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Introduction

The aim of this paper is to give a general formula which returns the number of stable digits [START_REF] Germain | On the Equation a x ≡ x (mod b)[END_REF][START_REF] Onnis | Observations regarding the repetitions of the last digits of a tetration of a generic base[END_REF][START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF] of the tetration

b a =    a if b = 1 a ( (b-1) a) if b ≥ 2 ,
for any a ∈ N 0 , at any given height b ∈ N -{0} [START_REF]Tetration. In Hyper operators[END_REF][START_REF] Hittmeir | A Reduction of Integer Factorization to Modular Tetration[END_REF]. Let us consider the standard decimal numeral system (radix-10). Thus, we are interested in an easy way to find the value of n ∈ N 0 such that b a ≡ b+1 a (mod 10 n ) ∧ b a ̸ ≡ b+1 a (mod 10 n+1 ).

In order to simplify the notations, let us invoke the definition of the congruence speed of b a from Reference [START_REF] Ripà | The congruence speed formula[END_REF], and then (Definition 1.3) we will extend it to the base a = 0. Definition 1.1. Let n ∈ N 0 and assume that a ∈ N -{0, 1} is not a multiple of 10. Then, given b-1 a ≡ b a (mod 10 n ) ∧ b-1 a ̸ ≡ b a (mod 10 n+1 ), ∀b > a, V (a, b) returns the strictly positive integer such that b a ≡ b+1 a (mod 10 n+V (a,b) ) ∧ b a ̸ ≡ b+1 a (mod 10 n+V (a,b)+1 ), and we Since, in general, n depends on a and b (see Definition 1.1), from here on, let us denote by #S c (a, b) the number of stable digits of all the bases belonging to the congruence class c (mod 10) (e.g., if we consider only tetration bases which have 3 or 7 as their rightmost digit, we will indicate the number of their stable digits, at height b, by #S {3,7} (a, b)).

For any given pair (a, b) of positive integers, and assuming that c ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, by definition, we have that

#S c (a, b) := b i=1 V (a, i) = b i=1 V (a, i) if b < b b-1 j=1 V (a, j) + (b -b + 1) • V (a) if b ≥ b . (1) 
Now, in the rest of the present paper, let us assume that a ∈ N : a ̸ ≡ 0 (mod 10) does not belong to the congruence class 0 modulo 10, since, for any b ≥ 1, if a ≡ 0 (mod 10), then the number of stable digits of b a corresponds to 0 if and only if a = 0 (by Definitions 1.1 and 1.3), and to the number of trailing zeros which appear at the end of b ((k + 1) • 10) otherwise (e.g., if k = 1 and b = 2, we have b a = 2 20 = 2 20 • 10 20 so that #S 0 (20, 2) = 20).

Section 2 describes how to calculate V (a) given a, and consequently #S c (a, b) at height b. In Subsection 2.1 we present a formula that returns the exact value of #S c (a, b) for any c which is not coprime to 10, whereas Subsection 2.2 is devoted to study the four remaining cases. Section 3 explains how to find which is the smallest hyperexponent b such that b a returns any desired value of #S c (a, b), for the chosen base a.

2 A formula for the number of stable digits of b a : a ̸ ≡ 0 (mod 10)

In this section we study #S c (a, b) assuming that the last digit of the tetration base is not equal to zero so that the residues modulo 10 of c cover the whole set {1, 2, 3, 4, 5, 6, 7, 8, 9}.

For this purpose, given a prime number p, let us indicate the p-adic order on Z by v p : Z → N ∪ {+∞}. v p is a valuation on Z (since {0} ⊂ Z ⊂ Q and the statement follows by Theorem of Reference [START_REF]P-adic Valuation is Valuation[END_REF]) and, given d ∈ Z, it is defined as the mapping

v p (d) := max {q ∈ N 0 : p q | d} if d ̸ = 0 +∞ if d = 0 , (i.e., v p (d)
is the function which returns the highest exponent q such that p q divides d, so we write v 3 (18) = 2 since p = 3 is a prime, 3 2 | 18, and 3 3 ∤ 18 ) [START_REF] Quick | p-adic Absolute Values[END_REF]. Assuming r ∈ Z, the p-adic valuation is characterized by some interesting properties [START_REF] Cassels | Local Fields[END_REF][START_REF]P-adic Valuation is Valuation[END_REF],

such as v p (d • r) = v p (d) + v p (r), v p (d + r) ≥ min {v p (d), v p (r)} (e.g., given any prime p, min {v p (d -1), v p (d + 1)} ≤ v p (2 • d) holds for any d). Moreover, if v p (d) ̸ = v p (r), then v p (d + r) = min {v p (d), v p (r)} and, in particular, v p (d) < v p (r) ⇒ v p (d + r) = v p (d).
Now, from [START_REF] Ripà | The congruence speed formula[END_REF], we know that the constant congruence speed of any given base a which is not congruent to 0 modulo 5 is (always) less than or equal to the 5-adic valuation of

• a -1 if a ≡ 1 (mod 5); • a 2 + 1 if a ≡ {2, 3} (mod 5); • a + 1 if a ≡ 4 (mod 5);
while, if a : a ≡ 5 (mod 10), we have that V (a) + 1 = v 2 (a 2 -1) (see [START_REF] Ripà | The congruence speed formula[END_REF], Corollary 2.2, pp. 55-56). Proof. Let a be such that a ≡ 5 (mod 10). Since a = 10 • k + 5 is an odd integer for any k ∈ N 0 , it follows that the argument of v 2 (a ± 1) is even, and by definition we have a ± 1 = 2 n • h 1 , for some n and h 1 ∈ N -{0}. Now, let us consider Equation (26) from [START_REF] Ripà | The congruence speed formula[END_REF], assume n ≥ 2 and observe how, for any m ∈ N 0 , the parity of h1 := h1 (n) does not change from

(2 n •((-1) n-1 +2)-i n•(n-1) )+m•10•2 n ±1 2 n = h1 to (2 n •((-1) n-1 +2)-i n•(n-1) )±1 2 n = h 1 so that v 2 (a -1) = n ⇒ (h 1 = 1 iff n : n ≡ 2 (mod 4) ∧ h 1 = 3 iff n : n ≡ 3 (mod 4)), while v 2 (a + 1) = n ⇒ (h 1 = 1 iff n : n ≡ 0 (mod 4) ∧ h 1 = 3 iff n : n ≡ 1 (mod 4)).
Similarly, considering any m ∈ N 0 , the other half of the cases are covered by

2 n • ((-1) n + 8) + i n•(n-1) + m • 10 • 2 n ± 1 2 n = h1 ⇒ 2 n • ((-1) n + 8) + i n•(n-1) ± 1 2 n = h 1 ,
and it follows that, for any n ∈ N -{0, 1}, h 1 = 7 or h 1 = 9.

