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Abstract

Due to mass customization and extensive market changes, manufacturing companies seek to

enhance the flexibility and reconfigurablility of their assembly lines. For instance, to adjust

and adapt the line’s capacity to different products and production requirements, workers may

move along the stations, or the tasks may be re-assigned. This paper studies the impact of

model-dependent task assignment, workforce reconfiguration, and equipment duplication in

mixed-model assembly lines. The studied line is paced, and it can process different product

models with different sets of tasks and precedence relations. Task and worker assignments

to stations may change in each takt, and the goal is to design a line able to handle a pre-

defined set of situations corresponding to different flows of products entering the line. The

paper provides a new Mixed Integer Linear Programming (MILP) formulation to minimize

the workforce and equipment costs in mixed-model assembly lines with model-dependent task

assignment. We provide an efficient reformulation of the MILP by relying on the dualiza-

tion approach commonly used in robust optimization. In addition, we employ a constructive

matheuristic (CM) and a fix-and-optimize heuristic (FOH) to deal with large-scale instances.

Extensive computational experiments performed with well-known benchmarks from the lit-
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erature show that the suggested approaches perform well in terms of solution quality and

computational time. In addition, the results reveal that model-dependent task assignment

reduces significantly the equipment cost and the number of workers when compared to the

classical mixed-model assembly lines with fixed task assignment and walking workers.

Keywords: Combinatorial optimization, Mixed-model assembly line, Workforce

assignment, Walking worker, Model-dependent task assignment, Heuristic

1. Introduction

Mass customization and extensive changes in the market push manufacturing compa-

nies to employ mixed-model assembly lines (Kucukkoc and Zhang, 2014; Manzini et al.,

2018). Short product life cycles, development of new technologies, frequent introduction of

new products, and market fluctuations urge manufacturers to increase their adaptability and

responsiveness. In this context, companies need to improve their flexibility (Hallgren and

Olhager, 2009; Schmid et al., 2021), and turn towards robust and efficient concepts of pro-

duction system organization (Battaïa et al., 2018), like reconfigurability (Koren et al., 1999).

With a reconfigurable line, manufacturers can easily add, remove, or move manufacturing

resources like machines, mobile robots, equipment, and workers. A manual mixed-model as-

sembly line (MMAL) with walking workers can benefit from the concept of reconfigurability

to adjust and adapt the line’s capacity to production requirements.

One of the important steps of assembly line reconfiguration is line balancing: assignment

of tasks to workstations under a given criterion (minimizing takt time, number of worksta-

tions, total cost, etc.). Several restrictive assumptions are commonly made in the literature

on assembly line balancing problems (Baybars, 1986; Scholl and Becker, 2006; Boysen et al.,

2008; Battaïa and Dolgui, 2013): allocating only one worker to each station, producing only

a single model in the line, workers and tasks are fixed, etc. However, for heavy tasks of large-

size products, like in the automotive industry, assigning more than one worker to each station
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is more realistic (Lopes et al., 2020). Multi-manned line balancing problems are often formu-

lated using different restrictive assumptions (Dimitriadis, 2006; Michels et al., 2019; Becker

and Scholl, 2009; Kellegöz, 2017). The movement of workers between stations adjusts sta-

tions’ capacities to the production sequence (Sikora et al., 2017). The flexibility of assembly

lines with multiple moving workers at workstations can be enhanced by a model-dependent

task assignment to stations.

This paper deals with a multi-manned manual mixed-model assembly line balancing prob-

lem with walking workers (MALBP−W ). The considered problem integrates the line design

problem, consisting of equipment assignment to stations, and the task assignment problem,

where tasks and workers are assigned to stations for a set of given product orders. Compared

to the majority of studies in the literature, we consider that the production order entering

the line is unknown, and we aim to design a line that can self-adjust to the products entering

the line. More precisely, we provide a methodology to assign the equipment to the station

and to select the number of workers so that the line meets the takt time for a prespecified

set of pictures. As products enter the line, they consecutively occupy workstations creating

different "pictures" of the line. By "picture" we mean the sequence of pairs station-product

model that changes (product items shift towards the last station) every takt. As opposed to

the concept of the line’s picture, a product order can be defined as a sequence of product

models entering the line whose number is not limited by the number of stations. For example,

a product order can be (B−A−A−C −A−C −C), where product B enters the line first,

then two products A follow, and so on. The possible line pictures for the mentioned order

of products are shown in Figure 1. Suppose that the line consists of four stations. One of

the possible pictures of the line for such product order is: (station 1 - product C, station 2

- product A, station 3 - product A, station 4 - product B), see picture Pic.4 in Figure 1. In

the following takt, the picture of the line is (station 1 - product A, station 2 - product C,

station 3 - product A, station 4 - product A), see picture Pic.5 in Figure 1. The only product
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B present in the product order has left the line.

Figure 1: The possible pictures of a line for a given order of products.

The order of products entering a mixed-model line is often not controllable as it depends

on the uncertainties of an upstream production step and variable demand. We aim to provide

methods to design a line that can adapt to the picture of the line. In each takt, the worker

can be reassigned to a different station, and the assignment of task change depending on

the item present in the station. The objective is to assign the equipment to the station and

to select the number of workers in order to guarantee the line can meet the takt time for a

pre-specified set of pictures of the line. Therefore, the line is optimized for the worst picture

of the line, since having enough resources for such picture guarantees a stable production

flow delays. However, optimizing for the worst case may lead to over-conservative decisions.

To control the conservatism, we assume that the user can specify the set of pictures the line

may encounter by providing the maximum number of units of each item present in a picture.

To define these restrictions, the user may rely on the demand mix, on historical data, or on

expert knowledge.

The major contributions of this paper are fourfold. First, we formulate the problem as

a robust scenario-based mixed-integer linear programming model (MILP), where the cost
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related to workers and equipment is minimized for the worst picture. The line’s reconfigura-

bility is achieved by moving workers between stations and equipment duplication at stations.

To the best of our knowledge, this paper is the first to consider MALBP-W, and we provide

a scenario-based MILP for the case with either model-dependent or fixed task assignment.

Second, we show that the linear relaxation of the sub-problem that finds the number of

workers required for the worst picture of the line yield an integer solution. As a consequence,

we reformulate the MILP model using the dualization method commonly used in robust

optimization. While the scenario-based MILP is unpractical because the number of scenar-

ios/pictures is exponential in the number of stations, the reformulated MILP (RMILP) can

solve practical size instances. Third, to solve large-size instances, we propose a constructive

matheuristic (CM) and a fix-and-optimize heuristic (FOH). Finally, the performance of al-

gorithms is evaluated in terms of solution quality and computational time through extensive

computational experiments. In particular, we evaluate the impact of model-dependent task

assignment to stations and compare it to the fixed task assignment. Our results suggest using

the model-dependent task assignment because it results in a lower cost compared to a fixed

task assignment. The difference in cost between these two assignments increases when the

workforce cost and the problem size (the number of stations and types of products) increase.

The paper is organized as follows: Section 2 presents the literature review of the topic

at hand. Section 3 formally defines the MALBP-W, and it provides a simple illustrative

example as well as the mathematical model. Section 4 describes the proposed optimization

approaches, including a transformed version of the mathematical model relying on the dual-

ization approach, and two heuristics. Section 5 presents the computational results, discussion

and managerial insights. The paper ends with the conclusion and future research directions

in Section 6.
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2. Literature review

This section reviews the literature related to the key concepts studied in the paper,

namely, assembly line balancing, mixed-model assembly line design and balancing, fixed/walking

workers in workforce assignments, fixed/dynamic task assignments. Finally, this section high-

lights the main contributions of the current work compared to the reviewed literature.

