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Empirical comparison of different pedestrian
trajectory prediction methods at high densities

Raphael Korbmacher, Huu-Tu Dang, Antoine Tordeux, Benoit Gaudou, Nicolas
Verstaevel

Abstract Predicting human trajectories is a challenging task due to the complexity
of pedestrian behavior, which is influenced by external factors such as the scene’s
topology and interactions with other pedestrians. A special challenge arises from
the dependence of the behaviour on the density of the scene. In the literature, deep
learning algorithms show the best performance in predicting pedestrian trajectories,
but so far just for situations with low-densities. In this study, we aim to investigate
the suitability of these algorithms for high-density scenarios by evaluating them
using two error metrics and comparing their accuracy to that of knowledge-based
models. The first metric is distance-based, while the second counts the number of
collisions between pedestrians. Our findings reveal that deep learning algorithms
provide improved trajectory accuracy in the distance metric, but knowledge-based
models perform better in avoiding collisions.

1 Introduction

The rapid increase in urban populations in recent decades, particularly in developing
countries, has led to a strain on local infrastructure and an increase in high-density
situations, where the number of people in one area can reach 2-8 pedestrians per
square meter. This poses a challenge for researchers studying pedestrian behavior
and how it relates to infrastructure, events, and evacuations. To ensure safety in
these high-density situations, tools are needed to plan and organize them effectively.
Scientists typically use knowledge-based models (KB) to understand and simulate
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pedestrian dynamics [1]. These models are based on basic rules or generic functions,
and can be divided into two main categories: microscopic and macroscopic. Micro-
scopic models, such as the acceleration-based and velocity-based models, focus on
simulating the behavior of individual pedestrians and their local interactions [2]. On
the other hand, macroscopic models, such as the Hughes model [3], treat pedestrian
flow as fluid dynamics, focusing on the aggregation of crowd information.

In recent years, deep learning (DL) algorithms have gained popularity as a method
for predicting pedestrian trajectories [4]. Notable examples include Social-LSTM [5],
which incorporates information from nearby pedestrians using a social pooling layer,
and Social-GAN [6], which utilizes a generator and discriminator to generate and
evaluate predictions. These DL algorithms have been shown to be more accurate
than traditional KB models, but have only been tested in low-density situations.

This study aims to investigate the performance of DL algorithms in high-density
situations, and to compare their accuracy to that of KB models. To evaluate the
predictions, we use two metrics: a distance-error metric and a collision metric.
These metrics allow us to assess the accuracy of the predictions, as well as their
realism, in both low-density and high-density situations.

2 Methodology

2.1 Datasets

For the evaluation of predictions on low-density datasets, two mostly-used public
datasets are selected: ETH [7] and UCY [8]. There are a total of 750 trajectories in
the ETH dataset, which have been subdivided into two sets: ETH and Hotel. In the
UCY dataset, three sets have been chosen: ZARA01, ZARA02, and UNIV which
contain 786 trajectories in total. Both data sets are collected in outdoor settings
and include numerous pedestrian traffic patterns: unidirectional, bidirectional, and
multidirectional.

For high-density datasets, to the best of our knowledge, the only ones available
come from laboratory experiments at Forschungszentrum Jülich [9]. There are two
types of pedestrian flows in the Jülich datasets: unidirectional (UNI) and bidirectional
(BIDI). There are some scenarios in which pedestrians are asked to perform particular
behaviors; for the purpose of keeping natural behavior, these scenarios will be
removed. Finally, the UNI dataset includes 3638 trajectories with 5 data sets, whereas
the BIDI dataset contains 3096 trajectories in total with 6 data sets.

Given each set in the dataset, the average density of this set is calculated by
averaging the instantaneous densities over some different time steps. The average
density of the data sets in the low-density datasets are 0.13 − 0.38 𝑝𝑒𝑑/𝑚2. In the
high-density datasets, the UNI dataset has average densities of 0.38− 2.33 𝑝𝑒𝑑/𝑚2,
whereas the BIDI dataset average denisties of 0.38 − 3.0 𝑝𝑒𝑑/𝑚2.



Trajectory prediction at high densities 3

2.2 Models and algorithms

Two state-of-the-art KB approaches are considered: SFM [10] and ORCA [11]. These
modeling techniques take information from neighbors into account when computing
the exact velocity for the next step. Furthermore, the constant-velocity (CV) model
is chosen to check how good these prediction methods are compared to just using
instantaneous velocity as predictions.