Consequently, h1 is always an odd number (i.e., h 1 ∈ {1, 3, 7, 9}), and a : a ≡ 5 (mod 10 is even, and vice versa). Thus, a : a ≡ 5 (mod 10)

) ⇒ V (a) = v 2 (a -1) ∨ v 2 (a + 1). Now, max {v 2 (a -1), v 2 (a + 1)} = max{1, V (a)} = V (a) (since, for any given k ∈ N 0 such that a-1 2 = 10•k+4 2 , if
⇒ (v 2 (a -1) = 1 ∧ v 2 (a + 1) = V (a)) ∨ (v 2 (a -1) = V (a) ∧ v 2 (a + 1) = 1). Hence (see [9], Definition 2.1), v 2 (a -1) + v 2 (a + 1) = V (a) + 1 ⇒ V (a) + 1 = v 2 ((a -1) • (a + 1)) ⇒ V (a) + 1 = v 2 (a 2 -1).
Thus, we have proved that if a belongs to the congruence class 5 modulo 10, then

V (a) = max {v 2 (a -1), v 2 (a + 1)} = v 2 (a 2 -1) -1.
In order to conclude the proof, we need to show that V (a) = v 2 (a -1) if and only if k is even. Although this result could be easily achieved by observing that if a-1 2 = 5 • k + 2, then 2 2 | (a -1) if and only if k is even so that (v 2 (a -1) ≥ 2) ∧ (v 2 (a + 1) = 1) and (since V (a) ≥ 2 for any a : a ≡ 5 (mod 10) [START_REF] Ripà | On the congruence speed of tetration[END_REF][START_REF] Ripà | The congruence speed formula[END_REF]) k : k ≡ 0 (mod 2) ⇒ v 2 (a -1) = V (a), we take this opportunity to extend the basic technique that will be used for proving Theorem 2.1.

For this purpose, let h 2 ∈ N -{0} and h 1 ∈ N -{0} (as usual) so that (10

• k + 5) 2 -1 = 2 n+1 • h 2 and 10 • k + 5 -1 = 2 n • h 1 (or equivalently, 10 • k + 5 + 1 = 2 n • h 1
). Since we have already verified that h 1 is odd, we need to find for which values of k we get an odd value of h 2 .

Thus,

10 • k + 5 -1 = 2 n • h 2 ⇒ h 2 h 1 = (10 • k + 5) 2 -1 2 • (10 • k + 5 -1) ⇒ h 2 = (5 • k + 3) • h 1
and it follows that h 2 is odd if and only if k is even (whereas

10 • k + 5 + 1 = 2 n • h 2 ⇒ h 2 h 1 = (10 • k + 5) 2 -1 2 • (10 • k + 5 + 1) ⇒ h 2 = (5 • k + 2) • h 1 so that h 2 is odd if and only if k is odd). Hence, k ≡ 0 (mod 2) ⇒ V (10•k +5) = v 2 (10•k +4) and k ≡ 1 (mod 2) ⇒ V (10•k +5) = v 2 (10 • k + 6).
Therefore, a = 20

• k + 5 ⇒ V (a) = v 2 (a -1) and a = 20 • k + 15 ⇒ V (a) = v 2 (a + 1
). This completes the proof. Moreover, it is possible to invert Equations ( 6), [START_REF] Onnis | Observations regarding the repetitions of the last digits of a tetration of a generic base[END_REF], [START_REF] Ripà | La strana coda della serie n n n[END_REF], [START_REF] Ripà | On the congruence speed of tetration[END_REF], ( 14)-(17) from Reference [START_REF] Ripà | The congruence speed formula[END_REF] in order to simplify the computation of the exact value of V (a) given a, extending Lemma 2.1 from a : a ≡ 5 (mod 10) to any tetration base which is not a multiple of 10.

Theorem 2.1. For any a ∈ N 0 such that a is not a multiple of 10, the constant congruence speed of a is given by Equation (2),

V (a) =                                                        0 if a ∈ {0, 1} min {v 2 (a -1), v 5 (a -1)} if a ≡ 1 (mod 100) ∧ a ̸ = 1 min {v 2 (a + 1), v 5 (a -1)} if a ≡ 51 (mod 100) v 5 a 2 + 1 if a ≡ {2, 8} (mod 10) min v 2 (a + 1), v 5 a 2 + 1 if a ≡ {7, 43} (mod 100) min v 2 (a -1), v 5 a 2 + 1 if a ≡ {57, 93} (mod 100) v 5 (a + 1) if a ≡ 4 (mod 10) v 2 a 2 -1 -1 if a ≡ 5 (mod 10) v 5 (a -1) if a ≡ 6 (mod 10) min {v 2 (a -1), v 5 (a + 1)} if a ≡ 49 (mod 100) min {v 2 (a + 1), v 5 (a + 1)} if a ≡ 99 (mod 100) 1 otherwise . ( 2 
)
Proof. Although a ∈ {0, 1} ⇒ V (a) = 0 by Definition 1.1, Equation (18) of Reference [START_REF] Ripà | The congruence speed formula[END_REF] gives us a sufficient condition (relative to the congruence class of a modulo 25) for V (a) = 1. The set of all the tetration bases that are congruent to {2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23} (mod 25) contains the residual values of a which satisfy the last line of (2). It follows that Equation ( 2) is true for every a such that V (a) ≤ 1. Thus, we assume a : V (a) ≥ 2 in the rest of this proof. Theorem 2.1 can be proved by combining Equations ( 6), ( 7), ( 10), ( 11), ( 14)-( 17), (26) from Reference [START_REF] Ripà | The congruence speed formula[END_REF] and Equation ( 2) above so that it is possible to extend the method anticipated in the proof of Lemma 2.1 (which we will explicitly illustrate here for the symmetrical cases a ≡ 4 (mod 10) and a ≡ 6 (mod 10) to all the congruence classes of a modulo 10 (or 100) considered by [START_REF] Daccache | Climbing the ladder of hyper operators: Tetration, Mathemathics Stack Exchange[END_REF].