Assembly line balancing (task assignment) and design (resource assignment) are crucial

steps for a mixed-model assembly line (MMAL) Boysen et al. (2009). These problems have

been intensively studied (Bukchin et al., 2002; Choi, 2009; Dolgui and Proth, 2010; Alghazi

and Kurz, 2018). Workforce and task assignments are represented as decision variables whose

values are needed to balance an MMAL (Choi, 2009; Gebennini et al., 2018; Moreira et al.,

2015; Bukchin and Raviv, 2018; Tiacci and Mimmi, 2018). Lee and Vairaktarakis (1997)

developed several heuristics for workforce minimization in a workforce planning problem using

a MMAL. Choi (2009) proposed a goal programming approach to tackle a task assignment

problem in a MMAL where the workers are not allowed to move between stations.

Overall, the literature on MMAL design and balancing is centered around workforce and

task assignments. Workers can either be fixed at each station (Biele and Mönch, 2018) or

move along the line and be re-assigned to other stations/tasks based on their skill sets or

product requirements (Naderi et al., 2019; Al-Zuheri et al., 2016; Şahin and Kellegöz, 2019).

The flexibility provided by walking workers in an assembly line improves the reconfigurability

of the line (Hashemi-Petroodi et al., 2021). In several studies on workforce assignment

problems, workers are allowed to move. Battaïa et al. (2015) assumed that workers are

allowed to move between stations after finishing a task, while the processing time of a task

depends on the number of workers assigned to the corresponding station. The authors built

a linear programming model and constructive heuristics to solve a workforce minimization

problem in a paced assembly line, motivated by an automotive industry case. Following
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this study, Dolgui et al. (2018) developed a mixed integer linear program and constructive

heuristics to solve a more general problem in which the precedence graph is disconnected.

The problem was further generalized in Delorme et al. (2019) by including the search for

an optimal product sequence. An integer linear programming model, an enumeration and a

dynamic programming algorithms were proposed.

From another perspective, tasks assignment to stations can be either known (Battaïa

et al., 2015), fixed (Özcan et al., 2010; Sikora et al., 2017), or dynamic (Kucukkoc and

Zhang, 2014; Hashemi-Petroodi et al., 2020). A few publications exist on dynamic and/or

model-dependent task assignment for a MMAL with fixed workers, such as parallel two-

sided MMAL (Kucukkoc and Zhang, 2014), or traditional one-sided MMAL (Choi, 2009).

For instance, in Kucukkoc and Zhang (2014), the assignment of tasks to stations depends

on the production cycle, where a production cycle corresponds to a certain combination of

product types present in the line. In the literature on MMAL balancing with moving workers,

tasks assigned to stations are either fixed or given (Battaïa et al., 2015; Delorme et al.,

2019; Dolgui et al., 2018; Hwang and Katayama, 2010). Recently, Hashemi-Petroodi et al.

(2020) studied the impact of dynamic task assignment on the total cost of equipment and

workers. However, the concept of dynamic task assignment in Hashemi-Petroodi et al. (2020)

is different from the task reassignment in this study. Hashemi-Petroodi et al. (2020) consider

that tasks corresponding to any product model can be reassigned at each takt. As opposed

to that study, in the present work, task reassignment is model-dependent, meaning that for

each product model the assignment of tasks to stations can differ from task assignments for

other product models. In addition, Hashemi-Petroodi et al. (2020) only present a scenario

based model limited to small size instances, whereas the present work provides a set of more

advanced optimization methods to solve larger instances. To the best of our knowledge,

there is no existing work on MMAL balancing and design with walking workers and task

reassignment. The present paper aims to fill this gap. Decisions on task and workforce
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assignments have to be made simultaneously, since any change in task assignment may imply

changes in workforce assignment (Cortez and Costa, 2015).

In this study, in addition to the MILP model, we present two solution techniques: matheuris-

tic and fix-and-optimize heuristic. These approaches were rarely used in the literature on

assembly line balancing. We may cite the work of Sun and Wang (2019), who applied a

matheuristic approach to simple assembly line balancing problem. Lin and Ying (2016) pro-

posed matheuristics approaches to solve a flowshop scheduling problem. Dang et al. (2021)

developed a matheuristic for a parallel machine scheduling problem. Classical assembly line

balancing problems are purely combinatorial as they often involve only integer or binary

decision variables. As a result, meta-heuristics such as local search or population-based

approaches perform well for classical assembly line balancing problems (Pereira and Álvarez-

Miranda, 2018; Biele and Mönch, 2018; Dolgui et al., 2018; Li and Gao, 2014; Özcan et al.,

2010; Kucukkoc and Zhang, 2014; Saif et al., 2019). In the considered MMAL with walking

workers, we show that the sub-problem that consists in finding the worst picture of the line can

be efficiently solved by a linear program. To leverage the efficient linear programming solver

to solve this sub-problem, we propose to combine a heuristics to assign tasks to stations, and

a MILP model to find the worst picture. Such heuristics have been successfully used for prob-

lems that include both binary and continuous variables. For instance, the fix-and-optimize

heuristics was frequently used to efficiently solve lot-sizing problems (Chen, 2015; Lang and

Shen, 2011; Sahling et al., 2009; Helber and Sahling, 2010). In this study, matheuristics and

fix-and-optimize heuristics are harmoniously combined with an MILP model and provide

good results.

3. Problem description and formulation

This section describes the multi-manned manual mixed-model assembly line balancing

problem with walking workers (MALBP −W ). In addition, it gives an illustrative example
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and the scenario-based mathematical formulation for the cases with fixed (MALBP −W Fix)

and model-dependent task assignment (MALBP −WMd).

3.1. Description of MALBP −W

The problem consists of designing a mixed-model manual (manned) assembly line. The

line contains a set S = {1 . . . S} of sequentially located stations. The line assembles a set

I = {1 . . . I} of product models, which flow in any order through the line. The line is paced,

and the items move from one station to the next at a regular time interval C, called takt time.

At each takt, there is only one item at each station. Items of different types enter the line

one by one, and all of them pass through all the stations. We denote the set of all tasks as O.

O refers to the unified set of tasks which some/all of them are common to different product

models (possibly with different processing times). Each product model i requires a subset Oi

of the unified set of all tasks O. Note that if a task is model specific, it appears only in one of

the Oi. There is a set Ai of precedence relations (o, o′) for each product model i, where task

o must be performed before task o′ for this product model. Note that Ai can be the same

for all product models in some use cases. The processing time plio of task o performed on a

model i depends on the number of workers l assigned to a station. In Battaïa et al. (2015), a

real case from automotive industry was presented and the authors considered the same linear

relation as in this paper. For instance, in the mentioned real case study, the processing time

of assembling cylinders on different variants of engines linearly decreases depending on the

number of workers. Depending on different types of tasks in different industrial use cases

and how workers perform the assigned tasks, processing times may decrease not linearly.

The model proposed in this work is able to tackle any type of relation between processing

time and the number of workers, linear or non-linear. We assume that the tasks are non-

preemptive, and that they cannot be divided into sub-tasks. There is a limit lmax on the

number of workers assigned to the same station. In addition, each task requires a certain
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equipment that has to be installed at a station. The set of equipment is denoted E , and

the requirements are represented with the parameter Roe, whose value is equal to 1 if task

o requires equipment e, and 0 otherwise. Each equipment has a certain ability to perform a

set of tasks. If several tasks assigned to stations require the same type of equipment, it can

be duplicated at stations (see Askin and Zhou, 1997; Tiacci and Mimmi, 2018, for example).

The objective is to minimize the sum of equipment and workforce costs. Each equipment e

has a cost cse at each station s. The equipment cost can be station dependent because of

the space restrictions, state of infrastructure at stations, proximity to utilities, removal of

previous equipment and difficulty of installing the equipment. However, our model can also

handle the special case in which equipment cost is not station dependent. As all workers are

assumed to be identical and able to perform any task, the cost of workers α is the same for

all workers.

The line is reconfigurable in the sense that workers can move from one station to another

at any takt time, thus adapting the production capacity to the current load in each station.

We assume that the workers’ walking times compared to task processing times are negligible.

