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ABSTRACT
The Industry 4.0 revolution is changing the manufacturing landscape. A broad set of
new technologies emerged (including software and connected equipment) that digi-
tize manufacturing systems. These technologies bring new vitality and opportunities
to the manufacturing industry, but they also bring new challenges. This paper fo-
cuses on the impact of Industry 4.0 on production planning approaches and software.
We first propose a digital twin framework that integrates production planning sys-
tems and frontier technologies. The frontier technologies that may impact production
planning software are the internet of things, cloud manufacturing, blockchain, and
big data analytics. Second, we provide a state-of-the-art on the application of each
technology in the production planning, as well as a detailed analysis of the benefit
and application status. Finally, this paper discusses the future research and applica-
tion directions in the production planning. We conclude that Industry 4.0 will lead
to the construction of data-driven models for production planning software. These
tools will include models built accurately from data, account for uncertainty, and
partially actuate the decision autonomously.

KEYWORDS
Production planning; Industry 4.0; Digital twin; Cloud manufacturing; Blockchain;
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1. Introduction

With the Industry 4.0 revolution, the manufacturing shop floors are digitizing at a
high pace, with more IoT (internet of things) devices, software, and interconnection
with the external environment (suppliers, customers). The technologies of Industry
4.0 develop rapidly, and they include the digital twin (DT)/cyber-physical systems
(CPS), internet of things (IoT), big data analytics (BDA)/artificial intelligence (AI),
cloud manufacturing (CMg), and blockchain (BC) (Ivanov and Dolgui 2020; Ivanov,
Sokolov, and Dolgui 2020). This new manufacturing landscape calls for a change in the
production planning tools. To realize its full potential, production planning software
must take advantage of the massive amount of data generated on the shop floor,
integrate easily, take advantage of new technologies fostered by Industry 4.0, and
adjust automatically to the constant changes on the shop floor.

The resulting tools will have a strong impact on the manufacturing industry. De-
spite the short return on investment of prescriptive analytic tools, most manufacturers
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are not using these tools due to the high initial investment or the lack of knowledge.
According to a recent survey BARC (2016), 74% of companies still use Excel for
production planning, and 33% rely solely on Excel to plan their production. The
implementation of prescriptive analytic tools requires high consulting costs to adapt
software. Big data analytics not only allows us to forecast the value of unknown pa-
rameters accurately, but it also allows us to incorporate uncertainties of these forecasts
in the models. Adaptive stochastic/robust optimization provides decisions (production
planning) that are not only robust to various uncertainties but select the states (re-
source utilization, inventory level) to react appropriately when unknown parameters
unfold. In addition, machine learning tools can help automatically learn the produc-
tion capacity from the data or simulation. Automated planning model creation from
data will reduce the costs of the production planning software since the software will
automatically adjust to the requirements of the shop floor. As a result, prescriptive
analytics will be widely used in manufacturing systems. The resulting tools will lead
to production plans with the right level of agility, which is crucial in the current pro-
duction context with high complexity, high flexibility, mass customization, dynamic
decisions, and volatile markets.

This paper focuses on production planning in Industry 4.0. We identify the chal-
lenges related with research and application of Industry 4.0 keywords, including inter-
net of internet, cloud manufacturing, blockchain, big data analysis, machine learning,
digital twin, cyber-physical system. The main challenges for the application of frontier
technologies in production planning are listed as follows:

(1) The integration of data, software, and decisions remains a complex challenge.
This integration concerns the relations within the physical systems, the relations
within virtual systems, and the relations between physical and virtual systems.

(2) Massive data open both new possibilities and difficulties for developing an effec-
tive production plan using cutting-edge technologies.

(3) These cutting-edge technologies may give managers dynamic and automatic sup-
ports of production planning. The challenge is to develop tools that can react in
real-time and interact properly with the shop floor managers and the workers.

A framework is proposed in this study for an intelligent digital production planning
twin. Such a digital twin integrates the current trends in production planning: the use
of IoT data, big data analytics, could manufacturing, advanced decision aid techniques
based on stochastic and robust optimization, and hybrid simulation-optimization plan-
ning approach.

For each of these research trends, we provide a state-of-the-art. Note that we are not
attempting to give an exhaustive bibliography based on a systematic review. Instead,
we select the papers for their quality and their relevance, considering the following key
dimensions: journal quality, number of citations, innovation, practical applications, and
reference. Finally, we give a new vision of the intelligent digital twin for production
planning that integrates all Industry 4.0 technologies to facilitate production planning
decision in manufacturing.

The present paper differs strongly from existing reviews. Bueno, Godinho Filho,
and Frank (2020) provide a systematic review on the use of Industry 4.0 keywords in
the production planning and control (PPC) papers. The authors show that most of
work focuses on scheduling. On the contrary, this paper provides a vision of the future
trends of production planning in the Industry 4.0 context, and we explain the benefits
in this context of research that do not explicitly mention Industry 4.0 (e.g., papers on

2



simulations, stochastic optimization, ...). Cadavid et al. (2020) provide a systematic
review on machine learning for PPC. Our review paper deals with a broader spectrum
of Industry 4.0 technologies and methods. Ivanov and Dolgui (2020); Lu et al. (2020);
Rossit, Tohme, and Frutos (2019) propose frameworks or architectures of the supply
chain or manufacturing system in the context of Industry 4.0. Zhang, Zhang, and Yan
(2019); Agostino et al. (2020) provide DT frameworks that focus on scheduling. How-
ever, the authors do not give clear information on the use of the emerging technologies
of Industry 4.0 to support production planning decisions. Besides, Kasten (2020); Leng
et al. (2020); Fosso Wamba et al. (2020); Li et al. (2021) present systematic reviews
on blockchain for supply chain or manufacturing industry, but they do not discuss
production planning issues in detail. Moreover, most of the existing literature review
papers have focused on presenting what technologies are available for implementing
Industry 4.0 rather than how Industry 4.0 factories make their decisions and manage
operations. This paper fills in this gap.

Section 2 introduces classical functions of production planning, and Section 3
presents the main concepts of the intelligent digital twin for production planning.
We then provide a stat of the art on the key elements of intelligent digital twins for
production planning: IoT, cloud manufacturing, and blockchain (Section 4); big data
analytics (Section 5); simulation and optimization (Section 6).

2. Definition, structure, and research scope for the production planning

2.1. Production planning and control (PPC) system

Production planning and control (PPC) systems help companies match manufacturing
performance with customer demands (Bonney 2000). PPC is a value-adding process
(Wiendahl, Von Cieminski, and Wiendahl 2005) that encompasses all tasks related to
the management of the value creation processes in a company (Bendul and Blunck
2005). PPC is a function determining the global production quantities (production
plan) for a given planning horizon to satisfy the commercial plan and to meet the
profitability, productivity, and delivery time objectives (Lolli et al. 2019). PPC also
includes the control of the manufacturing process for real-time resource synchroniza-
tion and product customization. (Moeuf et al. 2018). Scholars often use hierarchical
frameworks to describe the process of PPC at different levels and planning horizons
(Oluyisola, Sgarbossa, and Strandhagen 2020). Although the details and terms for the
framework of PPC systems are different in different studies, the core content remains
the same. Existing research often describes the PPC framework at the long-term,
medium-term and short-term (Bonney 2000; Oluyisola, Sgarbossa, and Strandhagen
2020; Garetti and Taisch 1999; Jacobs et al. 2011). Figure 1 depicts such PPC frame-
works.