First of all, we show that Theorem 2.1 is true for any tetration base belonging to the congruence class 4 modulo 10. Thus, let a = 4 + 10 • k, for any k ∈ N 0 . Since Equation [START_REF] Ripà | La strana coda della serie n n n[END_REF] from Reference [START_REF] Ripà | The congruence speed formula[END_REF] (which maps all the bases congruent to 4 modulo 10 that are characterized by a constant congruence speed of n) has already been proven to be true, we only need to check that,

∀m ∈ N 0 , V (a) = v 5 (a + 1) ⇒ 5 n -1 + m • 2 • 5 n + 1 = 5 n • h if and only if m ≡ {0, 1, 3, 4} (mod 5
) and h is not divisible by 5. We immediately see that h is a multiple of 5 if and only if h belongs to the congruence class 5 modulo 10, since h ≡ 0 (mod 10) ⇒ 5 n • h ≡ 0 (mod 10), but this would lead to a contradiction because 5 n • h ≡ 0 (mod 10) implies that 5 n • h cannot be written as

5 n -1 + m • 2 • 5 n + 1, for the reason that m • 2 • 5 n ≡ 0 (mod 10),
and so 5 n + m • 2 • 5 n ≡ 5 (mod 10). Thus, for any n ∈ N -{0, 1}, m : m ≡ {0, 1, 3, 4} (mod 5) represents a necessary and sufficient condition for

5 n • (2 • m + 1) = 5 n • h, since we have previously verified that 5 n -1 + m • 2 • 5 n + 1 = 5 n • h holds if and only if h ̸ ≡ 5 (mod 10). Hence, 2 • m + 1 = h (∀m ∈ N 0 : m ̸ ≡ 2 (mod 5)).
Similarly, by observing that

5 n + 1 + m • 2 • 5 n -1 = 5 n • h ⇒ 2 • m + 1 = h, we can verify that m ̸ ≡ 2 (mod 5
) is also a necessary and sufficient condition for V (a : a ≡ 6 (mod 10)) = v 5 (a -1).

In order to complete the proof of Theorem 2.1, we note that it is possible to adopt the same approach as above for all the congruence classes listed in [START_REF] Daccache | Climbing the ladder of hyper operators: Tetration, Mathemathics Stack Exchange[END_REF]. Although ∃ ∞ a : ṽ(a) > V (a), we can check that a ≡ {2, 4, 5, 6, 8} (mod 10) ⇒ ∄a : ṽ(a) ̸ = V (a) and (as a direct consequence) this reduces the non-strict inequality

V a {2,8} (n) = n ≤ n = ln a {2,8} 2 + 1 h {2,8}
ln( 5) , stated by Equations ( 12), ( 13) from Reference [START_REF] Ripà | The congruence speed formula[END_REF], to an identity between n and n (let 5 ∤ h and consider that, for any k ∈ N 0 ,

a 2 + 1 = 5 n • h ⇒ 5 n = 5•(20•k 2 +8•k+1) h if a = 10 • k + 2 and 5 n = 5•(20•k 2 +32•k+13) h if a = 10 • k + 8
, taking also into account Equations ( 16), (17) in [START_REF] Ripà | The congruence speed formula[END_REF]). In order to prove (2), line 8 (from top to bottom), by using the method presented above instead of Lemma 2.1, an interesting computational exercise would be to autonomously verify that a 5 (n) from Equation (26) of Reference [START_REF] Ripà | The congruence speed formula[END_REF] is equal to

√ 2 n+1 • h + 1 only if h is odd, independently confirming that v 2 (a 2 -1) -1 = V (a)
for any a : a ≡ 5 (mod 10).

The next part of this proof is focused on the special subset E = {1, 51, 43, 93, 7, 57, 49, 99} of the set of all the bases that are coprime to 10. It is easy to verify from [START_REF] Ripà | On the congruence speed of tetration[END_REF][START_REF] Ripà | The congruence speed formula[END_REF] that if a modulo 100 does not belong to E, then V (a) = ṽ(a) (while a (mod 100) ∈ E ̸ ⇒ V (a) ̸ = ṽ(a)). Since ∃ ∞ a : ṽ(a) > V (a) for each of the eight congruence classes of a modulo 100 which correspond to the eight elements of the set {1, 51, 43, 93, 7, 57, 49, 99}, we anticipate that the same idea (already described in the previous paragraphs) can be used to prove the given result for all the aforementioned congruence classes (in order to easily find the exact value of the constant congruence speed of any a : a (mod 100) ∈ E). For brevity, let us show how to apply the usual method with reference only to the congruence class 1 of a modulo 100. Thus, if ṽ(a) = V (a) is true for any tetration base a ∈ N -{1} such that a ≡ 1 (mod 100), by merging Equation (6), Reference [START_REF] Ripà | The congruence speed formula[END_REF], line 2, and the first line of (2) from the present Theorem 2.1, we should be able to prove that V (a) = v 5 (a -1) ⇒ 10 n • (m + 1) + 1 -1 = 5 n • h (∀n ∈ N -{0, 1}) if and only if m ∈ N 0 : m ̸ ≡ 9 (mod 10) (since the constraint h : h ̸ ≡ 5 (mod 10) follows from the 5-adic valuation definition). This is not possible to do, since h ̸ ≡ 5 (mod 10) holds for any m ̸ ≡ 4 (mod 5) too (e.g., if n = 2 and m = 4, then V (501

) = 2 ̸ = 3 = v 5 (a -1), whereas V (501) = v 2 (a -1)). Consequently, V (a : a = 1 + 100 • k) ̸ = v 5 (a -1)
if and only if the first digit to the left of the rightmost (trailing) zero(s) is a five, while V (1 + 100 • k) ̸ = v 2 (a -1) can occur only if that "key digit" (see Definition 2.3 assuming α x 2 x 1 = α 01 by Definition 2.2) is even, and the conclusion follows since the sets of odd and even numbers have no intersection.

This technique is enough to confirm that V (a) = min {v 2 (a -1), v 5 (a -1)} for any a ̸ = 1 : a ≡ 1 (mod 100), and similarly showing that V (100 • k -1) ̸ = v 5 (a + 1) and V (100 • k -1) = v 2 (a + 1) if and only if the first digit to the left of the rightmost repunit (9's) is a four (see Definitions 2.2 and 2.3 assuming α x 2 x 1 = α 99 ).

Therefore, the statement of Theorem 2.1 can be proved by performing all the basic (tedious) calculations which arise when we merge Equations ( 6), ( 7), [START_REF] Ripà | La strana coda della serie n n n[END_REF], [START_REF] Ripà | On the congruence speed of tetration[END_REF], ( 14)-( 18), (26) from Reference [START_REF] Ripà | The congruence speed formula[END_REF] and Equation (2) of the present paper. Proof. We observe that a ≡ 25 (mod 100) ⇒ a ≡ 5 (mod 20) and a ≡ 75 (mod 100) ⇒ a ≡ 15 (mod 20). Then, we invoke Lemma 2.1 once again, and this concludes the proof of Corollary 2.1.