This assumption is valid in industrial situations in which walking times are sufficiently small

compared to task processing times and cycle time, see for example Battaïa et al. (2015). In

the present work, we only consider the line’s design and balancing for the worst case without

the prevision of the exact workers’ movement. We can further assume that precise movements

are decided at the control level. It is one of the possible future research directions in which a

decision tool helps to select the best worker’s movement to minimize the traveling distance

between stations.

In this work, we consider two variants of the problem MALBP−W . In MALBP−W Fix,

the task assignment to stations remains fixed for all product models. MALBP − WMd is

similar to MALBP − W Fix, but the task assignment in a station depends on the item in

the station. In other words, in MALBP −WMd, the task assignment may change from one
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product model to another, but the task assignment is the same for several units of a given

model.

The objective is to design a line that meets the takt time for the worst possible picture

of the line. To define the set of pictures the line must cope with, we assume that the user

can set the maximum number of units of each product model present on the line in any takt.

This limit can be set based on a known ratio of demands for different products as in (Dolgui

et al., 2018; Delorme et al., 2019), expert knowledge, or past data. For example, if at most

one unit of product models A, B, and C can be present at 3 stations, only one station may

be occupied by model A, one station by model B, and one station by model C in each takt.

However, the proposed optimization approach can also handle the non-restricted case, where

the maximum number of units of each product model present on the line is infinite.

Unlike other similar works (Taube and Minner, 2018; Cortez and Costa, 2015), this study

does not consider the sequencing problem while assuming an arbitrary order of products in

the mixed-model line. This assumption is valid in many environments containing the mixed-

model line (Becker and Scholl, 2006; Bukchin et al., 2002). Some existing works (Battaïa

et al., 2015; Kucukkoc and Zhang, 2014; Delorme et al., 2019) provide methodologies to

design and balance the line for a given set of production orders. As we consider fixed and

model-dependent task assignments, given a set of possible orders of products, the number of

workers is computed based on the pictures contained in the sequence. To give the user direct

control over the line capacity, we let him/her restrict directly the possible line pictures.

Note that in the considered MALBP−W , product models can have different sets of tasks

with different processing times and precedence graphs. The proposed solution approaches

can also handle special cases, where product models require the same sets of tasks with the

same precedence graph like in (Battaïa et al., 2015).
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3.2. Illustrative example

This section illustrates the MALBP −W on a simple example with two sequential sta-

tions. The example illustrates the impact of model-dependent task assignment on the number

of workers, equipment assigned to the stations, and total cost of the workforce and equipment,

while workers can move between stations at the end of each takt.

A picture of the line is denoted as (1− i, ...S− j), i, j ∈ I, and it determines the sequence

of pairs station-product model in a certain takt. Since there are only two stations and two

product models, the only possible pictures of the line (Pic.) are (1−A, 2−B), (1−B, 2−B),

(1−A, 2−A), and (1−A, 2−B). Figure 2 shows precedence graphs and processing times for

a common set of tasks {1, 2, .., 5} for the two products. In Figure 2, processing time values

correspond to the task durations when they are performed by a single worker (p1io). At most

three workers can work at the same station simultaneously (lmax = 3). In this small example,

we assume that the values of plio are calculated by dividing p1io by the number of workers l

assigned to each task o of each product model i, but our model can handle any processing

time function. Processing time calculations are marked in blue color in Figure 3.

Figure 2: The precedence graphs and tasks processing times of the simple example.

Table 1 shows the compatibility between equipment and tasks, and the cost of using the

equipment at stations. Each equipment is able to perform a certain set of tasks. Note that

the cost of equipment increases as the ability to perform a higher number of tasks increases.

The cost of a worker is α = 500, and the takt time is C = 25.

12



Table 1: Compatibility between tasks and equipment, and the cost of equipment at each station.

Task 1 Task 2 Task 3 Task 4 Task 5 Station 1 Station 2
Equipment 1 ✓ ✓ 132 122
Equipment 2 ✓ ✓ ✓ ✓ 172 148
Equipment 3 ✓ ✓ ✓ ✓ ✓ 224 200

Figure 3 presents the tasks, equipment and workers assigned to the stations for each

picture of the line, the total processing time of each station marked in blue color, as well as

the number of workers, equipment, and the total cost for the worst takt of both problems

MALBP −W Fix and MALBP −WMd. The optimal solution of MALBP −W Fix requires 6

workers and results in a total cost of 3372. The optimal solution to MALBP −WMd requires

only 5 workers and gives a total cost 2872.

Figure 3: The optimal solution of MALBP −WFix and MALBP −WMd in the simple example.

Figure 4 shows the use of the solution for a given product order. Figure 4 clarify how

pictures of the line change in every takt, depending on the product order. Here, only one

13



order of products (B-A) is considered, where product B enter the line first, and then product

A follows. Only three takts (T = 3) and therefore only three pictures are shown for the

considered order: (1−B, 2−∅), (1− A, 2−B), (1−∅, 2− A).

Figure 4: An example of changing pictures of the line for product order (B-A).

3.3. Mathematical model for fixed task assignment

This section provides the mathematical formulation MILP Fix of the MALBP −W with

fixed tasks. We denote Ω as the set of all possible pictures. Note that from a given picture

of the line ω, we can determine the station sωi where product model i is processed, as well

as the model iωs processed at station s. Decision variables are as follows: Y is the number of

workers to hire, wse is the number of equipment pieces of type e required at station s, bωsl is

equal to 1 if there are l workers in station s for picture ω, and 0 otherwise; bωoisl is equal to 1 if

there are l workers performing task o on model i at station s for picture ω, and 0 otherwise;

xsoi is equal to 1 if task o performed on model i is done at station s, and 0 otherwise.

The mathematical formulation of MILP Fix (1)-(16) is as follows.
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min α Y +
∑
s∈S

∑
e∈E

csewse (1)

s.t.∑
s∈S

lmax∑
l=1

l bωsl ≤ Y ω ∈ Ω (2)

lmax∑
l=1

bωsl = 1 ω ∈ Ω, s ∈ S (3)

∑
s∈S

xsoi = 1 i ∈ I, o ∈ Oi (4)

xsoi = xsoi′ i, i′ ∈ I, o ∈ Oi ∩ Oi′ , s ∈ S (5)

bωoisl ≤ xsoi 1 ≤ l ≤ lmax, ω ∈ Ω, i ∈ I, o ∈ Oi, s = sωi (6)

bωoisl ≤ bωsl 1 ≤ l ≤ lmax, ω ∈ Ω, i ∈ I, o ∈ Oi, s = sωi (7)

bωoisl ≥ bωsl + xsoi − 1 1 ≤ l ≤ lmax, ω ∈ Ω, i ∈ I, o ∈ Oi, s = sωi (8)∑
o∈Oi

lmax∑
l=1

plio bωoisl ≤ C ω ∈ Ω, s ∈ S, i = iωs (9)

lbωoisl ≤
∑
e∈E

Roewse 1 ≤ l ≤ lmax, ω ∈ Ω, i ∈ I, o ∈ Oi, s ∈ S (10)

∑
s∈S

s xsoi ≤
∑
s′∈S

s′ xs′o′i i ∈ I, (o, o′) ∈ Ai (11)

xsoi ∈ {0, 1} i ∈ I, o ∈ Oi, s ∈ S (12)

bωsl ∈ {0, 1} 1 ≤ l ≤ lmax, ω ∈ Ω, s ∈ S (13)

Y ≥ 0 (14)

wse ∈ Z0+ s ∈ S, e ∈ E (15)

bωoisl ≤ 1 1 ≤ l ≤ lmax, ω ∈ Ω, i ∈ I, o ∈ Oi, s ∈ S (16)

The objective function (1) is to minimize the costs associated with the workers and equip-
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ment, where α represents the labor cost (salary plus other charges) of a worker. Constraints

(2) compute the total number of workers. Constraints (3) state that a single number of work-

ers must be chosen for each station in each picture of the line. Constraints (4) ensure that

each operation is assigned to a single station in each picture. Equations (5) force the tasks to

remain fixed at stations for all the product models i ∈ I. Equations (6), (7), and (8) compute

the value of bωoisl based on the values of bωsl and xsoi. Equations (9), (10), and (11) define

the classical takt time, equipment, and precedence constraints, respectively. Constraints (10)

ensure that the number of equipment pieces able to perform the operation is equal to the

number of workers assigned to the station. Constraints (12) - (16) give the bounds on the

decision variables.

