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HEAT FLOW IN A PERIODICALLY FORCED,

THERMOSTATTED CHAIN II

TOMASZ KOMOROWSKI, JOEL L. LEBOWITZ, AND STEFANO OLLA

Abstract. We derive a macroscopic heat equation for the temperature of
a pinned harmonic chain subject to a periodic force at its right side and in
contact with a heat bath at its left side. The microscopic dynamics in the bulk
is given by the Hamiltonian equation of motion plus a reversal of the velocity
of a particle occurring independently for each particle at exponential times,
with rate γ. The latter produces a finite heat conductivity. Starting with
an initial probability distribution for a chain of n particles we compute the
local temperature given by the expected value of the local energy and current.
Scaling space and time diffusively yields, in the n→ +∞ limit, the heat equation
for the macroscopic temperature profile T (t, u), t > 0, u ∈ [0,1]. It is to be
solved for initial conditions T (0, u) and specified T (t,0) = T

−
, the temperature

of the left heat reservoir and a fixed heat flux J , entering the system at u = 1.
J is the work done by the periodic force which is computed explicitly for each
n.

1. Introduction

The emergence of the heat equation from a microscopic dynamics after a dif-
fusive rescaling of space and time is a challenging mathematical problem in non-
equilibrium statistical mechanics [6]. Here we study this problem in the context of
conversion of work into heat in a simple model system: a pinned harmonic chain.
The system is in contact at its left end with a thermal reservoir at temperature
T− which acts on the leftmost particle via a Langevin force (Ornstein-Uhlenbeck
process). The rightmost particle is acted on by a deterministic periodic force
which does work on the system. The work pumps energy into the system with
the energy then flowing into the reservoir in the form of heat.
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To describe this flow we need to know the heat conductivity of the system.
As it is well known, the harmonic crystal has an infinite heat conductivity [17].
To model realistic systems with finite heat conductivity we add to the harmonic
dynamics a random velocity reversal. It models in a simple way the various
dissipative mechanism in real systems and produces a finite conductivity (cf. [5],
[1]).

In a previous paper [14] we studied this system in the limit t→∞. We showed
that in this limit the probability distribution of the phase configurations is pe-
riodic with the period of the external force. We also showed that with a proper
scaling of the force and period the averaged temperature profile satisfies the sta-
tionary heat equation with an explicitly given heat current. In the present paper
we study the time dependent evolution of the system, on the diffusive time scale,
starting with some specified initial distribution. We derive a heat equation for
the temperature profile of the system, which approaches, as t →∞, the periodic
profile of [14].

The periodic forcing generates a Neumann type of boundary condition for
the macroscopic heat equation, so that the gradient of the temperature at the
boundary must satisfy Fourier law with the boundary energy current generated by
the work of the periodic forcing (see (2.27) below). On the left side the boundary
condition is given by the assigned value T− - the temperature of the heat bath.

The energy diffusion in the harmonic chain on a finite lattice, with energy con-
serving noise and Langevin heat bath at different temperatures at the boundaries,
have been previously considered [4, 2, 3, 13, 16]. But complete mathematical re-
sults, describing the time evolution of the macroscopic temperature profile, have
been obtained only for unpinned chains [4, 13]. For infinite harmonic chains,
without boundary conditions, rigorous results can be found in [9]. This article
gives the first proof of the heat equation for the pinned chain in a finite interval,
and the method can be applied with different boundary conditions (see Remark
2.5). Investigation about energy transport in anharmonic chain under periodic
forcing can be found in [11], [10], and very recently in [18].

1.1. Structure of the article. In section 2 we give the precise dynamics and a
statement of the two main theorems: Theorem 2.1 about the limit current gener-
ated at the boundary by a periodic force, and Theorem 2.4 about the convergence
of the energy profile to the solution of the heat equation with mixed boundary
conditions.
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In section 3 we obtain a uniform bound on the total energy at any macroscopic
time by an entropy argument. As a corollary (cf. Corollary 3.3) we obtain a
uniform bound on the time integrated energy current, with respect to the size of
the system.

Section 4 contains the proof of the equipartition of energy: Proposition 4.1
shows that the limit profiles of the kinetic and potential energy are equal. Fur-
thermore, we show there the fluctuation-dissipation relation ((4.5)). It gives an
exact decomposition of the energy currents into a dissipative term (given by a
gradient of a local function) and a fluctuation term (given by the generator of
the dynamics applied to a local function).

The fluctuation-dissipation relation (4.5) and equipartition of energy (4.1) are
two of the ingredients for the proof of the main Theorem 2.4. The third com-
ponent is a local equilibrium result for the limit covariance of the positions in-
tegrated in time. It is formulated in Proposition 5.1, for the covariances in the
bulk, and in Proposition 5.2, for the boundaries. The local equilibrium property
allows to identify correctly the thermal diffusivity in the proof of Theorem 2.4,
see section 5. The proof of the local equilibrium is postponed till section 7, after
the analysis of the time evolution of the matrix for the time integrated covari-
ances of positions and momenta. The latter is contained in section 6. Both in
section 6 and section 7 we use results proven in [14], when possible.

Finally, section 8 contains the proof of Theorem 2.1, that involves only the
dynamics of the averages of the configurations.

2. Description of the model

We consider a pinned chain of n-harmonic oscillators in contact on the left with
a Langevin heat bath at temperature T−, and with a periodic force acting on the
last particle on the right. The configuration of particle positions and momenta
are specified by

(q,p) = (q0, . . . , qn, p0, . . . , pn) ∈ Ωn ∶= Rn+1 ×Rn+1. (2.1)

We should think of the positions qx as relative displacement from a point, say
x in a finite lattice {0,1, . . . , n}. The total energy of the chain is given by the
Hamiltonian: Hn(q,p) ∶= ∑n

x=0 Ex(q,p), where the energy of particle x is defined
by

Ex(q,p) ∶= p2x
2
+ 1
2
(qx − qx−1)2 + ω2

0q
2
x

2
, x = 0, . . . , n, (2.2)
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q0 q1 qnqx−1 qx qx+1

T−

Fn(t)

where ω0 > 0 is the pinning strenght. We adopt the convention that q−1 ∶= q0.
The microscopic dynamics of the process {(q(t),p(t))}t⩾0 describing the total

chain is given in the bulk by

9qx(t) = px(t), x ∈ {0, . . . , n},
dpx(t) = (∆Nqx − ω2

0qx)dt − 2px(t−)dNx(γt), x ∈ {1, . . . , n − 1}, (2.3)

and at the boundaries by

dp0(t) = (q1(t) − q0(t) − ω2
0q0)dt − 2γp0(t)dt +√4γT−dw̃−(t) (2.4)

dpn(t) = (qn−1(t) − qn(t) − ω2
0qn(t))dt +Fn(t)dt − 2pn(t−)dNn(γt).