Corollary 2.2. For any a ∈ N -{1} such that a ̸ ≡ 0 (mod 10), Incorporating the statement of Lemma 2.1, all the allowed congruence classes of a modulo 20 have been covered so that there is no way and no need to specify when V (a) is unitary.

V (a) =                                                    min {v 2 (a -1), v 5 (a -1)} if a ≡ 1 (mod 20) min {v 2 (a + 1), v 5 (a -1)} if a ≡ 11 (mod 20) v 5 (a 2 + 1) if a ≡ {2, 8} (mod 10) min {v 2 (a + 1), v 5 (a 2 + 1)} if a ≡ {3, 7} (mod 20) min {v 2 (a -1), v 5 (a 2 + 1)} if a ≡ {13, 17} (mod 20) v 5 (a + 1) if a ≡ 4 (mod 10) v 2 (a -1) if a ≡ 5 (mod 20) v 2 (a + 1) if a ≡ 15 (mod 20) v 5 (a -1) if a ≡ 6 (mod 10) min {v 2 (a -1), v 5 (a + 1)} if a ≡ 9 (mod 20) min {v 2 (a + 1), v 5 (a + 1)} if a ≡ 19 (mod 20) . ( 3 
This concludes the proof of Corollary 2.2.

For the sake of simplicity, Definition 2.1 introduces a compact notation for a general (tight) upper bound of the exact value of V (a), as it follows from Equations ( 2)&(3). Definition 2.1. Let a ̸ = 1 be such that a ̸ ≡ 0 (mod 10). We define ṽ(a) :=

             v 5 (a -1)
iff a ≡ 1 (mod 5)

v 5 (a 2 + 1) iff a ≡ {2, 3} (mod 5) v 5 (a + 1) iff a ≡ 4 (mod 5) v 2 (a 2 -1) -1 iff a ≡ 5 (mod 10)
so that ṽ(a) ≥ V (a) for any a.

2.1 The exact value of #S {2,4,5,6,8} (a, b)

Assuming radix-10 [3], as usual, we describe the structure #S(a, b) by providing an exact formula for any pair (a, b) such that a ≡ {2, 4, 5, 6, 8} (mod 10) ∧ b ≥ 3, and very tight bounds which hold for all the bases a : a ≡ {1, 3, 7, 9} (mod 10). In particular, if a ≡ {2, 4, 5, 6, 8} (mod 10), then V (a) = ṽ(a) (see Theorem 2.1 and Definition 2.1). Let k ∈ N 0 and assume that a = (20

• k + 2 ∨ 20 • k + 18).
Then, for any a : a ≡ {2, 18} (mod 20), 1 a ≡ {2, 8} (mod 10), 2 a ≡ 4 (mod 10), and finally 3 a ≡ 4 a (mod 10) since 3 a ≡ 6 (mod 10). It follows that

#S {2,8} (20 • k + 2 ∨ 20 • k + 18, b) = 0 if b = 1 (b -2) • V (a) if b ≥ 2 (4) = 0 if b = 1 (b -2) • v 5 (a 2 + 1) if b ≥ 2 .
If a : a ≡ {12, 8} (mod 20), then ∀b ∈ N -{0}

#S {2,8} (20 • k + 12 ∨ 20 • k + 8, b) = (b -1) • V (a) = (b -1) • v 5 a 2 + 1 . (5) 
Even if the cases a : a ≡ 4 (mod 10) and a : a ≡ 6 (mod 10) have already been fully described in References [START_REF] Ripà | La strana coda della serie n n n[END_REF][START_REF] Ripà | The congruence speed formula[END_REF], "repetita iuvant", and so (for any b) we have

#S 4 (a, b) = (b -1) • V (a) = (b -1) • v 5 (a + 1); (6) 
while a : a ≡ 6 (mod 10) trivially implies V (a, 1) ≥ 1 ⇒ V (a, b) ≥ 1 so that (for any b)

#S 6 (a, b ≥ 2) = (b + 1) • V (a) = (b + 1) • v 5 (a -1) (7) 
immediately follows from V (a ≡ 6 (mod 10), 1) + V (a ≡ 6 (mod 10), 2

) = 3 • V (a ≡ 6 (mod 10), b ≥ 3) = 3 • v 5 (a -1).
If a : a ≡ 5 (mod 10), then V (a) = v 2 (a 2 -1) -1 (see Lemma 2.1), and b(a) is always equal to 3, with the only exception of the base a = 5 (i.e., b(5

) = 4 ̸ = 3 = b(10 • k + 15), ∀k ∈ N 0 ). It follows that #S 5 (20 • k + 15, b ≥ 2) = b • v 2 a 2 -1 -1 + 1; (8) 
#S 5 (20

• k + 25, b ≥ 2) = (b + 1) • v 2 a 2 -1 -1 ; (9) 
#S 5 (5, b) =        1 iff b = 1 4 iff b = 2 8 + 2 • (b -3) iff b ≥ 3 . ( 10 
)
In order to complete the #S(a, b) map, we need to study all the tetration bases which are coprime to 10, and this will be the goal of the next subsection.

Bounding

#S {1,3,7,9} (a, b) from V (a)
Let a : a ̸ ≡ 0 (mod 10) ∧ a ̸ = 1 be given (bearing in mind that V (1, 1) = 1, whereas V (1, b(1)) = V (1, 2) = V (1) = 0, and also V (0, b(0)) = V (0, 1) = V (0) = 0) so that V (a) is fully described by Theorem 2.1, and V (a) ≤ ṽ(a) always holds (Definition 2.1).

Under the above-mentioned condition a ̸ = 1, we note that if V (a : gcd(a, 10) = 1, b) = 0, then a = (20

• k + 3 ∨ 20 • k + 7) ∧ b = 1, for any k ∈ N 0 .
Thus, #S {3,7} (a = (20

• k + 3 ∨ 20 • k + 7), b ≥ b(a) -1) = (b -1) • V (a) iff V (a, 2) = V (a) b • V (a) + 1 iff V (a, 2) > V (a) (11) (e.g., V (6907922943, 2) = 11 > 9 = v 5 6907922943 2 + 1 ⇒ #S 3 (a = (20 • 345396147 + 3), b ≥ b(a)) = #S 3 (6907922943, b ≥ 6) = b • V (a) + 1, while V (107, 2) = 2 = v 5 107 2 + 1 ⇒ S 7 (a = (20 • 5 + 7), b ≥ b(a) -1) = #S 7 (107, b ≥ 1) = ((b -1) • V (a)) ).
For any b, the above also implies the bound ( 12)

