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This work investigates lot sizing with component substitution under demand uncertainty. The integration of

component substitution with lot sizing in an uncertain demand context is important because the consolida-

tion of the demand for components naturally allows risk pooling and reduces operating costs. The considered

problem is relevant not only in a production context but also in the context of distribution planning. We

propose a stochastic programming formulation for the static-dynamic type of uncertainty, where the setup

decisions are frozen, but the production and consumption quantities are decided dynamically. To tackle the

scalability issues commonly encountered in multistage stochastic optimization, this paper investigates the

use of stochastic dual dynamic programming (SDDP). In addition, we consider various improvements of

SDDP, including the use of strong cuts, the fast generation of cuts by solving the linear relaxation of the

problem, and retaining the average demand scenarios. Finally, we propose two heuristics, namely, a hybrid

of progressive hedging with SDDP and a heuristic version of SDDP. Computational experiments conducted

on well-known instances from the literature show that the heuristic version of SDDP outperforms other

methods. The proposed method can plan with up to 10 decision stages and 20 scenarios per stage, which

results in 2010 scenario paths in total. Moreover, as the heuristic version of SDDP can replan to account for

new information in less than a second, it is convenient in a dynamic context.

Key words : Lot sizing, stochastic dual dynamic programming, stochastic optimization, stochastic demand

History :

1. Introduction

The manufacturing industry is undergoing a paradigm shift from mass production to mass

customization. As a result, companies tend to increase their assortment and launch new

products more frequently. In this context, the product demand can be highly volatile and

unpredictable, and thus the manufacturers must operate in an increasingly uncertain and

complex environment (Sreedevi and Saranga 2017). To cope with this uncertainty, compa-

nies tend to operate with more flexibility (Chan et al. 2017). Among other agility means,
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various companies rely on component substitution to mitigate supply chain risk (Freeman

et al. 2020). Indeed, unlike what is commonly assumed in production planning, the bills

of materials of various manufacturing products found in practice are usually not fixed. In

fact, component substitution is common in various industries such as computers (Begnaud

et al. 2009) and semiconductors (Rao et al. 2004). Lot sizing with substitution also occurs

in distribution planning, when a retailer can be supplied by different distribution centers

with different transportation costs (Firoozi et al. 2020). To plan the production in this sit-

uation, the available planning tools must properly account for the stochastic demand and

component substitution (Cecere 2015). This paper investigates the multiechelon lot-sizing

problem with component substitution under uncertain demand.

The integration of component selection with lot sizing in an uncertain demand context

is important because the consolidation (centralization) of the demand for components

reduces the fixed setup costs and allows risk pooling. In such circumstances, the decision

maker can benefit from the flexibility through an adaptive decision process. That is, the

manufacturer decides the amount of end-item to produce and the consumed components

dynamically, after observing the demand in the previous period. Consequently, we consider

the case of stochastic demand with static-dynamic types of uncertainty.

In the static-dynamic type of uncertainty (Bookbinder and Tan 1988), the setups are

decided in the initial period (period 0) for the entire horizon, whereas the lot sizes are

chosen at each period after having observed the demand. This decision process leads to

a multistage stochastic optimization problem, and such problems are commonly modeled

with a scenario tree. However, scenario trees have two major drawbacks: (1) the size of the

tree grows exponentially with the number of decision stages (leading to NT scenario paths,

where N is the number of scenarios in each stage, and T is the number of decision stages),

and this is impractical for a long planning horizon; (2) the solution computed based on a

sampled scenario tree gives only the first stage decisions, and the problem must be solved

again from scratch when new information (not in the considered sample) is available.

To overcome these difficulties, the present paper explores the use of the stochastic dual

dynamic programming (SDDP) algorithm framework. This framework was proposed by

Pereira and Pinto (1991) to solve multistage stochastic optimization problems. SDDP

decomposes the problem per decision stage, and it iterates successive forward and backward

passes. In the forward pass, the decisions in each stage t are computed with the current
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policy based on the state of the system, on the cost of stage t, and on the approximated

cost-to-go (from stage t+ 1 to the end of the horizon). The backward pass improves the

cost-to-go approximations with information on the dual subproblems. Note that SDDP

does not suffer from the drawbacks of the scenario tree approach for the following reasons.

First, the stagewise decomposition in SDDP prevents the exponential growth of the number

of scenario paths (as a result, SDDP considers only N scenarios per stage), provided that

the probability distributions of the different decision stages are independent. Second, the

cost-to-go approximations remain valid for any realization of the stochastic parameters.

Therefore, when new information unfolds, SDDP updates the quantities in a fraction of a

second because it only requires solving the subproblem of the corresponding stage.

The contribution of this work lies in the study of SDDP for the multiechelon lot-sizing

problem with component substitution under static-dynamic uncertain demand. To the best

of our knowledge, we are the first to develop a highly scalable framework for this challenging

problem. Our results show that a straightforward adaptation of SDDP to the considered

problem is not efficient because computing accurate approximations of the future costs in

each stage requires significant computing effort, and it is a very time-consuming process.

Therefore, to develop an efficient algorithm, we first employ various enhancements, includ-

ing those from the literature on Benders decomposition such as the use of strong cuts

(Magnanti and Wong 1981) with the implementation of Papadakos (2008) and the multi-

cut version of SDDP. While these improvements are often used in Benders decomposition,

only a few papers investigate their effectiveness and applicability in SDDP. In addition

to these algorithmic improvements, we propose a lower bound lifting method based on

the average demand scenario, and scenario sampling with Randomized Quasi-Monte Carlo

(RQMC) (Cranley and Patterson 1976). To tackle instances of practical size, we propose

two SDDP heuristics. First, we develop a hybrid approach of progressive hedging (PH)

and SDDP, where the setup values are computed with PH and fixed before running SDDP.

In addition, we propose an efficient heuristic version of SDDP. The heuristic SDDP starts

with initial setup values computed with a two-stage approximation of the problem, and

it iteratively improves this solution. At each iteration, the first-stage problem is solved to

redetermine the setup values prior to running SDDP on the subsequent stage until conver-

gence. To investigate the performance of these proposed methods, extensive computational
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experiments were conducted using the well-known instances from Tempelmeier and Der-

stroff (1996). The results show that the heuristic SDDP outperforms the hybrid approach

of PH and SDDP as well as the multistage model originally proposed in Thevenin et al.

(2021).

The rest of this paper is organized as follows. Section 2 reviews the literature on com-

ponent substitution and stochastic optimization in lot sizing. Section 3 describes the mul-

tiechelon capacitated lot-sizing problem under static-dynamic uncertain demands. Section

4 presents the SDDP algorithms, and the methods to compute the setups are presented in

Section 5. Finally, Section 6 reports the experimental results, followed by a conclusion in

Section 7.

2. Literature Review

Since the seminal paper of Harris (1990) (reprint of the 1913 article), the lot-sizing prob-

lem has received considerable attention from the operations research community. Readers

interested in the latest development on this topic are referred to recent surveys (e.g.,

Karimi et al. 2003, Jans and Degraeve 2008, Buschkühland et al. 2010, Brahimi et al.

2017). The rest of this section reviews the specific characteristic considered in this work,

namely, component substitution and stochastic demand.

2.1. Literature Review on Lot Sizing with Component Substitution

In various manufacturing contexts, producers have the flexibility to substitute a given

component with a component of better quality or with more functionalities. Despite the

higher cost of these alternative components, the substitution is relevant because it reduces

the ordering costs. Similarly, in a transportation context, a local distribution center can

be substituted by a farther one at the expense of additional transportation costs. Lot

sizing with component substitution was introduced by Balakrishnan and Geunes (2000).

The authors propose a dynamic programming approach, and they show that component

substitution can lead to significant cost savings, especially in a dynamic demand context.

Component selection is usually considered in a single-echelon bill of material (BOM).

Geunes (2003) proposes a facility location reformulation to solve the problem with the

dual ascent procedure proposed by Erlenkotter (1978) as a solution method. Yaman (2009)

considers the specific case with only two items and one-way substitution. The author

provides a polyhedral analysis and gives some valid inequalities. Furthermore, Lang and
4



Domschke (2010) introduce a case where multiple components are required to substitute

a component. The authors propose a facility location reformulation, as well as some valid

inequalities. A different stream of research (e.g., Wu et al. 2017) considers the joint lot-

sizing and cutting stock problem, where components are cut from sheets of different sizes.

For the multiechelon case, Begnaud et al. (2009) consider the case of a flexible BOM,

where each item can be produced with a different recipe. Each recipe corresponds to a

different task in the BOM, and the model selects one task among all possible ones. A

variant of the problem is called multiechelon lot sizing with BOM substitution (Wei et al.

2019). In this variant, the entire BOM can be modified in each period, and all items use

the same BOM in a period (but different BOMs can be used in different periods).

To the best of our knowledge, lot sizing with component substitution has never been

considered in a stochastic demand situation. However, there exists a vast literature (e.g.,

Gallego et al. 2006, Han et al. 2014) on inventory systems with product substitution

(Shin et al. 2015). This stream of research differs from the current study because the

substitution concerns the end-items and not the components. Product substitution can

be customer-driven if the customer selects a different product when the one the customer

wants is not available, or supplier-driven if the supplier decides to downgrade a product to

meet the demand (Huang et al. 2011). There exist several studies considering stochastic

optimization for inventory systems with product substitution. For instance, Hsu and Bassok

(1999) propose a scenario-based stochastic optimization approach for a production system

under random yield and random demand with product substitution. To speed up the

solution process, the authors rely on Benders decomposition, and they show that a greedy

algorithm can solve the subproblems as they have a special network flow structure. Also,

Rao et al. (2004) propose a stochastic optimization method and heuristics for the single-

period inventory system with setup in a static-dynamic framework. The authors show that

substitution results in substantial savings, especially when the setup costs or the demand

variance is large.