Here ∆N is the Neumann discrete laplacian, corresponding to the choice qn+1 ∶= qn
and q−1 = q0. Processes {Nx(t), x = 1, . . . , n} are independent Poisson of inten-
sity 1, while w̃−(t) is a standard one dimensional Wiener process, independent
of the Poisson processes. Parameter γ > 0 regulates the intensity of the random
perturbations and the Langevin thermostat. We have choosen the same param-
eter in order to simplify notations, it does not affect the results concerning the
macroscopic properties of the dynamics.

We assume that the forcing Fn(t) is given by

Fn(t) = 1√
n
F ( t

θ
) . (2.5)

where F(t) is a smooth 1-periodic function such that

∫
1

0
F(t)dt = 0, ∫

1

0
F(t)2dt > 0. (2.6)

The generator of the dynamics is given by

Gt = At + γSflip + 2γS−, (2.7)
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where

At =
n

∑
x=0

pxBqx +
n

∑
x=0

(∆Nqx − ω2
0qx)Bpx +Fn(t)Bpn , (2.8)

and

SflipF (p,q) = n

∑
x=1

(F (px,q) − F (p,q)), (2.9)

where F ∶ R2(n+1) → R is a bounded and measurable function, px is the velocity
configuration with sign flipped at the x component, i.e. px = (px0 , . . . , pxn), with
pxy = py, y /= x and pxx = −px. Furthermore,

S− = T−B2
p0
− p0Bp0. (2.10)

The energy currents are given by

GtEx = jx−1,x − jx,x+1, (2.11)

with

jx,x+1 ∶= −px(qx+1 − qx), if x ∈ {0, ..., n − 1}
and at the boundaries

j−1,0 ∶= 2γ (T− − p20(t)) , jn,n+1(t) ∶= −Fn(t)pn. (2.12)

2.1. Statements of the main results.

2.1.1. Macroscopic energy current due to work. The first results concerns the
work done by the forcing in a diffusive limit, i.e.

Jn(t, µ) = 1

n
∫

n2t

0
Eµ (jn,n+1(s,q(s),p(s))) ds = −1

n
∫

n2t

0
Fn(s)Eµ (pn(s)) ds,

(2.13)
where Eµ denotes the expectation of the process with the initial configuration(q,p) distributed according to a probability measure µ. We shall write Jn(t,q,p)
if for a deterministic initial configuration (q,p), i.e. µ = δq,p, the δ-measure that
gives probability 1 to such configuration.

Denote

F̂(ℓ) = ∫ 1

0
e−2πiℓtF(t)dt. (2.14)

Note that by (2.6) we have F̂(0) = 0. We suppose that

∑
ℓ

∣F̂(ℓ)∣ <∞. (2.15)
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Assume furthermore that (µn) is a sequence of initial distributions, with each
µn probability measure on Rn+1 × Rn+1. We suppose that there exist C > 0 and
δ ∈ [0,2) for which for any integer n ⩾ 1

Hn(qn,pn) ⩽ Cnδ. (2.16)

Here (qn,pn) the vector of the averages of the configuration with respect to µn.
In Section 8.3 we prove the following.

Theorem 2.1. Under the assumptions listed above, we have

lim
n→+∞

sup
t⩾0
∣Jn(t, µn) − Jt∣ = 0, (2.17)

where

J ∶= −(2π
θ
)2∑

ℓ∈Z

ℓ2Q(ℓ), (2.18)

with Q(ℓ) given by

Q(ℓ) = 4γ∣F̂(ℓ)∣2∫ 1

0
cos2 (πz

2
)⎧⎪⎪⎨⎪⎪⎩[4 sin

2 (πz
2
) + ω2

0 − (2πℓθ )
2]2 + (2γπℓ

θ
)2⎫⎪⎪⎬⎪⎪⎭

−1

dz

(2.19)

Remark 2.2. The asymptotic current J is the same as in the stationary state
(cf. [14]) and it does not depend on the initial configuration.

Remark 2.3. Rescaling the period θ with n and the strenght of the force is such
way that

Fn(t) = naF ( t

nbθ
) , b − a = 1

2
, a ⩽ 0 and b ⩾ 0, (2.20)

Theorem 2.1 still holds but with a different value of the current if b > 0 that has
been calculated in [14]:

Q(ℓ) = 4γ∣F̂(ℓ)∣2∫ 1

0
cos2 (πz

2
)[4 sin2 (πz

2
) + ω2

0]−2 dz. (2.21)

Formula (2.21) corresponds to (2.19) with the value θ =∞.
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2.1.2. Macroscopic energy profile. Let νT−(dq,dp) be defined as the product
Gaussian measure on Ωn of zero average and variance T− > 0 given by

νT−(dq,dp) ∶= 1

Z

n

∏
x=0

exp {−Ex(q,p)/T−}dqdp, (2.22)

where Z is the normalizing constant. Let f(q,p) be a probability density with
respect to νT− . We denote the relative entropy

Hn(f) ∶= ∫
Ωn

f(q,p) log f(q,p)dνT−(q,p). (2.23)

We assume now that the initial distribution has density fn(0,q,p), with respect
to νT− , such that for all n ⩾ 1,

Hn(fn(0)) ⩽ Cn. (2.24)

We also assume that there exists a continuous function T0 ∶ [0,1] → (0,+∞)
such that

lim
n→∞

E[ 1

n + 1∑x ϕ(
x

n
)Ex(0)] = ∫ 1

0
ϕ(u)T0(u)du, (2.25)

for any function ϕ ∈ C[0,1] - the space of continuous functions on [0,1]. Here
and in the following we denote Ex(t) = Ex(q(t),p(t)).
Theorem 2.4. Under the assumptions made above for any ϕ ∈ C[0,1] and t ⩾ 0
we have

lim
n→∞

1

n + 1∑x ϕ(
x

n
)E (Ex(n2t)) = ∫ 1

0
ϕ(u)T (t, u)du, (2.26)

where

BtT = D
4γ

B
2
uT, u ∈ (0,1),

T (t,0) = T−, BuT (t,1) = −4γJ
D

, T (0, u) = T0(u).
(2.27)

Here J is given by (2.18) and D is defined by

D = 1 − ω2
0(Gω0

(0) +Gω0
(1)) = 2

2 + ω2
0 + ω0

√
ω2
0 + 4 , (2.28)

where Gω0
(ℓ) is the Green function defined in (A.2).
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Remark 2.5. The derivation of (2.27) does not depend on the boundary con-
ditions. The same proof will work in the case where two Langevin heat baths at
two temperatures, T− and T+ are placed at the boundaries, in the absence of the
periodic forcing. In this case the macroscopic equation will be the same but with
boundary conditions T (t,0) = T− and T (t,1) = T+.