3.4. Mathematical model for model-dependent task assignment

The mathematical formulation of MILPMd is similar to MILP Fix , but without con-

straints (5), because the assignment of tasks to stations can dynamically change from one

product model to another. Therefore, MILPMd corresponds to (1)- (4), (6) - (16).

4. Optimization approaches

As the number |Ω| of pictures is naturally large, solving MILP Fix and MILPMd is time

consuming. This section provides an efficient reformulation of the MILP, the constructive

matheuristic (CM), and the fix-and-optimize heuristic (FOH). At the end of this section, we

explain how MILP Fix can serve as a heuristic for MILPMd.

4.1. MILP reformulation

MALBP − W can be decomposed in two sub-problems. The first sub-problem assigns

tasks to a station, and computes the minimum number of workers (Yis) required to perform

the tasks of product model i at station s within the takt time. The second sub-problem
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computes the number f(Y11, . . . , YIS) of workers in the worst picture. In this context, we

show that the linear relaxation of the sub-problem is integer. Consequently, we can use

the dualization method commonly used in robust optimization (Alem and Morabito, 2012;

Gorissen et al., 2015). Another way to tackle non-linearity could be the quadratic term

linearization approach. However, it generates more constraints and leads to a higher CPU

time consumption. In application to our problem, the dual model performs better. The

linear program provides a linear function and the same optimal minimization objective value

as in the primal maximization problem. Since dualization transforms the maximization

sub-problem into a minimization problem, it can be inserted into the main problem. The

mathematical formulation of the first sub-problem for MALBP −W Fix is given below.

min
∑
s∈S

∑
e∈E

csewse + f(Y11, . . . , YIS) (17)

s.t.

(11)

Yis ≥
lmax∑
l=1

l bisl i ∈ I, s ∈ S (18)

lmax∑
l=1

bisl = 1 i ∈ I, s ∈ S (19)

∑
s∈S

xsoi = 1 i ∈ I, o ∈ Oi (20)

xsoi = xsoi′ i, i′ ∈ I, o ∈ Oi ∩ Oi′ , s ∈ S (21)

boisl ≤ xsoi 1 ≤ l ≤ lmax, i ∈ I, o ∈ Oi, s ∈ S (22)

boisl ≤ bisl 1 ≤ l ≤ lmax, i ∈ I, o ∈ Oi, s ∈ S (23)

boisl ≥ bisl + xsoi − 1 1 ≤ l ≤ lmax, i ∈ I, o ∈ Oi, s ∈ S (24)
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∑
o∈Oi

lmax∑
l=1

plio boisl ≤ C i ∈ I, s ∈ S (25)

lboisl ≤
∑
e∈E

Roewse 1 ≤ l ≤ lmax, i ∈ I, o ∈ Oi, s ∈ S (26)

xsoi ∈ {0, 1} i ∈ I, o ∈ Oi, s ∈ S (27)

bisl ∈ {0, 1} 1 ≤ l ≤ lmax, i ∈ I, s ∈ S (28)

Yis ≥ 0 i ∈ I, s ∈ S (29)

wse ∈ Z0+ s ∈ S, e ∈ E (30)

boisl ≤ 1 1 ≤ l ≤ lmax, i ∈ I, o ∈ Oi, s ∈ S (31)

For this sub-problem of MALBP − WMd, constraints (21) must be removed from the

above mathematical formulation.

Compared to the mathematical formulation (1)-(16), the above MILP ignores the pro-

duction orders, |Ω| pictures of the line, and these elements are considered in the sub-problem.

In this paragraph we explain the second sub-problem for workforce assignment to the

stations. Let ui be the maximum number of units for each product model i in a picture of

the line. A new binary variable fis is introduced and it is equal to 1 if model i is assigned

to station s in the worst picture, and 0 otherwise. This assignment requires Yis workers to

process model i in station s. The function f(Y11, . . . , YIS) corresponds to model (32) - (35).

The objective (32) is to maximize the workforce cost to find the worst picture resulted from

different product orders. Constraints (33) state that at most ui model i are simultaneously

present on the line. Constraints (34) state that each station is occupied by a single product

model.

f(Y11, . . . , YIS) = max
∑
i∈I

∑
s∈S

fis αYis (32)
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s.t.∑
s∈S

fis ≤ ui i ∈ I (33)

∑
i∈I

fis = 1 s ∈ S (34)

fis ∈ {0, 1} i ∈ I, s ∈ S (35)

Theorem 4.1. The linear relaxation of sub-problem (32) - (35) yields a solution with integer

values for variables fis.

Proof of Theorem 4.1. The solution of a linear program is integer if the matrix of constraints

is totally uni-modular (Heller and Tompkins, 1956).

We assume A as the (m × n) constraint matrix of a linear program which is able to be

partitioned into two subsets A1 and A2. Matrix A is totally uni-modular if it respects the

following conditions (Heller and Tompkins, 1956): 1) every column of A contains at most two

non-zero elements; 2) A contains only values 0, +1, or −1; 3) if a column of A consist of two

non-zero elements with the same sign, then the row of one is in A1, and the other in A2; 4) if

a column of A consist of two non-zero elements with the opposite signs, then the rows of both

are in A1, or both in A2. Herein, each variable fis, for i ∈ I and s ∈ S, appears exactly twice

in the set of constraints with a coefficient 1. The first appearance is in the set of constraints

(33), and the second in the set of constraints (34). Therefore, the constraint matrix of the

program (32) - (35) satisfies the four conditions mentioned in (Heller and Tompkins, 1956),

and it is totally uni-modular.

Dual programming for linearization: Equation (32) is a quadratic function, since

both the product model assignment and the number of workers are multiplied as binary

and integer decision variables, respectively. As the integrality constraint can be relaxed in
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(1)-(16), we can build a dual model of the sub-problem. The dual programming model is:

f(Y11, . . . , YIS) = min
∑
i∈I

ui Mi +
∑
s∈S

Ns (36)

s.t.

Mi +Ns ≥ αYis i ∈ I s ∈ S (37)

Mi ≥ 0 i ∈ I (38)

Here, Mi and Ns are the corresponding dual variables of constraints (33) and (34), re-

spectively.

Inserting the dual programming (36) - (38) into the main problem yields the reformulation

of both MILP Fix and MILPMd, and they are respectively denoted RMILP Fix (Equations

(39)) and RMILPMd (Equations (40)). While solving RMILP Fix and RMILPMd yield the

optimal task and worker assignment as well as the worst case number of workers, it does not

provide the worst picture of the line directly since it contains only the dual solution of (32) -

(35). The worst picture of the line can be computed by solving (32) - (35) with the simplex

method.

min
∑
s∈S

∑
e∈E

csewse +
∑
i∈I

ui Mi +
∑
s∈S

Ns (39)

s.t.

(11)&(18) − (31)&(37) − (38)

min
∑
s∈S

∑
e∈E

csewse +
∑
i∈I

ui Mi +
∑
s∈S

Ns (40)
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s.t.

(11)&(18) − (20)&(22) − (31)&(37) − (38)

4.2. Constructive matheuristic (CM)

The preliminary experiments showed that task assignments are computationally difficult

to perform, while RMILP Fix and RMILPMd can be solved in a few seconds if variables

xsoi are fixed. Therefore, our solution method first focuses on the assignment of tasks to

stations (variable xsoi). Then, RMILP Fix and RMILPMd are solved assigning workers and

equipment with fixed values of xsoi. This heuristic is called a constructive matheuristic (CM),

since it involves both a heuristic algorithm and the reformulated mathematical model.