The decision process in PPC includes multiple sub-processes (production planning,
capacity planning, and rough-cut capacity planning, etc). This decomposition was
defined even before computers allowing humans to plan by hand. The first software
for PPC, e.g., MRP, followed this historical decomposition, and they provide a set of
functionality, where each functionality corresponds to one of these sub-processes. As
this decomposition is sub-optimal and inconvenient, the literature suggests integrating
these decisions (e.g., sales and operations planning), and the software followed (e.g.,
enterprise resource planning (ERP) fosters the integration of procurement, production,
and capacity planning). With the increase of computation power and the development
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Figure 1. Caption: The framework of the production planning and control system.

Figure 1. Alt Text: The PPC system’s framework primarily consists of demand and inventory, functional
module, and resources. The PPC system is presented from three angles: long-term, medium-term, and short-

term.

of optimization approaches, decision support tools for production planning tend to
integrate all the decisions and data at a given planning level.

At the strategic level, manufacturing operations are viewed in a long-term, ag-
gregated manner. (Oluyisola, Sgarbossa, and Strandhagen 2020). Strategic decisions
begin with sales and operations planning (S&OP) or aggregate planning. The tactical
level considers the medium-term planning, which is called materials resource planning
(MRP). The operational level concerns day-by-day, shift-by-shift detailed scheduling,
and real-time control. The focus of this study is on long-term and medium-term pro-
duction planning, and we do not discuss scheduling and real-time control.

2.2. Aggregate production planning

S&OP aims to balance the overall demand with the available resources. This process is
dedicated to unifying plans traditionally produced independently by different depart-
ments related to production, distribution, procurement, and sales (Pereira, Oliveira,
and Carravilla 2020). S&OP is performed monthly, at an aggregated level (based on
product family), and for a planning horizon of up to a few years since S&OP deci-
sions (buying new machine, hiring workers) must be taken long before implementation
(Noroozi and Wikner 2017). The input of S&OP includes demand data (volumes per
product family per planning period), metadata (such as forecast uncertainty) from de-
mand management (DM), as well as future available aggregate capacity from resource
planning (RP) (Oluyisola, Sgarbossa, and Strandhagen 2020; Jacobs et al. 2011).

The S&OP process gathers people from different functional areas, to balance the
demand and the capacity plans. S&OP might lead to jointly deciding pricing with the
production plan. S&OP is sometimes classified as a strategic process since it might
lead to capacity extension, but most of the literature considers it a tactical process.

2.3. Master production scheduling

While S&OP considers product families, the master production schedule (MPS) gen-
erates the production target for each end-item by period typically monthly. In recent
planning systems, MPS integrates rough-cut capacity planning (RCCP) (Rossi et al.
2017), where planners check that the capacity of critical resources (bottleneck, labor,
critical materials) is sufficient to meet the production target. If this is not the case, the
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Figure 2. Caption: The overview of the production planning in Industry 4.0.

Figure 2. Alt Text: The key elements for production planning in Industry 4.0 include IoT, BDA, IoT, CMg,
and CPS. The interaction between them is illustrated in this graph, as well as how they collaborate to assist

with the decision-making of the production planning.

planners may increase capacity through overtime, temporary workers, subcontracting,
or they may reduce the production target.

2.4. Materials requirements planning

MRP combines the MPS records with the bill of materials (BOM) data and inventory
data to obtain the requirements of components and parts. Using the results of MPS as
the input, MRP makes recommendations on the release replenishment orders for ma-
terials. Based on the production capabilities and lead times which dictate the capacity
requirements planning (CRP), MRP releases, typically weekly, detailed material re-
plenishment and capacity plans for a planning horizon of a few months (Oluyisola,
Sgarbossa, and Strandhagen 2020). These plans are often updated, and the output of
MRP are the input for the operational level (Dolgui and Prodhon 2007).

3. Intelligent digital twin for the production planning and structure of
the state-of-the-art

In recent years, the growing requirement for customized products and the extension
of supply chains to all the globe led to various uncertainties in the supply chain, like
delays in deliveries and unpredictable demands. Therefore, the supply chain is charac-
terized by high complexity, high flexibility, mass customization, dynamic conditions,
and volatile markets (Bonney 2000). In Industry 4.0, the fast changes in the indus-
trial environment motivate the evolution and integration of supply chain management
(Bueno, Godinho Filho, and Frank 2020). Industry 4.0 leads to a fast digitalization of
the shop floors, and this provides new perspectives for production planning methods
and software. Figure 2 shows the key elements and their relationships. As manufactur-
ing digital twin integrates most digital advances fostered by Industry 4.0, we explain
below the concept of a DT for production planning, and this concept guides the rest
of this literature review.
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Figure 3. Caption: The conceptual model for the digital twin.

Figure 3. Alt Text: The conceptual model for the DT comprises information/service system, data interac-
tion/integration platform, physical system, and virtual system.

3.1. Definition and characteristic of the DT in the production planning

Shafto et al. (2010) published one of the first public definitions of a DT in 2010.
While the essence of digital twins is simulation models, DT is very different from the
traditional simulation model. The DT is multi-physics, multi-scale, data-driven, and
ultra-fidel. DT reflects the state of a corresponding twin in a timely manner based on
the historical data, real-time sensor data, and physical models (Glaessgen and Stargel
2012). With the development of Industry 4.0, the concept of DTs has been expanded.
Nowadays, the DT includes not only the simulation model but also the mathematical
and data models.

There are many frameworks for the DT and CPS, but they share the same core
elements shown in Figure 3. A classical digital twin requires 5 elements: (1) a physical
object, (2) a virtual model, (3) data, (4) data connections, (5) services provided to the
end-users. In addition, a digital twin usually provides the following characteristic:

• The data are collected from the physical object, and send to the model auto-
matically.

• The computer model stay in synchronisation with a physical object. That is, any
change in the physical object must be passed on to the virtual models.

• The model is able to pass instruction to the physical object.
• The model accounts for uncertainties. On the one hand, the model must account
for uncertainties in the environment of the physical object since it include some
parameters that can never be forecasted perfectly. On the other hand, any model
merely a rough approximation of the complex real world. The model should be
robust enough to provide valid decisions despite these approximations.

This definition is broad enough to encompass any physical object, and any type
of virtual model (simulation, mathematical models, data model, ...). This generality
explains the rising interest among researchers and industrial on the topic. As a broad
concept able to gather all technologies used in computer science for manufacturing,
and with the impulsion of Industry 4.0 revolution, the DT is becoming a core concept
of the Industry 4.0 revolution. This will likely lead to the design of DTs for production
planning (Luo, Thevenin, and Dolgui 2021). In fact, there is a growing literature on
all components of such a digital twin.
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Figure 4. Caption: The digital twin framework for the production planning.
Figure 4. Alt Text: The DT framework for the production planning details how advanced technologies in

Industry 4.0 are integrated, how they collaborate, and how they can help in intelligent production planning

3.2. Framework and key technologies of the DT in the production
planning

Figure 4 presents the concept and framwork of DT for production planning. The pro-
cess of implementing digital twins in real production systems requires the collaboration
of multiple technologies and tools. We cluster these key technologies into four cate-
gories, comprising intelligent perception, modeling and simulation, data management,
and actuation.

