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INTRODUCTION

Fairness has become prevalent at the intersection of ethics and artificial intelligence. Various forms of fairness are critical in online media [START_REF] Hargreaves | Fairness in online social network timelines: Measurements, models and mechanism design[END_REF]. In the present paper, we consider fairness in the context of generative modeling. More precisely, when modeling the probability distribution of faces, we typically observe that classes already rare in the dataset become even rarer in the model. This phenomenon is called Mode Collapse (MC) [START_REF] Richardson | On GANs and GMMs[END_REF], and for sensitive variables, it is one of the fairness issues. We propose tools based on statistical reweighting (Sections 3.1 and 3.2) or on user feedback (Section 3.3) for mitigating fairness issues (such as MC) in generative modeling.

Fairness

There are many facets to fairness. An algorithm may be considered to be fair if its results are independent of some variables, particularly for sensitive variables. Fairness [START_REF] Pessach | Algorithmic fairness[END_REF] can be measured in terms of separation, i.e., whether the probability of a given prediction, given the actual value, is the same for all values of a sensitive variable. The measurement can also be rephrased in terms of equivalent false negative and true negative rates for all classes. A distinct point of view is sufficiency: sufficiency holds if the probability of actually belonging to a given group is the same for individuals from that group and with different sensitive variables. Another point of view is independence, i.e., when the prediction is statistically independent of sensitive variables. Because it is known that the many criteria for fairness are contradictory, it is necessary to design criteria depending on the application. In the present paper, we consider the case in which the goal is to preserve some frequencies.

Here, we consider the context of generative modeling. There is a model trained on data, and we want this model to satisfy some requirements on frequencies: for every class, we would like the frequency to match some target frequency. Typically, for simplicity in the present paper, the target frequency is the frequency in the original dataset: however, the methods that we propose can be adapted to other settings.

Generative modeling: fairness and mode collapse

There are many measures of fairness, even in the specific case of generative modeling [START_REF] Teo | Measuring fairness in generative models[END_REF]. The main criterion is whether all classes are correctly represented. It is known that modeling frequently decreases the frequency of rare classes (i.e., mode collapse). In addition, improving the image quality (for each image independently) aggravates the diversity loss [START_REF] Salminen | Detecting demographic bias in automatically generated personas[END_REF]. For a conditional generative model, there is sometimes a ground truth. For example, in super-resolution, we want the reconstructed image to match the sensitive variables of the ground truth as closely as possible. This case became particularly critical since, e.g., [START_REF] Truong | This image of a white barack obama is ai's racial bias problem in a nutshell[END_REF]: a pixelized version of Barak Obama can be "depixelized" to be that of a white man. [START_REF] Xu | Fairgan: Fairness-aware generative adversarial networks[END_REF] points out the importance of fairness in the design of Generative Adversarial Networks (GANs) before applying them, for example as an early stage before supervised training. For addressing fairness issues, a possibility is to increase editability: [START_REF] Hwang | Fairfacegan: Fairness-aware facial image-to-image translation[END_REF] disentangles latent variables for separating editable and sensitive parts. Some works focus on measuring fairness, for example, [START_REF] Kusner | Counterfactual fairness[END_REF] uses causal methodologies for measuring fairness in a counterfactual manner. Fairness can be integrated directly into the training: [START_REF] Sattigeri | Fairness gan[END_REF] focuses on training a GAN while protecting some variables.

1.3 Related work [START_REF] Choi | Fair generative modeling via weak supervision[END_REF] increases fairness in GANs in a supervised manner, i.e., given the sensitive attributes. [START_REF] Sattigeri | Fairness gan: Generating datasets with fairness properties using a generative adversarial network[END_REF] targets and improves the fairness of generated datasets. More similar to our work, [START_REF] Jalal | Fairness for image generation with uncertain sensitive attributes[END_REF] focuses on uncertain sensitive variables, and [START_REF] Kenfack | On the fairness of generative adversarial networks[END_REF] adds a bias in a GAN for mitigating fairness issues. In the same fashion as the present work, [START_REF] Tan | Improving the fairness of deep generative models without retraining[END_REF] considers biasing a GAN without any retraining. We focus on generically (i.e., independently of the application, data, and model) correcting for potential bias present in a generative model, without knowing the sensitive variables. The critical point is that sensitive variables seem to often come up as a surprise: typically, people do not decide to create an unfair algorithm actively. For example, in [START_REF] Plenke | The reason this "racist soap dispenser" doesn't work on black skin[END_REF], the designers of the faulty soap dispenser had just not imagined that it might fail on black skins. Also, there may be relevant sensitive variables that have not been initially considered: ethnicity or gender are obvious sensitive variables, but aesthetics, body mass index, social origin, or even the quality of the camera, geographical origin, also matter.

Our goal is to have a generic correction independent of the sensitive variables. The first proposed method (Sections 3.1 and 3.2):

• is not only for the fairness issues regarding sensitive variables: we also preserve diversity for more classical diversity issues such as MC. • does not need any retraining.

• is more or less effective depending on cases but is designed for (almost) never being detrimental (Section 4.2).

The second proposed method, which can be combined with the previous one, proposes several generations and then lets the user choose. Therefore, the user experience is modified: we expect the user to assist the method by actively selecting relevant outputs. Contrary to the generic method proposed above, which we will implement thanks to reweighting, the new approach is not a drop-in replacement. Moreover, this also does not need retraining.