Also, in the absence of any heat bath, we could apply two periodic forces F (0)n (t)
and F (1)n (t) respectively at the left and right boundary. They will generate two
incoming energy current, J(0) > 0 on the left and J(1) < 0 on the right, given by
the corresponding formula (2.18), and we will have the same equation but with

boundary conditions BuT (t,0) = −4γJ(0)

D
and BuT (t,1) = −4γJ(1)

D
. Of course in this

case the total energy increases in time and periodic stationary states do not exist.
In the case were both a heat bath and a periodic force are present on the same

side, say on the right endpoint, then the macroscopic boundary condition arising
is T (t,1) = T+, i.e. the periodic forcing is ineffective on the macroscopic level,
and all the energy generated by its work will flow into the heat bath.

Remark 2.6. If the initial data T0 is C1 smooth satisfies the boundary condition
in (2.27), then equation (2.29) has a unique strong solution T (t, u) that belongs
to the intersection of the spaces C([0,+∞) × [0,1]) and C1,2((0,+∞) × (0,1)) -
the space of functions continuously differentiable once in the first and twice in the
second variable.

In the proof we will use the weak formulation of the boundary value problem
(2.27) that reads as follows: for any ϕ ∈ C2[0,1] such that ϕ(0) = ϕ′(1) = 0 we
have

∫
1

0
T (t, u)ϕ(u)du −∫ 1

0
T0(u)ϕ(u)du =D

4γ ∫
t

0
ds∫

1

0
T (s, u)ϕ′′(u)du

+ tDT−
4γ

ϕ′(0) − tJϕ(1). (2.29)

Remark 2.7. In the proof of Theorem 2.4 we need to show a result about the
equipartition of energy (cf. Proposition 4.1). As a consequence the limit profile
of the energy equals the limit profile of the temperature, i.e. we have

lim
n→∞

1

n + 1∑x ϕ(
x

n
)E (p2x(n2t)) = ∫ 1

0
ϕ(u)T (t, u)du. (2.30)
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3. Entropy, energy and currents bounds

Let fn(t,q,p) be the density of the configuration (q(t),p(t)) w.r.t. the Gibbs
measure νT−. Let us assume that the initial density fn(0,q,p) is C1. The results
presented in this section can be extended to a more general initial density satisfy-
ing only (2.24) by using the argument of section 3.2 in [5]. Under such regularity
condition fn(t) is solution of the Fokker-Planck equation

Btfn(t) = G⋆t fn(t), (3.1)

where G⋆t is the adjoint of the generator Gt w.r.t. the Gibbs measure νT−.
We first prove that the initial entropy bound (2.24) holds for all times.

Proposition 3.1. For any t there exists a constant C independent of n such that

sup
s∈[0,t]

Hn(fn(n2s)) ⩽ Cn, (3.2)

Proof. Using (2.23) for the generator Gt we conclude that

Hn(fn(n2t)) −Hn(fn(0)) = ∫ n2t

0
ds∫

Ωn

fn(s)Gt log fn(s)dνT− = In + IIn,
with

In ∶= γ ∫ n2t

0
ds∫

Ωn

fn(s) (Sflip + S−) log fn(s)dνT−,
IIn ∶= ∫ n2t

0
ds∫

Ωn

fn(s)As log fn(s)dνT−.
We have that In ⩽ 0 because Sflip and S− are symmetric negative operators with
respect to the measure νT−. The only positive contribution comes from the second
term where the boundary work defined by (2.13) appears:

IIn = ∫
n2t

0
dsFn(s)∫ pn

T−
fn(s)dνT− = − n

T−
Jn(t, fn(0)dνT−).

therefore

Hn(fn(n2t)) ⩽Hn(fn(0)) − n

T−
Jn(t, fn(0)dνT−).

The conclusion of the proposition then follows from a direct application of (2.24)
and Theorem 2.1. �
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Corollary 3.2 (Energy bound). For any t∗ ⩾ 0 we have

sup
t∈[0,t∗]

sup
n⩾1

E[ 1

n + 1
n

∑
x=0

E(n)x (n2t)] = E(t∗) < +∞. (3.3)

Proof. It follows from the entropy inequality, see e.g. [8, p. 338], that for α > 0
small enough we can find Cα > 0 such that

E[∑
x

E(n)x (n2t)] ⩽ 1

α
(Cαn +Hn(t)), t ⩾ 0, (3.4)

�

From Theorems 2.1 and Corollary 3.2 we immediately conclude the following.

Corollary 3.3 (Current size). For any t∗ ⩾ 0 there exists C > 0 such that

sup
x, t∈[0,t∗]

∣∫ t

0
E [jx−1,x(n2s)]ds∣ ⩽ C

n
, x = 0, . . . , n + 1. (3.5)

In particular, for any t > 0 there exists C > 0 such that

∣∫ t

0
{E[p20(n2s)] − T−}ds∣ ⩽ C

n
, (3.6)

Proof. By the local conservation of energy

n−2
d

dt
E[E(n)x (n2t)] = E[j(n)x−1,x(n2t) − j(n)x,x+1(n2t)]. (3.7)

Therefore

∫
t

0
j
(n)
x−1,x(n2s)ds = ∫ t

0
j
(n)
n,n+1(n2s)ds + n−2 n

∑
y=x

(E[E(n)y (n2t)] −E[E(n)y (0)]),
and bound (3.5) follows directly from estimates (2.17) and (3.3). Estimate (3.6)
is a consequence of the definition of j−1,0 (see (2.12)) and (3.5). �

4. Equipartition of energy and Fluctuation-dissipation relations

4.1. Equipartition of the energy. In the present section we show the equipar-
tition property of the energy.

Proposition 4.1. Suppose that ϕ ∈ C[0,1] is such that suppϕ ⊂ (0,1). Then,

lim
n→+∞

1

n + 1
n

∑
x=0

ϕ( x

n + 1)∫
t

0
E[p2x(n2s)−(qx(n2s)−qx−1(n2s))2−ω2

0q
2
x(n2s)]ds = 0.

(4.1)
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Proof. After a simple calculation we obtain for x = 1, . . . , n − 1,
p2x − ω2

0q
2
x − (qx − qx)2 = ∇ [qx(qx+1 − qx)] + Gt (qxpx + 2γq2x) . (4.2)

Therefore,

∫
t

0
E[p2x(n2s) − ω2

0q
2
x(n2s) − (qx(n2s) − qx(n2s))2]ds (4.3)

= ∇∫ t

0
E [qx(n2s)(qx+1(n2s) − qx(n2s))]ds

+ n−2E[qx(n2t)px(n2t) + 2γq2x(n2t)] − n−2E[qx(0)px(0) + 2γq2x(0)].
After summing up against the test function ϕ (that has compact support strictly
contained in (0,1)) and using the energy bound (3.3) we conclude (4.1).