2.2. Literature Review on Lot Sizing Under Stochastic Demand

Compared to the vast literature on deterministic lot sizing, only a limited number of works

consider the stochastic version of this problem. There exist various sources of uncertainty

in lot sizing, such as demand, yield, lead times, or capacity, and the present work focuses

on demand uncertainty. As meeting the demand in any situation is expensive, stochastic
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optimization models seek to minimize the expected backlog (e.g., Tarim and Kingsman

2006, Tunc et al. 2018) or to reach a given service level (e.g., Bookbinder and Tan 1988) with

chance constraint approaches. In addition, three decision frameworks exist, namely, static-

static, static-dynamic, and dynamic-dynamic. In static-static, the lot sizes are determined

in period 0 for the entire horizon, and they are frozen. On the contrary, in dynamic-

dynamic, the decisions are made in each period after having observed the realization of the

stochastic parameters. In static-dynamic, the setups are static (selected in the first period

for the entire horizon and frozen), whereas the quantities are computed in each period

after the unknown parameters unfold. For more information on stochastic lot sizing, the

interested reader is referred to the recent surveys of Tempelmeier (2013) and of Aloulou

et al. (2014).

A few studies consider the capacitated lot-sizing problem with stochastic demands (e.g.,

Tempelmeier and Hilger 2015, Brandimarte 2006). However, most studies on stochastic

lot sizing consider a single-echelon production system. To the best of our knowledge,

the only papers on stochastic optimization for multiechelon systems are Grubbström and

Wang (2003), Quezada et al. (2020), and Thevenin et al. (2021). Grubbström and Wang

(2003) propose a dynamic programming approach to minimize the net present value in the

capacitated multiechelon lot-sizing problem with stochastic demand, but they ignore lead

times. Quezada et al. (2020) propose a branch-and-cut approach for the uncapacitated

lot-sizing problem in a re-manufacturing system with three echelons under various types

of uncertainty (demand, cost, supply, yield). Thevenin et al. (2021) propose a scenario tree

approach for the multiechelon capacitated lot-sizing problem under stochastic demand.

Thevenin et al. (2021) show that stochastic optimization significantly reduces the costs in

material requirements planning when compared to traditional approaches used in lot-size

and safety stock determination. In the present work, we propose an SDDP approach to

solve requirements planning with component substitution over a long planning horizon. To

alleviate the scalability issues, we develop a heuristic version of SDDP, and this method can

handle a much larger set of scenario paths than the mixed-integer linear program (MILP)

proposed in Thevenin et al. (2021).

Optimization methods commonly used for stochastic lot sizing include PH (Haugen

et al. 2001), scenario-based mathematical programming (Brandimarte 2006), dynamic pro-

gramming (Sox 1997), heuristics (Piperagkas et al. 2012), branch-and-bound (Tarim et al.
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2011), among others. To the best of our knowledge, the only papers on the application

of the SDDP algorithm to a lot-sizing problem are (Quezada et al. 2019) and (Quezada

et al. 2021). Nevertheless, in that work, the authors consider the uncapacitated single-

item lot-sizing problem. Thus, the technique applied in that work cannot be applied in

a straightforward way to the capacitated multiechelon multi-item lot-sizing problem with

component substitution studied in the present work. The SDDP algorithm has been mostly

applied to hydrothermal energy operations planning (e.g., Soares et al. 2017a, Lohmann

et al. 2016), and other applications include the control of microgrids (Pacaud et al. 2018),

pastoral dairy farms (Dowson et al. 2019), or portfolio optimization (Valladão et al. 2019).

The multiechelon lot-sizing problem under demand uncertainty requires a large number of

scenarios to approximate the costs (Thevenin et al. 2021). Consequently, the classical sce-

nario tree approach leads to a huge MILP that consumes too much memory. In this context,

decomposition approaches such as PH (decomposition per scenario) and SDDP (decom-

position per stage) are suitable and could be highly efficient in addressing the tractability

issue in this problem. While existing studies (e.g., Brandimarte 2006, Quezada et al. 2020)

on scenario tree methods for lot sizing are limited to less than 1000 scenario paths, the

SDDP algorithm proposed in the present work computes the production quantities based

on 2010 scenario paths.

Our contributions are threefold. (1) This paper is the first to study lot sizing with

component substitution under stochastic demand. Our analysis shows that component

substitution can pool the risk, and it allows maintaining the same service level with less

inventory. (2) We investigate the performance of SDDP for the lot-sizing problem, and

we study the impact of multiple algorithmic improvements of the SDDP. (3) We propose

two strategies to compute and fix the setups in the SDDP framework, namely, a hybrid

of PH and SDDP and a heuristic version of SDDP. Our results show that the heuristic is

competitive with the MILP on small scenario trees, but it can handle much larger scenario

sets.

3. Considered Problem

This paper addresses the capacitated multiechelon lot-sizing problem with component sub-

stitution (CMLCS) under uncertain demand. Given a multiechelon BOM, the demand

distribution of the end-items, and the unit capacity consumption of each item, the CMLCS
7



is to decide when to produce, as well as the sizes of the production lots, and to select

the components to minimize the expected setup, production, substitution, inventory, and

backlog costs.

The BOM gives the production recipe of each item in the set Ie of end-items. More

precisely, the production of item j consumes Rij units of component i. However, an item

i′ in the set Ai can substitute component i, and this substitution costs ai′i. For simplicity,

we assume i∈Ai with aii = 0. We denote by Ic the set of components and by I the set of

all items with I = Ie ∪Ic. Without loss of generality, we assume that there is no demand

for components, whereas the demand’s probability distribution of each end-item is given

for each period in the planning horizon H = {1, . . . , T}. The uncertain demands for each

period are represented by a set of discrete scenarios. We denote by Ωt the set of demand

realizations at a given stage t, where each scenario ωt ∈ Ωt corresponds to a realization

of the demand in period t. We also let Φ denote the set of scenario paths ϕ ∈ Φ, where

each scenario path represents a vector of demand realizations over the planning horizon

H, i.e., ϕ= (ω1, ω2, ..., ωT ). In addition, let ϕ[t] denote a partial scenario path with demand

realizations from period 1 to t and let γt(ϕ) denote the scenario ωt in period t associated

with the scenario path ϕ. Each scenario path ϕ has a probability σϕ, and we also define

pωt as the conditional probability associated with scenario node ωt, i.e., pωt = Prob{ωt =

γt(ϕ)|γt−1(ϕ)}. The requirement plan must account for the production capacity and lead

times. Each resource r in the set of resources R has a given capacity Cr, and the production

of one unit of item i consumes Kir units of capacity of resource r. The items i produced

in period t are available in period t+ Li. The problem accounts for the backlog cost bi,

holding cost hi, production cost vi, the end-of-horizon backlog cost ei, the substitution

costs ai′i, and the setup cost si for each item i. The objective is to find a production plan

that minimizes the expected total cost.

In the classical lot sizing with backlog formulation, a set of demand satisfaction con-

straints is imposed to ensure that all the demands are met within the planning horizon. In

a stochastic demand context, such constraints would be too conservative as they require

producing enough items to meet the demands in the worst-case scenario paths. Therefore,

to avoid over-conservative solutions, the model allows a positive backlog level in the last

period T of the horizon (Absi et al. 2011, Thevenin et al. 2021). In practice, this backlog

may be met several periods after the end of the horizon, but the model cannot account
8



for these costs. Therefore, the end-of-horizon backlog cost ei is set larger than the backlog

cost bi within the horizon.

In the static-dynamic uncertainty, the setups for each item are decided in period 0 for

all the periods in the horizon, and they remain frozen. On the contrary, the inventory

and backlog levels are computed after observing the demands in each scenario, and the

quantities for each item ordered in period t are computed after having observed the demand

in period t− 1 in each scenario. Similarly, the quantity of components consumed to meet

the internal demand of item j in period t is decided after observing the demand in period

t− 1 for each scenario. For the sake of clarity, we present below the subproblem of each

decision stage before introducing the scenario tree formulation.

3.1. SDDP Formulation of CMLCS

Each decision stage corresponds to the arrival of new information on the end-items’

demands. More precisely, the first stage corresponds to the initial state, where no informa-

tion on the demand is available, and the decisions on the quantities to produce in period

1 must be made. Similarly, the stage t∈ {2, . . . , T} corresponds to the beginning of period

t, where the demands of end-items in period t− 1 are known, and the decisions on the

quantities to produce in period t can be determined sequentially at each stage. Finally,

the last stage computes the inventory and backlog costs when the last period demands are

known. This section successively presents the subproblem in stage 1, the subproblem in

stage t ∈ {2, . . . , T}, and the subproblem in the last stage T + 1. For ease of exposition,

we assume strictly positive lead times for all items, but the proposed algorithm can easily

be extended to the case of zero lead times. For clarity, we denote by QIH (resp. QI[t]) the

matrix of quantity variables Qit for all i ∈ I and t ∈ H (resp. period τ ∈ {1, . . . , t}), and
the same notation applies to other variables. We provide below the optimization problem

for each decision stage.