Outline

Section 2 presents tools useful for the present work:

• Use of Image Quality Assessment (IQA) to improve image generation (Section 2.1): we connect this method to our research by investigating how much this quality improvement degrades fairness and how our proposed methods can mitigate such issues. • Reweighting via simple rejection sampling to improve fairness and reduce MC when the variables used for computing the reweighting values are correlated to the target sensitive variables (Section 3.1).

Section 3 presents our proposed algorithms: Section 4 is a mathematical analysis. Section 5 presents experimental results.

PRELIMINARIES 2.1 Correlations image quality / sensitive variables

We investigate the known correlation between the estimated quality of an image and its membership to a frequent class [START_REF] Menon | Pulse: Self-supervised photo upsampling via latent space exploration of generative models[END_REF][START_REF] Salminen | Detecting demographic bias in automatically generated personas[END_REF].

In order to demonstrate that this is easily observable, Table 1 presents the rank correlation between the aesthetic quality of an image and the logit of that image for each of four classes of individuals. We note that the most positively correlated class is the most frequent. Our interpretation is that the technical quality of generated images is higher for the most frequent classes, influencing the aesthetics score.

Image generation: GAN, PGAN, and EvolGan

Our work specializes in image generation, and in particular on faces. We use the following image generation tools. Our baseline GAN is Pytorch GAN Zoo ( [START_REF] Riviere | Pytorch GAN Zoo[END_REF], based on progressive GANs (PGANs) [START_REF] Karras | Progressive growing of GANs for improved quality, stability, and variation[END_REF]). We also use EvolGan [START_REF] Rozière | EvolGAN: Evolutionary Generative Adversarial Networks[END_REF], which improves Pytorch GAN Zoo by biasing the random choice of latent variables 𝑧 using K512 [START_REF] Hosu | Koniq-10k: An ecologically valid database for deep learning of blind image quality assessment[END_REF]. We use three configurations of EvolGan, as it uses as a budget the number of calls to the original GAN; the three configurations then correspond to budgets 10, 20, and 40 (named 𝐸𝐺10, 𝐸𝐺20, and 𝐸𝐺40 respectively). Besides the one based on a random search, EvolGan has an option for CMA search [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF] and PortfolioDiscrete-(1 + 1) (i.e. the variant of the Discrete (1 + 1)-ES as in [START_REF] Dang | Self-adaptation of mutation rates in non-elitist populations[END_REF]): we also employ these variants, with notation respectively EG-CMA-10 and EG-D(1 + 1)-10 for budget 10, and similar variants for budget [START_REF] Richardson | On GANs and GMMs[END_REF] 

Diversity loss in generative modeling

Usually, modeling decreases the frequency of rare classes. With StyleGan2, we get 71.55% white people and 4.64% black according to R (close to [START_REF] Salminen | Detecting demographic bias in automatically generated personas[END_REF]). EvolGan, which is built on top of StyleGan2 with a budget of 40 decreases the percentage of black people to 0% while increasing the frequency of white to 81.25%.

Measuring the diversity loss

We assume that there exist target frequencies for each sensitive class. In the present paper, we focus on preserving the diversity in the sense of "having the same frequencies as the frequencies in the original data used for creating the model", so the target frequencies are the frequencies in the original dataset. If we consider the diversity loss associated with optimizing a model, such as EvolGan, we assume that target frequencies are those of the original model. Given classes {1, . . . , 𝑛} with target frequencies 𝑓 𝑖 ( 𝑛 𝑖=1 𝑓 𝑖 = 1), and real frequencies 𝑓 ′ 1 , . . . , 𝑓 ′ 𝑛 : the diversity loss Δ is defined as Δ := 1 -inf 𝑓 𝑖 >0 𝑓 ′ 𝑖 /𝑓 𝑖 . Δ = 0 if the target frequencies are reached, and Δ = 1 if one of the classes has disappeared. Throughout our paper, we consider diversity loss for classes, and not inside each class: this other important case is left as further work.

Feature extractors

We use various feature extractors (Table 2). E and R use VGG-Face [START_REF] Parkhi | Deep face recognition[END_REF]. The goal of these feature extractors is to have auxiliary classes for reweighting: these values, after discretization, provide classes. These classes, termed strata, are used in Section 3.2.

METHODS

Section 3.1 presents a simple rejection method for ensuring target probabilities in generative modeling. Section 3.2 shows how to build classes in order to apply that method without knowing what the sensitive variables are. Section 3.3 then presents a methodology based on multi-objective optimization for improving fairness.

Reweighting: stratified rejection

Consider a generative model on some domain 𝐷. Consider a partition 𝐷 1 , . . . , 𝐷 𝑚 of 𝐷 into 𝑚 disjoint strata. Assume that some unknown random variable 𝜔 has probability 𝑝 𝑖 = 𝑃 (𝜔 ∈ 𝐷 𝑖 ) and 𝑝 𝑖 = 1. We have another random variable 𝑔 also living with probability one in the union of the 𝐷 𝑖 . Assuming that 𝑃 (𝑔 ∈ 𝐷 𝑖 ) = 𝑝 ′ 𝑖 , a simple tool for building 𝑔 ′ such that 𝑃 (𝑔 ′ ∈ 𝐷 𝑖 ) = 𝑝 𝑖 is rejection (see Alg. 1). This simple algorithm generates 𝑔 ′ ∈ 𝐷 𝑖 with probability 𝑝 𝑖 .