�

4.2. Fluctuation-dissipation relation. In analogy to [14, Section 5.1] define

fx ∶= 1

4γ
(qx+1 − qx) (px + px+1) + 1

4
(qx+1 − qx)2 , x = 0, . . . , n − 1,

Fx ∶= p2x + (qx+1 − qx) (qx − qx−1) − ω2
0q

2
x, x = 0, . . . , n,

(4.4)

with the convention that q−1 = q0, qn = qn+1. Then
jx,x+1 = − 1

4γ
∇Fx + Gtfx − δx,n−1

4γ
Fn(t) (qn − qn−1) , x = 0, . . . , n − 1. (4.5)

5. Local equilibrium and the Proof of Theorem 2.4

The fundamental ingredients in the proof of Theorem 2.4 are the identification
of the work done at the boundary given by Theorem 2.1, the equipartition and
the fluctuation-dissipation relation contained in section 4, and the following local
equilibrium results. In the bulk we have the following:

Proposition 5.1. Suppose that ϕ ∈ C[0,1] is such that suppϕ ⊂ (0,1). Then

lim
n→+∞

1

n + 1
n

∑
x=0

ϕ( x

n + 1)∫
t

0
E[qx(n2s)qx+ℓ(n2s) −Gω0

(ℓ)p2x(n2s)]ds = 0, (5.1)

for ℓ = 0,1,2. Here Gω0
(ℓ) is given by (A.2).

At the boundaries the situation is a bit different and we have
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Proposition 5.2.

lim
n→+∞∫

t

0
E[q20(n2s) − (Gω0

(1) +Gω0
(0))p20(n2s)]ds = 0. (5.2)

The proofs of Propositions 5.1 and 5.2 require the analysis of the evolution of
the covariance matrix of the position and momenta vector and will be done in
section 7. As a consequence, recalling definition (4.4) and the bound (3.6), we
have the following corollary

Corollary 5.3. For any t > 0 and ϕ ∈ C[0,1] such that suppϕ ⊂ (0,1) we have

lim
n→+∞

1

n + 1
n

∑
x=0

ϕ( x

n + 1)∫
t

0
E[Fx(n2s) −Dp2x(n2s)]ds = 0, (5.3)

and

lim
n→+∞∫

t

0
{E[F0(n2s)] −DT−}ds = 0. (5.4)

We apply Corollary 5.3 in order to prove Theorem 2.4. LetM+([0,1]) be the
space of the positive, Borel measures on the interval [0,1] endowed with the weak
topology. The subset M+,E∗([0,1]), consisting of measures with total mass less
or equal to E∗, is compact in this topology and the topology is metrizable when
restricted to this set. Define ξn ∈ C ([0, t∗],M+([0,1])) as

ξn(t,ϕ) = 1

n + 1
n

∑
x=0

ϕxE[Ex(n2t)], ϕx ∶= ϕ( x

n + 1) . (5.5)

We endow C ([0, t∗],M+,E∗([0,1])) with the corresponding uniform topology. As
a consequence of Corollary 3.2 for any t∗ > 0 the total energy is bounded by
E∗ = E(t∗) (see (3.3)) and we have that ξn ∈ C ([0, t∗],M+,E∗([0,1])).
5.1. Compactness. Since M+,E∗([0,1]) is compact, to show that (ξn) is com-
pact, we only need to control modulus of continuity in time of ξn(t,ϕ) for any
ϕ ∈ C1[0,1], see e.g. [12, p. 234]. For any 0 ⩽ s < t ⩽ t∗ we have

ξn(t,ϕ) − ξn(s,ϕ) = n2

n + 1 ∫
t

s

n

∑
x=0

ϕxE [(jx−1,x − jx,x+1)(n2τ)]dτ
= n2

n + 1
n−1

∑
x=0

(ϕx+1 − ϕx)∫ t

s
E [jx,x+1(n2τ)]dτ

+ n2

n + 1 ∫
t

s
(ϕ0E [j−1,0(n2τ)] − ϕnE [jn,n+1(n2τ)])dτ,

(5.6)
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and by using a slight modification of Corollary 3.3 we have for any ϕ ∈ C1([0,1])
∣ξn(t,ϕ) − ξn(s,ϕ)∣ ⩽ C(t − s). (5.7)

This is enough to establish compactness in C ([0, t∗],M+([0,1])).
5.2. Limit identification. Consider a smooth test function ϕ ∈ C2[0,1] such
that

ϕ(0) = ϕ′(1) = 0. (5.8)

In what follows we show that

ξn(t,ϕ) − ξn(0, ϕ) = ϕ′(0)DT−t
4γ

− Jtϕ(1) + D
4γ ∫

t

0
ξn(s,ϕ′′)ds + on(t). (5.9)

The symbol on(t) stands for a quantity that satisfies

lim
n→+∞

sup
s∈[0,t]

∣on(s)∣ = 0 for any t > 0. (5.10)

Thus any limiting point of (ξn) has to be the unique weak solution of (2.29) and
this obviously proves the conclusion of Theorem 2.4.

By an approximation argument we can restrict ourselves to the case when
suppϕ′′ ⊂ (0,1). Then as in (5.6) we have

ξn(t,ϕ) − ξn(0, ϕ) = n2

n + 1
n−1

∑
x=0

(ϕx+1 −ϕx)∫ t

0
E [jx,x+1(n2τ)]dτ

− n2

n + 1ϕn∫
t

0
E [jn,n+1(n2τ)]dτ,

(5.11)

By Theorem 2.1 the last term converges to −ϕ(1)Jt. On the other hand from
(4.5) we have

n2

n + 1
n−1

∑
x=0

(ϕx+1 − ϕx)∫ t

0
E [jx,x+1(n2τ)]dτ = 3

∑
j=1

In,j, (5.12)

where

In,1 ∶= − 1

4γ
( n

n + 1)
2 n−1

∑
x=0

∇nϕx ∫
t

0
E[ ∇Fx(n2s)]ds,

In,2 ∶= ( 1

n + 1)
2 n−1

∑
x=0

∇nϕxE[fx(n2t) − fx(0)]ds
In,3 ∶= − 1

4γ
( n

n + 1)
2∇nϕn−1∫

t

0
Fn(n2s)E[qn(n2s) − qn−1(n2s)]ds.
13



It is easy to see from Theorem 3.2 that In,2 = on(t). Using the fact that ϕ′(1) = 0
and the estimate (8.14) respectively we conclude also that In,3 = on(t). Thanks
to Theorem 3.2 and (5.8) we have

In,1 =
3

∑
j=1

I
(j)
n,1 + on(t), where

I
(1)
n,1 ∶= 1

4γ(n + 1)
n

∑
x=0

ϕ′′ ( x

n + 1)∫
t

0
E[ Fx(n2s)]ds

I
(2)
n,1 ∶= − 1

4γ
( n

n + 1)
2

ϕ′ (n − 1
n
)∫ t

0
E[ Fn(n2s)]ds = on(t),

I
(3)
n,1 ∶= 1

4γ
ϕ′(0)∫ t

0
E[ F0(n2s)]ds.

By Corollary 5.3 and the equipartition property (Proposition 4.1) we have

I
(1)
n,1 = D

4γ(n + 1)
n

∑
x=0

ϕ′′ ( x

n + 1)∫
t

0
E[ p2x(n2s)]ds + on(1)

= D

4γ(n + 1)
n

∑
x=0

ϕ′′ ( x

n + 1)∫
t

0
E[ Ex(n2s)]ds + on(1)

and

lim
n→+∞

I
(3)
n,1 = ϕ

′(0)DT−t
4γ

.