(1) Intelligent perception aims to collect accurate input from the real world,
which is the key for building a high-fidelity model. Intelligent perception mainly
involves measurement technology. In a manufacturing environment, the data are
collected from IoT devices, various software, that constitutes a cyber-physical
system (CPS). In a communication network, the CPS is a group of embedded
systems that communicate and interact with each other (Geisberger and Broy
2012). The CPS is the primary data and information source of the DT. The
CPS is referred to as the cyber-physical production system (CPPS) in the con-
text of production technologies (Weyrich et al. 2017). The information and data
collected from CPPS can be used to build DTs for production planning. Gener-
ally, the CPPS collects hardware, software, and real-time information (Biesinger
et al. 2019). Section 4 provides a state-of-the-art on the impact of IoT data in
the production planning, and it reviews the integration between various data
sources.

(2) Data management: The data of digital twins is massive, multi-time scale,
multi-dimensional, multi-source, and heterogeneous. Therefore, data manage-
ment is essential for the implementation of DTs. The domain model serves as
a link between the physical and virtual systems. This domain model combines
data from a variety of sources such as MES (manufacturing execution system),
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ERP, and IoT devices. It also gives a rich data structure for the user to inter-
pret. New paradigms emerge in the framework of Industry 4.0 for collecting and
storing huge volumes of data in real time and across productive and logistical ac-
tivities, enabling the development of the DT concept and associated techniques
(Agostino et al. 2020). Following the digital twin perspective, the digital model
must be as accurate as possible, and the progress in big data analytics (BDA)
helps to provide a good prediction of the planning parameters. Section 5 provides
a state-of-the-art on BDA methods in the production planning.

(3) Modeling and simulation: Mathematical and simulation models are the most
used quantitative approaches for decision-making in the production planning.
These models convert physical entities into virtual objects that can be analyzed
with computers. Mathematical models provide a systematic way of expression for
further analysis and optimization. The correctness and accuracy of these models
directly affect production planning. The simulation models help the user validate
a production plan by providing a precise execution of the plan at a detailed level
(with each machine, employee, transport between machines, etc.). The simulation
gives a clear understanding of the performance of a production plan since it can
compute various KPIs relevant to the user. The simulation is also a valuable tool
to enrich optimization models. Section 6 provide the state-of-the-art on data-
based simulation in the production planning, simulation-optimization approach,
and optimization under uncertainties.

(4) Actuation: An important aspect of the DT is the ability of the model to act on
the physical object. Digital twins that do not provide this feature are sometimes
called digital shadows. An automated actuation of some production planning
decisions (e.g., number of workers to hire) is not possible. Nevertheless, the
cloud manufacturing research trends provides a paradigm that allows manufac-
turers to share their production capacity in real time on the cloud. Besides, the
blockchain leads to smart contract that enable real-time acceptance and tracking
of production order. Section 4 provides a state-of-the-art on CMg and BC in the
production planning.

(5) Interconnection: The main purpose of interconnection is to obtain effective and
accurate data in the real physical world. The sharing of information and data
can include interaction between different information systems, virtual system
and physical system, and man-machine interface. Interconnection is an essential
element for production planning, because the production plan involves data and
information of the entire production system (supply chain). Moreover, only when
the system interaction is efficient, the production plan can be implemented in
real production.

In Appendix, Table A1 summarizes the key technologies and corresponding tools
(Qi et al. 2019) for each category with pointers to the literature for the interested
readers. Digital twins can support decision-making in every stage or at each level of
production planning systems. For aggregate planning, DTs can achieve multi-level data
sharing, traceable data flows, as well as the integration with demand forecast, inventory
control, MES, and ERP system (Yu et al. 2018). DTs provide capabilities in real-
time and dynamic production planning, with distributed and collaborative decision-
making through MES, MPS/ERP, and CPS integration (Rossit, Tohme, and Frutos
2019). The DT model and CPS assist MRP in the automatic forecast, optimization,
and re-planning (Lin, Wong, and Ge 2018), as well as expand MRP with real-time
calculations, early reporting, traceability, and visibility (Shao and Helu 2017).
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In the initial stage of the research about DTs, researchers mainly proposed digital
twin frameworks for the entire supply chain management issues. With the deepening
of research, researchers began to focus on more precise realisations dedicated to PPC
systems. However, as scheduling is more sensitive to real-time data, most works on
digital twins for PPC concern scheduling problems, and few studies discuss mid-term
and long-term planning. Furthermore, with the published digital twin frameworks,
there are few quantitative analyses and case studies. In Appendix, Table A2 reports
papers that propose DT frameworks, and provides the author’s viewpoint, core meth-
ods, and considered applications. Additionally, a series of remarkable studies that
have emerged recently is the digital twin-enabled Graduation Intelligent Manufactur-
ing System (GiMS) proposed by Guo et al. (2019). This series of studies not only
proposes a detailed implementable digital twin framework, but also investigates how
the planning and scheduling are executed under the framework (Lin et al. 2019; Guo
et al. 2020a,b,c; Li and Huang 2021). Their research is very timely, intriguing, and
worthy of further study.

4. Frontier technologies for the data collection and sharing in the
production planning

Data are the source and foundation of the production planning, and the essential
of any system in the digital twin framework. Therefore, we first introduce the data
sources commonly used in the production planning, and then discuss the current status
of application and research of frontier technologies for data collection and sharing in
the production planning one by one, in the order of IoT, cloud manufacturing, and
blockchain.

4.1. Relevant data sources for the production planning

The key of BDA technologies is massive data, which is used to gain autonomous com-
puter knowledge (Sharp, Ak, and Hedberg Jr 2018). When it comes to training a
machine learning (ML) model, the selection of the data source is crucial since the final
results depend largely on the quality of the data. We introduce five data sources that
are very important for intelligent production planning (Lu 2014; Tao et al. 2018b; Ca-
david et al. 2020), and we explain the importance of this data for production planning.

(1) Management data are the historical data collected from enterprise information
systems, including the ERP, MES, etc. Besides providing basic parameters for
production planning, the management data also include the historical produc-
tion plans and execution results of production plans. Analyzing these historical
production plans and execution results provides knowledge to improve future
plans and not repeat mistakes.

(2) Equipment data are collected from IoT devices. The equipment data helps
to estimate the resource capacity in the production planning. The production
resource includes machines, humans, space, and even containers.

(3) Consumer data are collected from e-commerce platforms or other social media
about consumers, who are the users of products. These data can be used to train
machine learning models, which can provide support for demand forecasts.

(4) User data are system feedback given by workers or experts, who are the user of
production planning tools. This type of users data is usually obtained through
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interviews or questionnaires. These data can be used to optimize system perfor-
mance.

(5) Product data originated from products or services either during the production
process or during their use by the final consumer. The production planning
mainly concerns on the production data during the production process, including
the BOM, process step, etc. This data help to estimate the production yield.

Management data are the most used data sources. Due to commercial reasons,
the data of the enterprise is often confidential. Because it is difficult to access data
coming from companies, researchers often use simulated data and public data to train
the machine learning model. However, the result is often different from the real life
situation.