Algorithm 1 Given a generative model 𝑔, bins 𝐷 1 , . . . , 𝐷 𝑚 and their target probabilities 𝑝 1 , . . . , 𝑝 𝑚 . This algorithm assumes that none of the 𝐷 𝑖 has probability 0 for the original generative model 𝑔.

Generate 𝑥 a (new, independent) output of 𝑔 // random gen Find 𝑖 such that 𝑥 ∈ 𝐷 𝑖 . With probability 1 -

1 max 𝑗 𝑝 𝑗 𝑝 ′ 𝑗 𝑝 𝑖 𝑝 ′

𝑖

, go back to random gen.

return 𝑔 ′ := 𝑥.

Creating strata: reweighting without knowing the target classes

We have classes corresponding to sensitive classes. We consider four sensitive classes of faces (A, B, C, D) using R [START_REF] Anadon | Face expression and ethnic recognition[END_REF] and two classes using AvA [START_REF] Hosu | Effective aesthetics prediction with multilevel spatially pooled features[END_REF] (class F = bottom 20% of the aesthetics variable). However, we also want (possibly non-sensitive) classes used as auxiliary classes for reweighting: our goal is for our method to work for unknown target classes, so we need auxiliary classes.

The idea is to investigate how much we can improve fairness for variables A, B, C, D without using those classes in our algorithm. Our auxiliary classes (Section 2.5), unrelated to our sensitive classes, will be called strata in the present work: the strata are the 𝐷 𝑖 used in our reweighting algorithms.

The key point in our experiments "preserving the diversity of unknown target variables" is that we do not use the target variables in our algorithms: our method is unsupervised in this sense. When we try to maintain diversity for class F, we can use auxiliary variables which are unrelated to F: so, we can use A, B, C and D. And when we try to maintain diversity for classes A, B, C and D, we can use F as an auxiliary variable. Some attributes (final layer of an emotion classifier, or technical quality of the photo) can be used for all classes as they are not directly related to any of our sensitive variables. We will use two parameters 𝑑 and 𝑀 in our experiments. Given a possibly large number of auxiliary variables (not the target variables), we select 𝑑 variables. Each of these 𝑑 variables is discretized in 𝑀 values, where 𝑀 is called the arity: thresholds are chosen so that the 𝑀 values are equally frequent.

The user-assisted context: generating multiple solutions

Whereas in Section 3. the user chooses one of them. Check that their frequencies match the contextual expectations: compute DL.

3.3.1 How to generate multiple solutions. We consider a fixed limit on the number of generated images allowed so that the tool remains manageable for the user. Several approaches can generate a targeted number of outputs; we consider (i) multi-objective optimization (MOO: splitting the original criterion into several and optimizing them jointly) and (ii) multiple runs. Doing multiple runs is a simple and intuitive solution for generating multiple images. Regarding MOO, our solution is not compatible with all generative models: we consider that images are obtained by numerical optimization of a linear combination of criteria [START_REF] Riviere | Inspirational adversarial image generation[END_REF]. Instead of aggregating them, [START_REF] Carraz Rakotonirina | Many-Objective Optimization for Diverse Image Generation[END_REF] proposed to preserve diversity by optimizing several numerical criteria by MOO, and we include this technique (as well as the previously mentioned reweighting techniques) in our fairness context. MOO naturally generates several solutions instead of one so that we are (presumably) more likely to have at least one satisfactory solution.

3.3.2 How to sample the obtained solutions. When we do multiple runs, we can choose their number to control the number of generated images. However, in MOO, we typically get a Pareto front. This Pareto front might be huge. Therefore, we have to sample this Pareto front. There are many tools for this:

• Optimizing this sampling for some representativeness criterion in the fitness space (hypervolume and others, see Appendix A). • Or maximizing some diversity criterion in the original domain, regardless of fitness values.

METHODS ANALYSIS 4.1 Multi-objective diversification

Generating several solutions and letting the user choose among those proposals is a simple workaround for partially mitigating diversity loss. However, not all methods are equal: we would like to have as much diversity as possible for a given fixed number of proposals. Also, Fig. 1 shows that it is not obvious that this will work: though this might not be intuitive, one can design counter-examples in which focusing on the Pareto-front and even more on a few key elements representing the Pareto front can actually decrease the diversity, compared to generating just one image at a time, because the Pareto frontier might be entirely covered by a single class (in particular the biggest class, for which values are usually greater in machine learning models, as explained in Section 2.1). The simplest, and maybe most robust solution is to run multiple independent (randomized) runs: if the probability 𝑃 (𝑔 ∈ 𝐶) of generating a point in 𝐶 is low, then the probability 1 -(1 -𝑃 (𝑔 ∈ 𝐶)) 𝑘 of having at least one of 𝑘 generated image inside 𝐶 is greater:

1 -(1 -𝑃 (𝑔 ∈ 𝐶)) 𝑘 ≥ 𝑃 (𝑔 ∈ 𝐶) (strict if 𝑃 (𝑔 ∈ 𝐶) ∉ {0, 1}
). If the user needs an image of class 𝐶, generating 𝑘 images is more likely to have at least one in 𝐶 unless the original probability is 0 or 1.