For the DL approach, we use the two most commonly used algorithms in the
pedestrian trajectory prediction domain. These are the DL architectures: LSTM and
GAN. For both architectures, we used two types of algorithms. One of them is quite
simple and just takes the historical trajectory, of the pedestrian whose trajectory
is predicted, into account. It is called the vanilla LSTM or vanilla GAN. These
algorithms are Grid-based which means that the input is a local grid constructed
around the pedestrian. As input, they receive single positions and linearly embed
them in a 32-dimensional vector, which is appropriate to the spatial pooling size.
Three LSTM layers with 128 hidden dimensions and a linear output layer follow. The
other forms of algorithms additionally have social pooling mechanism implemented
in their architectures to aggregate neighbor information in the grid. These two
algorithms are the Social-LSTM [5] and the Social-GAN [6]. These social pooling
layers make it possible to not just use the history of the pedestrian as input, but also
the history trajectories of the surrounding pedestrians. This allows interactions to be
taken into account in the predictions. Table 1 presents different kinds of information
needed for each model or algorithm to make predictions.

Table 1: Kind of information feed to the algorithms/models.

Past Trajectory Neighbor Information

CV - -
SF - ✓
ORCA - ✓
Vanilla-LSTM ✓ -
Social-LSTM ✓ ✓
Social-GAN ✓ ✓

2.3 Calibration/Training

For KB models, the parameters of the ORCA and SF models are calibrated according
to the given data set, and the CV model does not need any training or calibration.
Relevant information about some specific frames is extracted from real datasets
and used as inputs to simulate pedestrians in the following steps. The simulated
trajectories are then compared to the real trajectories.
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For DL algorithms, in contrast to the configuration of related contributions [4],
we do not use a prediction length of 4.8𝑠, but of 1.6𝑠. The observation length is 1.2𝑠.
The reason for choosing smaller time intervals is that at high densities, the interaction
scales are much shorter. If higher time scales are chosen, the number of neighbours
that have to be taken into account at those densities would be too high. The frame
rate for the high-density datasets is 0.125, which means 9 observations are taken to
make 12 predictions. For the low-density datasets, the frame rate is 0.4. Therefore, 3
observations are taken to make 4 predictions. The DL algorithms are trained with a
learning rate of 0.0015, and a RMS-prop is used as the ADAM optimizer. The batch
size is 8, and we train for 15 epochs. As a loss function, the Mean Squared Error is
used. For the validation and testing, we use a hold-out validation strategy. 15% of the
data is used for validation, 15% for testing and the rest for training. The calculations
are done using PyTorch 1.

2.4 Evaluation/Testing

The most commonly used metric for pedestrian trajectory predictions is the distance-
based metric Average Displacement Error (ADE) [12]. The ADE averages the Eu-
clidean distance between points of the predicted trajectory and the ground truth over
all predicted steps. Recently, more and more works emphasize the importance of a
metrics that takes the number of collisions into account [12, 13]. Collision metrics
provide more insights about how realistic the predicted behavior is, especially in
high density situations, since avoiding collisions with other pedestrians is the most
important motivation when navigating through crowds. For calculating the collision
metric, we use the equation that was developed by Kothari et al. [12].

Col =
∑
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where 𝑆 includes all scenes in the test set, 𝑌 is a scene prediction which contains 𝑁
agents, �̂�𝑖 is the prediction of agent 𝑖 over the prediction length of 𝑇 .

If the predicted trajectory of a pedestrian intersects with neighbour trajectories,
the prediction is counted as a prediction with collision. The metrics indicates the
percentage of predictions in which collisions occurred. Important for that is the
chosen size of the pedestrians, which is given by the variable 𝛿 in equation 1. If 𝛿
is increased, the number of collisions also increases. Adapted from the heuristic of
Moussaı̈d et al. [14] for estimating the size of pedestrians, we choose a pedestrian
radius of 0.2𝑚, hense 𝛿 = 0.4𝑚.

1 http://pytorch.org
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3 Results

In this section, we provide the evaluation results of trajectory predictions for both
low-density and high-density datasets. The ADE and collision metrics have been
applied and the results are compared to provide insights on the performance of the
prediction methods.

3.1 Distance metric

Fig. 1a shows the ADE results of prediction for the low-density datasets. The average
density of each set of the low-density datasets are displayed on the x-axis, and the
result of the ADE metric is displayed on the y-axis. It can be seen that the DL
algorithms outperform the KB models for almost all densities. For the Zara1, Zara2,
and UCY data sets, the results of DL algorithms are much more accurate. The Social-
LSTM performed slightly better than the Vanilla-LSTM, which was expected. The
SF model performs worst, in particular for the two data sets Zara2 and UCY which
have higher densities.