To calculate xsoi for each product model i, the heuristic starts with the assignment of

the task without predecessors to the first station. If there is more than one task without

predecessors, the following task is assigned according to one of the eight task selection rules

described in Table 2. CM assigns tasks to the first station until the sum of the processing

times reaches the takt time. However, CM considers the processing time of tasks performed

by only one worker. The new takt time Cnew is defined as follows: max(C,

∑
o∈O p1io
|S|

), i ∈ I.

In MALBP − W , multiple workers can work at a station with respect to the takt time.

However, the CM stops assigning when the sum of processing times of tasks performed by

only one worker reaches the takt time. To obtain a feasible task assignment by CM when the

summation of task processing times for a product model is higher than the production time

(summation of the takt time for all stations), the takt time is calculated by the division of

total processing time by the number of stations. The heuristic continues to assign tasks in

a similar manner until the last station. Values of xsoi are then given to RMILPs to tackle

the whole problem MALBP −W .

Algorithm 1 shows the basic steps of CM. A feasible solution is obtained in less than one

second.
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Table 2: Task selection rules considered in constructive matheuristic (CM)

Rules description
Rule 1 Largest processing time (LPT).
Rule 2 Smallest processing time (SPT).
Rule 3 Largest number of successors (LNS).
Rule 4 Smallest number of successors (SNS).
Rule 5 Largest processing time & Largest number of successors (LPTLNS).
Rule 6 Smallest processing time & Largest number of successors (SPTLNS).
Rule 7 Largest processing time & Smallest number of successors (LPTSNS).
Rule 8 Smallest processing time & Smallest number of successors (SPTSNS).

Algorithm 1 Constructive matheuristic (CM)
Required: Precedence graph for each model i (Ai), task processing times for each model i

performed by a single worker (p1io), and takt time (C).

Step 1: Compute the new takt time value (Cnew).

Step 2: Set s := 1 first. Start assigning tasks to stations for each product model (xsoi).

Step 3: For each model i ∈ I, assign the task with no predecessor. If there is more than one

task without predecessors, assign the task according to a selection rule proposed in Table 2.

Step 4: If Cnew is exceeded, stop and pass to the next station.

Step 5: Repeat steps 3 and 4 with the same selection rule until all tasks are assigned to

stations for all product models.

Step 6: Input the obtained values for xsoi to RMILP Fix or RMILPMd and solve. Obtain

the feasible solution ”sol”.

4.3. Fix-and-optimize heuristic (FOH)

The fix-and-optimize approach starts with the initial solution obtained by the CM, and

it seeks to improve the task assignment. The initial solution is the best one among all

solutions obtained using the rules from Table 2. In each iteration, FOH solves RMILP with

most variables (xsoi) fixed to their values in a current solution, and another part of variables
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(xsoi) selected as a binary decision variable for re-optimization. To select this part of (xsoi),

the tasks assigned to 2 or 3 adjacent stations become decision variables. These stations

are selected randomly. Adjacent stations are selected in order to respect task precedence

relations. Three rules are defined to select the stations randomly, see Table 3. The algorithm

is stopped and the best current solution is saved if one of the following conditions is met:

computational time has reached 1 hour; no improvement is observed after 20 iterations (in

case of selecting 2 stations) or 10 iterations (in case of selecting 3 stations). These numbers

are chosen based on several pre-computational experiments. Algorithm 2 provides the main

steps of the FOH.

Algorithm 2 Fix-and-optimize heuristic (FOH)
Required: Parameter xsoi & solution sol (from Algorithm 1).

Step 1: Set the limit for number of iterations without any improvement, with the iteration

counter "Count". The limit "COUNT" is set to 20 iterations (in case of selecting 2 stations)

and to 10 iterations (in case of selecting 3 stations). Start the first iteration (Count := 0).

Step 2: Select adjacent stations for optimization with a selection rule proposed in Table 3,

as a set (S ′) of stations.

Step 3: Consider all tasks assigned to the selected stations s ∈ S ′ for each model i ∈ I, as

binary decision variables xsoi for optimization. Keep the remaining values of xsoi known.

Step 4: Solve RMILP Fixor RMILPMd, and get a new solution solnew

Step 5: If solnew is better than solution sol, then set sol := solnew and re-start the itera-

tions from the first one (Count := 0). Do the steps 2, 3 and 4 with the same selection rule.

Otherwise go to the next iteration (Count+ = 1) and do the steps 2, 3 and 4 with the same

selection rule.

Step 6: The algorithm stops either when it reaches "COUNT" iterations without improve-

ment (Count = COUNT ), or when 1 hour of computational time has passed.
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Table 3: Station selection rules applied in FOH

Rules description
Rule 1 Randomly select 2 adjacent stations (2S).
Rule 2 Randomly select 3 adjacent stations (3S).
Rule 3 Start with 2S, and after 20 iteration without any improvement continue with 3S (2S3S).

4.4. Fixh heuristic

Note that a solution to RMILP Fix is a feasible but not optimal solution to RMILPMd,

because MALBP −W Fix corresponds to MALBP −WMd with the additional constraints

(21). Constraints (21) state that the task assignment to stations must be identical for different

product models. Fixh uses RMILP Fix as a heuristic to solve MALBP −WMd. Therefore,

this heuristic runs RMILP Fix for the given time limit, and it provides a feasible solution for

MALBP −WMd.

5. Computational experiments and results

This section provides an adaptable data generation approach for MALBP − W based

on benchmark data generators from the literature. It evaluates the rules used in heuristics,

analyzes the performance of each optimization approach, and provides managerial insights

regarding the benefits of using the model-dependent task assignment. The problems are

solved using IBM ILOG CPLEX Optimization Studio V12.10. The experiments were run on

an Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz processor with 32 GB of RAM

in MS Windows 10 Pro (64 bit) operational system. The computational time limit is set to

4 hours for each instance. The time limit for FOH is set to 1 hour.

5.1. Instances generation

To perform computational experiments, we extend the data generator, proposed by Otto

et al. (2013) to the specificity of the problem in hand. Each of our instances merges I consec-

utive instances of Otto et al. (2013). For example, our first generated instance contains the
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data of I first instances of Otto et al. (2013) and has I product models with different process-

ing times and precedence graphs. The second instance contains the data of {2 . . . I +1} first

instances, and so on. There are two groups of instances, with 20 and 50 tasks, respectively.

Note that the product models may have different processing times and precedence relation-

ships between tasks. Herein, the processing time of tasks depends the number of workers,

linearly, where plio =
p1io
|l|

, 1 ≤ l ≤ lmax, i ∈ I, and o ∈ Oi.

To provide an extensive analysis, eight classes of instances are considered. All these

instances are solved for both fixed and model-dependent cases. Table 4 shows the charac-

teristics of each class using check-marks. Each classes of instances can be encountered in

practice in different production environments. Therefore, these classes help to provide in-

sights on the benefit of moving workers and dynamic task assignment in different production

context. For example, Battaïa et al. (2015) studied an automotive case study, where different

product models have the same tasks and precedence relations but different task processing

times. Some studies (Thomopoulos, 1970; Choi, 2009) consider that each product model has

a specific graph with specific tasks, but the graphs have a special structure allowing them

to be combined into a single graph. Other studies consider separate precedence graphs for

different product models (Naderi et al., 2019). Restrictions on the ratio of items in a picture

are imposed at the production scheduling level in order to smooth the workload (Respen

et al., 2016).

Equipment costs at each station are generated randomly with a uniform distribution in

the range [100, 300]. Four different values for workers’ cost are considered. Three values are

chosen in comparable range to the equipment cost values which are less, within, and more

than the range for equipment costs. A greatly larger workers’ cost is also considered. The

four values are defined as α = {50, 200, 500, 5000}. The defined ratio between equipment and

workers’ cost values correspond to the data observed in (Askin and Zhou, 1997). Different

number of stations and product models (S, I = {3, 5, 10}) are defined. The instances’ sizes
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Table 4: The characteristics of different classes of instances, applied for both fix and model-dependent cases.