The question is now how to do better than this baseline. We consider the following ideas:

• the 𝑘 runs are not using the same weights: e.g., we use random weights in the optimization runs, and they are randomly drawn at each run. • we run a MOO algorithm which tries to maximize some quantity, e.g., the hypervolume of the obtained solutions, or their diversity in the loss space, or the coverage in the domain space.

Consistent with the credo of the present paper (not using target classes in the algorithm), these algorithms are independent of the target classes.

Stratification by rejection is rarely detrimental

The reweighting method in Section 3.1 works in the sense that, by design, when we use it, we switch back to the exact probabilities for each stratum, i.e., 𝑝 ′ = 𝑝. This implies that, unless a target class has entirely disappeared in the model, reweighting using strata based on the target classes recovers the frequencies of all target classes. However, the point of the present paper is to fix frequencies of unknown target classes. So, now, consider a target class 𝐶, which is not necessarily one of the strata. If 𝐶 is one of the 𝐷 𝑖 (or a union of them) then, as discussed above, the stratification leads to 𝑝 (𝑔 ∈ 𝐶) = 𝑝 (𝜔 ∈ 𝐶): let us see if we can find a more general case in which 𝑃 (𝑔 ∈ 𝐶) = 𝑃 (𝜔 ∈ 𝐶).

The Diversity Loss (DL) measure we are using (Section 2.4) for estimating the DL of a model 𝑔 compared to a random variable 𝑤 is based on aggregating measures of DL for several classes: the where:

• 𝑞 𝑗 is the probability of class 𝐶 in stratum 𝐷 𝑗 for the original random variable 𝑤 i.e.

𝑞 𝑗 = 𝑃 (𝑤 ∈ 𝐶 |𝑤 ∈ 𝐷 𝑗 ); • 𝑞 ′ 𝑗 is the counterpart for the model 𝑔 i.e. 𝑞 ′ 𝑗 = 𝑃 (𝑔 ∈ 𝐶 |𝑔 ∈ 𝐷 𝑗 ).
The reweighting increases the DL for class 𝐶 if 𝑝𝑞 -𝑝𝑞 ′ > 𝑝𝑞 -𝑝 ′ 𝑞 ′ (where 𝑝𝑞 is short for 𝑗 𝑝 𝑗 𝑞 𝑗 ). This is equivalent to 𝑞 ′ (𝑝 ′ -𝑝) > 0 and 𝑝 (𝑞 -𝑞 ′ ) > 0. This means that reweighting is detrimental for this measure if (i) 𝑝 (𝑞-𝑞 ′ ) > 0 and (ii) 𝑞 ′ (𝑝 ′ -𝑝) > 0 occur simultaneously: (i) means that 𝑞 -𝑞 ′ is overall positive on average for the frequencies 𝑝 (i.e., 𝑔 tends to underestimate class 𝐶), which is precisely the case of interest: this means that 𝑔 is not doing well on 𝐶. And (ii) 𝑞 ′ (𝑝 ′ -𝑝) > 0: this implies that we tend to overestimate classes in which 𝐶 has a low probability, which contradicts the general assumption "diversity loss usually occurs for rarer classes" in Section 2.3. Therefore, it seems unlikely that reweighting can worsen diversity loss, at least for this measure. Table 3: Impact of reweighting with related variables on the diversity loss for classes A, B, C, D: we see that the original diversity loss is significant (4th column) and reduced a lot if we use 4 variables for reweighting (6th column). Even 2 variables contribute quite well to a significant reduction of diversity loss (5th column). Dataset: faces generated by Style-GAN2. Strata used for reweighting: logits of the output layer of R discretized with 𝑀 = 3 and 𝑑 = 2 (5th column) or 𝑑 = 4 (6th column).

EXPERIMENTAL RESULTS

Framework

We compare our methods in different contexts. Each context (𝑔, 𝑏) is defined by a generative model 𝑔 to be compared to a baseline 𝑏 (dataset or model). We check if 𝑔 has a diversity loss, comparatively to 𝑏. We have 18 contexts, as described below. The baseline 𝑏 is a dataset or a PGAN [START_REF] Karras | Progressive growing of GANs for improved quality, stability, and variation[END_REF] trained on it (i.e., two possibilities here), and we try to fix the diversity loss when applying EvolGan [START_REF] Rozière | EvolGAN: Evolutionary Generative Adversarial Networks[END_REF] with budget 10, 20, 40 (3 possibilities) and algorithm DOPO [START_REF] Riviere | Inspirational adversarial image generation[END_REF], CMA [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF] or random search (3 possibilities): 𝑔 can be any of these 9 combinations, and we consider the diversity loss compared to one of the two different possible 𝑏, hence 18 contexts (Table 9). Different contexts have different diversity losses: typically, CMA or RandomSearch lead to more diversity loss than DOPO.