First-stage model. The first-stage decisions are made when the demand in periods 1 to

t is unknown. These decisions include the setups Yit for all items i and periods t, the

production quantities Qi1 for all items i in period 1, the consumed quantities Wij1 for all

arcs (i, j) in the BOM in period 1, and the inventory levels Ii1 of components in period

1. Contrarily to the components, the end-item inventory levels in period 1 depend on the

realization of the demands in period 1, and they are thus computed in stage 2. Without

loss of generality, we assume that the initial inventory levels (Ii0) and initial backlog levels
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(Bi0) are equal to zero for all items i (these initial values can also be set to the actual

values in practice). The first-stage problem can be formulated as follows:

Min
∑
i∈I

(∑
t∈H

siYit + viQi1+
∑
j∈I

aijWij1

)
+
∑
i∈Ic

hiIi1 (1)

+ F2(YIH,QI1, IIe0, IIc1,BIe0)

s.t. Ii0−
∑
j∈I

Wij1− Ii1 = 0 i∈ Ic (2)

∑
i∈Ak

Wik1 =
∑
j∈I

RkjQj1 k ∈ Ic, j ∈ I (3)

Qi1 ≤ Yi1Mi i∈ I (4)∑
i∈I

Qi1Kir ≤ Cr r ∈R (5)

Qi1 ≥ 0 i∈ I (6)

Wij1 ≥ 0 i∈ I, j ∈ I (7)

Ii1 ≥ 0 i∈ Ic (8)

Yit ∈ {0,1} i∈ I, t∈H. (9)

The objective function (1) includes the setup costs for all products and all periods,

the production and consumption costs for all items in period 1, the inventory costs of

components in period 1, and the future costs F2(YIH,QI1, IIe0, IIc1,BIe0) depending on

the decisions made in the first stage. The definition of the future cost function Ft(.) for a

given period t is given in equation (21). Constraints (2) compute the inventory levels of

components, and constraints (3) determine the consumed quantities. Constraints (4) set

the quantity to 0 if there is no setup, where the value of Mi is the minimum between the

lower bound M 1
i on the production quantities computed from the demands (10) and the

lower bound M 2
i computed from the resource capacities (11). The capacity constraints are

given in (5). The bounds M 1
i and M 2

i are computed as follows:

M 1
i =

maxϕ∈Φ
∑

t∈HDϕ
it if i∈ Ie∑

j∈I

(∑
k|i∈Ak

Rkj

)
M 1

j if i∈ Ic

(10)

M 2
i = min

r∈R|Kir>0

Cr

Kir

. (11)
10



Subproblem of stage t ∈ {2, . . . , T}. In stage t ∈ {2, . . . , T}, the state of the system is given

by the decisions (ŶIH, Q̂I[t−1], ÎIe[t−2], ÎIc[t−1], B̂Ie[t−2]) made in the previous stages (the nota-

tion X̂ is used to represent the set of values of the corresponding decision variables X

determined in the previous stages prior to t). The end-item demand of period t−1 unfolds,

and this is captured in the scenario ωt−1 ∈ Ωt−1. With this information, the inventory

level (denoted by I
ωt−1

it−1 ) and the backlog level (denoted by B
ωt−1

it−1 ) for end-item i at the

end of period t− 1 for scenario ωt−1 can be computed directly from the decisions made

and demand realizations prior to period t. Based on this information, the subproblem of

stage t computes the quantities Q
ωt−1

it and W
ωt−1

ijt . Similarly to the stage 1 subproblem, the

inventory level I
ωt−1

it in period t for components i in scenario ωt−1 depends on the internal

demand, and it can be computed in stage t. The decisions are chosen to minimize the costs

given the state of the system at the beginning of stage t. Note that we use the notation

[a b] to denote the augmented matrix of matrices a and b. The formulation of the stage

t∈ {2, . . . , T} subproblem for scenario ωt−1 is defined as follows:

Gt(ŶIH, Q̂I[t−1], ÎIe[t−2], ÎIc[t−1], B̂Ie[t−2],D
ωt−1

Iet−1) =

Min
∑
i∈I

viQ
ωt−1

it +
∑
i∈Ic

hiI
ωt−1

it +
∑
i∈Ie

(
biB

ωt−1

it−1 + I
ωt−1

it−1

)
+
∑
i∈I

∑
j∈I

aijW
ωt−1

ijt (12)

+ Ft+1

(
ŶIH,

[
Q̂I[t−1] Q

ωt−1

It

]
,
[
ÎIe[t−2] I

ωt−1

Iet−1

]
,
[
ÎIc [t−1]I

ωt−1

Ict

]
,
[
B̂Ie[t−2] B

ωt−1

Iet−1

])
s.t. Q̂it−Li−1+ Îit−2− B̂it−2−D

ωt−1

it−1 − I
ωt−1

it−1 +B
ωt−1

it−1 = 0 i∈ Ie (13)

Q̂it−Li
+ Îit−1−

∑
j∈I

Wijt− I
ωt−1

it = 0 i∈ Ic (14)

∑
i∈Ak

W
ωt−1

ikt =
∑
j∈I

RkjQ
ωt−1

jt k ∈ Ic, j ∈ I (15)

Q
ωt−1

it ≤MiŶit i∈ I (16)∑
i∈I

Q
ωt−1

it Kir ≤ Cr r ∈R (17)

B
ωt−1

it−1 , I
ωt−1

it−1 , Q
ωt−1

it ≥ 0 i∈ Ie (18)

W
ωt−1

ijt ≥ 0 i∈ I, j ∈ I (19)

I
ωt−1

it , Q
ωt−1

it ≥ 0 i∈ Ic. (20)

The objective function (12) includes the production costs, the inventory costs of the com-

ponents in period t, the backlog and inventory costs of end-items in period t − 1, the

component substitution costs, and the future costs Ft+1(·).11



This future cost corresponds to the average expected cost from period t+1 to T , and it

is computed as:

Ft+1(ŶIH, Q̂I[t], ÎIe[t−1], ÎIc[t], B̂Ie[t−1]) =
∑
ωt∈Ωt

pωt Gt+1(ŶIH, Q̂I[t], ÎIe[t−1],

ÎIc[t], B̂Ie[t−1],D
ωt
Iet). (21)

Constraints (13) and (14) compute the inventory and backlog levels for end-items and

components, respectively. Also, constraints (15), (16), and (17) are the consumption, setup,

and capacity constraints, respectively.

Last-stage subproblem. The last stage (T + 1) computes the level of inventory and end-

of-horizon backlog based on the decisions made in previous stages, where the variables

include the end-item inventory IωT
iT and the end-of-horizon backlog BωT

iT for end-item i in

period T for scenario ωT ∈ΩT :

GT+1(Q̂Ie[T ], ÎIe[T−1], ÎIc[T ], B̂Ie[T−1],D
ωT
IeT ) =

Min
∑
i∈Ie

(hiI
ωT
iT + eiB

ωT
iT ) (22)

s.t. Q̂iT−Li
+ ÎiT−1− B̂iT−1−DωT

iT − IωT
iT +BωT

iT = 0 i∈ Ie (23)

IωT
iT , BωT

iT ≥ 0 i∈ Ie. (24)

The objective (22) includes the end-of-horizon backlog and inventory costs of end-items,

and their values are computed with constraints (23).

Finally, note that the considered problem is NP-hard because it extends the deterministic

uncapacitated multiechelon lot-sizing problem with a general BOM that is NP-hard (Arkin

et al. 1989).

3.2. Scenario Tree Formulation of CMLCS

This section provides the scenario tree formulation of the CMLCS. This alternative for-

mulation is an MILP that can be implemented in a commercial solver, and we use it to

benchmark the proposed SDDP approach. In addition, the PH approach proposed in Sec-

tion 5.1 relies on the scenario tree formulation. The scenario tree formulation accounts for

the realization of the demands in all periods in a single model by considering the scenario

path ϕ rather than the scenario node ωt. As a result, the variables are indexed by scenario

path rather than scenario node. More precisely, Qϕ
it, B

ϕ
it, and Iϕit denote, respectively, the12



production quantity, backlog level, and inventory level for item i in period t in scenario

path ϕ. In addition, W ϕ
ijt denotes the quantity of item i consumed to produce j in period t

in scenario path ϕ. Let Dϕ
Ie[t] denote the demand matrix of a scenario path ϕ that contains

the values of the demand realizations Dϕ
iτ for each item i∈ Ie for each period τ ∈ {1, . . . , t}.

Note that the size of this model grows exponentially when the number of periods increases.

