) definition of an ethical-by-design
architecture; (2) design of a data fabric leading to a real-time digital picture of the
manufacturing system; (3) creation of a data orchestration ensuring data safety and
short-latency; (4) creation of a human-centric framework; (5) development of predic-
tive analytics tools to estimate uncertain parameters; (6) creation of self-adaptive data
driven mechanisms and architecture in each intelligent twin; (7) development of de-
cision aid algorithms for robust and agile planning; (8) development of an AI-based
controller for actuation and reactive decision for real time control.
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Figure 3. The set of tools required to build the ASSISTANT concept.

4.1. An ethical-by-design architecture

AI components can be developed and deployed under different criteria which have
diverse impacts on the functionalities and legal concerns involved. These criteria lead
to diverse opportunities to incorporate responsible considerations on AI components
under different scopes. One scope involves components that can be built, deployed,
and integrated under some pre-specified concepts or approaches (e.g. ethics) to em-
bed, indirectly, the element with the specified concepts or methods (i.e. in-design).
Another alternative implies that the component will be built with intrinsic capabili-
ties or strategies that are part of the concepts or approaches of interest (i.e. by-design).
Finally, the concepts can be specified as part of codes, standards, and regulations that
ensure the integrity of the different components and stakeholders under the umbrella
of selected considerations (i.e., for-design).

The ethics by-design approach includes best practices that include ethical or re-
sponsible deliberations already in the design process. These practices include orga-
nizational aspects (e.g., establishing an ethics board) and suggestions for the actual
process. Therefore, what is to be achieved, at a design level, is supported by ethically
driven decision routines that are integrated into the AI systems. By integrating these
routines (by-design), the incorporation of ethical considerations (as those defined by
ongoing requirements or strategies – e.g. trustworthy requirements) and values (that
include those derived from manufacturing goals and considerations) within a technical
architecture design process can be performed.

To operationalize this process, specific strategies and considerations should be de-
fined at the beginning of the development process. In our case, these considerations
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are driven by the use of human-centric considerations, the ART principles, and those
derived from EU requirements and regulations (e.g., AI act and Trustworthy require-
ments). In ASSISTANT, the main strategy used to define the scope of the integration
of responsible AI considerations implies the fulfilment of a human-centric approach
within the architectural definition. To do this, first, a technical definition of what is
proposed to be built must be defined. This technical definition is constructed by a set of
requirements established by each digital twin component within ASSISTANT. Then,
the integration of responsible AI considerations is performed in a recursive process,
allowing modification of the defined technical architecture.

To gather the requirements within the project, an integrated-requirements engineer-
ing methodology is proposed. The foundations of the methodology are formed by the
stakeholder’s current processes and practices. To secure the acceptance of ASSISTANT
by its end-users, all stakeholders are involved in the design of the ASSISTANT archi-
tecture and, therefore, in the definition of the current processes and practices. The
current practices reflect an image of current processes and contain several challenges.
These challenges constitute the major drivers for the project and, ultimately, the foun-
dation for the requirements. Two main types of requirements are distinguished, the
end-user requirements and the IT requirements.

The end-user requirements are points of improvement and are valid for the whole
project. They represent the main business drivers of the project, and need to be satis-
fied by the project outcomes. The IT requirements are based on the use cases desired
scenario, and target the development by specifying software and hardware function-
alities. The requirements are obtained by performing a deep analysis of the users’
needs (production managers, process engineers, but also workers), based on interviews,
questionnaires, and on-site workshops. The information about current processes, main
problems and their underlying causes, KPIs for decisions, as well as ethical concerns on
the use of AI in manufacturing is collected. The current situation of process and pro-
duction planning, scheduling, and real-time control is analyzed. Then the requirements
for the intelligent digital twins are established.

Based on these requirements, the global architecture is designed. The role of the
overall architecture of ASSISTANT is to provide a framework for individual sub-
architectures to collaborate in a common cause. The key for this approach is to intro-
duce interoperability (i.e., information, technical, and visualisation interoperability)
on the different sub-architectures.