We have checked that (naively) optimizing technical quality is detrimental to fairness (Appendix B). We show (Section 5.2) that applying reweighting according to target classes is unsurprisingly more effective than reweighting according to unrelated strata, but the latter methodology still does mitigate fairness issues. Then Section 5.3 compares various forms of user-assisted optimization for tackling fairness issues. A,B,C,D. Table 3 presents the diversity loss and the fixed diversity loss when using reweighting. We use 2 or 4 variables correlated (though not equal) to the target attribute, namely the discretized predicted probabilities of the 4 modalities of the target class. As variables are correlated to the target problem, results are excellent. We now switch to a more challenging case. Table 4 compares various discretizations in the difficult context of reweighting variables unrelated to the target variables. E.g. (80,8) means that we use 𝑑 = 80 variables and split each of them in 𝑀 = 8 bins. We got the best results with 10 variables discretized in 3. There are four target classes for faces unrelated to emotions. The variables are the final layer of an emotion recognition network. Still, in that difficult case, Fig. 2 shows how diversity losses are moved in the right direction by the reweighting -not much, but beneficial, and most importantly, not detrimental.

Reweighting mitigates fairness issues

Classes

Class E:

confirming results for reweighting with unrelated variables. Table 5 presents the impact of reweighting using the probabilities of class A, B, C and D (discretized) on the diversity loss of class E. (ABCD) and E are unrelated, so this is unsupervised fairness improvement.

Multi-objective optimization: only some forms of MOO mitigate fairness issues

MOO typically has two phases:

• optimization run, building a possibly large Pareto front;

• selection of a reduced Pareto front for presentation to the user.

This does not cover all MOO methods. The second stage is not always present, as some tools are equipped with a mechanism for navigating the Pareto front. Also, sometimes the first stage includes inputs from the human. We will nonetheless consider the framework above in the present paper. As mentioned before, a simple solution for MOO is to do multiple simple runs (MSR): just run the algorithm several times, and consider the several outputs. We consider other methods, namely maximizing the hypervolume for phase 1 and using various techniques (IGD, EPS, RANDOM, see Appendix A) for constructing a subset. The method is slightly beneficial; the average moves from 0.431 to 0.395. We use the best method in Table 4, rerun from scratch for mitigating the hyperparameter selection bias, getting the same 0.395 value. Dataset, strata, as in Table 4. X-axis: DL. Y-axis: number of contexts (out of 18) with DL falling in the given DL bin.

Tables 6 (target class is black) and 7 (target class is female Asian) show that the best results concerning maximum diversity are obtained by domain-covering or by MSR, and not by MOO approaches focusing on diversity over the Pareto front. The effective diversity measures are not based on Pareto-dominance. The best results are obtained either by pure MSR, using multiple runs and keeping all results, or by domain-covering, i.e., creating a subset using diversity in the image domain. This result is not so intuitive, so we ran additional experiments to check if Pareto-dominance can be detrimental to diversity. We conclude that Pareto-based MOO can be detrimental to diversity even with a large budget and 16 generations instead of 1. This is shown by Table 8: we do an additional experiment based on Pytorch-Gan-ZOO and variants. We use both single-objective optimization (EvolGan with budget 10000) and our MOO counterpart. We get a single image per run for single-objective optimization, and we can estimate DL as usual. We use MOO, with three objectives linearly combined in the singleobjective case: minimizing the squared of the injected latent variables, maximizing the IQA score, and maximizing the discriminator score. We use a large budget and many generated individuals so that problems can not be attributed to the parametrization. We consider that the "frequency" of a class is the frequency at which at least one of the outputs contains that class (see Alg. 2). We see that MOO by classical Pareto-dominance is not always solving diversity issues. It works only when the method has over-optimized and completely destroyed diversity (Table 8: results are < 100% in the last column only if the diversity loss is > 95%). Whereas diversity in the domain (domain-covering) or simple multiplication of runs (as in MSR) works in many cases, optimization with Pareto-dominance can fail. We conclude that counter-examples as in Fig. 1 are not an exception but the standard behavior of Pareto-dominance: due to 

CONCLUSION

Quality improvement degrades diversity: We checked that improving the visual quality degrades diversity when biasing latent variables through IQA methods. The biasing effect is consistent with known facts.

To mitigate this issue, we propose two methods. The first (Alg. 1) is a drop-in improvement of a generative model: it can be applied as soon as we have some auxiliary features that we can use for defining strata. The second one is user-assisted (Alg. 2) and can use MOO (either with Pareto-dominance for selecting a subset or with diversity preservation for some features in the domain) or MSR. Reweighting by related auxiliary variables: Unsurprisingly, reweighting by auxiliary variables close to the target classes is very effective at reducing the diversity loss. We cancel the diversity loss when reweighting using the same target class. This incurs a computational cost and does not solve quality inside each class, but we recover target frequencies.

Reweighting by unrelated auxiliary variables: A good finding is that we never degrade performance by applying reweighting, even when using unrelated variables. There are good reasons for this (Section 4.2). We recommend reweighting by as many variables as possible (at least as long as there is data enough for computing statistics with enough precision). However, we acknowledge that this has a computational cost.

Using MOO, also without knowing categories: The idea of using MOO for generating diversity is intuitively appealing. However, only MSR (running several single objective problems) or domain-covering turned out to be effective. Methods based on Pareto-dominance can be detrimental. Phenomena, as described in Fig. 1, are not an exception, but the rule.