Thus (5.9) follows. �

6. The Evolution of the Covariance matrix

6.1. Dynamics of fluctuations. Denote

q′x(t) ∶= qx(n2t) − qx(n2t) and p′x(t) ∶= px(n2t) − px(n2t) (6.1)

for x = 0, . . . , n. From (2.3) and (2.4) we get

9q′x(t) = n2p′x(t), x ∈ {0, . . . , n},
dp′x(t) = n2 (∆q′x − ω2

0q
′
x)dt − 2γn2p′x(t)dt − 2px(t−)dÑx(γn2t), x ∈ {1, . . . , n},

(6.2)
and at the left boundary

dp′0(t) = n2 (∆q′0 − ω2
0q
′
0)dt − 2γn2p′0(t)dt +√4γT−ndw̃−(t). (6.3)

14



Here Ñx(t) ∶=Nx(t)− t. Let X′(t) = [q′0(t), . . . , q′n(t), p′0(t), . . . , p′n(t)]. Denote by
Sn(t) the the covariance matrix

Sn(t) = Eµn
[X′(t)⊗X′(t)] = [ S

(q)
n (t) S

(q,p)
n (t)

S
(p,q)
n (t) S

(p)
n (t) ] , (6.4)

where

S
(q)
n (t) = [Eµn

[q′x(t)q′y(t)]]
x,y=0,...,n

, S
(q,p)
n (t) = [Eµn

[q′x(t)p′y(t)]]
x,y=0,...,n

,

(6.5)

S
(p)
n (t) = [Eµn

[p′x(t)p′y(t)]]
x,y=0,...,n

and S
(p,q)
n (t) = [S(q,p)n (t)]T .

6.2. Structure of the covariance matrix. Given a vector y = (y0, y1, . . . , yn),
define also the matrix valued function

D2(y) = 4γ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T− 0 0 . . . 0
0 y1 0 . . . 0
0 0 y2 . . . 0⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 . . . yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.6)

Let Σ2(y) be the 2 × 2 block matrix

Σ2(y) = [ 0n+1 0n+1
0n+1 D2(y) ] . (6.7)

Here 0n+1 is (n + 1) × (n + 1) null matrix. We have

Sn(t) = Eµn
[e−An2tX′(0)⊗X′(0)e−AT n2t] + n2∫

t

0
e−An2(t−s)Σ2(p2(n2s))e−ATn2(t−s)ds

where A is given by (8.2) and p2(s) = [Eµn
p21(s), . . . ,Eµn

p2n(s)]. Consequently
1

n2

d

dt
Sn(t) = −ASn(t) − Sn(t)AT +Σ2(p2(n2t)). (6.8)

Denoting

⟨⟨Sn⟩⟩t = ∫ t

0
Sn(s)ds, ⟨⟨p2⟩⟩t = ∫ t

0
p2(n2s)ds, (6.9)

we have by integrating in (6.8)

A⟨⟨Sn⟩⟩t + ⟨⟨Sn⟩⟩tAT −Σ2(⟨⟨p2⟩⟩t) = Rn, (6.10)
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where, both here and in the following, Rn denotes a generic matrix with entries
of order n−2 as n→∞.

In the following {ψi(x), µj , j = 0, . . . , n} are the eigenfunctions and eigevalues
of ω2

0 −∆N , defined by (A.3) in Appendix A.
Given a matrix [Bx,x′]x,x′=0,...,n we let

B̃j,j′ =
n

∑
x,x′=0

Bx,x′ψj(x)ψj′(x′).
Then we have the inverse relations

Bx,x′ =
n

∑
j,j′=0

B̃j,j′ψj(x)ψj′(x′). (6.11)

Following the same algebraic calculation as in [14], section 6.3, we obtain

⟨⟨S̃(q)j,j′⟩⟩t = 2Θ(µj , µj′)
µj + µj′

F̃j,j′(t) +Rn, (6.12)

where

F̃j,j′(t) ∶= n

∑
y=0

ψj(y)ψj′(y)⟨⟨p2y⟩⟩t + (T−t − ⟨⟨p20⟩⟩t)ψj(0)ψj′(0), (6.13)

and

Θ(µj, µj′) = [1 + (µj − µj′)2
8γ2(µj + µj′)]

−1

.

We also have

S̃
(p)
j,j′(t) = Θ(µj , µj′)F̃j,j′(t) +Rn (6.14)

Finally,

S̃
(q,p)
j,j′ (t) = Θ(µj , µj′)

2γ(µj + µj′)(µj − µj′)F̃j,j′(t) +Rn (6.15)

6.3. Some bounds on the kinetic energy. From (6.14) we have

⟨⟨S(p)x,x⟩⟩t = ∑
y

Mx,y⟨⟨p2y⟩⟩t + (T−t − ⟨⟨p20⟩⟩t)Mx,0 +Rn (6.16)

where

Mx,y ∶= n

∑
j,j′=0

Θ(µj, µj′)ψj(x)ψj′(x)ψj(y)ψj′(y). (6.17)
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It has been shown in [14, Appendix A] that

n

∑
y′=0

Mx,y′ =
n

∑
y′=0

My′,x ≡ 1 and Mx,y > 0 for all x, y = 0, . . . , n. (6.18)

Using energy estimates (3.3), bounds on the momenta averages (8.14), together
with (3.6) and (6.18), we conclude that

⟨⟨p2x⟩⟩t = ∑
y

Mx,y⟨⟨p2y⟩⟩t + ρx,n(t), (6.19)

where the symbol ρx,n(t) satisfies
sup
s∈[0,t]

n

∑
x=0

∣ρx,n(s)∣ = O(1
n
), (6.20)

as n → +∞. The following lower bound on the matrix [Mx,y] comes from [14,
Proposition 7.1] (see also [7]).

Proposition 6.1. There exists c∗ > 0 such that

n

∑
x,y=0

(δx,y −Mx,y)fyfx ⩾ c∗ n−1∑
x=0

(∇fx)2, for any (fx) ∈ Rn+1, n = 1,2, . . . . (6.21)

Multiplying both sides of (6.19) by ⟨⟨p2x⟩⟩t, summing over x and using Propo-
sition 6.1 we immediately conclude the following.