The CMLCS can be formulated as follows:

min
∑
ϕ∈Φ

σϕ

(∑
t∈H

∑
i∈I

(
hiI

ϕ
it + siYit+ viQ

ϕ
it +

∑
j∈I

aijW
ϕ
ijt

)
+
∑
i∈Ie

(
t=T−1∑
t=1

biB
ϕ
it + eiB

ϕ
iT

))
(25)

s.t. Iϕit−1−Bϕ
it−1+Qϕ

it−Li
−Dϕ

it − Iϕit +Bϕ
it = 0 i∈ Ie, t∈H, ϕ∈Φ (26)

Iϕit−1+Qϕ
it−Li

−
∑
j∈I

W ϕ
ijt− Iϕit = 0 i∈ Ic, t∈H, ϕ∈Φ (27)

∑
i∈Ak

W ϕ
ikt =

∑
j∈I

RkjQ
ϕ
jt k ∈ Ic, t∈H, ϕ∈Φ (28)

Qit ≤ MiYit i∈ I, t∈H (29)∑
i∈I

KirQ
ϕ
it ≤ Cr t∈H, r ∈R, ϕ∈Φ (30)

W ϕ
ijt+1 =W ϕ′

ijt+1, Qϕ
it+1 =Qϕ′

it+1 i∈ I, t∈H, ϕ,ϕ′|Dϕ
Ie[t] =Dϕ′

Ie[t] (31)

Bϕ
it ≥ 0 i∈ Ie, t∈H, ϕ∈Φ (32)

Iϕit ≥ 0 i∈ I, t∈H, ϕ∈Φ (33)

W ϕ
ijt ≥ 0 i, j ∈ I, t∈H, ϕ∈Φ (34)

Qϕ
it ≥ 0 i∈ I, t∈H, ϕ∈Φ (35)

Yit ∈ {0,1} i∈ I, t∈H. (36)

The objective function (25) is the expected sum of inventory costs, setup costs, unit produc-

tion costs, backlog costs, end-of-horizon backlog costs, and component substitution costs.

The backlog and inventory quantities are computed with constraints (26) for end-items and

constraints (27) for components. Constraints (28) compute the component consumption

associated with the production quantities. Constraints (29) set the production quanti-

ties to zero in periods without setups. Finally, constraints (30) and (31) are the capacity

and non-anticipativity constraints, respectively. More specifically, constraints (31) enforce

equal production quantities in period t+1 for all scenario paths ϕ with identical demand
13
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Figure 1 Example of symmetric scenario tree [2,2]

realizations Dϕ
Ie[t] from period 1 to t. Note that the inventory and backlog levels can be

directly computed from the quantities, consumptions, and demands up to period t− 1.

Consequently, the non-anticipativity constraints for the backlog and inventory variables

are implicit.

4. Stochastic Dual Dynamic Programming for the CMLCS

This section describes the proposed SDDP algorithm for the CMLCS. Section 4.1 gives

a generic description of SDDP, and Section 4.2 describes its adaptation to the CMLCS.

Finally, Section 4.3 presents the enhancements for SDDP.

4.1. The SDDP Framework

To avoid the exponential growth in the number of states, SDDP assumes that the proba-

bility distributions are stagewise independent. Under this assumption, the complete set of

scenario paths Φ corresponds to a symmetric scenario tree, where each node represents a

realization of the stochastic parameters, and each path is a scenario. Figure 1 shows such

a tree for the single end-item CMLCS, with the realization of the demand on each node

and the probability associated with the realization on the edge leading to each node. As

the tree is symmetric, all the nodes of stage t have branches toward the same scenario set

Ωt+1 for the parameters revealed in stage t+1, and the branches’ probability toward the

same sample is identical. Consequently, the stochastic process can be represented with a

sample Ωt for each period t∈ T .

SDDP decomposes the stochastic optimization problem per decision stage. Given the

decisions x[t−1] made in stages 1 to t−1 and the realization ω[t] of the stochastic parameters

in stages 1 to t, the subproblem of stage t is to find the decisions xt optimizing the costs
14



of stage t plus the cost-to-go. This cost-to-go function represents the expected costs from

stage t+1 to T as a function of the decisions x[t] made from stage 1 to t and the realization

ω[t] of the stochastic parameters in stages 1 to t. As the cost-to-go functions are unknown

at the start, SDDP iteratively builds an outer approximation of these functions. The reader

is referred to Pereira and Pinto (1991) and Shapiro (2011) for more information about

SDDP.

4.2. SDDP for CMLCS

At each iteration of SDDP, a forward pass generates a feasible solution, and a backward

pass adds information about the cost-to-go functions. The forward and backward steps are

described below, and they are followed by a discussion on the stopping criterion.

4.2.1. Forward Pass The forward pass simulates the use of the current policy for a set

Ξ of scenario paths re-sampled from the scenario path set Φ at each iteration. For each

sampled scenario path ξ ∈ Ξ, the subproblems are solved starting from stage t = 1 until

stage t = T . The state of the system in stage t comes from the solution of the forward

pass for sampled scenario path ξ in the previous stages. This state can be described by

the initial inventory Îξit−2, the initial backlog B̂ξ
it−2, and the delivered quantity Q̂ξ

it−Li−1 for

end-items and by Îξit−1 and Q̂ξ
it−Li

for components.

In SDDP, the cost-to-go function in each stage t is described with a set of hyperplanes

Fh
2 (.)∈Lt (built during the backward pass). The objective function in stage 1 becomes

Min
∑
i∈I

(∑
t∈H

siYit + viQi1+
∑
j∈I

aijWij1

)
+
∑
i∈Ic

hiIi1+F2, (37)

where F2 is a variable representing the future costs, and these costs are computed with the

constraints:

F2 ≥Fh
2 (YIH,QI1, IIe0, IIc1,BIe0) h∈L2. (38)

As SDDP builds the set of hyperplanes iteratively, L2 is empty in the first iteration and

thus we impose the lower bound on the objective function by adding the constraint

F2 ≥ 0. (39)

Similarly, the cost-to-go function Ft+1(.) is approximated with a set of hyperplanes Lt+1.

The objective function becomes

Min
∑
i∈I

viQ
ωt−1

it +
∑
i∈Ic

hiI
ωt−1

it +
∑
i∈Ie

(
biB

ωt−1

it−1 + I
ωt−1

it−1

)
+
∑
i∈I

∑
j∈I

aijW
ωt−1

ijt +Ft+1, (40)

15



and Ft+1 is computed from the following constraints:

Ft+1 ≥Fh
t+1

(
ŶIH,

[
Q̂ξ

I[t−1],Q
ωt−1

It

]
,
[
ÎξIe[t−2], I

ωt−1

Iet−1

]
, (41)

[
ÎξIc[t−1], I

ωt−1

Ict

]
,
[
B̂ξ

Ie[t−2],B
ωt−1

Iet−1

])
h∈Lt+1, (42)

and

Ft+1 ≥ 0. (43)

4.2.2. Backward Pass To compute the cost-to-go associated with the scenarios in Ωt

given the decisions made in the previous stages, the backward pass solves the subproblem

of each stage t (from t= T to t= 2) for all scenarios ωt in Ωt. To improve the approximation

of the cost-to-go in stage t− 1, SDDP adds a cut inferred from the dual of the stage t

subproblems (i.e., Benders optimality cuts) to the subproblem of stage t− 1.

Backward pass in stage T +1. The dual of subproblem (22)–(24) is

Max
∑

ωT∈ΩT

pωT

∑
i∈Ie

λkωT
i

(
−Q̂ξ

iT−Li
− ÎξiT−1+ B̂ξ

iT−1+DωT
iT

)
(44)

s.t. −λkωT
i ≤ hi ∀i∈ Ie (45)

λkωT
i ≤ ei ∀i∈ Ie. (46)

Consequently, the hyperplane

∑
ωT∈ΩT

pωT

∑
i∈Ie

λkωT
i

(
−Q̂ξ

iT−Li
− I

ωT−1

iT−1 +B
ωT−1

iT−1 +DωT
iT

)
(47)

is added to LT , where λkωT
i is the dual variable of constraint (23) for product i in scenario

ωT at iteration k. Note that I
ωT−1

iT−1 and B
ωT−1

iT−1 are the variables of stage T associated with

scenario ωT−1 ∈ ΩT−1, whereas the variables Q̂ξ
iT−Li

are fixed during the forward pass at

stage T −Li. As the hyperplane is added to LT , it will be considered in the subproblem of

stage T .

Backward pass at stage t ∈ {2, . . . , T}. The cuts generated from the subproblems in stage

t∈ {2, . . . , T} are also based on the objective function of the dual subproblem. In the first

iteration of the algorithm, the dual of the subproblem in stage t is
16



∑
ωt−1∈Ωt−1

pωt−1

(∑
i∈Ie

κ
kωt−1

i

(
− Q̂ξ

it−Li−1− I
ωt−2

it−2 +B
ωt−2

it−2 +D
ωt−1

it−1

)
+
∑
i∈Ic

η
kωt−1

i

(
− Q̂

ξ[t−Li−1]

it−Li
− I

ωt−1

it−1

)
+
∑
i∈I

θ
kωt−1

i MŶit

+
∑
r∈K

χ
kωt−1

i Cr

)
,

where κ
kωt−1

i , η
kωt−1

i , θ
kωt−1

i , and χ
kωt−1

i denote, respectively, the dual variables of constraints

(13), (14), (16), and (17) for item i in scenario ωt−1 ∈Ωt−1 in iteration k, and ωt−2 ∈Ωt−2

is the scenario of stage t− 1.