(b -1) • V (a) ≤ #S {3,7} (a = (20 • k + 3 ∨ 20 • k + 7), b) ≤ b • V (a) + 1 ( 12 
)
and the (weaker) relation ( 13) follows

(b -1) • v 5 a 2 + 1 ≤ #S {3,7} (a = (20 • k + 3 ∨ 20 • k + 7), b ≥ 2) ≤ b • v 5 a 2 + 1 . (13) 
Finally, for any a ≡ {1, 3, 7, 9} (mod 10) which cannot be written as 20

• k + 3 ∨ 20 • k + 7, the number of stable digits of b a at height b ≥ b(a) -1 is b • V (a), or b • V (a) + 1, or (b + 1) • V (a).
We can also derive the following general bound which holds for any

b ≥ 2, b • V (a) ≤ #S {1,3,7,9} (a ̸ = (20 • k + 3 ∨ 20 • k + 7), b ≥ 2) ≤ (b + 1) • V (a), (14) 
and we additionally state that b(a) ≤ v 5 (a 2 + 1) + 2 is valid for every tetration base a which is congruent to {3, 7} (mod 10). The aforementioned limit on b(a) arises by combining the upper bounds by Equations ( 12)&( 14) with the general constraint from Equation (15) (see Section 3), taking also into account that if a ̸ ≡ {0, 2, 8} (mod 10), then V (a, 2) always assumes a strictly positive value. Furthermore, if a ̸ ≡ {3, 7} (mod 20), then b(a) ≤ ṽ(a) + 1, since we have not to worry about the case V (a, 1) = 0, which cannot happen (the only a which is characterized by V (a, 2) > 0 and such that b(a) > ṽ(a) + 1 is the base 5, but we already know that b(5) = ṽ(5) + 2). In general, assuming a ̸ = 5, only a maximum of ṽ(a) additional iterations can occur from the first time that the congruence speed assumes a strictly positive value (i.e., the first step or the second one for any a which is coprime to 10) to the last time that V (a, b) > V (a). Thus, for any a which is not congruent to 0 modulo 10, the maximum theoretical value of b(a) is bounded above by 1 + ṽ(a) + 1.

Therefore, b(a) ≤ ṽ(a) + 2 for every a : a ̸ ≡ 0 (mod 10) (let us observe that a = 1 ⇒ ṽ(1) = v 5 (0) = ∞ and b(1) = 2 by definition), and this result confirms also Conjecture 1 of Reference [START_REF] Ripà | The congruence speed formula[END_REF].

We can take a look at the congruence speed of the base a = 163574218751 as a random check on the upper bound provided by ( 14). a = 163574218751 is characterized by ṽ(163574218751) = v 5 (163574218751 -1) = 13 = V (163574218751), so we have 

V (a, 1) = 12, V (a, 2) = 19, V (a, 3) = V (a, 4) = V (a, 5) = V (a,
• #S 1 (74218751, b ≥ 3) = b • V (a) + 1 = b • 8 + 1, • #S 1 (45215487480163574218751, b ≥ 13) = (b + 1) • V (a) = (b + 1) • 25; • #S 3 (143, b ≥ 2) = (b -1) • V (a) = (b -1) • 2, • #S 3 (133, b ≥ 1) = b • V (a) = b, • #S 3 (847288609443, b ≥ 5) = b • V (a) + 1 = b • 2 + 1, • #S 3 (2996418333704193, b ≥ 17) = (b + 1) • V (a) = (b + 1) • 16; • #S 7 (907, b ≥ 2) = (b -1) • V (a) = (b -1) • 2, • #S 7 (177, b ≥ 1) = b • V (a) = b, • #S 7 (807, b ≥ 6) = b • V (a) + 1 = b • 3 + 1, • #S 7 (23418092077057, b ≥ 15) = (b + 1) • V (a) = (b + 1) • 14; • #S 9 (599, b ≥ 1) = b • V (a) = b • 2, • #S 9 (499, b ≥ 2) = b • V (a) + 1 = b • 2 + 1, • #S 9 (781249, b ≥ 4) = (b + 1) • V (a) = (b + 1) • 6.
Definition 2.3. Let n ∈ N -{0} and l ∈ N -{0, 1}. Let the tetration base 10 n-1 < a < 10 n be such that a := n j=1 s j • 10 j , for s 1 ∈ {1, 3, 7, 9}, s 1<j<n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and (if n is not unitary) s n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. Given one pair (x 2 , x 1 ) as specified by Definition 2.2, if a ̸ = α x 2 x 1 (mod 10 n ), then l ≤ n, and we single out s l ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, the l-th rightmost digit of the given tetration base, as the key-digit of

a = s n-s (n-1)-. . . -s l-s (l-1)-. . . -s 2-x 1 such that a ≡ α x 2 x 1 (mod 10 l-1 ) ∧ a ̸ ≡ α x 2 x 1 (mod 10 l ) (i.e., ∀ȷ ∈ {1, 2, . . . , l -1}, (s 1 = x 1 ∧ x 2 = x 2 (x 1 )) ⇒ (α x 2 x 1 [ȷ] = s j ∧ α x 2 x 1 [l] ̸ = s l ), see Definition 2.
2). If a = α x 2 x 1 (mod 10 n ), then l > n and s l := 0, since we shall assume s (n+w) = 0 for any w ∈ N-{0} (e.g., a = 57 = 0057 implies l = 4 because α 57 (mod 10 4 ) = 7057, and so we have s l -α 57 [l] = a-α 57 (mod 10 l )

10 (l-1) = s 4 -α 57 [4] = -7).
When we take into account only ṽ(a) trying to guess the exact value of V (a) by Definition 2.1, the most obvious critical bases are originated by those digits of α 51 , α 43 , α 93 , α 07 , α 57 , and α 49 which are equal to 5 (e.g., ∀l ∈ N : α 43 [l] = 5, ṽ α 43 (mod 10 l-1 ) > V α 43 (mod 10 l-1 ) ). Thus, let us select one of the aforementioned decadic integers, that we will indicate by α x 2 x 1 , and perform a surgical (mod 10 n ) cut on that string, just at the right of a casual digit 5 (i.e., given one pair (x 2 , x 1 ) ∈ {(0, 7), (4, 3), (4, 9), (5, 1), (5, 7), (9, 3)}, α x 2 x 1 [n + 1] = 5 shall be satisfied for α x 2 x 1 = α x 2 x 1 ) so that the decimal integer α x 2 x 1 (mod 10 n ) we get is a pretty special tetration base characterized by ṽ (α

x 2 x 1 (mod 10 n )) > V (α x 2 x 1 (mod 10 n )), as long as α x 2 x 1 [1] ̸ = 7.
At this point, it is important to point out that the tetration base 7 is very peculiar (i.e., ṽ(7) = V (7) despite the trueness of α 07 [START_REF] Daccache | Climbing the ladder of hyper operators: Tetration, Mathemathics Stack Exchange[END_REF] 16), lines 15 and 17 (from top to bottom). Furthermore, inside the proof of Theorem 2.1, for any n ∈ N -{0, 1} and l ∈ N -{0, 1, 2}, we have already spoiled that a := α 99 (mod 10 n ) violates the V (a) = ṽ(a) (wrong) conjecture [START_REF] Onnis | Observations regarding the repetitions of the last digits of a tetration of a generic base[END_REF] if and only if α 99 [l] = 4 (see Corollary 2.3 and Reference [START_REF] Ripà | The congruence speed formula[END_REF] for further details).