Corollary 6.2. There exists C > 0 such that

n−1

∑
x=0

[⟨⟨p2x⟩⟩t − ⟨⟨p2x+1⟩⟩t]2 ⩽ C

n + 1
n

∑
x=0

⟨⟨p2x⟩⟩t, n = 1,2, . . . . (6.22)

Proposition 6.3. For any t > 0 there exists C > 0 such that

n−1

∑
x=0

[⟨⟨p2x⟩⟩t − ⟨⟨p2x+1⟩⟩t]2 ⩽ C

n + 1 , n = 1,2, . . . ,
sup

x=0,...,n
⟨⟨p2x⟩⟩t ⩽ C. (6.23)

Proof. As a direct consequence of (3.3) and Corollary 6.2 we have: for any t > 0
there exists C > 0 such that

n−1

∑
x=0

[⟨⟨p2x⟩⟩t − ⟨⟨p2x+1⟩⟩t]2 ⩽ C (6.24)
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and

sup
x=0,...,n

⟨⟨p2x⟩⟩t ⩽ Cn1/2, n = 1,2, . . . (6.25)

Indeed, estimate (6.24) is obvious in light of (6.22). To prove (6.25) note that by
the Cauchy-Schwarz inequality

⟨⟨p2x⟩⟩t ⩽ n

∑
y=1

∣⟨⟨p2y⟩⟩t − ⟨⟨p2y−1⟩⟩t∣ + ⟨⟨p20⟩⟩t
⩽√n{ n

∑
y=1

[⟨⟨p2y⟩⟩t − ⟨⟨p2y−1⟩⟩t]2}1/2 + ⟨⟨p20⟩⟩t ⩽ C√n + ⟨⟨p20⟩⟩t
and (6.25) follows, thanks to (3.6).

From (6.19) and (6.20) we conclude that for any t > 0 we can find C > 0 such
that

n−1

∑
x=0

(⟨⟨p2x⟩⟩t − ⟨⟨p2x+1⟩⟩t)2 ⩽ n

∑
x=0

∣ρx,n(t)∣⟨⟨p2x⟩⟩t
⩽ sup

x
⟨⟨p2x⟩⟩t n

∑
x=0

∣ρx,n(t)∣ ⩽ C

n + 1 supx ⟨⟨p2x⟩⟩t (6.26)

Using the Cauchy-Schwarz inequality we conclude

sup
x
⟨⟨p2x⟩⟩t ⩽ ⟨⟨p20⟩⟩t + n−1

∑
x=0

∣⟨⟨p2x⟩⟩t − ⟨⟨p2x+1⟩⟩t∣
⩽ ⟨⟨p20⟩⟩t +√n{n−1∑

x=0

(⟨⟨p2x⟩⟩t − ⟨⟨p2x+1⟩⟩t)2}1/2 (6.27)

Denote Dn ∶= ∑n−1
x=0 (⟨⟨p2x⟩⟩t − ⟨⟨p2x+1⟩⟩t)2. We can summarize the inequalities ob-

tained as follows: for any t > 0 there exists C > 0 such that

Dn ⩽ C

n + 1 supx ⟨⟨p2x⟩⟩t, (6.28)

sup
x
⟨⟨p2x⟩⟩t ⩽ ⟨⟨p20⟩⟩t +√n + 1D1/2

n ⩽ ⟨⟨p20⟩⟩t +C +C sup
x
⟨⟨p2x⟩⟩1/2t ,

for all n = 1,2, . . .. Thus the second estimate of (6.23) follows, which in turn
implies the first estimate of (6.23) as well.
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7. Proof of local equilibrium

We prove here Proposition 5.1 and 5.2.

7.1. Proof of Proposition 5.1. Let

Φ (µj , µj′) = 2Θ(µj, µj′)
µj + µj′

. (7.1)

For a fixed integer ℓ define

K
(n,ℓ)(x) ∶= 1

4(n + 1)2
n

∑
j,j′=−n−1

Φ (µj, µj′) cos( πjx
n + 1) cos(πj

′(x − ℓ)
n + 1 ) . (7.2)

By [14, Lemma B.1], for a given ℓ there exists C > 0 such that

∣K(n,ℓ)1 (x)∣ ⩽ C

1 + x2 , x = 0, . . . , n (7.3)

for n = 1,2, . . . . It has been shown in Section 8.1 of [14] that for any δ > 0 there
exists C > 0 such that

∣ n

∑
y=0

K
(n,ℓ)(x − y) −Gω0

(ℓ)∣ ⩽ C
n2
, δn ⩽ x ⩽ (1 − δ)n. (7.4)

for n = 1,2, . . ..
By virtue of (8.14) we have

lim
n→+∞

1

n + 1
n

∑
x=0

ϕ( x

n + 1)∫
t

0
E[qx(n2s)]E[qx+ℓ(n2s)]ds = 0. (7.5)

It suffices therefore to prove that

lim
n→+∞

1

n + 1
n

∑
x=0

ϕ( x

n + 1){⟨⟨S(q)x,x+ℓ⟩⟩t −Gω0
(ℓ)⟨⟨p2x⟩⟩t} = 0. (7.6)

We prove (7.6) for ℓ = 0, the argument for other values of ℓ are similar. By (6.12)
we have

⟨⟨S(q)x,x⟩⟩t = n

∑
y=0

H
(n)
x,y ⟨⟨p2y⟩⟩t +Bn(t, x) + on, (7.7)

19



with

H
(n)
x,y =

n

∑
y=0

∑
j,j′

Φ (µj, µj′)ψj(y)ψj′(y)ψj(x)ψj′(x),
Bn(t, x) =∑

j,j′
ψj(x)ψj′(x)Φ (µj, µj′) (T−t − ⟨⟨p20⟩⟩t)ψj(0)ψj′(0). (7.8)

Using (3.3) and (3.6) we conclude that limn→+∞ supx ∣Bn(t, x)∣ = 0. Furthermore,

if δn ⩽ x ⩽ (1 − δ)n,
∑
y

H
(n)
x,y = Gω2(0) + o(n) (7.9)

Then we have that

1

n + 1
n

∑
x=0

ϕ( x

n + 1){⟨⟨S(q)x,x+ℓ⟩⟩t −Gω0
(ℓ)⟨⟨p2x⟩⟩t}

= 1

n + 1
n

∑
x=0

ϕ( x

n + 1)
n

∑
y=0

H
(n)
x,y [⟨⟨p2y⟩⟩t − ⟨⟨p2x⟩⟩t] + on. (7.10)

Using Schwarz inequality and (6.23) we obtain the bound

n

∑
y=0

H
(n)
x,y [⟨⟨p2y⟩⟩t − ⟨⟨p2x⟩⟩t] ⩽ n

∑
y=0

∣H(n)x,y ∣ y−1∑
z=x

∣⟨⟨p2z+1⟩⟩t − ⟨⟨p2z⟩⟩t∣ ⩽ n

∑
z=0

z

∑
y=0

∣H(n)x,y ∣ ∣⟨⟨p2z+1⟩⟩t − ⟨⟨p2z⟩⟩t∣
⩽
⎡⎢⎢⎢⎢⎣

n

∑
z=0

( z

∑
y=0

∣H(n)x,y ∣)2⎤⎥⎥⎥⎥⎦
1/2

[ n

∑
z=0

∣⟨⟨p2z+1⟩⟩t − ⟨⟨p2z⟩⟩t∣2]1/2 ⩽ ⎡⎢⎢⎢⎢⎣
n

∑
z=0

( z

∑
y=0

∣H(n)x,y ∣)2⎤⎥⎥⎥⎥⎦
1/2

C√
n
.