Once the technical architecture is defined, the recursive process for integrating mod-
ifications that secure the human-centric considerations is implemented. In addition,
ASSISTANT considers aspects that are preconditions for ethical conduct on account-
ability and effective, meaningful transparency. Therefore, we will carefully select the
programming language level, foreseeable system behavior, API design, and interfaces.
The architecture should also ensure stakeholders transparency, accountability, and
foreseeability. Moreover, ASSISTANT incorporates requirements imposed by positive
laws on fundamental rights protections such as the General Data Protection Reg-
ulation, non-discrimination legislation, labor law, among others. ASSISTANT then
observes legal obligations that are democratically legitimated and enforceable under
the Rule of Law.
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4.2. The data fabric

To provide a unified platform for data management and storage, ASSISTANT realizes
an intelligent data fabric that provides data structures, domain models, and commu-
nication subsystems to abstract underlying technical heterogeneities and connecting
manufacturing, IoT, and AI systems in a shared communication system. Conceptually,
the ASSISTANT data fabric can be seen to be composed of three parts: a live data
streaming architecture, a storage architecture, and a domain-model based integration
architecture. The live data streaming architecture (which is based on the Streamhan-
dler platform developed by INTRASOFT) is responsible for integration with external
equipment, data acquisition, and live data streaming. For the data fabric, Streamhan-
dler acts as an intermediary and data acquisition front-end that provides stream pro-
cessing capabilities and integrates the storage architecture part of the data fabric
through data stream connectors. The storage architecture defines a service-oriented
architecture for data storage, management, and composition where data of different
types (e.g., structure, unstructured, and time series based) are efficiently stored and
tagged with metadata for classification, search, and processing.

As part of the data analysis tasks, ASSISTANT will develop pattern recognition
tools based on constraints to detect and clean missing or unreliable data, and the
storage architecture provides light-weight data processing capabilities through a flex-
ible plug-in system where plug-in tools can be triggered explicitly or reactively (e.g.,
based on the presence of metadata tags in new data sets). In the integration layer,
which serves to provide a context-oriented interface to data and data storage systems,
an ontology architecture for integration of data from various internal sources (captors
that monitor product and process quality, RFID, MES, ERP systems, etc.) and exter-
nal sources (data from customers, equipment supplier, energy supplier, raw material
supplier, outsourcer data, etc.), tailored for prescriptive analytics, will be developed.
Such an ontology will differentiate decisions to be make, parameters of the system,
and KPIs. Besides data, the digital representation will include simulation models (e.g.,
discrete event system, multi-body simulations) to incorporate the process operation
rules. Combined, these three subsystems provide a flexible data storage management
platform tailored to the type of data and context of the project - adaptive manufac-
turing systems.

4.3. Data orchestration intelligence

To facilitate the seamless integration and scalability required to process and manage
the type and amount of data produced in agile manufacturing environments, highly
capable communication platforms are needed. The ASSISTANT data fabric’s storage
architecture is designed as a flexible service-oriented architecture that can be dynam-
ically managed through use of modern cloud native orchestration systems. Towards
this end, ASSISTANT will develop a management system for the storage architecture
composed of two parts: a simulation platform for evaluation of resource management
strategies, and a set of AI based tools for autonomous orchestration of the storage
architecture services.

Based on simulation and AI, the orchestration system can be conceptually seen as
a digital twin dedicated to the management of computational resources (similar to
the way the ASSISTANT digital twins manage manufacturing resources). The data
fabric simulation engine models the data flows both the manufacturing systems and
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the digital twins, and the orchestration system incorporates statistical and machine
learning tools to characterize and predict the workloads of the systems. Combined,
these tools constitute a foundation for an autonomous resource management system
capable of intelligent load balancing and decision support for storage management, e.g.,
through recommendations of how to make best use of the diverse resources of cloud
edge computing landscapes. The system is also intended to incorporate scheduling
and planning algorithms, as well as tools that allow predictive evaluation management
strategy decisions.