To be fair, as stated in Reference [START_REF] Ripà | The congruence speed formula[END_REF], Proposition 6, p. 47, there is one last fundamental intersection that arises from the solution y 15 (t) = 1 of y t = y over the commutative ring of decadic integers, considering the corresponding decimal integers modulo 10 n (by the well-known ring homomorphism).

For this purpose, as a clarifying example, let us show how y 15 (5) : 1 5 = 1 works (see [START_REF] Ripà | The congruence speed formula[END_REF], pp. 47-48). Given a(n) := n j=1 s j • 10 j , assume that n ∈ N -{0, 1} and s j=1 = 1, let s 1<j<n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and s n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} be defined by Definition 2.3. When s 2 = 0, for any given set {s 3 , s 4 , . . . , s n-1 , s n } as specified above, we can verify that #S 1 (a(n), b ≥ 2) = (b + 1) • V (a(n)) is always true, whereas, if s 2 = s n is an arbitrary element of the set {1, 2, 3, 4, 5, 6, 7, 8, 9}, then

#S 1 (a(2), b ≥ 2) = (b + 1) • V (a(2)) = b • V (a(2)) + 1
if and only if s 2 ̸ = 5 (where 5 = α 51 [START_REF] Daccache | Climbing the ladder of hyper operators: Tetration, Mathemathics Stack Exchange[END_REF] by Equation (2) from Reference [START_REF] Ripà | The congruence speed formula[END_REF]). Since V (51, 1) = 2, V (51, 2) = 3, and V (51, 3

) = V (51) = 2, it follows that #S 1 (51, b ≥ 2) = b • V (51) + 1 is not equal to (b + 1) • V (51) (i.e., V (a) ̸ = 1 ⇒ b • V (a) + 1 ̸ = (b + 1) • V (a)).
In view of the fact that there are many other exceptions to the ṽ(a) = V (a) rule, let us introduce the explanatory Corollary 2.3 which reveals, in details, the general law (involving all the tetration bases which are coprime to 10) at the bottom of the universal inequality V (a) ≤ ṽ(a).

Corollary 2.3. Let n ∈ N -{0, 1} and let l ∈ N -{0, 1, 2} be such that s l , the l-th rightmost digit of the tetration base a := n j=1 s j • 10 j , is outlined by Definition 2.3. For any a coprime to 10, the constant congruence speed is given by

V (a) =                                                                                    v 5 (a -1) if (s 2 , s 1 ) = (0, 1) ∧ s l ̸ = 5 v 2 (a -1) if (s 2 , s 1 ) = (0, 1) ∧ s l = 5 v 5 (a -1) if (s 2 , s 1 ) = (5, 1) ∧ |s l -α 51 [l]| ̸ = 5 v 2 (a + 1) if (s 2 , s 1 ) = (5, 1) ∧ |s l -α 51 [l]| = 5 v 5 a 2 + 1 if (s 2 , s 1 ) = (4, 3) ∧ |s l -α 43 [l]| ̸ = 5 v 2 (a + 1) if (s 2 , s 1 ) = (4, 3) ∧ |s l -α 43 [l]| = 5 v 5 a 2 + 1 if (s 2 , s 1 ) = (9, 3) ∧ |s l -α 93 [l]| ̸ = 5 v 2 (a -1) if (s 2 , s 1 ) = (9, 3) ∧ |s l -α 93 [l]| = 5 v 5 a 2 + 1 if (s 2 , s 1 ) = (0, 7) ∧ |s l -α 07 [l]| ̸ = 5 v 2 (a + 1) if (s 2 , s 1 ) = (0, 7) ∧ |s l -α 07 [l]| = 5 v 5 a 2 + 1 if (s 2 , s 1 ) = (5, 7) ∧ |s l -α 57 [l]| ̸ = 5 v 2 (a -1) if (s 2 , s 1 ) = (5, 7) ∧ |s l -α 57 [l]| = 5 v 5 (a + 1) if (s 2 , s 1 ) = (4, 9) ∧ |s l -α 49 [l]| ̸ = 5 v 2 (a -1) if (s 2 , s 1 ) = (4, 9) ∧ |s l -α 49 [l]| = 5 v 5 (a + 1) if (s 2 , s 1 ) = (9, 9) ∧ s l ̸ = 4 v 2 (a + 1) if (s 2 , s 1 ) = (9, 9) ∧ s l = 4 1 if (s 2 , s 1 ) / ∈ {(0, 1 
), (0, 7), (4, 3), (4, 9), (5, 1), (5, 7), (9, 3), (9, 9)} .

Proof. The last line of (15) trivially follows from (18) of Reference [START_REF] Ripà | The congruence speed formula[END_REF]. In order to prove the main result of Corollary 2.3, we can verify that the constraints given by (15) on the pairs (s 2 , s 1 ) represent sufficient conditions for the trueness of the stated 2-adic / 5-adic valuation rules. For this reason, let n, (l -1) ∈ N -{0, 1} be as specified by the corollary itself. We note that Equation (2) of [START_REF] Ripà | The congruence speed formula[END_REF], (by construction) implies that, ∀ (s 2 , s 1 ) ∈ {(0, 1), (0, 7), (4, 3), (4, 9), (5, 1), (5, 7), (9, 3), (9, 9)}, |s l -α

x 2 x 1 [l]| = 5 ⇒ V (a) + 1 ≤ ṽ(a)
and from the proof of Theorem 2.1 we immediately deduce that ((s ȷ = 9, ∀ȷ ∈ {1, 2, . . . , l -1}) ∧ s l = 4) ⇒ ṽ(a) ≥ V (a) + 1 (at this purpose, we point out that |s l -α 99 [l]| = |4 -9| = 5 for any l ∈ N -{0, 1, 2}). We can repeat the process for all the given (s 2 , s 1 ) pairs, confirming the aforementioned relation. Now, let v2 (a) := v 2 (a -1) if a ≡ {1, 49, 57, 93} (mod 100) and v2 (a) := v 2 (a + 1) if a ≡ {7, 43, 51, 99} (mod 100). It follows that |s l -α

x 2 x 1 [l]| ≡ 0 (mod 2) ⇒ V (a) + 1 ≤ v2 (a) always holds, whereas |s l -α x 2 x 1 [l]| ≡ 1 (mod 2) ⇒ V (a) = v2 (a)
is generally true (the direct verification can be accomplished through the standard technique, performing simple calculations, as described in the proof of Lemma 2.1).