IoT technologies motivate the BDA applications with equipment and product data
(Correa et al. 2020; Hajjaji et al. 2021). Nevertheless, accessing IoT data in the PPC
system remains a challenge. The use of DTs could tackle this challenge, by collecting
IoT data scattered in various systems, and automatically cleaning and integrating the
data. While various studies provided tools and methods to create the digital twin
(Tao et al. 2018a; Zheng, Yang, and Cheng 2019; Lu et al. 2020), this still represents a
research issue. Companies need to build general domain models to integrate interactive
platforms, as well as to realize the data connection between the physical and virtual
systems.

4.2. Internet of things

The IoT originated from the radio frequency identification devices (RFIDs) system pro-
posed by MIT Auto-ID Labs in 1999 (Ashton et al. 2009). The international telecom-
munications union (ITU) defined IoT as the intelligent connectivity for anything at
any time and anywhere (Atzori, Iera, and Morabito 2010). The internet of things (IoT)
is the critical component of the CMg, DT, and BDA (Hwang, Kim, and Rho 2016).

The core function of IoT is to acquire real-time data from the shop floor and its
environment. With the IoT technology, a product can be equipped with a uniquely
identifiable code. Through uniquely identifiable code, we can monitor and track this
product throughout its entire life cycle by sensors and wireless sensor networks (Fang
et al. 2016). The key technologies of IoT are RFID and wireless communication tech-
nologies. The RFID enables tracking and distinguishing every single product. The
wireless communication technologies embedded in intelligent devices enable real-time
access to data on the status of products. Finally, the IoT collects various data (e.g.,
the information of sound, light, heat, electricity, mechanics, chemistry, biology, and lo-
cation) by global position systems (GPS), infrared sensors, laser scanners, gas sensors,
and other devices (Tao et al. 2014a).

The IoT is exploited industrially at several different levels of production and logis-
tics systems, such as the inventory management, assembly processes, and after-sales
services (Fang et al. 2016). As shown in Figure 5, the IoT increases the accuracy
and flexibility of production planning by providing up to data from physical systems
(Bueno, Godinho Filho, and Frank 2020; Rauch, Dallasega, and Matt 2018). For in-
stance, Tao et al. (2017); Zuo, Tao, and Nee (2018) find that RFID reduces inventory
shrinkages due to damage and thieves. Typically, the data gathered by IoT devices
help production planner to know the demand of customers, the inventory levels of ma-
terials, the capacity of the workshop, and the status of suppliers. With the accurate
collection of data in real-time, IoT helps production planning become more automatic
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Figure 5. Caption: IoT for the production planning.

Figure 5. Alt Text: The IoT gather data from suppliers, customers, logistcs, workshops, and warehouses
by IoT devices, such as GPS, RFID, sensors. The data gathered by IoT devices, as the input of enterprise

information systems, can help the decision-making for production planning.

and intelligent. As a result, production planning can respond quickly to various events
such as machine breakdown, and urgent incoming customer orders, a late material
delivery.

In Industry 4.0, one important task of IoT is the integration of information systems,
such as the ERP systems and MES, to enable information exchange and cooperation
(Fang et al. 2016). Most IoT research focuses on the collection of real-time data and its
use in scheduling (Zhang et al. 2018). However, little research concerns the application
of IoT in the production planning (Wang et al. 2020; Zhong et al. 2016). In Appendix,
Table A3 summarizes the IoT literature about production planning. Thus various pro-
duction planning issues still need to be addressed. These issues include the integration
of information systems while minimizing their complexity, the development of meth-
ods to take advantage of IoT in data-driven and dynamic planning, the development
of tools for distributed and collaborative planning among different workshops.

4.3. Cloud manufacturing

CMg is a new paradigm that require real time actuation of production planning de-
cisions. Cloud manufacturing relies on IoT, cloud computing, virtualization, service-
oriented architectures, and advanced computing technologies (Wu et al. 2013a). CMg
aims to package as services the production resources and capabilities of all manufactur-
ers in the supply chain. The supply chain becomes a cloud of manufacturing services
that provide on-demand, self-service, and agile commercial manufacturing resources.
As a result, the production resources of an enterprise are shared (as manufacturing
services) not only to major downstream distributors of the supply chain but also to
provide customized manufacturing services for customers. Meanwhile, a manufactur-
ing enterprise can outsource its resources to other manufacturers, and it can use the
production resources of other enterprises for an efficient and low-cost production.

The cloud manufacturing creates a challenge in the production planning. On the
one hand, in the CMg environment, enterprises can schedule and integrate various re-
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sources within the enterprise to improve resource utilization and reduce costs. On the
other hand, the service-oriented CMg paradigm makes production patterns and appli-
cation scenarios more diversified and complex. Therefore, the difficulty of production
planning under the CMg environment will increase sharply. Although, decision-makers
can obtain more information about the whole supply chain to optimize production
plans under the cloud manufacturing paradigm. However, how to integrate production
resources in the supply chain, how to reduce production costs in all aspects, and how
to increase the speed corresponding to customer needs to achieve agile manufacturing
is still challenging for production planning and deserves scholars’ attention.

CMg application in the production planning includes the applications in the enter-
prise and among enterprises. Figure 6 illustrates the interconnection within an enter-
prise and the connection between enterprises.The application of CMg in the enterprise
promotes the integration of the information related to production, product, and other
business management information, as well as the integration of the IoT-based work-
shop and other enterprise information subsystems. The application of CMg among
enterprises can address the information integration, storage, retrieval, analysis, use,
data security, and other issues during these ubiquitous service management and appli-
cation process among different enterprises. With the support of CMg, the production
planning can obtain more valuable data from various sources to improve the practical-
ity of plans. Finally, cloud computing facilitates the storage and interaction of massive
data, and it can speed up the optimization of planning.

Many papers discuss the architecture and application of CMg from a macroscopic
point of view (Ning et al. 2011; Hasan and Starly 2020). However, few studies have
focused on PPC in CMg. Most research on PPC for cloud manufacturing focus on
scheduling (Erol and Sihn 2017; Yu et al. 2018; Arunarani, Manjula, and Sugumaran
2019; Liu et al. 2019b), and few works consider production planning. This is surprising,
because CMg requires careful management of production resources and capacities of
service providers, and the possible subcontracting through CMg must be included in
the planning tool of the manufacturers. Therefore, the production planing under the
CMg paradigm deserves in-depth research by scholars. In Appendix, Table A4 presents
the CMg literature about the production planning.

The application of CMg within a company started gradually (Yu et al. 2018; Wang
et al. 2019b). However, the application of CMg among enterprises is difficult (especially
in the entire supply chain) because of commercial confidentiality, data security, and
access to heterogeneous data sources. To solve this problem, blockchain (BC), an
emerging technology, has captured the interest of academics. We describe the definition
and application of the blockchain in detail in the next section.