Side remarks & caveats

Combination with supervised fairness: we considered purely unsupervised fairness, but we could do the same in combination with given sensitive variables: after a first correction for given sensitive variables, we can add a correction with respect to some unrelated generic strata. Impact of the optimization method: Tables 9, 3 and 8 show that CMA leads to more diversity loss compared to random search or PortfolioDiscrete(1+1). This is reasonable as the prior distribution is ignored by CMA, whereas it impacts every other tested methods:

• Random search uses the prior distribution at each step for choosing a point; • Discrete (1+1) algorithms use the marginal of the probability distribution for each modified variable. We presented results for reweighting with statistics based on large datasets, so that there was no problem for precisely estimating 𝑝 𝑖 /𝑝 𝑗 as needed: with small datasets, precision might be an issue.

APPENDIX A SUBSAMPLING THE PARETO FRONT

To extract 1 ≤ 𝑚 ≤ 𝑛 points from an approximate Pareto set {𝑥 1 , . . . , 𝑥 𝑛 }, a range of approaches can be used:

• Random subset: just pick up 𝑚 of the 𝑥 𝑖 , uniformly at random and without replacement. In domain-covering, we do the same as COV, but over all generated points and not only the Pareto-front.

B (NAIVELY) OPTIMIZING → LESS DIVERSITY

We train a PGAN [START_REF] Karras | Progressive growing of GANs for improved quality, stability, and variation[END_REF] and then improve it using IQA as in [START_REF] Rozière | EvolGAN: Evolutionary Generative Adversarial Networks[END_REF]: PGAN → EG10 → EG20 → EG40 (each "→" being an improvement in terms of image quality by refining the latent variables using the image quality assessment tool as a criterion [START_REF] Rozière | EvolGAN: Evolutionary Generative Adversarial Networks[END_REF]). As noted in [START_REF] Rozière | EvolGAN: Evolutionary Generative Adversarial Networks[END_REF], the quality improvement in EvolGAN is related to some diversity losses: for horses, we get rid of bugs such as horses with 3 heads, which is in some sense a sort of diversity loss. Unfortunately, this also reduces diversity in the sense that relevant rare classes become rarer (Table 9): there is a diversity loss from the dataset to the PGAN, and this diversity loss is increased when we increase the budget of the GAN improvement by EvolGan.

Further appendices can be found in the supplementary material. Table 9: Diversity loss for class F (i.e., low aesthetics value according to AvA) for EG compared to PytorchGanZoo (EG is an improvement of PytorchGanZoo using K512 as an IQA for biasing the latent vaariables). The diversity loss depends on how strongly we improve the GAN using EvolGan (more budget = more improvement in terms of quality measured by K512). We also show (third column) how much the diversity loss is preserved in spite of reweighting w.r.t. 𝐸: numbers < 100% show that a part of the diversity loss is repaired. No number is greater than 100%: our method is never detrimental.

Figure 1 :

 1 Figure 1: Bi-objective minimization, cases in which Paretodominance will be detrimental to diversity. Left: artificial counter-example showing that maximizing a numerical diversity criterion (the hypervolume) over the Pareto front might not provide diverse solutions. Here, we see a Paretofront and the hypervolume-best approximation by 3 points. Dots: the 3 individuals maximizing the hypervolume. Gray areas: examples of classes that completely disappear if we consider those dots (as they maximize the hypervolume) rather than a random sampling of the Pareto front. Right: other counter-example. Class A is assumed to be much bigger than class B, and to have, therefore, better scores for both criteria: this is because, as discussed in the text, bigger classes typically have better scores (see Section 1.2). While local optimization from points in B will provide points in B, a global optimization based on Pareto fronts will provide only points in A: class B is not represented.

Figure 2 :

 2 Figure 2: Hard case with unrelated reweighting variables: histogram of diversity losses for (A,B,C,D) using reweighting based on strata of R', over each of 18 contexts (see text).The method is slightly beneficial; the average moves from 0.431 to 0.395. We use the best method in Table4, rerun from scratch for mitigating the hyperparameter selection bias, getting the same 0.395 value. Dataset, strata, as in Table4. X-axis: DL. Y-axis: number of contexts (out of 18) with DL falling in the given DL bin.

Table 1 :

 1 For four distinct classes of individuals A, B, C and D (obtained using R), we present the rank-correlation of the frequency of that class with AvA and K512 scores re-

	Class	A	B	C	D
	Frequency	17.8% 52.2% 17.5% 12.4%
	Rank-correlation AvA	-0.07	0.22	-0.11	0.06
	Rank-correlation K512	-0.02	0.16	-0.08	0.02
	spectively. AvA and K512 are visual quality estimators, deal-
	ing with aesthetics and technical quality respectively. Vi-
	sual quality assessment is a task fairly independent of se-
	mantics and therefore should exhibit little if any ethnicity-
	related biases. Dataset: faces generated by StyleGan2 (see
	thispersondoesnotexist.com). Classes: ethnicity evaluated by
	R (see R in Table 2). Observation: the biggest class has the
	strongest, positive correlation.			
	therefore applicable when we do not know the target classes.
	We propose a method which is a drop-in improvement of an
	arbitrary generative model: as soon as we have features and
	a generative model, we can apply Alg. 1.	
	• Multi-objective optimization, through computation of sev-
	eral solutions (typically Pareto fronts), to mitigate diversity
	loss by providing more frequently at least one output of the
	category desired/expected by the user.	