(7.11)

It follows from results in Section 8.1 of [14] that ∑n
z=0 (∑z

y=0 ∣H(n)x,y ∣)2 ⩽ C, and
Proposition 5.1 follows for ℓ = 0.

�

7.2. Proof of Proposition 5.2. From Propositions 8.1 we have

lim
n→+∞∫

t

0
q20(s)ds = 0.

It suffices therefore to calculate ∫ t

0
E(q′0(s)2)ds = ⟨⟨S(q)0,0 ⟩⟩t.
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We have, see (6.12) and (7.1),

⟨⟨S(q)0,0 ⟩⟩t = n

∑
y=0

n

∑
j,j′=0

Φ(µj , µj′)ψj(0)ψj′(0)ψj(y)ψj′(y)⟨⟨p2y⟩⟩t (7.12)

+ n

∑
j,j′=0

Φ(µj , µj′)ψj(0)2ψj′(0)2 (T−t − ⟨⟨p20⟩⟩t) + on(t)
=

n

∑
y=0

H
(n)
y ⟨⟨p2y⟩⟩t + on(t). (7.13)

Here

H
(n)
y ∶= n

∑
j,j′=0

Φ(µj , µj′)ψj(0)ψj′(0)ψj(y)ψj′(y) (7.14)

That has the property

n

∑
y=0

H
(n)
y =

n

∑
j=0

Φ(µj , µj)ψj(0)2 = n

∑
j=0

1

µj

ψj(0)2

= 1

n + 1
n

∑
j=0

cos2 ( πj

2(n+1))
ω2
0 + 4 sin2 ( πj

2(n+1)) Ð→n→∞
Gω2

0

(0) +Gω2

0

(1). (7.15)

Using [14, Lemma B.1] we conclude that there exists C > 0 such that

∣H(n)y ∣ ⩽ C(1 + y2) , y = 0, . . . , n, n ⩾ 1. (7.16)

Then, proceeding as in (7.11) using the Cauchy-Schwarz inequality and the first
estimate of (6.23) we conclude that we obtain

n

∑
y=0

∣H(n)y ∣∣⟨⟨p2y⟩⟩t − ⟨⟨p20⟩⟩t∣ ⩽ C√
n

Hence

⟨⟨S(q)0,0 ⟩⟩t = ( n

∑
y=0

H
(n)
y,0 ) ⟨⟨p20⟩⟩t + on(t) = Gω2

0

(0) +Gω2

0

(1) + on. (7.17)

�
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8. The dynamics of means and the proof of Theorem 2.1

8.1. The dynamics of means. Let µ be a Borel probability measure on R2(n+1)

and let (q,p) be the vector of the µ-averages of initial data. In the following

we denote by (q(t)
p(t)) the vector means of positions and momenta by qx(t) =

Eq,p(qx(t)) and px(t) = Eq,p(px(t)). Let e2(n+1) the 2(n + 1) vector defined by
e2(n+1),j = δ2(n+1),j . Then the evolution equation is given by

( q(t)
p(t) ) = e−At ( q

p
) + ∫ t

0
Fn (s) e−A(t−s) e2(n+1)ds. (8.1)

Here A is a 2 × 2 block matrix made of (n + 1) × (n + 1) matrices of the form

A = ( 0 −Idn+1−∆N + ω2
0 2γIdn+1

) (8.2)

where Idn+1 is the (n + 1) × (n + 1) identity matrix. Using the expansion

F(t) =∑
ℓ

F̂(ℓ)e2πiℓt
and defining

( y(t)
z(t) ) ∶= e−Ate2(n+1), (8.3)

we can write

( q(t)
p(t) ) =e−At ( q

p
) +∑

ℓ

F̂(ℓ)√
n
∫

t

0
e2πiℓs/θ ( y(t − s)

z(t − s) )ds. (8.4)

To find the formulas for the components of vx(t), ux(t), x = 0, . . . , n of the

vector ( u(t)
v(t) ) ∶= e−At ( q

p
) it is convenient to use the Fourier coordinates in

the base ψj of the eigenvectors for the Neumann laplacian ∆N, see (A.3). Let
ũj(t) =∑n

x=0 ux(t)ψj(x) and ṽj(t) =∑n
x=0 vx(t)ψj(x) be the Fourier coordinates of

the vector (u(t),v(t)). Likewise, we let q̃j = ∑n
x=0 qxψj(x) and p̃j =∑n

x=0 pxψj(x),
with qx, px, x = 0, . . . , n the components of (q,p).

Let

λj,± ∶= γ ±√γ2 − µj (8.5)

22



be the two solutions of the equation λ2 − 2γλ + µj = 0. Note that λj,+λj,− = µj.

Then,

ũj(t) = exp {−λj,−t}
2
√
γ2 − µj

[λj,+q̃j + p̃j − (λj,−q̃j + p̃j) exp {−2t√γ2 − µj}] (8.6)

and

ṽj(t) = exp {−λj,−t}
2
√
γ2 − µj

[(µj q̃j + λj,+p̃j) exp {−2t√γ2 − µj} − µj q̃j − λj,−p̃j] (8.7)

in the case when µj /= γ2. When γ2 = µj (then λj,± = γ) we have

ũj(t) = [(1 + γt)q̃j + p̃jt]e−γt, ṽj(t) = [µjtq̃j + (1 − γt)p̃j]e−γt.
Then, by (8.6) and (8.7), we conclude that the components of e−Ate2(n+1) equal

ỹj(t) = −ψj(n)exp {−λj,−t} [1 − exp{−2t
√
γ2 − µj} ]

2
√
γ2 − µj

,

z̃j(t) = ψj(n)exp {−λj,−t} [λj,+ − λj,− exp {−2t
√
γ2 − µj} ]

2
√
γ2 − µj

,

(8.8)

in the case when µj /= γ2. In the case that γ2 = µj (then λj,± = γ) we have
ỹj(t) = ψj(n)te−γt and z̃j(t) = ψj(n)(1 − γt)e−γt.

Elementary calculations lead to the following bounds

Reλj,± ⩾ γ∗ ∶=min{γ, ω2
0

2γ
} , ∣λj,±∣ ⩽ γ + ∣γ2 − ω2

0 − 4∣1/2, j = 0, . . . , n. (8.9)

Hence, there exists C > 0 such that

∣ỹj(t)∣ + ∣z̃j(t)∣ ⩽ C(t + 1)e−γ∗t∣ψj(n)∣ (8.10)

for all t ⩾ 0, j = 0, . . . , n, n = 1,2, . . .. By the Plancherel identity, (8.6) and (8.7)
we conclude also that there exist constants C,C ′ > 0 such that, for all t ⩾ 0 and
n ∈ N,

n

∑
x=0

[u2x(t) + v2x(t)] = n

∑
j=0

[ũ2j(t) + ṽ2j (t)]
⩽ C(t + 1)e−γ∗t n

∑
j=0

(q̃2j + p̃2j) ⩽ C ′(t + 1)e−γ∗tHn(q,p). (8.11)
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8.2. L2 norms of the means. By (8.4) and the Plancherel theorem

n

∑
x=0
∫

t

0
[q2x(s) + p2x(s)]ds ⩽ C n

∑
x=0
∫

t

0
[u2x(s) + v2x(s)]ds

+ C
n

n

∑
j=0

⎡⎢⎢⎢⎢⎣∣∑ℓ F̂(ℓ)∫
t

0
e2πiℓs/θỹj(t − s)ds∣2 + ∣∑

ℓ

F̂(ℓ)∫ t

0
e2πiℓs/θz̃j(t − s)ds∣2⎤⎥⎥⎥⎥⎦ .