The precedence graph The set of tasks The order of products

Single Different Single Different Restricted Non-restricted

Class 1 ✓ ✓ ✓

Class 2 ✓ ✓ ✓

Class 3 ✓ ✓ ✓

Class 4 ✓ ✓ ✓

Class 5 ✓ ✓ ✓

Class 6 ✓ ✓ ✓

Class 7 ✓ ✓ ✓

Class 8 ✓ ✓ ✓

are determined by the 3-tuple (I, S,O), where I, S, and O represent the number of product

models, stations, and tasks, respectively.

To generate the compatibility matrix, Roe is set to 1 with probability c̄e
c̄

(and 0 otherwise),

where c̄e is the average cost of equipment e (over all stations), and c̄ is the average equipment

cost (over all equipment and stations).

The takt time in the instances of Otto et al. (2013) is set to 1000. In MALBP − W ,

several workers may perform tasks in a station. It is reasonable to consider a reduced takt

time since the processing time decreases with a higher number of workers. Here, the takt

time can take the following values {1000, 500, 250}, and we only report results for "proper",

more complicated instances, i.e. feasible and with more than one worker per station. Such

instances represent production cases in which the desired productivity and therefore the takt

time do not allow solutions with single worker at stations. Before the determination of these

instances, takt time values are tested for different sizes of instances. Three outcomes are

possible: a "proper" solution with multiple workers at stations, an infeasible solution, and

a solution with a single worker per station. Table 5 reports the numbers of tested instances

with multiple workers, infeasible and single-worker-per-station solutions for each takt time
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value.

Table 5: Determination of instances with multiple workers at stations, using different takt time values.

C = 250 C = 500 C = 1000
Solutions with multiple workers at stations 320/1600 640/1600 640/1600
Infeasible solutions 1280/1600 640/1600 0/1600
Solutions with single worker per station 0/1600 320/1600 1280/1600

Single/different precedence graphs for product models: Otto et al. (2013) consid-

ered different precedence graphs for different product models. By different graphs we mean

the number of arc position changes between nodes, while the overall precedences remain

fixed. We only use their precedence graph for the first product model in the cases with the

same single precedence graph (see classes 3,4,7,8).

Single/different set of tasks for product models: having the same set of tasks for

all product models as Otto et al. (2013) raises no issues. In order to have different sets of

tasks for product models, we randomly eliminate a number of tasks, in the range [8, 12] for

20 task instances and in the range [20, 30] for 50 task instances.

Restricted/non-restricted number of units of product models: in the restricted

case, we consider a single unit restriction of all products (ui = 1, for all i ∈ I). Thus, Ω

includes all possible pictures of the line with a single unit of each product model (|Ω| =

I!/(I − S)!). For the non-restricted case, ui = S for all i ∈ I (|Ω| = IS).

For each size and each class, 10 instances from all instances of Otto et al. (2013) are

randomly selected. It leads to a total number of instances equal to 1600 which are solved for

both problems MALBP −W Fix and MALBP −WMd.

5.2. Analysis of the heuristics

Table 6 shows the average solution quality for problems MALBP−W Fix and MALBP−

WMd. It provides the average gap (the percentage %) between either heuristics CM or

FOH, and the best solution provided by RMILPs for each selection rule. The best solution
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provided by RMILPs refers to either the optimal solution of RMILPs for optimally solved

instances or to the best upper bound found by RMILPs for non-solved instances within

the considered time limit. The best rule used in CM is to assign the task with Smallest

Processing Time and Smallest Number of Successor (SPTSNS) (23.2% for fixed and 19.4%

for model-dependent task assignment). However, the difference among the rules used in CM

is not significant. The best rule used in FOH is to start by selecting 2 adjacent stations and

continue by selecting 3 stations as soon as there is no improvement of the solution (2S3S), see

the bold values in Table 6 (−3.2% for fixed and −7.1% for model-dependent task assignment).

Note that the negative gap for FOH means that heuristics resulted a better solution than

the best solution found by RMILPs when it reached the time limit.

Table 6: Solution quality of the heuristics.

MALBP-W CM (%) FOH (%)
LPT SPT LNS SNS LPTLNS SPTLNS LPTSNS SPTSNS 2S 3S 2S3S

Fixed 25.6 23.8 23.6 24.4 23.8 23.5 23.9 23.2 0.8 -2.9 -3.2
Model-dependent 22.3 19.5 20.4 21.9 19.9 19.6 19.4 19.4 -0.9 -6.5 -7.1

5.3. Performance of the optimization approaches

This subsection evaluates the performance of optimization approaches in terms of solution

quality and computational time. Table 7 shows the number of instances solved by RMILPs,

the average optimality/integrality gap provided by CPLEX, the average gap between the

solutions obtained by heuristics CM, and FOH and the best solution found by RMILPs.

Values Fixh show the average relative gap between the model-dependent case solution value

and the fixed one. It is computed using the formula (41). A positive value of Fixh means

that a better cost was obtained in the model-dependent case. For (5,5,50) and (10,10,50)-size

instances fixed case solutions provided better values than model-dependent case solutions.

In fact, RMILPMd reached the time limit, while RMILP Fix provided better solutions. The

negative gap for (5,5,50)-size instances solved by FOH and (10,10,50)-size instances solved by
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CM and FOH means that RMILP reached the time limit, while heuristics provided better

solutions. Both RMILPs solve small instances with 3 stations and 3 product models to

optimality. The RMILPs, for both problems, provide the same solution as MILPs. For

larger instances with the number of tasks equal to 50 and the number of product models and

stations equal to 10, CPLEX starts running out of memory.

Gap =
Cost(MALBP −W Fix)− Cost(MALBP −WMd)

Cost(MALBP −W Fix)
100% (41)

Table 7: Solution quality of optimization approaches depending on the instances’ size. (I, S,O) stands for

the number of product models, stations, and tasks, respectively.

Size MALBP-WFix MALBP-WMd

(I,S,O) RMILP CM FOH RMILP CM FOH Fixh

N° solved Opt. gap (%) (%) (%) N° solved Opt. gap (%) (%) (%) (%)
(3,3,20) 320/320 0.00 38.5 0.0 320/320 0.00 40.0 0.0 5.2
(3,3,50) 320/320 0.00 29.6 0.0 320/320 0.00 28.6 0.0 2.1
(5,5,20) 320/320 0.00 37.2 1.5 305/320 0.07 36.2 1.9 10.7
(5,5,50) 298/320 0.23 25.3 1.0 112/320 8.45 15.8 -2.6 2.3

(10,10,50) 0/320 54.64 -15.2 -18.5 0/320 65.33 -24.1 -34.8 -25.9

Table 8 shows the average computational times of MILPs, RMILPs, CM, FOH, Fixh for

different instances’ sizes. Applying RMILP significantly improves computational times com-

pared to MILP . CM provides a feasible and close to optimal solution in less than 1 second,

whereas FOH provides a closer to optimal solution within few minutes. MILP Fix/RMILP Fix

are solved significantly faster than MILPMd /RMILPMd because the fixed case requires

many fewer task assignment decisions. Moreover, it is seen that the problem is harder to

solve when α is less than the equipment cost (α = 50) because a lower cost of workers leads

to solutions more workers in the line and thus to a higher flexibility of task scheduling.

5.4. Managerial insights

This section successively evaluates the benefit of the model-dependent task assignment

compared to the fixed one, the interdependence between model-dependent task assignment
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Table 8: Average computational time of the optimization approaches.

Size MALBP-WFix MALBP-WMd

(I,S,O) MILP (s) RMILP (s) CM (s) FOH (s) MILP (s) RMILP (s) CM (s) FOH (s)
(3,3,20) 108.8 1.2 <1 14.1 310.3 2.3 <1 33.1
(3,3,50) 1924.3 15.5 <1 124.4 4487.1 22.2 <1 115.7
(5,5,20) - 215.8 <1 107.9 - 2720.3 <1 112.5
(5,5,50) - 3680.2 <1 485.0 - 11337.8 <1 721.9

(10,10,50) - 14400.0 <1 602.8 - 14400.0 <1 1590.4

and walking workers, the performance of the proposed model-dependent scenario when com-

pared to the dynamic task assignment studied in Hashemi-Petroodi et al. (2020). Finally, we

provide a methodology to compute the number of stations needed.