However, SDDP iteratively generates a set of cuts in the subproblems, and these cuts

modify the dual’s objective value. For instance, at stage T , the cut (47) is added in each

iteration, and the following element is added to the dual’s objective:

∑
h∈LT

π
ωT−1

h

∑
ωT∈ΩT

pωT

∑
i∈Ie

λhωT
i (−Q̂ξ

iT−Li
+DωT

iT ),

where LT denotes the set of cuts in stage T and πh denotes the dual variables of cut h

(added in iteration h). Thus, after solving the subproblem of stage T , the following cut is

added to the subproblem of stage T − 1:

FT ≥
∑

ωT−1∈ΩT−1

pωT−1

(∑
i∈Ie

κ
kωT−1

i (−Q̂ξ
iT−Li−1− I

ωT−2

iT−2 +B
ωT−2

iT−2 +D
ωT−1

iT−1 )

+
∑
i∈Ic

η
kωT−1

i (−Q̂ξ
iT−Li

− I
ωT−2

iT−2 )

+
∑
i∈I

θ
kωT−1

i MŶiT−1

+
∑
r∈K

χ
kωT−1

i Cr

+
∑
h∈GT

π
ωT−1

h

∑
i∈Ie

λhωT
i (−Q̂ξ

iT−Li
+DωT

iT )
)
.

Note that if Li = 1, Q̂ξ
iT−Li

is a variable of the stage T −1 subproblem, whereas for Li > 1,

Q̂ξ
iT−Li

is fixed to the value found in the previous stage.
17



We explain below the construction of the cut for any stage t > T − 1. Each cut c in the

set of cuts Ct of stage t can be expressed by

Ft+1 ≥Ac
t−1X̂t−1+Ac

tXt +Ac
eX̂e+Ac,

where Xt denotes the variables of stage t, X̂t−1 is the set of variables of stage t− 1, X̂e

is the set of variables decided earlier than stage t− 1 , Ac
t−1, Ac

t , and Ac
e are the matrix

of coefficients, and Ac denotes the constant on the right-hand side of cut c. These cuts

increase the objective function value of the dual with∑
h∈Lt

πc

(
Ac

t−1Xt−1+Ac
eX̂e+Ac

)
,

where πc is the dual variable associated with cut c. Consequently, after resolving the

subproblem at stage t, the following cut is added to the subproblem of stage t− 1:

Ft ≥
∑

ωt−1∈Ωt−1

pωt−1

(∑
i∈Ie

κ
kωt−1

i (−Q̂ξ
it−Li−1− I

ωt−2

it−2 +B
ωt−2

it−2 +D
ωt−1

it−1 )

+
∑
i∈Ic

η
kωt−1

i (−Q̂ξ
it−Li

− I
ωt−2

it−1 )

+
∑
i∈I

θ
kωt−1

i MŶit

+
∑
r∈K

χ
kωt−1

i Cr

+
∑
h∈Lt

πc(A
c
t−1Xt−1+Ac

eX̂e+Ac)
)
.

(48)

Algorithms 1, 2, and 3 give the steps of SDDP, the forward pass, and the backward pass,

respectively.
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Algorithm 1 SDDP

Generate the first-stage MILP and the linear programs of the subsequent stages.

while the stopping criterion is not met do

Sample a set of scenario paths Ξ.

for each sampled scenario path ξ ∈Ξ do

Perform the forward pass (Algorithm 2) to find the solution for sampled scenario

path ξ with the current policy.

Perform the backward pass (Algorithm 3) to improve the approximation of the

cost-to-go.

end for

end while

Algorithm 2 Forward pass on a scenario path ξ

Solve the first-stage MILP (37), (2) - (9), (38), and (39) to get the values of ŶIt and Q̂I1

for t= 2 to t= T do

Compute Ft(ŶIt, [Q̂
ξ
Iet−Li−1, Q̂

ξ
Ict−Li

], ÎξIet−2, Î
ξ
Ict−1, B̂

ξ
Iet−2) and record the resulting val-

ues of Q̂It, ÎIct, B̂Ict, ÎIet−1, B̂Iet−1.

end for

Algorithm 3 Backward pass

for t= T +1 to t= 2 do

for each scenario ωt ∈Ωt do

Modify the LP (40), (13)–(20), (42), and (43) of stage t according to the demand

of scenario ωt and the decisions made in previous stages 1 to t− 1 of the forward

pass, and solve this LP.

end for

Create a new cut for stage t− 1 as shown in Equation (48).

end for

4.2.3. Stopping Condition On the one hand, as F2 represents a partial outer-

approximation of the cost-to-go, the solution of the first-stage subproblem gives a lower

bound LB of the optimal solution. On the other hand, the forward pass gives an approxi-

mate upper bound UB since the forward pass gives the expected cost of the current policy
19



over the subset Ξ of scenario paths (the resulting solutions are feasible but the true cost

is not calculated unless all the scenario paths are evaluated). However, the convergence of

SDDP cannot be detected by a simple comparison of UB and LB because UB is only an

approximate upper bound. Statistical proofs of convergence exist in the literature (Shapiro

2011), but they are seldom used in practice as a stopping condition. As these proofs are

statistical, there is either a risk of stopping the algorithm too soon (and it will not provide

a good solution) or the gap may be too large to be relevant. In practice, stopping the

algorithm after a predefined number of iterations or a time limit is more reliable (De Matos

et al. 2015, Soares et al. 2017b). Therefore, in this work, we stop the algorithm when a

predetermined time limit is reached. The time limit criterion is also practical since a solu-

tion must be provided in a reasonable amount of time, but the algorithm remains valid if

the user decides to use a different stopping criterion.

4.3. Enhancements to SDDP

To speed up the convergence of SDDP, several enhancements are proposed, namely, the

generation of strong cuts, retaining the average scenario, generating multiple cuts in the

backward pass, and advanced scenario sampling. These strategies are described below.

4.3.1. Generation of Strong Cuts Magnanti and Wong (1981) observed that the dual

of a degenerate subproblem may have multiple optimal solutions and that each solu-

tion leads to the generation of a different Benders optimality cut. Therefore, the authors

proposed to accelerate Benders decomposition by generating the strongest cuts. Later,

Papadakos (2008) proposed a practical enhancement called the interior point method.

To solve the subproblem of stage t in the backward pass, the previous stage variables

are not fixed to the forward pass decisions, but to the values of an approximate core point.

In the first iteration, the approximate core point Y C
it , Q

C
it−Li

, ICit−1, and BC
it−1 is set to the

forward pass solution. Next, in each iteration k, the approximate core point is updated

with the forward pass solution (Y k
it , Q

k
it, I

k
it ) of iteration k as follows:

Y C
it = pY C

it +(1− p)Y k
it

QC
it−Li

= pQC
it−Li

+(1− p)Qk
it−Li

ICit−1 = pICit−1+(1− p)Ikit−120



BC
it−1 = pBC

it−1+(1− p)Bk
it−1,

where p < 1 is a parameter (set to 0.5 in our implementation). Note that this implementa-

tion assumes |Ξ|= 1. The strong cuts are common in the literature on Benders decompo-

sition but are not often used in SDDP. Nevertheless, they remain valid, and they are easy

to implement.

4.3.2. Lower Bound Inequality from the Expected Demand Problem As SDDP

builds iteratively the approximation of the cost-to-go, this approximation is not precise

in the first iterations. However, the computation of the cost-to-go based on the expected

demand scenario can help drive SDDP toward good solutions despite this inaccuracy.

Given a stochastic optimization program P such that the coefficients of the variables

in the objective function and in the constraints are constant, Birge and Louveaux (2011)

show that the cost of problem P solved with the scenario path of the expected demand

is lower than or equal to the optimal solution of P . Consequently, the expected cost-to-go

Ft+1(.) from period t+1 to T is larger than or equal to the cost-to-go computed with the

average demand scenario.

To drive SDDP toward good solutions during the first few iterations, this lower bound

is computed in each subproblem. As the lower bound is computed by retaining the average

scenario path in the first stage problem, this approach is similar to the partial Benders

decomposition proposed by Crainic et al. (2016). More precisely, the subproblems include

the variables Q̄iτ , W̄ijτ , Īiτ , and B̄iτ for all item i and period τ in {t, ..., T} to represent,

respectively, the quantities, consumption, inventory, and backlog in the average scenario

path, and the following constraints are added to each subproblem:

Ft+1 ≥
∑

τ∈t...T

(∑
i∈I

viQ̄iτ +
∑
i∈Ic

hiĪiτ +
∑
i∈Ie

(
biB̄iτ + Īiτ

)
+
∑
i∈I

∑
j∈I

aijW̄ijτ

)
(49)

Q̂ξ
iτ−Li

+ Îξiτ−1− B̂ξ
iτ−1− D̄iτ − Īiτ + B̄iτ = 0 i∈ Ie, τ ∈ t+1 . . . T (50)

Q̂ξ
iτ−Li

+ Îξiτ−1−
∑
j∈I

W̄ijτ − Īiτ = 0 i∈ Ic, τ ∈ t+2 . . . T (51)

∑
i∈Ak

W̄ijτ = RkjQ̄jτ k ∈ Ic, j ∈ I, τ ∈ t+1 . . . T (52)

Q̄iτ ≤MŶiτ i∈ I, τ ∈ t+1 . . . T (53)
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∑
i∈I

Q̄iτKir ≤ Cr r ∈R, τ ∈ t+1 . . . T (54)

B̄iτ , Īiτ , Q̄iτ ≥ 0 i∈ Ie, τ ∈ t+1 . . . T (55)

Īiτ , Q̄iτ ≥ 0 i∈ Ic, τ ∈ t+2 . . . T . (56)

Constraints (49) link the lower bound with the expected cost-to-go. Constraints (50) and

(51) compute the inventory and backlog for each item, where Q̂ξ
iτ−Li

, Îξiτ−1, and B̂ξ
iτ−1

correspond (depending on the value of τ) either to the values found at an earlier stage,

the decision variables of stage t, or the decisions of the average scenario. Finally, con-

straints (52), (53), (54), (55), and (56) correspond to consumption, production, capacity,

and domain constraints.