(8.12)

The constant appearing here below do not depend on t and n. Using (8.10) and
(8.11) we conclude therefore that

n

∑
x=0
∫

t

0
[q2x(s) + p2x(s)]ds ⩽ CHn(q,p) + C

n
(∑

ℓ

∣F̂(ℓ)∣)2 . (8.13)

From (8.13) we conclude therefore the following.

Proposition 8.1. Assume that the hypotheses of Theorem 2.1 are in force. Then,
there exists C > 0 such that

n

∑
x=0
∫

t

0
[q2x(n2s) + p2x(n2s)]ds ⩽ C

n2−δ
, (8.14)

for all t ⩾ 0, n = 1,2, . . .. Here δ is as in (2.16).

8.3. The proof of Theorem 2.1. We show (2.17) and (2.18). Recall that the
initial configuration (q,p) is distributed according to µn. For the work done we
have

Wn(t) ∶= ∫ t

0
Fn(s)pn(s)ds

=∑
j

ψj(n)∑
ℓ

1√
n
F̂(ℓ)∫ t

0
ei2πℓs/θp̃j(s)∗ds. (8.15)

Using (8.1) the utmost right hand side can be rewritten in the form Wn,i(t) +
Wn,f(t) where

Wn,i(t) ∶=∑
j

ψj(n)∑
ℓ

1√
n
F̂(ℓ)∫ t

0
ei2πℓs/θṽj(s)∗ds,

Wn,f(t) ∶= 1

n
∑
j

ψj(n)∑
ℓ,ℓ′
F̂(ℓ)F̂(ℓ′)∗ ∫ t

0
ds ei2π(ℓ−ℓ

′)s/θ ∫
s

0
ei2πℓ

′s′/θz̃j(s′)∗ds′
(8.16)24



Thanks to (2.15) and the Cauchy-Schwarz inequality we conclude from (8.11)

∣Wn,i(t)∣ ⩽ C√
n
H1/2

n (qn,pn)∫ t

0
(s + 1)1/2e−γ∗s/2ds.

Thanks to (2.16) limn→+∞ ∣Wn,i(n2t)∣/n = 0. Using (8.8) we have

∫
s

0
ei2πℓ

′s′/θz̃j(s′)∗ds′ = (∫ s

0
e−i2πℓ

′s′/θz̃j(s′)ds′)∗
=

ψj(n)
λ∗j,+ − λ∗j,− [

λj,+ [e−s(λj,++2πiℓ/θ) − 1]
2πiℓ/θ + λj,+ − λj,− [e−s(λj,−+2πiℓ/θ) − 1]

2πiℓ/θ + λj,− ] ,
so that we can decompose the work done in Wn,f(t) =W (1)

n,f +W (2)
n,f , where

W
(1)
n,f (t) ∶= −1n

n

∑
j=0

ψ2
j (n)

λ∗j,+ − λ∗j,−∑ℓ,ℓ F̂(ℓ)F̂⋆(ℓ′)(
λj,−

2πiℓ/θ + λj,− −
λj,+

2πiℓ/θ + λj,+)
×∫ t

0
exp {2πis(ℓ − ℓ′)/θ}ds

= − t
n

n

∑
j=0

ψ2
j (n)

λ∗j,+ − λ∗j,−∑ℓ ∣F̂(ℓ)∣2(
λj,−

2πiℓ/θ + λj,− − λj,+

2πiℓ/θ + λj,+)
while W

(2)
n,f (t) is exponentially small in time. After a direct calculation we obtain

W
(1)
n,f (t) = −2γtn (2πθ )

2 n

∑
j=0

∑
ℓ

ψ2
j (n)ℓ2∣F̂(ℓ)∣2

{[µj − (2πℓ/θ)2]2 + [2γ(2πℓ/θ)]2} = −
Jt

n
,

so that limn→∞ Jn(t) = − limn→∞Wn(n2t)/n = Jt, and Theorem 2.1 follows. �

Appendix A. The discrete laplacian

A.1. Discrete gradient and laplacian. Recall that the lattice gradient and
laplacian of any f ∶ Z→ R are defined as ∇fx = fx+1−fx and ∆fx = fx+1+fx−1−2fx,
x ∈ Z, respectively.

For a given function ϕ ∶ [0,1] → R and n = 1,2, . . . we define three discrete
approximations: of the function itself, of its gradient and Laplacian, respectively
by

ϕx ∶= ϕ( x
n+1), (∇nϕ)x ∶= (n + 1)(ϕ(x+1n+1) − ϕ( x

n+1)), (A.1)

(∆nϕ)x ∶= (n + 1)2(ϕ(x+1n+1) + ϕ(x−1n+1) − 2ϕ( x
n+1)), x ∈ {0, . . . , n}.
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We have used the convention ϕ(− 1
n+1) = ϕ(0).

Suppose that ω0 > 0. Consider the Green’s function of −∆ + ω2
0 on the integer

lattice Z. It is given by, see e.g. [15, (27)],

Gω0
(x) = (−∆ + ω2

0)−1 (x) = ∫
1

0
{4 sin2(πu) + ω2

0}−1 cos(2πux)du (A.2)

= 1

ω0

√
ω2
0 + 4

⎧⎪⎪⎨⎪⎪⎩1 +
ω2
0

2
+ ω0

√
1 + ω2

0

4

⎫⎪⎪⎬⎪⎪⎭
−∣x∣

, x ∈ Z.

A.2. Discrete Neumann laplacian −∆N. Let λj and ψj , j = 0, . . . , n be the re-
spective eigenvalues and eigenfunctions for the discrete Neumann laplacian −∆N,
i.e. ψj(−1) = ψj(0) and ψj(n) = ψj(n + 1). They are given by

λj = 4 sin2 ( πj

2(n + 1)) , ψj(x) = (2 − δ0,j
n + 1 )

1/2

cos(πj(2x + 1)
2(n + 1) ) , x, j = 0, . . . , n.

(A.3)

The eigenvalues of ω2
0 −∆N are given by

µj = ω2
0 + λj = ω2

0 + 4 sin2 ( πj

2(n + 1)) , j = 0, . . . , n.
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