The overall design of the orchestration system will be human-centric, and allow users
to visualize where the data is sent and keep complete control on data flows and place-
ment decisions. The platform will be based on established technology-neutral mech-
anisms such as JSON-based REST services, Google protocol buffers, and OpenSSL
for secure messaging, and built on state of the art Python, R, and Matlab libraries
for time-series and deep learning techniques, as well as providing interfaces that allow
integration with modern resource management tools such as Kubernetes, docker, and
Istio service meshes. Overlap and integration of the data fabric into existing man-
agement frameworks such as the I4.0 Asset Administration Shell and the Reference
Architectural Model RAMI 4.0 will be studied in the project.

4.4. Human centric decision cockpits

In our intelligent twins, users will create process plans, production plans, and schedules
through generative design approaches. Consequently, the cockpits provide chatbots,
tools for plans visualization (including precedence graphs, process plans, Gantt charts,
and production tables), tools to highlight the differences between various solutions,
and interfaces to add filtering constraints describing the desired solutions. In addition,
we will investigate the use of wearable devices to help inexperienced workers perform
manufacturing operations or maintenance.

4.5. Predictive analytics tools

Ignoring manufacturing uncertainties leads to suboptimal decisions. Nevertheless, the
inclusion of uncertainty increases the model complexity, and consequently compu-
tation time and memory consumption. Thus, the decision-makers must be able to
select carefully the types of uncertainties to include in the prescriptive analytics. We
distinguish the unknown and the stochastic parameters. The former might vary sig-
nificantly, but their variance does not have a critical impact on the decisions (e.g.,
the diameter precision of a drilled hole). They are replaced by their estimates. AS-
SISTANT provides machine learning tools to estimate them as accurately as possible.
The latter are included in the decision models because manufacturers want to hedge
against them. ASSISTANT provides prescriptive analytics to learn the representation
of uncertainty from measurements or domain knowledge which can be a probability
distribution represented by its type (e.g., Normal) and parameters (e.g., mean, vari-
ance), a non-parametric Bayesian network, a convex uncertainty set convenient for
robust optimization, fuzzy variables, etc.
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4.6. Self-adaptive decision aid system

The state-of-the-art decision aid systems in manufacturing rely on mathematical op-
timization techniques to suggest decisions to the user. Such models are efficient and
easy to explain, but not flexible. ASSISTANT will render them self-adaptive. Besides
using accurate and up to date estimated parameters (including the various costs) from
the domain models, ASSISTANT will automatically learn the business logic (the con-
straints). The automatic generation of models mostly concerns the process planning
and scheduling twins, since the production planning models are generic enough to be
implemented in most factories without modifications. In process planning, the required
operations along with the necessary resource skills, are inferred from the CAD model.
First, we extend the assembly by a disassembly method to manufactured parts. Then, a
resource-skill comparison automatically infers the resources (internal or to be bought)
able to perform a task. In addition, we provide tools (e.g., random forest) to learn the
impact of a process plan on the quality of products and processes and on long-term
costs and worker satisfaction. The resulting decision tree will be translated into math-
ematical optimization models to find the process plan with the required quality, cost,
and worker conditions and satisfaction. For scheduling, ASSISTANT will provide a
model acquisition tool that enriches basic scheduling models with learned constraints.
As a reinforcement learning approach, model acquisition evaluates the feasibility of a
proposed schedule with simulations. Based on the set of proposed schedules and their
feasibility, model acquisition generates the tightest set of constraints that excludes all
infeasible plans (schedules). Finally, for all digital twins, based on the set of proposed
plans and final plans validated by the users, the model acquisition tools automatically
learn additional constraints leading to the plans the user wants.