4.3.3. Multi-cut SDDP In the multi-cut version of SDDP, the cost-to-go Ft+1ωt is

computed independently for each scenario ωt of the next stage, and the expected cost-to-go

is computed as

Ft+1 =
∑
ωt∈Ωt

pωtFt+1ωt .

In other words, the cuts are added separately for each scenario ωt ∈Ωt. For instance, the

cut added for scenario ωT in stage T +1 is

FT+1ωT
≥
∑
i∈Ie

λlωT
i

(
−Q̂ξ

iT−Li
− I

ωT−1

iT−1 +B
ωT−1

iT−1 +DωT
iT

)
.

On the one hand, the multi-cut version leads to a better approximation of the cost-to-go

functions. On the other hand, as the number of constraints increases, the multi-cut version

can potentially slow down the solution process.

4.3.4. Advanced Scenario Sampling The set of all possible demand scenarios is usu-

ally too large to solve the stochastic optimization problem. In this context, SDDP relies on

a sample of scenarios, and the sampling method has a critical impact on the performance

of SDDP (Parpas et al. 2015). For instance, the simple and efficient Crude Monte Carlo

(CMC) (Metropolis and Ulam 1949) approach samples independently n demand scenarios,

and each scenario has a probability 1/n. While the CMC approximation is on average equal

to the expected cost, the variance of the approximation is σ2/n, where σ2 is the variance

of the expected optimal cost. Advanced scenario sampling methods such as Randomized

Quasi-Monte Carlo (RQMC) (Cranley and Patterson 1976) generate samples resulting in
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approximations with lower theoretical variances than CMC. In other words, RQMC leads

to good approximations with fewer scenarios. As in Thevenin et al. (2021), to sample the

demands with RQMC, we use the Lattice Builder tool (software that implements multiple

algorithms to build good rank-1 lattice rules) (L’Ecuyer and Munger 2016) to generate n

vectors α (i.e., a lattice) evenly distributed in the cube |Ie|. The demand vectors are then

obtained by Ωt = {i ·α/n+δ mod 1 ∀ i∈ 1 . . . n}, where δ is a random value used to shift

the lattice. Thus, a different value of δ is generated for each sample we draw.

In this work, the scenarios Ωt of the backward pass are sampled and fixed, whereas the

forward pass scenario paths Ξ are resampled in each iteration from the original distribution.

5. Hybrid Heuristics with SDDP

Despite the proposed improvements, the experiments (see Section 6) show that SDDP takes

too much time to converge. However, the method spends most of the computation time

on solving the first-stage MILP. This imbalance between the computational complexity of

the first stage and the other ones is related to the inherent structure of the problem. More

specifically, the first-stage model contains all the binary variables, whereas the other stages

are linear programs that can be efficiently solved. This imbalance in computational effort

is common in stochastic programming when the first-stage problem comprises important

design or planning decisions (Adulyasak et al. 2015, Santoso et al. 2005). To alleviate this

issue, we present two heuristics usable in other applications of SDDP where the first stage

is a combinatorial optimization problem. In the considered problem, if the setup variables

are fixed, the resulting MILP of the first-stage subproblem becomes a linear program (LP),

which allows the first-stage model to be solved more efficiently. This section presents two

heuristic strategies to compute the setups, namely a PH approach (Section 5.1), and a

heuristic variant of SDDP (Section 5.2).

5.1. Progressive Hedging

This section presents a method that determines the setups with a scenario tree approach.

However, since planning over a long time horizon leads to large scenario trees, we consider

PH to speed up the solution process.

PH (Rockafellar and Wets 1991) decomposes the original stochastic programming for-

mulation into a set of deterministic problems, one per scenario path. Similar to Lagrangian

relaxation, PH is applied to solve the model with scenario path index (25)–(36) by relax-

ing the non-anticipativity constraints (31), but it penalizes their violation in the objective
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function. The non-anticipativity constraints (31) force the variables Qϕ
it (resp. W ϕ

ijt) to

be equal for all scenario paths with identical demand realizations up to period t− 1. We

denote this set of scenario paths by NA(D
ϕ[t−1]

I[t−1]), and it contains the demand scenario path

with demands equal to D
ϕ[t−1]

I[t−1] in the first t− 1 periods. Also, the model (25)–(36) can

be expressed with scenario-dependent setup variables (Y ϕ
it ) if additional non-anticipaticity

constraints are included to force these variables to be equal for all scenario paths. Once

the non-anticipativity constraints are relaxed, the mathematical model (25)–(36) can be

decomposed per scenario path, but the resulting solution might not be implementable. To

retrieve an implementable solution, the quantity Q̃ϕ
it and consumption W̃ ϕ

ijt are averaged

over the scenario paths in NA(Dϕ
I[t−1]), whereas the setups are averaged over all scenario

paths:

Q̃
ϕ[t−1]

it =

∑
ϕ∈NA(D

ϕ[t−1]
I[t−1]

)
σϕQ

ϕ
it∑

ϕ∈NA(D
ϕ[t−1]
I[t−1]

)
σϕ

W̃
ϕ[t−1]

ijt =

∑
ϕ∈NA(D

ϕ[t−1]
I[t−1]

)
σϕW

ϕ
ijt∑

ϕ∈NA(D
ϕ[t−1]
I[t−1]

)
σϕ

Ỹit =
∑
ϕ∈Φ

σϕY
ϕ
it .

The following term is included in the objective function to penalize the deviation from

the implementable solution: ∑
x∈V

Λk
x(x− x̃)+

ρ

2
(x− x̃)2,

where V = { W ϕ
ijt, Qϕ

it, Y ϕ
it ∀ i, j ∈ I, t∈H, ϕ∈Φ} is the set of decision variables subject

to non-anticipativity constraints, x̃ is the implementable decision associated with variable

x, ρ is a parameter, and Λk
x is the Lagrangian multiplier in iteration k. This Lagrangian

multiplier is updated for each variable x∈ V at the end of each iteration as follows:

Λk
x =Λk−1

x + ρ(xk − x̃k),

where xk is the value of variable x at iteration k. Note that ρ is a sensitive parameter since

it impacts the quality of the solution and the computation time required for convergence.
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A large value of ρ leads to fast convergence to a suboptimal solution, whereas a small value

leads to slow convergence. In our implementation, we use ρ= 0.1. Note that this value is

determined using a preliminary experiment using different values of ρ and the results are

included in the Online Supplement.

Finally, PH stops when the setup variables have converged, that is,∑
i∈I

∑
t∈H

(
Ỹit−Y ϕ

it

)
≤ ϵ,

where ϵ is set to 0.01 in this paper.

As explained earlier, we use PH to get the setup values, and then SDDP optimizes the

production quantities. Even though the hybrid PH SDDP relies on a scenario tree, it is

convenient in a reactive context because PH is only used to compute the setups (first-

stage variables) and SDDP is run afterward. Consequently, the problem can be resolved

dynamically in short computation time thanks to the approximation of the cost-to-go.

5.2. Heuristic SDDP

Heuristic SDDP (HSDDP) starts with initial setup values and iteratively performs the

following steps: (1) run SDDP with fixed setups until the lower bound stabilizes (i.e., 10

iterations without improvement of LB) and (2) solve the first-stage problem (where the

setups are not fixed) to find potentially better setup values.

The initial setups are computed with the two-stage approximation of model (25)–(36).

In this two-stage approximation, the quantity and consumption variables for the entire

horizon are determined in the first stage. More precisely, the model is similar to (25)–(36),

but variables W ϕ
ijt and Qϕ

it become Wijt and Qit, respectively, and the non-anticipativity

constraints (31) are removed. In other words, the resulting model ignores the dynamic

decision framework. However, the setup values found with the two-stage approximation are

feasible (but suboptimal) with respect to the original model (25)–(36). Since the two-stage

model does not need a scenario tree, the two-stage approximation model can be efficiently

solved in a reasonable amount of time.

6. Experiments

Section 6.1 describes the considered instances, and Sections 6.2 to 6.6 present compu-

tational experiments to evaluate the performance of SDDP and the proposed heuristic

methods.
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The algorithms are implemented in Python with CPLEX 12.9, and the tests are per-

formed with an Intel Xeon Brodwell EP E5-2630v4 2.20GHz processor. We use CPLEX

with the default settings. For all methods, the stopping criterion is a time limit of 900|T |
seconds.

The evaluation of the proposed SDDP policies is based on a simulation over a set of

5000 scenario paths (which are drawn independently from the scenario sample Ωt used for

optimization). Each scenario path represents a possible realization of the demand for the

entire planning horizon, and these scenario paths are sampled independently with Monte

Carlo following the probability distributions of the demands. Note that for a given instance,

all methods are evaluated with the same set of scenario paths. As mentioned earlier, SDDP

reacts quickly to new information, and this simulation is not time-consuming. In fact, the

evaluation corresponds to a forward pass of SDDP on the given set of scenario paths.