5.4.1. Comparison of MALBP −WMd and MALBP −W Fix

This sub-section compares the benefit of model-dependent task assignment over fixed

task assignment. We evaluate such benefit in terms of the equipment cost, the number of

workers required, and the number of equipment duplication, and we compare situations with

different costs of workers and different classes of instances. The values reported in this section

are either optimal solution values obtained by RMILP Fix and RMILPMd or approximate

solution values returned by FOHFix and FOHMd when the instances are not optimally

solved. All instances are taken into account in this sub-section.

Table 9 shows the impact of different workers’ costs on the equipment costs, the number of

duplications, and the number of workers in the line. The number of equipment duplications

is calculated as
∑

e∈E NDe, where NDe is the number of duplications of equipment type e,

and NDe = (
∑

s∈S wse)− 1, if
∑

s∈S wse ≥ 2 for each equipment type e, otherwise NDe = 0.

It can be seen that increasing the cost of workers increases the cost of equipment, but not

the number of duplications, while the number of required workers decreases. As each worker

requires an equipment piece in the station to perform tasks, there are more duplications

when the number of workers increases, and instances with smaller worker costs α lead to
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more workers. There are also more duplications when the workers’ cost is much larger than

the equipment cost, because the total cost of equipment does not significantly impact the

total cost compared to the total workers’ cost.

Table 9 also shows that increasing workers’ cost makes the model-dependent task as-

signment less profitable than the fixed one (from 8.8% to 7.5%, and 6.9% then to 6%). A

model-dependent scenario requires less workers, and it leads to a lower number of equipment

duplications. It provides less equipment cost when the workers’ cost is comparable to the

equipment cost. However, a much higher cost of workers (α = 5000) increases equipment cost

in a model-dependent task assignment since it uses a more sophisticated and therefore a more

expensive equipment. Although it is still much smaller than α. In fact, application of fixed

or model-dependent task assignments in different instances may require equipment pieces

with more capabilities. Moreover, increasing the workers’ cost when it is comparable with

the equipment costs, results in a less number of workers in both fixed and model-dependent

scenarios because of the balancing the both costs of equipment and workers. When the work-

ers’ cost is much larger (α = 5000), the model acts the same as in the case when the workers’

cost is less than the cost of equipment (α = 50). The same is true for the results given in

Table 10.

Table 9: The impact of the worker cost on the number of workers, equipment cost and duplication, and cost

saving via MALBP −WMd.

α MALBP-WFix MALBP-WMd Fixed/Model-dependent
Eq. Cost N° Worker N° Dup. Eq. Cost N° Worker N° Dup. Gap (%)

50 1585.5 14.6 8.3 1405.6 13.9 7.9 8.8
200 1731.9 14.1 8.3 1513.1 13.6 7.8 7.5
500 1718.1 13.8 8.0 1481.0 13.5 7.6 6.9
5000 1991.1 14.4 8.2 2077.9 13.8 7.8 6.0

Table 10 shows the influence of different classes of instances on the equipment cost, the

number of workers and equipment duplications. According to these results, manufacturing

companies are able to reduce the workers’ cost, in both model-dependent and fixed cases,
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when they: 1) consider a restricted number of product model units in the line 2) assembly

products with different sets of tasks 3) assembly products with different precedence graphs

between the tasks. Companies can also hire less workers using a model-dependent task

assignment.

Table 10: The influence of different classes of instances on the equipment cost, the number of workers and

equipment duplications.

MALBP-W MALBP-WFix MALBP-WMd

Eq. Cost N° Worker N° Dup. Eq. Cost N° Worker N° Dup.
Restricted 1723.3 12.3 8.0 1554.2 11.7 7.4

Non-restricted 1790.0 16.1 8.4 1684.7 17.7 8.1
Same set of tasks 2194.0 15.1 9.7 1903.6 14.5 9.1

Different sets of tasks 1319.3 13.7 6.7 1335.3 12.9 6.7
Same precedence graph 1765.9 14.5 8.4 1734.3 14.3 8.1

Different precedence graphs 1747.4 13.9 8.0 1504.4 13.1 7.4

Table 11 shows cost saving advantages of MALBP − WMd over MALBP − W Fix for

different classes of instances and instance sizes. Model-dependent task assignment performs

better than the fixed case, especially when: 1) the number of product models increases

(5.2% to 10.5% for 20 tasks, and 2.1% to 8.8% and 10% for 50 tasks); 2) the user considers

restrictions on the number of product model units in the line (8.1% rather than 6.5%); 3) all

product models require all tasks from the same set (7.8% rather than 6.9%), and 4) products

have different precedence graphs (8.6% rather than 6.1%).

Table 11: Cost saving (%) via MALBP −WMd as compared to MALBP −WFix.

MALBP-W Size (I,S,O) Average
(3,3,20) (3,3,50) (5,5,20) (5,5,50) (10,10,50)

Restricted 5.8 2.5 12.6 9.5 10.4 8.1
Non-restricted 4.7 1.9 8.4 8.1 9.6 6.5

Same set of tasks 9.5 2.1 11.3 7.5 8.6 7.8
Different sets of tasks 1.0 2.3 9.7 10.1 11.4 6.9

Same precedence graph 3.7 1.0 8.6 8.0 9.1 6.1
Different precedence graphs 6.8 3.4 12.4 9.6 10.9 8.6

Average 5.2 2.1 10.5 8.8 10.0
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5.4.2. Evaluation of the flexibility measures

This section analyzes the interdependence of the flexibility measures, such as the model-

dependent task assignment scenario and walking workers. To provide further managerial in-

sights over flexibility measures, the impact of having walking workers at stations is compared

to the case with fixed workers. The comparison is made over different classes of instances as

well as different cost values of workers.

The computational experiments of this sub-section are performed only for some size of

instances ((3, 3, 50), (5, 5, 20)), but for all classes of instances and costs of workers. We take

into account only the instances solved to optimality using RMILPs. In order to fix workers

to stations, constraints bisl = bi′sl for all i, i′ ∈ I, s ∈ S, 1 ≤ l ≤ lmax, are added to both

RMILP Fix and RMILPMd. Table 12 reports the cost savings of considering each flexibility

measure (the model-dependent task assignment and walking workers, as well as both of

these measures) compared to the case where there is no flexibility by considering fixed task

assignment and fixed workers at stations. Therefore, the three columns of Table 12 show the

gap between the cost of each scenario (model-dependent task assignment with fixed workers,

fixed task assignment with walking workers, and model-dependent task assignment with

walking workers), respectively versus using fixed task assignment with fixed workers. Table

12 shows that model-dependent task assignment has more impact on the cost savings than

walking workers (in average 5.3% rather than 4.8%). Moreover, considering both flexibility

measures provides significantly large cost saving compared to considering them, separately

(in average 11.3% rather than 5.3% and 4.8%).

Figure 5 also shows the impact of fixed/walking workers and fixed/model-dependent task

assignment scenarios for different workers’ costs. The left part of Figure 5 shows the cost

savings of model-dependent task assignment compared to the fixed one as a function of the

workers’ cost for the cases with fixed and walking workers. The right part of Figure 5 shows
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Table 12: The gap (%) between model-dependent task assignment or/and walking workers versus considering

fixed task assignment and fixed workers.