4.4. Blockchain

Blockchain (BC) is an emerging technology that protects security and privacy through
a new type of safe and reliable peer-to-peer communication platform (Lakhani and Ian-
siti 2017). While the academic community does not provide a uniform and strict defi-
nition for blockchain (Tan et al. 2021), the following definition is commonly accepted.
The blockchain is a decentralized and collaborative database, where all members (or
nodes) of a network can equally shares, verifies and maintains stored data (Li, Barenji,
and Huang 2018). The BC has no centralized node, and thus no third parties (Zhu
et al. 2019). This approach enhances the trust between nodes. The BC provides a
stable and reliable way of data storage (Vatankhah Barenji et al. 2020), because the

12



Figure 6. Caption: CMg in the enterprise and among enterprises for the production planning.

Figure 6. Alt Text: This figure illustrates the interconnection within an enterprise and the connection
between enterprises in CMg environment. The objects of their services, as well as the data source, are different.
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data stored in BC can only be added, not deleted, or modified. Therefore, the BC per-
manently records all operations on data. This guarantees the traceability of history,
and the cost of doing evil becomes very high.

BC is also a trading platform that executes ”smart contracts” (Hofmann, Strewe,
and Bosia 2018). Smart contracts, also called chain codes (Tsai et al. 2017), are digital
agreements between nodes. Programs created in high-level programming languages
form these smart contracts, which are stored and copied in the form of a BC. Smart
contracts can be automatically executed once meeting specific conditions (Dolgui et al.
2020).

Although the current typical BC applications focus on the cryptocurrency. There
is growing attention to the applications of BC in manufacturing contexts, such as in
supply chain management, BDA, CPS, DT, IoT, CMg. In Appendix, Table A5 lists the
relevant literature about the BC applied in Industry 4.0. The current research is more
concerned with the architecture of the application, and there remain some limitations.
Nowadays, supply chains are global, but the BC has not formed a unified international
standard yet. Before extensive and large-scale application, a series of issues such as
transaction mechanism, credit mechanism, compatibility, and connectivity still need
to be resolved.

Blockchain makes it possible to have new service models for production planning. BC
enables smart contracts that can automate the order acceptance process, as shown in
Figure 7. Consumers submit their demands (product types, quantities, expected price,
and various personalized needs). Suppliers submit their available resources (product in-
ventory, production resources). If the customer demand matches the supplier resources,
a digital signature generates the smart contract. BC also enables the continuous mon-
itoring of the fulfilment of the smart contract. Suppliers can update idle resources in
real-time, and customers may respond dynamically. This process involves flexible and
reactive production plans, and this enhances the utilization efficiency of production
resources. Moreover, through the credit and reward and punishment mechanism, the
BC system can reward or punish suppliers or consumers based on the fulfilment of the
smart contract.

To effectively deal with smart contracts, manufacturers need production planning
software with an accurate description of the production capacity. In addition, the
production plan must account for uncertain demand, and to modify the plan when firm
orders arrive. The application research of BC in the manufacturing industry mainly
focuses on the macro-system level (Yu et al. 2020; Vu, Ghadge, and Bourlakis 2021).
Up to now, few researchers have considered the implications of BC in the production
planning (Rahmanzadeh, Pishvaee, and Rasouli 2020; Herrgoß et al. 2020).

4.5. Limitation and future direction

IoT and cloud manufacturing enable the digitization of the entire supply chain and its
environment. IoT can provide valuable data. CMg and blockchain can enhance collab-
orations between companies. While IoT, CMg, and blockchain can support production
planning by providing and sharing valuable data, studies on the application of IoT,
CMg, and blockchain in the production planning remain scarce. The major limitations
and future directions on these topics are summarized as follows:

(1) IoT collects a large amount of data, and it interconnects the virtual and real
systems. The resulting information systems are often large and complex, with
heavy memory load and slow calculation. Reducing the complexity of the result-
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Figure 7. Caption: Blockchain application in the production planning.

Figure 7. Alt Text: This figure describes how to use BC in the production planning. The BC in the production
planning comprises the production planning module, chain code, node, and data interaction module.

ing system is an important research direction.
(2) To get the full value of IoT data, more research should be conducted on event-

based and data-driven planning. The goals are to improve the representation of
the shop floor in the model thanks to data, to integrate the variability of data
in the models, and to react to events efficiently without creating nervousness.

(3) The integration of information from different systems remains a challenge be-
cause it requires reconciling data from heterogeneous sources. Other difficulties
include the use of different standards in information systems and data interac-
tion. Solutions to overcome this integration issue include service-oriented archi-
tectures (Niknejad et al. 2020) and blockchain (Korpela, Hallikas, and Dahlberg
2017) for the flexibility and security of data transmission, as well as ontologies
(Kumar et al. 2019) for the mapping of different data models. Nevertheless, fu-
ture work is required to ease the integration of the information collected from IoT
devices, software, and between information systems from different shop floors.
This requires the development of the standard for data format, protocols for
system interaction, and the data management procedure that ensures safety and
reliability. Future works also include the development of tools to automatically
clean the data, and to detect and fix incoherent information (e.g., the level of
inventory in the ERP and computed from RFID).

(4) Collaborative planning (between different firms) reduces the delivery lead times
uncertainty and leads to better production capacity usage. Nevertheless, the
contradiction between sharing information and protection of privacy and core
technology is a barrier to the adoption of collaborative planning. Blockchain
and cloud manufacturing are enablers to distributed and collaborative plan-
ning. Blockchain technology may be one of the potential solutions for creat-
ing a secure communication protocol for collaborative planning in the cloud
(Vatankhah Barenji et al. 2020; Li, Barenji, and Huang 2018).

(5) Research is required to foster the application of cloud computing in the produc-
tion planning and speed up the calculation. In particular, researchers must focus
on the development of parallel algorithms to solve large-scale lot-sizing problems.
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Figure 8. Caption: BDA methods for the production planning.
Figure 8. Alt Text: The data sources for BDA include simulation data and history data. With these data,

we can achieve the demand forecast and time estimation for production planning. The main processes of BDA

in the production planning comprise data cleaning, model training, model evaluation, and prediction. Through
these processes, we can obtain the distribution of uncertainties, which can be the input data of customized

mathematical models for production planning.

5. Big data analytics applied in the production planning

With the development of the industrial internet, a variety of sensors have been installed
in the plant to track the state of equipment and product quality (Sun et al. 2019).
These sensors along with the growing number of software systems in the factory collect
a massive amount of data from physical systems that support the decision-making for
production planning. The recent development in big data analytics/artificial intelli-
gence led to better consideration of uncertainties in the production planning (Bonney
2000). Based on the vast amount of data gathered by IoT, BDA/AI tools can forecast
the distribution of input parameters required for production planning, such as de-
mand, production yield, supply/product lead times, process duration, and production
capacity (Gonzalez-Vidal, Jimenez, and Gomez-Skarmeta 2019; Lolli et al. 2019). The
development of BDA/AI tools and the increasing amount of data leads to better ac-
curacy of the forecast. As a forecast will never be correct, these tools allow computing
the variability of the parameters to account for the uncertainty. As a result, production
planning models represent more precisely the production process on the workshop. Ac-
counting for uncertainty leads to plans that are more often implementable in practice.
In addition, some approaches incorporate the dynamic of the decision process, where
the plan can change over the time, and this leads to adaptable planning.