This simulation returns an unbiased cost estimate of using each method m, which we call

approximated upper bound and denote ÛB(m). In the analysis of the results, we report the

percentage gap (GAP ) between the approximated upper bound of the considered methods:

GAP = 100
ÛB(m)− ÛB

⋆

ÛB
⋆ , (57)

where ÛB
⋆
is the best approximated upper bound among all methods tested in the con-

sidered experiment.

6.1. Generation of Instances

The experiments are performed with the well-known multiechelon lot-sizing instances from

Tempelmeier and Derstroff (1996). As these instances do not include lead times and demand

distributions, these elements are generated similarly to Thevenin et al. (2021) as explained

in the Online Supplement.

To study the performance of the methods under various conditions while maintaining

a reasonable number of instances, we select a subset of instances from Tempelmeier and

Derstroff (1996) with a TBO of 1 or 3, a capacity utilization of 90% or 50%, and the two

BOM given in Figure 2.

We generate instances with different values for the planning horizon (T ∈ {2,4,6,8,10}),
the number of alternates (a∈ {0,2,4,6}), and the substitution costs (aij ∈ {0,0.1,1}). We

set the default values for these parameters to T = 4, aij = 0.1, and a= 4, and we vary one

factor at a time. This leads to a total of 80 instances.
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Figure 2 Considered BOM

6.2. Performance of SDDP

This section evaluates the performance of SDDP with different scenario sample sizes |Ωt| ∈

{5,10,20,50,100}. To avoid convergence and memory problems, the experiments are per-

formed with the setups fixed to the solution of the two-stage approximation of model

(25)–(36) and with the single-cut version of SDDP.

Table 1 reports the average GAP obtained with each sample size, and the value in

bold is the smallest GAP for each value of the planning horizon. Table 1 shows that

the sample size is a sensitive parameter. A too small number of scenarios leads to a bad

approximation of the stochastic process, whereas a too large number prevents SDDP from

converging. In fact, the sample size should depend on the planning horizon length. For 2

periods, 50 scenarios per stage lead to the best solution, whereas for 8 periods, 5 scenarios

per stage lead to the best results.

In the rest of the experiments, SDDP is run with 20 scenarios per decision stage since

this scenario number gives the smallest average GAP.

|T |
|Ωt|

5 10 20 50 100

2 0.24 0.09 0.03 0.00 0.00
4 1.18 0.19 0.01 0.21 0.23
6 0.85 0.20 0.00 0.60 0.72
8 0.08 0.11 0.19 0.81 2.05
10 0.05 0.06 0.25 1.25 1.89

Average 0.82 0.16 0.05 0.38 0.59

Table 1 Average GAP obtained with SDDP for different number of scenarios per stage
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6.3. SDDP Enhancements

To evaluate the impact of the proposed SDDP enhancements, this section reports the

performance of multiple variants of SDDP. We compare SDDP with all enhancements

and the setup fixed with the two-stage heuristic, denoted by Default. We compare this

Default version with Default without the multi-cut, Default without the generation of

strong cuts, Default without the average scenario lower bound, Default without RQMC

sampling, Default without fixed setups, and the Standard SDDP where no enhancement

is used.

Table 2 reports the average percentage gap GAPUB (resp., GAPLB) between the upper

bound (resp. lower) obtained with each variant of SDDP and the upper (resp. lower)

bound obtained with the Default SDDP algorithm. In addition, Table 2 gives the estimated

optimality gap for each method GAPOpt. We detail below the computation of GAPUB,

GAPLB, and GAPOpt for each method m.

GAPUB(m) = 100
ÛB(m)− ÛB(Default)

ÛB(Default)

GAPLB(m) = 100
LB(m)−LB(Default)

LB(Default)
(58)

GAPOpt = 100
ÛB(m)−LB(m)

LB(m)
.

Table 2 shows that a simple adaptation of SDDP is not efficient for the CMLCS with an

optimality gap of 42.74%. The binary setup variables in the first-stage subproblem signif-

icantly slow down the convergence of SDDP since the optimality gap is 40.07% when the

setups are not fixed. In addition, RQMC sampling has a significant impact since remov-

ing this component increases the upper bound by 0.62%. Similarly, the multi-cut version

improves the convergence since removing this enhancement increases the upper bound by

0.19%. On the contrary, the strong cuts and the average scenario lower bound have a

limited impact, and they decrease the upper bound by 0.02% and 0.10%, respectively.

Figure 3 reports the lower bound value in each iteration for the different variants of

SDDP on the instance with general BOM, |H| = 6, TBO = 1, a utilization of 90%, four

alternates, and an alternate cost of 0.1. Contrary to Table 2, we report the value of the

lower bound itself rather than the gap. Nevertheless, the gap is computed from the lower

bound as explained in Equation (58).
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Default
Without Without Without Without Without Standard
multi-cut strong cuts avg scenario RQMC fixed setup SDDP

GAPUB - 0.19 0.02 0.10 0.62 23.73 21.4
GAPLB - -0.09 0.01 0.01 -2.02 -6.52 -12.29
GAPOpt 0.07 0.36 0.08 0.16 2.84 40.07 42.74

Table 2 Performance of each improvement of SDDP
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·104
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Figure 3 Evolution of the lower bound for different versions of SDDP

Note thatDefault without multi-cut performs more than 2000 iterations within the time

limit, but the last iterations are not shown for the sake of presentation. Figure 3 confirms

that the fixed setups strategy and the multi-cut version of SDDP speed up the convergence

of SDDP, and the versions of SDDP with and without strong cuts behave similarly. In

addition, SDDP with RQMC converges to a better lower bound than SDDP with MC.

Finally, retaining the average scenario path improves significantly the lower bound, but

after a sufficient number of iterations, the variant of SDDP without this improvement

reaches the same lower bound as the default version. In the rest of the experiments, SDDP

includes all the improvements.

6.4. Comparison of the Heuristic SDDP

This section compares the performance of different heuristics proposed in Section 5.2.

We decompose the HSDDP method into three methods (2S, 2S-SDDP, and HSDDP) to

show the benefit of each component of HSDDP. The two-stage approximation originally

presented in Thevenin et al. (2021) (denoted by 2S) is used to compute the initial setup
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values in HSDDP. The version of SDDP with the setups fixed to the value of the two-stage

approximation (denoted by 2S-SDDP) computes the production quantity associated with

this initial setup decision. HSDDP extends 2S-SDDP by iteratively solving the first-stage

model to generate a new setup vector before computing its associated production quantity.

Finally, we also compare HSDDP with the version of SDDP where the setups are fixed to

the value of PH (denoted by PH).

Table 3 reports the average GAP of each method based on different instance characteris-

tics, where the GAP on each instance is computed by equation (57). The detailed results are

available in the Online Supplement. The results show that HSDDP outperforms 2S-SDDP,

2S and PH with average GAPs of 0.30% versus 0.74%, 2.04%, and 20.22%, respectively.

Table 3 also reports the average CPU time. The reported CPU time shows that solving

the two-stage model is faster (i.e., 20 seconds on average), whereas the methods based on

SDDP stop at the time limit (set to 900|T | seconds). Note that 2S refers to the two-stage

approximation of model (25)–(36), and this method provides the initial setup values used

in HSDDP. Since the two-stage approximation does not require a scenario tree, the result-

ing model can be solved optimally in a few seconds. Solving the multistage problem is

much more complex than solving the two-stage model. This computational advantage of

the two-stage heuristic is leveraged to determine the initial setup decisions in the HSDDP

algorithm. Nevertheless, contrarily to the heuristic 2S that provides only an upper bound,

the HSDDP procedure provides both lower and upper bounds to the multistage problem in

a systematic fashion. Thus, the practitioner can benefit from this procedure, which lever-

ages the fast heuristic (2S) and produces solution bounds while the solution quality can be

iteratively improved. This allows the practitioner to terminate the algorithm when needed

based on the computing time allowed to solve the instance.

6.5. Comparison of the Heuristic SDDP with Optimal Solutions

Thevenin et al. (2021) show the benefit of using multistage stochastic optimization for

material requirements planning. More precisely, the best method in terms of solution qual-

ity in Thevenin et al. (2021) is the multistage stochastic program (denoted by M-stage in

Thevenin et al. (2021)) based on a scenario tree. While this approach performs well, it

does not scale for large planning horizons. This multistage model based on a scenario tree

corresponds to the MILP model (25)–(36) of the present paper. This section compares the

results of the proposed SSDP approach with the optimal costs on instances with a few
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2S 2S-SDDP PH HSDDP

|T |

2 0.01 0.00 8.43 0.13
4 2.05 0.95 13.88 0.08
6 2.23 0.96 21.16 0.45
8 3.75 1.74 26.23 1.24
10 3.99 1.73 27.32 0.39

Structure
General 2.33 1.02 18.63 0.23
Assembly 2.22 1.07 25.30 0.22

Utilization
90% 3.85 1.89 5.94 0.24
50% 0.70 0.20 37.99 0.21

TBO
1 1.83 0.67 22.30 0.31
4 2.72 1.42 21.63 0.15

Average 2.04 0.74 20.22 0.30

CPU (sec.) 19.9 4486.4 4515.4 4583.2

Table 3 GAPs of 2S, 2S-SDDP, PH, and HSDDP

scenario paths. The optimal costs are computed with the model (25)–(36) and a symmetric

scenario tree. Note that HSSDP is solved with the same set of scenarios as the MILP.