4.7. Decision aid for robust and adaptable manufacturing

ASSISTANT provides prescriptive analytics considering the uncertainty contained in
the digital twin. This uncertainty can be represented by scenario samples or uncer-
tainty sets. Then, a mathematical representation of the manufacturing system which
includes decisions that are taken in a robust way to perform well on all scenarios.
In addition, wait-and-see recourse actions for each scenario which allow reaction to
foreseen probabilistic events are designed and optimized. Process planning will ac-
count for demand uncertainties, possible machine failures, etc. and consider recourse
actions such as resource (human/robot) movements and modular equipment replace-
ments. Production planning is mostly impacted by demand, lead time, capacity, and
yield uncertainties. Recourse actions include express deliveries of components from
local suppliers; subcontracting part of production; adjusting production capacity with
temporary labor; reallocation of components that were reserved to end-items that can
no longer be manufactured.

4.8. AI based controller for actuation and reactive decisions

ASSISTANT will provide an AI-based controller for safe actuation on the shop floor.
Once the user validates the plan in intelligent process planning, production planning,
and scheduling intelligent digital twin, the controller communicates these plans to the
right resources (machine, robot, etc.). ASSISTANT will provide pattern recognition,
deep learning, or statistical learning to detect situations leading to bad product quality,
machine breakdowns, and deviations from the plan. If such a situation is detected,
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the controller reacts instantly. When simple adjustments are not possible, the plan
is updated. To ensure the safety of the worker during process plan reconfiguration,
robots we will use deep learning to detect obstacles as well as human presence and
behavior.

5. Discussion

ASSISTANT encompasses research, development, and validation. With respect to re-
search, the goal of the project is to:

(1) Provide a platform for different scientific communities (optimization, machine
learning, and manufacturing) that allows them to address key challenges in a
holistic way, such as robustness of systems, adaptability, and reconfigurability.

(2) Build on scientific advances in both statistical and symbolic machine learning.
The goal is to cover the range of descriptive, predictive and prescriptive anal-
ysis using the most appropriate techniques. Finding correlations in data can
be done using statistics (e.g., to find trends in a data stream). Based on such
correlations, predictions can be achieved using a neural network (e.g., for pre-
dictive maintenance). Machine learning and discrete optimizations, implemented
by e.g., constraint programming or mixed-integer programming, can be used for
optimizing manufacturing systems (e.g., generating optimal production plans,
optimal settings, etc.).

(3) Automate optimization analyses. In the current state, optimization software is
used in a per-case manner (e.g., manual creation of production scheduling mod-
els) with some given assumptions. This is not adequate in a reconfigurable en-
vironment. We intend to generate models and software components from the
available data.

(4) Employ digital twins as validation components for what-if analysis using AI.
Digital twins offer a way to simulate scenarios correctly, hence supporting engi-
neers in their decision process. In order to support this, ASSISTANT will design
the communication between a digital twin and AI models, so that they can be
more easily converted into operational and executable AI solutions.

(5) Create human-centric interaction with the AI system, where the reasons behind
decisions or suggestions provided by the AI system are easily explained. Oper-
ations and engineers need to be kept in the loop of the output of digital twins
and AI solutions by means of interpretable explanations.

With respect to development, the full life cycle of production systems is addressed
going from the specification of a manufacturing or assembly line up to the execution of
tasks in machines/workstations. The architecture manages the data throughout the all
life cycle of system, and supports human-centric interfaces at several decision points.

ASSISTANT validates and applies its research by means of three concrete industrial
cases, by Stellantis, Atlas Copco and Siemens Energy, as well as a demonstrator case
by Flanders Make. A complete solution will be implemented for each case considered.
This starts with data collection, creation of digital twins and usage of AI tools for
decision support for process planning, production planning, production scheduling
and real-time control.

All developed material including tools, demonstrations, use cases, architectures,
algorithms, code, etc. will be made public after the project is completed.

The ASSISTANT research project fosters collaboration between researchers working
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in the fields of AI and experts in manufacturing. The ASSISTANT consortium is
composed of Academics on AI ethics (UCC, EUV), AI and Edge Computing (UCC,
BITI), AI and Optimization (IMT, UCC), Production Industry (LMS, FLM, TUM), as
well as technology providers (INTRASOFT, FLM, SIEMENS AG), and manufacturers
(SIEMENS Energy, ATLAS COPCO, PSA).