Even though manufacturing generates huge data sets, and despite the growing in-
terest in BDA/AI in the production planning, the exploitation of big data in the
production planning is still immature compared with other fields like IT, finance, and
e-commerce (Lamba and Singh 2017). Figure 8 shows how to use the BDA method in
the production planning. The application of big data analytics requires a combination
of understanding and knowledge about the domain and the right BDA algorithms.
Therefore, companies have collected massive data, but they cannot currently get the
best value of this data. This section analyzes research on big data analytics applied in
the production planning in the context of Industry 4.0.

The processes for implementing BDA/AI tools in the production planning include
data collection and cleaning, predictive models, model training, validation, and testing
(Cheng et al. 2018). We review below the literature on BDA/AI tools for demand
forecast, before surveying the works on time estimation, as shown in Figure 8.
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5.1. Demand forecast with BDA/AI tools for the production planning

For manufacturing organizations, demand forecasting is critical because it serves as
a foundation for production planning. Demand forecasting is challenging, however,
since consumer demands frequently shift due to a variety of factors, such as policy,
economic trends, market competition (Kück and Freitag 2021). On the one hand, in
the framework of the digital twin, companies can collect huge amounts of data for
demand forecasting, which brings new and unlimited opportunities for profitability.
On the other hand, the current state of application and research shows that demand
forecasting errors are persistent and their results are frustrating and costly. Demand
forecasting has long been stuck in a backwards-looking perspective. In fact, demand
forecasting based on only a few years of order information makes little meaning for
long-term production planning. The focus of demand forecasting should b to explain
the changing context and factors that influence each crucial turning point, but this is
difficult.

Compared with traditional methods, machine learning methods, such as artificial
neural networks (ANN) (Kourentzes 2013; Kourentzes, Barrow, and Crone 2014),
support-vector machines (SVM) (Lu 2014; Villegas, Pedregal, and Trapero 2018),
Bayesian networks (BNs), random forest, have shown promising results in current
studies, and have surpassed traditional methods in precision and performance. Al-
though these ML approaches have exploded in popularity in recent years for time
series forecasting in a variety of fields, including banking, power generation, and water
resources (Dudek 2020; Salinas et al. 2020). But these forecasting approaches are still
not widely used in the production planning, and the demand forecasting and produc-
tion planning are still mostly based on the planner’s expertise (Lorente-Leyva and
Alemany 2020). One of the main reasons behind this is that research in the area of big
data applied to prediction is not mature. Apart from the immaturity of demand fore-
casting models, how to generate meaningful demand forecasts for production planning
based on big data inputs is also a problem to be solved. Currently, demand forecasting
and production planning are often studied in isolation, but the coupling between them
is a key issue to be considered.

5.2. Time estimation with BDA/AI tools for the production planning

BDA-based time estimation is promising to adjust different time-related parameters
to current working conditions. The time estimation includes the prediction of lead
time, cycle time, production time, and even the yield (it is also related to the time).
In Appendix, Table A6 summarizes the literature on BDA-based methods to predict
time-related parameters in the production planning.

Only a few works consider lead time prediction in the research community (Ca-
david et al. 2020). Lingitz et al. (2018) , on the one hand, compare the performance
of several ML methods for predicting lead times. They, on the other hand, do not ex-
amine high variance processes and do not require process mining-based information.
Meidan et al. (2011) also evaluate several ML methods, however they only take into
account the waiting time. In a flow-shop setting, Mori and Mahalec (2015) focus on
product characteristics to anticipate lead times, but disregard the complexity of the
processes involved. Öztürk, Kayalıgil, and Özdemirel (2006) compare the accuracy of
predicted lead times, and employ only simulated data as the input for their models.
Alenezi, Moses, and Trafalis (2008) demonstrate that support vector machines out-
perform neural networks for order flow time predictions. However, the authors use
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data from computer simulation rather than real-world data from the work floor. Wang
et al. (2018) compute the probability distribution based on operating conditions, but
the authors concentrates mostly on the difficulties of working with binarized variables.
Schuh et al. (2019) provide a methodology as well as a research based on real-world
data to illustrate how ML algorithms may be used to anticipate the transition time,
which consists of post-process waiting time, transport time, and pre-process waiting
time. Despite the fact that their case study is highly process-oriented, data mining is
not employed to improve features.

5.3. Limitation and future direction

The majority of currently available research concentrates on demand forecasts, and
they just seek to forecast a single parameter. Few publications consider ML approaches
to predict the joint distribution of multiple parameters, whereas production planning
parameters may be related (e.g., the demand and lead time). Furthermore, the volume
of data available and its use vary widely from one manufacturer to the other. ML
approaches available for predictive analysis are various (Kusiak 2017, 2019). Hence,
trying to develop a general big data cleaning and prediction method for MRP systems
may be a new research trend.

There are many discussions about the possible advantages of BDA technologies
in the supply chain. In recent years, enterprises and researchers pay more and more
attention to this research field. However, research focusing on the application of BDA
in the production planning is very scarce. We identify the following avenues for future
works on BDA in the production planning:

(1) The research of BDA in manufacturing systems is still at the preliminary stage.
Some researchers study how to use BDA in supply chains. But they only test
different BDA methods, do not provide a breakthrough in forecasting models.
More research is required to provide the best way to apply generic machine
learning tools in the production planning context.

(2) In terms of applications, companies have collected massive amounts of data, but
have not sufficiently exploited them to support decision-making in the production
planning. Some studies are required to validate the use of BDA in real use
cases, by integrating BDA methods in the production planning of enterprises. In
addition, the actual application of BDA would require focusing research on data
cleaning, domain model, and predictive models for ERP systems.

(3) Research on the planning optimisation models based on BDA. Few papers further
consider the impact of the forecast on the final production plans. There exist no
comparison between BDA-based production planning and traditional production
planning methods.

6. Simulation, optimization for the production planning in the Industry
4.0 era

Supported by IoT technologies, the DT provides a real-time picture of the factory.
Based on historical data, BDA can predict the future value of planning parameters
and estimate their variability. This section discusses prescriptive analytics methods,
that combine machine learning, simulation, and optimization to prescribes the best
course of actions to optimize the future plan. This section successively discusses data-
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Figure 9. Caption: The processes of data-driven automatic modeling and simulation method.

Figure 9. Alt Text: This figure describes the workflow of the data-driven automatic modeling and simulation

method. First, collect and standardise data from information systems. Second, build the structured data model.
Third, build the general simulation model library. Fourth, generate the simulation layout model. Lastly, obtain

the simulation operation model, and run it.

driven simulation, cloud simulation, simulation-optimization, and optimization under
uncertainty approaches for production planning.

6.1. Data-driven automatic modeling and simulation technology

Manufacturing systems are very different from a company to the next, and it is not
possible to create a generic simulation model for manufacturing. The construction of
simulation models for large-scale production systems requires knowledge from business
experts, and it is time-consuming. To shorten the time it takes to develop simula-
tion models, researchers have proposed a data-driven method to automatically build
simulation models (Liu et al. 2019a; Zhang, Zhang, and Yan 2019), which is named
data-driven automatic modeling and simulation (DDAMS). These tools can reduce
the total modeling time from several months to several weeks (Wang et al. 2021; Wy
et al. 2011) and they reduce errors in the modeling process.