Table 4 provides the upper bound ÛB obtained with HSDDP approximated based on

a sample of 5000 scenario paths, the percentage gap between the exact HSDDP upper

bound (computed on all optimization scenarios) and the optimal solution, and the time at

which the best solution was found. Note that some combinations of planning horizon and

number of scenarios per stage lead to a huge number of scenario paths. In such a case, it

is impossible to compute the exact upper bound, and we indicate such instances using “-”

in Table 4. For the MILP, Table 4 gives the actual CPU time spent to solve the instance,

the optimality gap, and the number of variables and constraints after CPLEX presolve.

For the instances that were too large to build the mathematical model, we provide an

approximation of the raw number of variables and constraints. For some instances, the

resulting mathematical model cannot be built since the size of the model was too large,

and we indicate such instances using “-” in Table 4.

The results show that HSDDP performs well since the exact upper bound is only 1.2%

(average of the values in the column “Gap exact UB” on the instances where the optimality

gap can be obtained) larger on average than the optimal cost. The performance of the

heuristic depends mainly on the number of periods in the horizon and not on the number of

scenarios. Indeed, the gap remains 0 when the number of scenarios increases from 2 to 10 if
31



|Ωt| |T | |Ω|
HSDDP MILP

ÛB
Gap exact Time CPU time Opt. # #
UB (%) best sol. (s) (s) gap (%) variables constraints

2

2 22 22,410.55 0.00 4.64 0.02 0.00 93.00 143.13
4 24 39,617.15 0.09 497.54 0.35 0.00 375.67 538.50
6 26 58,298.64 2.45 3860.15 14.91 0.00 1510.00 2,127.00
8 28 77,003.57 3.39 6212.35 703.92 0.01 6278.00 8,633.00
10 210 96,383.99 3.40 9023.68 9041.68 3.24 25053.00 34,333.00

5

2 52 22,202.27 0.00 41.75 0.07 0.00 149.00 249.00
4 54 40,568.14 0.57 1370.17 6.84 0.00 2560.67 4,007.50
6 56 59,773.26 1.09 4604.08 5400.02 6.60 64343.00 101,852.00
8 58 79,088.43 - 7522.59 - - ≈ 107 ≈ 107

10 510 93,844.87 - 9631.96 - - ≈ 108 ≈ 109

10

2 102 22,657.23 0.00 103.95 0.11 0.00 222.00 395.00
4 104 40,797.96 0.97 1792.03 212.05 0.00 17944.33 31,704.83
6 106 59,153.93 - 5553.89 - - ≈ 106 ≈ 106

8 108 76,976.11 - 7851.30 - - ≈ 108 ≈ 109

10 1010 95,905.33 - 10123.11 - - ≈ 1010 ≈ 1011

“-” indicates the instances that are too large to build the mathematical model since it consumes too much memory.

Table 4 Comparison between HSDDP and the equivalent MILP.

|T |= 2, whereas the gap increases from 0 to 3.40 when the planning horizon increases from

2 to 10 periods with |Ωt|= 2. Finally, these experiments show that, contrarily to SDDP,

the MILP approach is limited to a small number of scenarios since the MILP cannot be

generated for 6 periods and 10 scenarios, and such a small number of scenarios does not

give a good approximation of the stochastic demand.

6.6. The Impact of Component Substitution

To analyze the impact of component substitution on the production plan, Table 5 reports

the values of different key performance indicators (KPIs), including total cost, rate of

on-time delivery, inventory cost, backlog cost, end-of-horizon backlog cost, production

cost, and component cost, for different numbers of alternative components (denoted by

a), and substitution costs. We compare the performance of the expected demand model,

the two-stage model, and the heuristic SDDP. The three approaches are simulated in a

static-dynamic decision framework. That is, the expected demand and two-stage models

are resolved in each iteration in a receding horizon fashion to update the production and

consumption quantities based on the observed demands. Note that the cost components

in percentage are provided in the Online Supplement. These results show that HSDDP

tends to use more alternative components than 2S and Average. Therefore, we may con-

clude that the management of alternative components requires properly accounting for the

uncertainties with a multistage model.
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Method a aij Total On # Setup Inventory Backlog End-of-horizon Production Consumption

costs time (%) setups cost cost cost backlog cost cost cost

HSDDP

0

0.1

41,377.0 81.0 28.25 17,648.0 14,037.8 4,013.5 3,110.9 2,566.8 0.0

2 40,672.2 80.9 25 17,090.7 13,828.3 4,028.7 3,114.4 2,569.0 41.1

4 40,479.4 81.0 24 16,914.7 13,716.7 4,080.4 3,147.3 2,526.2 94.1

6 40,718.6 80.8 20.5 17,157.0 13,841.4 3,925.2 3,024.3 2,585.4 185.2

4

0 40,624.6 80.9 20.25 17,139.5 13,772.8 4,040.1 3,093.5 2,578.6 0.0

0.1 40,479.4 81.0 24 16,914.7 13,716.7 4,080.4 3,147.3 2,526.2 94.1

1 41,193.5 81.1 26.5 17,571.6 14,106.4 3,860.9 2,963.0 2,581.5 110.1

2S

0

0.1

42,000.4 75.4 27.75 17,606.7 12,347.6 4,796.1 4,759.8 2,490.1 0.0

2 41,249.3 75.5 24 17,047.0 12,330.9 4,784.1 4,557.1 2,499.3 30.8

4 40,804.5 75.7 23.75 16,887.0 12,224.0 4,762.3 4,390.0 2,487.3 53.8

6 41,198.2 75.9 20 17,134.5 12,447.9 4,553.2 4,443.6 2,510.6 108.4

4

0 41,223.0 75.8 20.25 17,152.0 12,475.7 4,572.7 4,509.6 2,512.9 0.0

0.1 40,804.5 75.7 23.75 16,887.0 12,224.0 4,762.3 4,390.0 2,487.3 53.8

1 41,726.5 75.8 27.5 17,586.7 12,467.5 4,562.2 4,604.5 2,489.4 16.1

Expected

demand

model

0

0.1

68,982.3 52.2 28 13,502.5 6,933.4 6,395.9 40,637.6 1,513.0 0.0

2 66,650.9 52.6 24 12,787.5 6,997.0 6,304.2 39,016.6 1,525.6 20.0

4 65,875.2 53.0 23.25 12,763.0 7,032.4 6,207.5 38,325.5 1,516.2 30.6

6 65,046.0 53.1 19 12,730.0 7,040.8 6,170.9 37,442.7 1,549.8 111.8

4

0 66,396.0 52.7 19.75 13,040.0 7,005.7 6,314.6 38,505.1 1,530.6 0.0

0.1 65,875.2 53.0 23.25 12,763.0 7,032.4 6,207.5 38,325.5 1,516.2 30.6

1 67,219.7 52.5 27.5 13,322.5 7,007.0 6,357.7 38,973.2 1,522.6 36.6

Table 5 Impact (in terms of various KPIs) of the number of substitutable components and of the substitution

cost for the expected demand model, the two-stage model, and the heuristic SDDP in the static-dynamic

decision framework

First, Table 5 shows that component substitution leads to lot consolidation. For instance,

in the expected demand framework, the number of setups decreases from 28 to 19 when

the number of possible alternates increases from 0 to 6. Second, component substitution

leads to risk pooling. In the static-dynamic framework, the total inventory decreases by

around 300 units when the number of possible alternates increases from 0 to 4, whereas

the proportion of on-time delivery remains constant at 81%. In other words, pooling the

risks allows maintaining the same service level with less inventory.

Table 5 shows that the level of inventory remains stable for 2S when the number of

substitutions increases, but the percentage of on-time delivery increases (from 75.3 to 75.9

with 2S when the number of substitutable components increases from 0 to 6). The two-

stage model does not plan to reassign the component’s production to react to the observed

demand. Nevertheless, when using the two-stage model in a static-dynamic decision frame-
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work, the components get reassigned (thus, the service level is improved when the number

of possible substitutions increases). However, as these reassignments are not foreseen, the

model orders the large number of components required to hedge against demand uncer-

tainty in the static framework (to ensure the production of each end-item separately), and

thus the inventory level remains large. In other words, to pool the uncertainty of multiple

end-items, the planning must be created with a multistage optimization model.

7. Conclusion

This paper investigates the performance of the SDDP algorithm for the capacitated multi-

echelon lot-sizing problem (CMLSP) with stochastic demand and component substitution.

The experiments show that SDDP performs well when the setups are fixed. Consequently,

two strategies are proposed to compute the setups, namely PH, and a heuristic version of

SDDP. The experiments show that the heuristic SDDP outperforms PH and the two-stage

heuristic proposed in Thevenin et al. (2021). The proposed method can solve CMLSP with

static-dynamic demand uncertainty for medium size planning horizons. In addition, con-

trarily to the scenario tree approach, once good approximations of the cost-to-go are built,

SDDP can react quickly when new information is available.

As component substitution has the effect of aggregating the demand for components,

it pools the risks associated with the uncertain demand and reduces the setups. Despite

its practical relevance, only a few papers exist on lot sizing with component substitution

under stochastic demand. Future research should investigate stochastic optimization for

the dynamic-dynamic decision framework, as well as uncertainty in various parameters

including lead times, yields, and production capacities.
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