Basically, given (s 2 , s 1 ) : (s 1 = x 1 ∧ s 2 = x 2 ) and assuming that gcd (s 1 , 10) = 1, it is not hard to verify that a sufficient condition which guarantees that the 2-adic valuation rules (by their own) hold is that |s l -α Since the collision subtended by 2 | |s l -α x 2 x 1 [l]| and the other one arising from |s l -α x 2 x 1 [l]| = 5 cannot occur at the same time for any given choice of (a (s 1 ) , α x 2 s 1 ) (i.e., if |s l -α x 2 x 1 [l]| = 5, then a : |s l -α x 2 x 1 [l]| / ∈ {0, 2, 4, 6, 8}, and vice versa), it is possible to opportunistically combine the 5-adic and the 2-adic valuation rules, in order to map the constant congruence speed of any selected a ∈ N -{0, 1}. Thus, if a : gcd(a, 10) = 1, then the constant congruence speed of every base which is greater than 10 is described by (15), and this concludes the proof of Corollary 2.3.

x 2 x 1 [l]| / ∈ {0, 2 
A major result of the present paper is that, by combining the statement of Theorem 2.1 and (15), we are finally able to provide an explicit, unique and compact, formula that returns the exact value of the constant congruence speed of every given tetration base a ∈ N 0 . In order to achieve this goal, let n, l, α x 2 x 1 , and the elements of the set {s 1 , . . . , s n } be defined as in Definition 2.3 (taking into account that n = 1 ⇒ s 2 = 0 = s l and that if ∄ (x 2 , x 1 ) : (x 2 = s 2 ∧ x 1 = s 1 ), then V (a) = 1 for any a which does not belong to the congruence class 0 modulo 10).

such that ba originates at least #T (a) stable digits (see [START_REF] Ripà | La strana coda della serie n n n[END_REF], pp. [START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF][14].

Thus, b a ≡ ba (mod 10 #T (a) ) for any b(a) ≥ b(a), and b i=1 V (a, i) can be simplified using the relations shown in the present paper, e.g., by Equation ( 5 

Conclusion

The number of stable digits of every integer tetration b a such that a is not a multiple of 10 is strongly related to the constant congruence speed of the base, and b(a) ≤ ṽ(a) + 2 is a sufficient condition to guarantee the constancy of the congruence speed of a for any hyperexponent at or above b(a) so that V a, b(a) + k = V (a) for any k ∈ N 0 . For this purpose, Theorem 2.1 provides an easy way to calculate the constant congruence speed of any a ≥ 2 that is not a multiple of 10, while (16) let us see in details the intrinsic structure of V (a). Finally, by combining the V (a) inverse map, shown in Reference [START_REF] Ripà | The congruence speed formula[END_REF],with a compact set of equations which allows an accurate calculation of #S(a, b), we are starting to see some symmetrical harmony in the fascinating, chaotic, behavior of hyper-4.

Lemma 2 . 1 .

 21 If the tetration base a belongs to the congruence class 5 modulo 20, then V (a) = v 2 (a -1). If a belongs to the congruence class 15 modulo 20 , then V (a) = v 2 (a + 1).

Corollary 2 . 1 .

 21 If a is congruent to 25 modulo 100, then V (a) = v 2 (a -1). If a is congruent to 75 modulo 100, then V (a) = v 2 (a + 1).

)

  Proof. Trivially, a ≡ 1 (mod 100) ⇒ a ≡ 1 (mod 20), a ≡ 51 (mod 100) ⇒ a ≡ 11 (mod 20), a ≡ 43 (mod 100) ⇒ a ≡ 3 (mod 20), a ≡ 93 (mod 100) ⇒ a ≡ 13 (mod 20), a ≡ 7 (mod 100) ⇒ a ≡ 7 (mod 20), a ≡ 57 (mod 100) ⇒ a ≡ 17 (mod 20), a ≡ 49 (mod 100) ⇒ a ≡ 9 (mod 20), a ≡ 99 (mod 100) ⇒ a ≡ 19 (mod 20).

  6) = 15, and V (a, b ≥ 7) = V (a) = 13. Hence, by Equation (1), #S 1 (163574218751, b ≥ b) = 12 + 19 + 15 • 4 + (b -( b -1)) • 13 = 91 + (b -b + 1) • 13 = (6 + 1) • 13 + (b -6) • 13 = (b + 1) • V (163574218751). In addition, some more bases from each one of the four critical congruence classes modulo 10, whose #S {1,3,7,9} (a, b ≥ b(a)) is uniquely given by (b -1) • V (a), or b • V (a), or b • V (a) + 1, or (b + 1) • V (a), are shown below:

= 5 ,

 5 see (15)&(16)) because x 2 = 5 if and only if x 1 = 7 ∨ x 1 = 1, but V (1) = 0 by definition, so we can see that the choice of the base 7 implies α 07 [l] = α 07 [3] = 8 ̸ = 5, instead of α 57 [l] = α 57 [2] = 5, since 7 ≡ 7 (mod 20) and 7 ̸ ≡ 17 (mod 20) share the common rule v 5 (a 2 + 1) = V (a) as stated by (

, 4 , 6 ,

 46 8}, whereas (symmetrically) the stated 5-adic valuation rules cannot be violated if |s l -α x 2 x 1 [l]| ̸ = 5 (in view of the fact that any issue arising from the theoretical collision |s l -αx 2 x 1 [l]| = 0 ⇒ 5 | |s l -α x 2 x 1 [l]| is prevented by Definition 2.3, which implies s l ̸ = α x 2 x 1 [l]).

  ), for any k ∈ N 0 ,a = 10 • k + 4 ⇒ b i=1 V (a, i) = (b -1) • v 5 (a + 1) ⇒ b(a) = min b b ∈ N -{0} : b ≥ #T (a) v 5 (a + 1) + 1 .