Figure 9 shows how the data-driven modeling and simulation technology works.
First, we extract original information from the data centre of information systems
(MES, ERP, APS (Advanced Planning & Scheduling System), etc.), and standardise
these data. Second, we further classify and associate the data to build a structured data
model. Third, based on original simulation objects, we personalise the internal logic
and attributes of objects to build the general simulation model library, which meets
the needs of the particular industry. Fourth, with the help of resource generation
engine, we can use the objects in the general model library to generate the model
layout quickly and automatically based on the layout data. Lastly, driven by real-time
data, we can obtain a specific simulation operation model, and run it to get simulation
results.

In addition, in the simulation operation phase, when production demands or pro-
duction layout change, the traditional offline simulation will take several hours to
update the data and adjust the model manually. The data-driven modeling and sim-
ulation method can update the data and adjust the model automatically and quickly.
Therefore, with the data-driven automatic modeling and simulation technology, the
production planning can response to the uncertain parameters quickly. The data-driven
modeling and simulation technology is also one of the important technologies in the
DT (Zhang et al. 2019a; Wang et al. 2021; Luo et al. 2021). At the same time, the
implementation of this technology is very dependent on the deployment of IoT and
CMg in the system. This is because there are high requirements for collecting, storing
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and sharing data from the information systems when performing automated modeling
and simulation. Within the scope of our knowledge, there is little literature on the
use of data-driven automatic modeling and simulation technology in the production
planning. When we consider the data-driven automatic modeling and simulation for
production planning, multi-level and multi-fidelity modeling is a research trend (Zhang
et al. 2022). Because the scale of the model affects the efficiency of the model and the
accuracy of the analysis, it is necessary to model and simulate the system at different
levels and fidelity for different planning periods.

6.2. Cloud simulation technology

The modeling and simulation cycle of the manufacturing system is long and requires
considerable expertise, time, and effort. Moreover, the real production system requires
a scalable simulation solution that can be supported by cloud computing systems when
they are expanded. Therefore, cloud-based simulation services have been proposed re-
cently. Cloud simulation (CS), i.e. cloud-based factory simulation, uses cloud resources
and services to simulate factories. In the framework of the digital twin, cloud simu-
lation is no longer isolated from the actual production system. The cloud simulation
platform is connected to the production physical system and can update the cloud
simulation model in real-time with real-time data collected by IoT devices, which has
higher requirements for platform security, transmission speed, and integration than
merely storing the simulation model in the cloud.

At present, cloud simulation construction across various manufacturing fields has
been studied to some extent (Zhou et al. 2019). When companies apply cloud simula-
tion to the real system, they still face many challenges. Because the cloud simulation
model is not general and reconfigurable, building a large-scale simulation model in
the cloud is very difficult and time-consuming. The existing cloud simulation mod-
els cannot reconfigure and update automatically according to the changes in systems
(Yu, Cao, and Schniederjans 2017). In some proposed cloud systems, the client cannot
upload other models for simulation, and the user interface operability is poor (Chi,
Pepper, and Spedding 2004). When conducting factory visualization and large-scale
simulation in the cloud, the largest problem is the running speed of systems (Lindskog
et al. 2012). For cloud simulation technology, the technology, which is used in the dis-
tributed simulation to transfer simulation components and add nodes to distributed
architecture during running, can not be directly applied to cloud-based simulations
(D’Angelo and Marzolla 2014). The differences of existing factory simulation systems
in input format, processing logic, and data structure also hinder the smooth running
of the cloud simulation system during operation (Chen and Lin 2017). Besides, the
construction of the digital twin also needs to improve the cloud simulation technology
(Coronado et al. 2018). For cloud simulation in the production planning, our focus
should be on the coupling between different cloud simulation models. For example,
the coupling between long-term and short-term planning cloud simulation models,
the integration of planning cloud simulation models between different workshops in
the same company, and the interaction between planning cloud simulation models of
different customers and suppliers.
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6.3. Optimization model for the production planning

Optimization models for production planning problems involve replenishment plan-
ning and lot-sizing problems. The target of the lot-sizing problem is to obtain pro-
duction and procurement quantities and their timing (Yano and Lee 1995). Since the
beginning of the twentieth century, researchers have solved some expansions of the
lot-sizing problem, and have proposed numerous modeling approaches and algorithms
(Buschkühl et al. 2010). With the deepening of research, the focus of research on the
lot-sizing problem gradually changed (Louly and Dolgui 2013; Hnaien, Dolgui, and Wu
2016; Schemeleva, Delorme, and Dolgui 2018; Tavaghof-Gigloo and Minner 2020) from
single-product single-period single-machine systems to complex multi-product multi-
period multi-machine systems (Cunha et al. 2018). One of the most generic versions
for the lot-sizing problem in the production planning is the multi-echelon multi-item
capacitated lot-sizing problem (MMCLP). This problem’s target is to determine when
to produce as well as the size of production lots to minimize the expected total cost,
based on the demand, the BOM, the production capacity, and the lead time. The total
cost comprises inventory holding costs, backlog costs, setup costs, production costs,
and extra capacity costs. For the MMCLP, the mathematical optimization is the best
instrument at present. In fact, the operation research community has put much effort
into lot-sizing models, and has proposed several reformulations, cuts, and solution al-
gorithms such as Lagrangian relaxation and cutting planes. Tempelmeier and Helber
(1994); Tempelmeier (2006); Helber (1995); Helber and Sahling (2010) have done a
series of studies about the decomposition approaches and Lagrangian relaxation based
heuristic algorithms for the multi-level capacitated lot-sizing problem. These solution
approaches offer opportunities for the improvement of large problem instances. Table
A8 in Appendix gives the literature review about stochastic and distributionaly robust
optimization for MMCLP.

Furthermore, the new paradigm of an intelligent digital twin for production planning
changes the optimization tools. Although the main mathematical model will remain
mostly the same, its parameters can be better anticipated through BDA and ML.
Another main change comes from constraint learning, which can make the model
more accurate.

6.4. Simulation-optimization approaches

Simulation methods mainly include discrete event simulation (DES), agent-based sim-
ulation (ABS), and system dynamic simulation (SDS). These methods are commonly
used for facility resource planning, capacity planning, and job planning. Simulation
can provide a detailed representation of the production process, and can simulate
the execution of a policy. Most simulation-optimization approaches use optimization
methods (e.g., local search, gradient descent, genetic algorithms, . . . ) to optimize the
input parameter of the simulation. In this context, the simulation is embedded in the
optimization approach to evaluate the costs associated with the input parameters.
For instance, Lim, Alpan, and Penz (2017) simulate the use of a dynamic inventory
control policy under various sources of uncertainties, and optimize the parameters of
the policy with a local search. Similarly, Liu et al. (2011) use a genetic algorithm
that evaluates the expected cost of a production plan through a simulation. A major
drawback of such approaches is the time-consuming solution evaluation by simulation,
especially when multiple replicates are required to approximate the expected cost in
an uncertain environment, or when the simulation is very detailed. An approach to
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circumvent this issue is to build surrogate models (e.g., Osorio and Bierlaire 2013) to
approximate the expected cost evaluated with the simulation. These surrogate models
are learned with machine learning from past simulation, and they are used to reduce
the number of solutions evaluated through simulation.