ASSISTANT aims to improve decision-making in manufacturing from the design of
the manufacturing system, its operation management, and the control of its execution.
To enhance these decision aid tools, we will use the massive amount of data generated
on the shop floor to automatically acquire elements (constraints, objectives) of mathe-
matical models and constraints programming models. These decision models will also
account for uncertainties for the parameters that cannot be predicted accurately. As a
result, the decision aid modules will automatically adapt to changes of configuration
of the shop floor. In addition, the modules associated with each type of decision will
communicate through a feedback process. Thus, the decision validated by the decision-
maker will automatically be actuated on the shop floor. This set of modules yields an
intelligent digital twin network, and its creation requires several breakthroughs:

• Developing tools to acquire optimization models by combining the recent in
machine learning and digital twins;

• Investigating the use of machine learning to learn the parameters of the digital
twin’s model (simulation model, optimization models, etc.);

• Enhancing forecasting methods to predict a probability distribution of an un-
certainty set rather than a single value;

• Extending the generative design approach to production system design, produc-
tion planning, and scheduling;

• Investigating data-driven optimization to design assembly lines;
• Investigating stochastic programming for practical production planning prob-

lems;
• Developing AI system for safe, fence-less, human-robot collaboration.

The recent breakthroughs related to AI were provided by the GAFA, and they
mostly aim to provide online customized services. Transferring these breakthroughs to
the manufacturing industry is a challenge. The GAFA are early AI adopters who have
large business models, AI is their core activity, and they acquired maturity in these
technologies. In addition, these companies have access to a massive amount of data via
their online services. On the contrary, the core business of the manufacturing industry
is production. Manufacturers need dedicated software to address pressing issues on
the shop floor, such as reducing production costs, increasing service levels, improving
quality, detecting defects, improving safety.

While ASSISTANT focuses on improving manufacturing decisions on the shop floor,
the idea of the project may be extended to other applications. This includes appli-
cation to logistics where decisions include network design, warehousing, distribution,
routings, and last-mile deliveries. Indeed, these types of applications are often solved
with operation research models, and more and more devices such as GPS trackers and
RFID tags, are used to track information. The ideas may also apply to services such as
health care management, where decisions include the location of health care facilities
and their capacity, the staffing, the assignment of patients to rooms and staff, nurse
scheduling.

The ASSISTANT concept would also be valuable in a remanufacturing context.
First, the process planning tool may be extended to deal with the design of a disas-
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sembly line in the remanufacturing context. The design of a disassembly line follows
the same steps as in assembly, but there is a need for more flexibility to deal with the
unknown quality of the disassembled parts. This quality issue may lead to random
process duration, or even different operations depending on the state of the item. In
this context, the digital twin for real-time execution could help select the right oper-
ation depending on the quality of the part discovered during disassembly. Finally, the
intelligent digital twin for production planning can improve operations management in
remanufacturing facilities. In particular, this tool may alleviate the issues associated
with the uncertainty about the number of end-of-life items collected.

6. Conclusion

This paper outlines the objectives and the main approach of the European research
project ASSISTANT (November 2020 - October 2023). Building on a generative design
approach, ASSISTANT aims to produce a set of AI-based tools that support operators
and actors of adaptive manufacturing environments and increase the flexibility, effi-
ciency, and robustness of manufacturing environments. The ASSISTANT tools cover
the entire cycle of manufacturing decisions, ranging from process selection to produc-
tion system design, and include tools applicable at multiple time scales for detailed
planning, scheduling, and real-time control of manufacturing. ASSISTANT produces
a set of digital twins that are capable of adapting to manufacturing environments and
promotes a generative design-based methodology where tools continuously retrain and
learn from manufacturing data, and synthesize predictive and prescriptive models that
adjust to the reality of the shop floor at multiple decision levels. The ASSISTANT dig-
ital twins are used in conjunction with ML to train models, predict parameters and
characterize parameters, as well as inferring constraints for planning processes.
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