Remark 2.1. The laws that let us predict the value of every #S {1,3,7,9} a, b ≥ b(a) (including all the examples above) can be derived from Reference [START_REF] Ripà | The congruence speed formula[END_REF], Equation (2) for i = 1, 3, 4, 9, 10, 12. Definition 2.2. Let x 1 and x 2 belong to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let n ∈ N -{0}. We denote by α x 2 x 1 [n] ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} the n-th rightmost digit of the unique decadic integer α x 2 x 1 satisfying the fundamental equation y 5 = y (stated in Reference [START_REF] Ripà | The congruence speed formula[END_REF], Proposition 6, pp. 47-48), such that α x 2 x 1 [START_REF] Cassels | Local Fields[END_REF] = x 1 and α x 2 x 1 [2] = x 2 (e.g., if x 2 = 5 and x 1 = 1, then α x 2 x 1 [START_REF] Daccache | Climbing the ladder of hyper operators: Tetration, Mathemathics Stack Exchange[END_REF] = α 51 [START_REF] Daccache | Climbing the ladder of hyper operators: Tetration, Mathemathics Stack Exchange[END_REF] = 5 by definition and α x 2 x 1 [START_REF] Germain | On the Equation a x ≡ x (mod b)[END_REF] = α 51 [START_REF] Germain | On the Equation a x ≡ x (mod b)[END_REF] = 7 by construction, since

. . 87480163574218751 is the only solution of y 5 = y in the ring of decadic integers such that x 2 = 5 and x 1 = 1 [START_REF]The Online Encyclopedia of Integer Sequences[END_REF]). For any given pair (x 2 , x 1 ), we indicate by α x 2 x 1 (mod 10 n ) ∈ Z 10 n Z the (decimal) integer formed by the n rightmost digits of α x 2 x 1 ∈ Z 10 (e.g., if n = 4 and (x 2 , x 1 ) = (9, 9), then the selected solution of y 5 = y in the ring Z 10 is -1 = . . . 99999, and we have α x 2 x 1 (mod 10 n ) = α 99 (mod 10 4 ) = 9999).

For sake of clarity, the only decadic integers which satisfy the mentioned fundamental equation, y 5 = y (and, in general, y t = y for any t ∈ Z : t ≥ 5), are α 00 = 0 = . . . 00000000000000000000,

∞ -1 = . . . 9780124333019161727622001114846846461792218008213239954784512519836425781249, and α 99 = -1 = . . . 99999999999999999999999999999999999999999999999999999999999999.

In the light of the above, the direct map of V (a) is given by ( 16),

∅ iff a : a ≡ 0 (mod 10) ∧ a ̸ = 0

Given the standard system of counting, radix-(2 • 5) (since most human beings are born with two hands and five fingers on each hand), we have shown which is the law at the bottom of the congruence speed constancy, the special property of tetration that describes the asymptotic behavior of #S c (a, b). Now, it is not hard to figure out how our result can be naturally extended to many different numeral systems, radix-g. Thus, if we simply assume that g is a "valid square-free base" (see [START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF], Definition, p. 3, and also the Remarks, p. 4) satisfying the condition stated in Proposition 1 of Reference [START_REF] Germain | On the Equation a x ≡ x (mod b)[END_REF], then V (a, b) = V (a) must necessarily hold for sufficiently large b := b(a), as long as a is a nontrivial base such that a ̸ ≡ 0 (mod g).

Some useful properties of the congruence speed

The regularity features of the congruence speed [START_REF] Ripà | On the congruence speed of tetration[END_REF][START_REF] Ripà | The congruence speed formula[END_REF] can be very useful when performing peculiar mental calculations, finding also the precise value of #S(a, b) by Equation [START_REF] Cassels | Local Fields[END_REF].

We start by saying that, for any a : a ̸ ≡ 0 (mod 10) ∧ a ̸ = 1, V (a, 1) ≤ V (a, 2) always holds, so let a be such that V (a, 2) = 0 (i.e., assuming a > 1, V (a, 2) = 0 ⇔ a = ((20

If a : a ̸ ≡ {0, 2, 10, 18} (mod 20) ∧ a ̸ = 5 (i.e., a ̸ ≡ {0, 2, 10, 18} (mod 20) ⇒ V (a, 2)

A general rule which is very easy to keep in mind is that V (a, 1)+V (a, 2) ≤ 3•V (a) ≤ 3•ṽ(a), with the unique exception represented by the very special base a = 1 (since V (1) = 0, whereas V (1, 1) > 0). Furthermore, for any k ∈ N 0 , let us underline that V (a, b) = 0 if and only if b = 1 and a ≡ {2, 3, 7, 12, 4, 14, 8, 18} (mod 20) ∨ a = 0, or if b = 2 and a ≡ {2, 18} (mod 20) ∨ a = 1 ∨ a = 0, or if b ≥ 2 and a = 1 ∨ a = 0 (see Equations ( 4)-( 6), [START_REF] Ripà | On the congruence speed of tetration[END_REF]).

Moreover, for any a : a ̸ ≡ 0 (mod 10) ∧ a ̸ = 1, the periodicity properties of V (a) (see Equation ( 3)) let us immediately detect whether V (a) is greater than 1 or not, by simply checking the congruence a ≡ {2, [START_REF] Germain | On the Equation a x ≡ x (mod b)[END_REF][START_REF]Tetration. In Hyper operators[END_REF][START_REF]The Online Encyclopedia of Integer Sequences[END_REF][START_REF]P-adic Valuation is Valuation[END_REF][START_REF] Quick | p-adic Absolute Values[END_REF][START_REF] Ripà | On the congruence speed of tetration[END_REF][START_REF] Ripà | The congruence speed formula[END_REF][START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF]14,16,17,19,21,22, 23} (mod 25) [START_REF] Ripà | The congruence speed formula[END_REF]; if so, V (a) = 1, and V (a) ≥ 2 otherwise. We can go even further and try to memorize the next set of 900 values, 1 ≤ a ̸ ≡ 0 (mod 10) < 1000, in order to answer in less than one second (without writing or calculating anything) whether V (a) = 0, V (a) = 1, V (a) = 2, or even V (a) ≥ 3 (see [START_REF] Ripà | On the congruence speed of tetration[END_REF], p. 252). Thus, knowing that V (1) = 0 by definition, ∀a ∈ N -{1} : a ̸ ≡ 0 (mod 10), we have 

We can also take #S c (a, b) and check the stable digits ratio of any integer tetration whose base is not congruent to 0 modulo 10. For any given b a, the stable digits ratio of is 

where the ceiling ⌈q⌉ denotes the function which takes the rational number q as input and returns as output the least integer greater than or equal to q.

In conclusion, given any tetration base a : a ̸ ≡ 0 (mod 10) ∧ a ̸ = 1, if we choose beforehand the desired number of stable digits (