• Reweighting as above, but with reweighed variables unrelated to target classes (Section 3.2). This second context is

  and

	Name	Notation	Domain	Note
		Variables to be protected	
	R	𝑅	{𝐴, 𝐵, 𝐶, 𝐷 }	Ethnicity [1]
	AvA	𝐴𝑣𝐴	{𝐹, 𝐸 }	Aesthetics[7]
		Related auxiliary variables	
		𝑅 ′	R 4	Logits of 𝑅
	Koncept512	𝐾512	R	IQA
		Unrelated auxiliary variables	
	Emotions	𝐸 𝐸 ′	{1, 2, 3, 4, 5, 6, 7} facial expression in [1] R 100 final layer of 𝐸
	VGG-Face	𝑉 𝐹	{0, 1} 128	Binarized
	final layer			VGG-face

Table 2

 2 

	: Feature extractors used in the present article. All
	data are faces, typically generated by StyleGAN2 or other
	methods in Section 2.2.
	40. Therefore we have nine flavors of EvolGan, corresponding to
	different algorithms and budgets.

  2 we have considered a drop-in replacement of the baseline, which generates one image per instance, we now consider the case in which we generated several instances, and the Different contexts for image generation, without or with human assistance. Left: unassisted context, generative model. Middle: generative model with target class (case in which there is an expected class, e.g., super-resolution in which the ethnicity is supposed to be preserved statistically). Right: user-assisted method. Not all unsupervised fairness methods can be applied in all cases. The reweighting method in Sections 3.1 and 3.2 can be applied to the two first columns. In contrast, the multiple generation such as the one in Section 3.3 can be applied to the third column only.

	No context, no user assistance	Context, no user assistance	Context, user assistance
	Repeatedly, generate one individual per	Repeatedly, generate one individual per	Repeatedly, generate 𝑘 individuals per
	request.	request. Requests have a context (e.g.,	request (e.g., by Pareto-based MOO, or
	Check that their frequencies match the	low-resolution image).	by diversity-based MOO, or by MSR):
	expectation: compute a DL.	Check that their frequencies match the	
		frequencies of the context (e.g., same eth-	
		nicity as low-res image): compute a DL.	

user can select one of them (see Alg. 2). There are two parts: how to generate multiple contexts, and, for some methods which generate way too many solutions for being manually searched by a human user, how to sample the obtained Pareto front.

Algorithm 2

Table 4 :

 4 Diversity loss for (A, B, C, D) after reweighting, in our hardest context (variables very uncorrelated to the tar-

get variable, namely E'). We observe that in most cases, the reweighting is still beneficial compared to 0.431 originally, though this difficult case does not lead to drastic improvements. Dataset: faces generated by StyleGan2. Strata: discretization of E' with 𝑑 ∈ {1, 2, 4, 10, 20, 80} and 𝑀 ∈ {2, 3, 5, 8}.

Table 5 :

 5 Impact of reweighting on diversity loss for class E when using classes R as auxiliary variable. We see that adding variables almost always improves results, and cases in which reweighting is detrimental are rare.

	Dataset: faces generated
	by StyleGan2. Sensitive variables for which DL is computed:
	emotions. Strata: IQA values provided by R', i.e., logits of R,
	with discretization with 𝑑 ∈ {1, 2, 3, 4} variables and 𝑀 = 8
	equally likely bins per variable. Observation: increasing 𝑑
	reduces the DL after reweighting.
	different scales of quality depending on the frequency of classes,
	we can not reliably use Pareto-dominance for selecting samples.
	MSR is the only method that did not have counter-examples. MOO
	methods based on Pareto fronts were ok only when the method for
	extracting representative images was based on domain-covering,
	i.e., unsupervised correction.

Table 6 :

 6 Multi-objective inspirational generation: the target is the face of a black person, originally very pixelized; the goal is to approximate it with PytorchGanZoo. We consider with which probability PytorchGanZoo generates at least one face of the correct ethnicity. Each algorithm generates nine faces. The best selector consists of picking up the nine outcomes of nine single runs (MSR: multiple single runs) or using domain covering, i.e., never using a Pareto-based measure. In conclusion, multi-objective optimization does work for generating diversity. However, we should not use Pareto-dominance and focus on multiple outcomes of random single-objective runs or diversity in the domain ("domain-covering" method), because fitness-based measures are too biased for being used for diversity.