(a) Low-density datasets.

(b) BIDI dataset. (c) UNI dataset.

Fig. 1: Results of distance error-metric (ADE).
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The ADE of the predictions for the high-density datasets is shown in Fig. 1b,c. The
ADE results of the BIDI dataset are depitched in Fig. 1b, while Fig. 1c shows ADE
results of the UNI dataset. There are a couple of similarities to the results in Fig. 1a.
The SF model makes the worst predictions, especially at higher densities, for the
UNI dataset as well as the BIDI dataset. Furthermore, the DL algorithms have better
prediction accuracy than the KB models. In the BIDI dataset, the Vanilla-LSTM
and the Social-LSTM perform best, whereas the Vanilla-LSTM and the SGAN
work best in the UNI scenario. In both cases, the ADE rises for the Social-LSTM
with increasing densities. Contrary to that, the ADE for the Vanilla-LSTM has the
tendency to fall with increasing densities. Likewise, the Social-GAN and the SF show
growing ADE with increasing densities, while the ADE of the CV seems to fall with
increasing densities. It seems that approaches that take neighbour information into
account, like the Social-LSTM, the SGAN, the SF, and the ORCA do, show a rising
ADE, while approaches that do not use neighbour information’s as an input have
fallen ADE’s, like the Vanilla-LSTM and CV.

3.2 Collision metrics

Fig. 2a shows the results of collision metric for the low-density datasets. The ORCA
model has the fewest collisions, followed by the SF model, both of which have far less
collisions than the DL algorithms. In the Zara2 and UCY data sets, some grouping
behavior can be observed which results in a high local density. In these groups, the
pedestrians walk very close together with almost touching shoulders. This is counted
as a collision, although it is not what we would expect as a collision. Besides that, it is
clearly shown that the percentage of collisions predicted by the DL algorithms is too
high. There is only the Zara1 data set which is collision-free, but for the others the
collision number is always higher than in the real trajectories and especially higher
than in the predictions by the KB models.

Fig. 2b,c present the percentage of collisions in the high-density datasets. In
Fig. 2b, the results for the BIDI dataset are presented, while in Fig. 2c shows the
results for the UNI dataset. In general, the results of the collision metric of the high-
density datasets are higher than those in the low-density datasets. In both high-density
datasets, it could clearly be shown that there is a tendency for a rising percentage
of collisions with increasing densities. This applies in particular to the bidirectional
environment, where the percentage of collisions in situations with densities above 2
𝑝𝑒𝑑/𝑚2.

In summary, with the distance metric, the DL algorithms get better ADE results
in the high-density datasets as there is a decline in the ADE results at higher density
compared to those in the low-density datasets. In contrary to this, the collision metric
indicates a completely opposite trend with an increase in the collision metric results
from the low-density datasets to the high-density datasets. This demonstrated that the
prediction of DL algorithms in high-density situations gains better distance accuracy,
but the realism is worse as the predicted trajectories result in many collisions. KB
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(a) Low-density datasets.

(b) BIDI dataset. (c) UNI dataset.

Fig. 2: Results of collision metric.

models, on the other hand, handle collisions well despite producing predictions with
a high ADE.

4 Conclusion

In the last decade, DL algorithms have shown great promise as one of the state-
of-the-art approaches for human trajectory prediction. However, the performance of
such algorithms is mostly proven in low-density scenarios. This work demonstrated
their poor performance in dense environments by revealing an increase in collision
metric findings in comparison to KB models. Specifically, we showed that the Social-
LSTM, which excels in low-density settings, fares worse than the Vanilla-LSTM in
high-density situations. Hence, the need to reduce the number of collisions in the
predicted trajectories in crowded situations is also important in terms of reality
rather than just focusing on distance-error metrics. Different improvements can be
used to tackle this problem. One is to combine distance-error and collision metrics
for training the algorithms. Another method is to use a hybrid approach, where DL
algorithms are combined with KB models. Furthermore, a more realistic elliptical
pedestrian shape, grouping behavior, and new collision metrics should be taken into
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account for better collision evaluation. Overcoming these problems by improving
the collision metric would be an important step toward the use of DL algorithms for
making realistic trajectory predictions at high densities.
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