MALBP-W Model-dependent scenario Fixed scenario Model-dependent scenario

& & &

fixed workers (%) walking workers (%) walking workers (%)

Restricted 5.5 9.7 17.5

Non-restricted 5.1 0.0 5.1

Same set of tasks 5.8 5.0 12.1

Different sets of tasks 4.8 4.7 10.5

Same precedence graph 3.7 5.5 9.8

Different precedence graphs 6.9 4.2 12.8

Average 5.3 4.8 11.3

the cost savings of walking workers compared to fixed workers as a function of the workers’

cost for the cases with fixed and model-dependent task assignments. Increasing the workers’

cost decreases the gap between fixed and model-dependent scenarios, whereas walking workers

provide more cost savings compared to the case of fixed workers. In addition, the right part

of Figure 5 shows that there is a correlation between the workers’ cost and the gap between

the cases of fixed and walking workers. Overall, a more flexible line with walking workers

and model-dependent task assignment results in larger cost saving.
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Figure 5: Evaluation of the impact of fixed/walking workers (left-side) and fixed/model-dependent task

assignment scenarios (right-side) for different workers’ costs.
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Flexibility measures (e.g. walking workers and model-dependent task assignment) im-

prove the workers’ efficiency, but they may cause ergonomic issues for workers. Otto and

Battaïa (2017) discuss the ergonomics aspect at the planning stage of the assembly lines.

The authors highlighted several interesting perspectives which require a stronger interac-

tion between production managers, ergonomists and operations researchers. For example,

increasing a flexible task assignment and frequent changes in product orders may create

ergonomic risks related to an accumulated stress and fatigue. This factor should be con-

sidered by decision-makers. Next, in addition to the cost, productivity optimization for a

line using walking workers represents an attractive topic. As an example, Bischak (1996)

discovered several advantages of using walking workers related to the improvement in moti-

vation, accountability, and responsibility of workers. In addition, our study can be integrated

with the concept of open-station assembly line (Sarker and Pan, 2001; Lopes et al., 2020;

Ruppert et al., 2020). An open-station line increases the workers’ flexibility because they

can work ahead of schedule and manage possible backlogs. Most of industries, especially

the automotive industry, use open-station lines in which workers follow the product unit

to another station if the task was not finished on time. However, in this study we do not

consider specific worker’s movement. Extending the current study to individual workers’

movements, possible backlogs and task executions before schedule represents an interesting

research prospective. For example, the flexibility caused by an open-station line can benefit

from the model-dependent task assignment scenario where the takt time can be restricted by

re-assigning tasks when the worker move to next station to finish his/her work.

5.4.3. Evaluation of the dynamic (item-dependent) task assignment

This sub-section compares the impacts of fixed and model-dependent assignments against

the dynamic task assignment studied in (Hashemi-Petroodi et al., 2020).

In Hashemi-Petroodi et al. (2020), task assignment can change at each takt depending
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on the product units located at stations. It appeared that the model with model-dependent

task assignment provides the same results as the model with dynamic tasks assignment

for the worst case/takt of the line. The cost savings (in percentage %) comparison for

each pair of task assignment scenarios is given in Table 13. Only some instances (of size

(3,3,20) and all classes) are given in this Table. It is worth mentioning that fixed and model-

dependent assignments are more realistic and easier to implement in practice. In a dynamic

task assignment, where tasks can be re-assigned in each takt (for each product unit), the

problem becomes very complicated and may not be attractive for practitioners.

Table 13: Cost savings comparison for fixed, model-dependent, and dynamic (unit-dependent) (Hashemi-

Petroodi et al., 2020) task assignment scenarios.

MALBP-W Fixed/Model-dependent Fixed/Dynamic Model-dependent/Dynamic

Gap (%) Gap (%) Gap (%)

Restricted 5.83 5.83 0.00

Non-restricted 4.76 4.76 0.00

Same set of tasks 9.58 9.58 0.00

Different sets of tasks 1.00 1.00 0.00

Same precedence graph 3.78 3.78 0.00

Different precedence graphs 6.80 6.80 0.00

5.4.4. Selection of the number of station

Finally, this sub-section presents the methodology used to determine the number of sta-

tions in practice. The proposed methodology helps to analyze the relationship between the

takt time, the number of stations, and the maximum number of workers required on the line.

The company must first determine the takt time value based on the estimated demand,

and the maximum number of workers based on the production constraints. Then, it is possible

to calculate the lower bound for the number of stations as LB = mini∈I⌈
∑

o∈Oi
plmax
io

C
⌉. By

increasing the number of stations one by one, an upper bound (UB) for the number of

stations is obtained in which more than a single worker is assigned to each station. Table
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14 shows the results for 10 small instances considering 3 product models and the takt time

C = 500. The lower bound is 2 stations, and there are 3 infeasible instances with 2 stations,

whereas all instances are feasible with 3 stations. Table 14 provides the equipment costs, and

the number of workers for each value of the number of stations. Note that the equipment

cost and the number of workers decrease when the number of stations increases. However,

opening a station is very expensive compared to the cost of equipment and workers. Based

on this information, the user can select the most suitable line design.

Table 14: Checking the feasibility for determination of the number of stations depending on a set of given

input data.

S MALBP-WFix MALBP-WMd

N° Feasible Eq. Cost N° Worker CPU time N° Feasible Eq. Cost N° Worker CPU time
instances (s) instances (s)

LB = 2 7/10 455.4 6.4 1.4 7/10 412 6 1.19
3 10/10 1177.6 8.7 3.3 10/10 1123.5 7.5 8.7
4 10/10 983.8 7.2 14.1 10/10 814.4 6.2 119.8
5 10/10 825.2 6.3 60.8 10/10 707.9 5.5 560.8

UB = 6 10/10 804.1 5.5 153.8 10/10 599.2 4.9 4974.9

6. Conclusion

This work focuses on a multi-manned manual mixed-model assembly line design and

balancing problem with walking workers (MALBP-W) in which products can enter the line

in an arbitrary order. A new scenario based mixed-integer linear programming (MILP)

model is built with the criterion of minimizing the total cost of workers and equipment.

The proposed MILP is robust. It minimizes the total cost for the worst sequence of pairs

station-product model in a takt. The equipment pieces can be duplicated depending on

tasks assigned to stations. Two scenarios for task assignment are considered: fixed and

model-dependent. In a model-dependent scenario, task assignment can change depending

on the product model entering the line. Various states of the line and product models

are taken into account, such as having restricted/non-restricted numbers of items of the
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same product model, considering same/different set(s) of tasks required for the products,

and considering the same/different precedence graph(s) among tasks. The generic problem

concerns a manned mixed-model assembly line, where products require different sets of tasks

with different processing times, and different precedence relationships among tasks. The

main challenge is to evaluate and compare the impact of fixed and model-dependent task

assignments on solutions. A reformulated version of the proposed MILP is developed. A

dual programming approach is used to linearize the reformulated MILP. The reformulation

significantly improves the computational time. Two heuristics, a constructive matheuristic

(CM) and a fix-and-optimize heuristic (FOH) show their high efficiency both in terms of

solution quality and computational time. Since a fixed scenario is a special case of the

model-dependent scenario, it may serve as a heuristic for model-dependent task assignment.

A set of instances is generated based on the benchmark data for the simple assembly line

balancing problem. The computational results, including solution quality and computational

time comparisons are shown and analyzed. Several managerial insights are highlighted. In

general, model-dependent task assignment proves to be less costly than fixed task assignment.

Several research perspectives can be mentioned. The present study only focuses on the

line’s design and balancing for the worst case and it does not go into details of workers

movement. One of the promising future research directions is to account for such movements

in the model. In addition, while worker movements and task re-assignments lead to significant

cost savings, they may also cause a loss in productivity and a loss of workers’ accountability.

Therefore, the model could be extended to include the objective of minimizing the workers’

movement and tasks re-assignment. A hybrid manual-automated line with humans and

(collaborative-)robots with a wide range of task variety represents an interesting research

direction since such production systems are likely to form the future of mass production.

Considering the heterogeneity of the workforce and equipment is also a challenging aspect

for a potential future study. Finally, we consider here that several workers works on the same
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task in multi-manned stations, future works should consider the case where workers works

on different tasks.
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