	Algorithm	Selector	Percentage
	9 single-objective runs	
	NGOpt 9	domain-covering	33
	NGOpt 9	eps	33
	NGOpt 9	loss-covering	33
	NGOpt 9	msr	33
		CMA	
	CMA	domain-covering	33
	CMA	eps	33
	CMA	loss-covering	44
	CMA	msr	66
	Portfolio Discrete-(1 + 1)	
	PortfolioDiscrete(1 + 1)	msr	16
	PortfolioDiscrete(1 + 1)	eps	33
	PortfolioDiscrete(1 + 1)	loss-covering	33
	PortfolioDiscrete(1 + 1)	domain-covering	83
	Differential Evolution	
	DE	loss-covering	16
	DE	eps	16
	DE	domain-covering	33
	DE	msr	55
	Random Search	
	RandomSearch	loss-covering	0
	RandomSearch	msr	33
	RandomSearch	eps	50
	RandomSearch	domain-covering	66
	Algorithm	Selector	Percentage
	9 single-objective runs	
	NGOpt 9	domain-covering	22
	NGOpt 9	eps	0
	NGOpt 9	loss-covering	5
	NGOpt 9	msr	11
		CMA	
	CMA	domain-covering	27
	CMA	eps	11
	CMA	loss-covering	22
	CMA	msr	0
	Portfolio Discrete-(1 + 1)	
	PortfolioDiscrete(1 + 1)	msr	0
	PortfolioDiscrete(1 + 1)	eps	38
	PortfolioDiscrete(1 + 1)	loss-covering	16
	PortfolioDiscrete(1 + 1)	domain-covering	38
	Differential Evolution	
	DE	loss-covering	16
	DE	eps	22
	DE	domain-covering	5
	DE	msr	11
	Random Search	
	RandomSearch	loss-covering	5
	RandomSearch	msr	0
	RandomSearch	eps	11
	RandomSearch	domain-covering	33

Table 7 :

 7 Counterpart ofTable 6 for female Asian target. As in Table 6, domain-covering performs best.

	Original	EG40	PF	Subset	𝑑, 𝑀	Diversity	Uncancelled
	model	variant	size			loss	loss (%)
	PGAN	EG-RandomSearch	16	COV	5,2	0.726	111.333
	PGAN	EG-CMA	16	COV	5,2	0.977	89.285
	PGAN	EG-D(1+1)	16	COV	5,2	0.707	116.297
	PGAN	EG-RandomSearch	16	IGD	5,2	0.72	112.165
	PGAN	EG-CMA	16	IGD	5,2	0.973	90.008
	PGAN	EG-D(1+1)	16	IGD	5,2	0.730	112.409
	PGAN	EG-RandomSearch	16	Random	5,2	0.697	118.724
	PGAN	EG-CMA	16	Random	5,2	0.969	89.622
	PGAN	EG-D(1+1)	16	Random	5,2	0.726	115.778
	PGAN	EG-RandomSearch	16	EPS	5,2	0.738	107.916
	PGAN	EG-CMA	16	EPS	5,2	0.977	88.095
	PGAN	EG-D(1+1)	16	EPS	5,2	0.709	116.377

Table 8 :

 8 Column 6 shows the DL when moving from the original (column 1) to the improved version (column 2), and column 7 presents the part of this DL which is not solved by applying MOO for generating 16 points. There is a strong computational budget (10000) and a large generated set(16 points) in the present context. We consider that the result is ok if at least one of those 16 generations is of the expected class. Column 7 is frequently above 100%, i.e., results are worse than in the single-objective case generating only one image: this shows that even with favorable conditions, MOO based on Pareto-dominance can be detrimental. Only MSR (running several times and gathering the results) or domain-covering (i.e., good diversity for a side measure in the domain) provide stable improvements in the user-

assisted context (Tables

6 & 7

). Dataset: CelebaHQ (see https: //github.com/tkarras/progressive_growing_of_gans). Model: PytorchGanZoo. Method: described in Section 3.3. Sensitive variables on which DL is measured: ethnicity.

  • HV: pick up {𝑥 𝑗 1 , . . . , 𝑥 𝑗 𝑚 } such that their Hypervolume 𝐶 ℎ is maximal. • Loss-covering, also known as IGD (inverted generational distance, [25]): pick up {𝑥 𝑗 1 , . . . , 𝑥 𝑗 𝑚 } such that 𝐶 𝑙 = 𝑛 𝑖=1 inf 𝑗 ≤𝑚 ||𝐹 (𝑥 𝑖 )-𝐹 (𝑥 𝑖 𝑗 )|| 2 is minimal, where 𝐹 (𝑥) = (𝑓 1 (𝑥), . . . , 𝑓 𝑁 (𝑥)). • COV (covering the Pareto-front): pick up {𝑥 𝑗 1 , . . . , 𝑥 𝑗 𝑚 } such that 𝐶 𝑑 = 𝑛 𝑖=1 inf 𝑗 ≤𝑚 ||𝑥 𝑖 -𝑥 𝑖 𝑗 || 2 is minimal. • Additive epsilon approximation (EPS, [16]): pick up {𝑥 𝑗 1 , . . . , 𝑥 𝑗 𝑚 } such that 𝐶 𝑒 = max 𝑛 𝑖=1 inf 𝑗 ≤𝑚 ||𝐹 (𝑥 𝑖 ) -𝐹 (𝑥 𝑖 𝑗 )|| ∞ is minimal, where 𝐹 (𝑥) = (𝑓 1 (𝑥), . . . , 𝑓 𝑁 (𝑥)).
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(SUP1) Human raters

We use human raters for the two applications in Tables 6 and7. Our raters are volunteers, without any time limit. A double-blind graphical user interface presents images. For labeling with ethnicity, we use a binary question.

(SUP2) Reweighting with respect to four 𝑉 𝐹 binarized variables for a specific target Table 10 presents results of different methods in terms of the frequency of black people. In most cases, the frequency of black people decreased from the original 4.8% when applying EvolGan, but increased when applying reweighting. We note exceptions: whereas randomly chosen variables were always beneficial, very correlated variables failed in the most difficult cases.