The state-of-the-art optimization approaches for lot-sizing models commonly en-
countered in the production planning rely on mathematical models solved with com-
mercial solvers. This approach was also used in combination with simulation. In a
simple framework, the simulation is only used to complete the decisions made by the
analytical optimization model. For instance, Lim et al. (2006) use an optimization
approach to set the capacity in the factory and a simulation model to compute the
production plan. A more advanced setting is the recursive optimization-simulation ap-
proach, where the mathematical model is improved iteratively with the result of the
simulation. For instance, Jung et al. (2004) solves a deterministic lot-sizing problem
and iteratively adjusts the safety stock after evaluation in simulation that accounts for
uncertain demand. This iterative approach was also recently applied for planning in a
collaborative assembly line (Vieira et al. 2021), and for planning in a wafer fabrication
production plant (Kim and Lee 2016).

For more information on simulation-optimization approaches, the interested reader
is referred to Figueira and Almada-Lobo (2014). In the context of Industry 4.0, there is
a new trend in the research and application of simulation-optimization methods. The
real-time data collected by IoT devices can help simulation models simulate production
systems more accurately. This means that simulation-optimization methods can solve
more complex and large-scale problems. Then this creates a new challenge for the
speed of finding the optimal solution for simulation-optimization methods. How to
use algorithms to enhance the speed of finding the optimal solution is a problem to
be solved. Furthermore, the generality and reusability of the algorithm development
module coupled with the simulation model is also a concern. Overall, there is growing
attention toward the simulation-optimization approaches, but their applications in
the production planning remain scarce. We believe that such approaches must be
investigated, since a detailed simulation complement the optimization approaches,
and ensure that the computed production plan is implementable on the shop floor.
Stochastic optimization can be seen as an integration of simulation and optimization
since it directly incorporates scenarios to describe possible realizations of uncertain
parameters in the optimization model.

6.5. Uncertainty

While the first studies on lot-sizing considered that all parameters are known, in prac-
tice, none of the planning parameters can be forecasted perfectly. Uncertainty may be
defined as the difference between the amount of information required to perform a task
and the amount of information already possessed (Galbraith 1973). Over the years,
many researchers tried to formalize and model uncertainties in production systems
(Sethi et al. 2002; Yano and Lee 1995). The production planning literature provides
various approaches and models that consider a variety of uncertainties. The main four
uncertain parameters in the production planning are demand, lead time, capacity, and
yield.

(1) Demand uncertainty is critical for production planning, particularly for man-
ufacturers with long production lead times (Aouam et al. 2018). Demand un-
certainty has various forms, such as the order size and due date. For example,
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customers submit a demand signal (a prediction of what their orders will be)
long in advance of the due date in the semiconductor production system. They
progressively change their orders as time passes until a firm order is secured.
However, customers still want orders to be fulfilled on schedule, regardless of the
extent of changes between the demand signal and firm order (Higle and Kempf
2010). In the context of digital manufacturing, manufacturers can expand the
number of finished products, which leads to production upgrades of mass cus-
tomization and mass individualization. Nevertheless, a new problem arises, that
is, it becomes more difficult to forecast the demand for each product. On the one
hand, the product has a shorter life cycle, and the demand varies faster over its
life cycle. On the other hand, thanks to the amount of data collected, a better
forecast is possible, which diminished the demand uncertainty.

(2) Lead time refers to the number of periods between the placement of an order
and its arrival. in the production planning, we may distinguish between delivery
lead time and production lead time. The first refers to the time required by sup-
pliers to deliver components, whereas the second refers to the time between the
release of an order to the shop floor and its shipping date. Delivery lead time
uncertainty is common in practice and it is due to issues at the supplier produc-
tion level or transport (Hnaien, Dolgui, and Wu 2016). The reason production
lead times are uncertain involves several factors, such as inaccurate capacity
constraints modeling when building the production plans, machine breakdowns,
stochastic variations on the operation processing time (Aghezzaf, Sitompul, and
Najid 2010). Some studies suggest modeling uncertain lead time with discrete
support probability distribution built based on statistical data (Ben-Ammar and
Dolgui 2018). In the context of mass manufacturing, more finished products mean
more components are needed in the production process. This leads to an increase
in the number of manufacturers and suppliers throughout the supply chain, re-
sulting in a more complex overall supply chain. It also leads to an increased risk
of late deliveries. With the DT, the lead time can be effectively shortened and
predicted through real-time control and data traceability, while the interaction of
data between upstream and downstream of the supply chain can also effectively
reduce the risk of delivery delays.

(3) Production capacity uncertainty refers to issues to ensure the shop floor can
satisfy the required production load. There may be uncertainty about the avail-
able resource capacity due to machine breakdown or employee absenteeism, and
uncertainty in the capacity consumption for an operation due to variable process
duration, or product quality if the shop floor reworks or redoes bad quality parts.
Another major source of problems is that the optimization models for planning
only approximates the capacity roughly to produce a feasible plan. Note that the
lead time uncertainty is often related to the capacity uncertainty. The capacity
uncertainty is also related with workload, i.e. the demand from other clients or
customers at the same time. In practice, even when a good scheduling tool is
used, the resources may have idle times. In addition, in flexible production plants,
it is difficult to estimate which resource will perform each task before doing the
production schedule. While capacity uncertainty leads to infeasible plans, very
few works consider planning under capacity uncertainty, when compared with
the cases of demand and lead time uncertainty.

In Industry 4.0 manufacturing systems, we can monitor machine breakdowns
in time so that repairs can be made or production schedules can be adjusted
promptly. Through DT-based scheduling and control, the uncertainty of produc-
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tion capacity can be greatly reduced. Furthermore, the information collected on
the status of the machine can help to make maintenance forecasts and decrease
the uncertainty of production capacity by scheduling more reasonable machine
maintenance, which can also improve machine utilization.

(4) Yield uncertainty occurs when bad quality parts cannot be re-worked or re-
placed by a new one. This situation occurs for operation with long processing
time such as aluminum casting, or in multi-echelon systems, where producing
an additional part is impossible when the components are not available. Yield
uncertainty is also common in the disassembly of end-of-life items since the qual-
ity of components is only observed once the item is disassembled (Ben-Ammar,
Bettayeb, and Dolgui 2020). Because the product life cycle becomes shorter, the
production process lacks regularity and product quality is difficult to guarantee.
The good news is that we can achieve quality control automatically through
machine learning.

The classical approach computes the lot sizes under the assumption that all param-
eters are deterministic, whereas safety stock, safety lead times, and safety capacities
are computed separately to hedge against the uncertainty. With the improvement
of computation power and new development in optimization approaches, it is nowa-
days possible to integrate the uncertainty directly in the optimization problem with
stochastic optimization (SO) approaches (Spall 2005). That is, random variables ap-
pear in the formulation of the optimization problem itself, which involves random
objective functions or random constraints. Consequently, the research recently moved
from the initial deterministic to non-deterministic lot-sizing model (Aloulou, Dolgui,
and Kovalyov 2014; Tavaghof-Gigloo and Minner 2020). The majority of the research
considers restrictive assumptions (single level, single period, and single item) to de-
velop analytical models (Ertogral 2011; Sana 2013; Aloulou, Dolgui, and Kovalyov
2014). In particular, most studies don’t take into account the capacity constraints of
manufacturing systems, when calculating lot sizes. This results in impractical produc-
tion plans, long and uncertain lead times, and massive work-in-process inventories. In
recent years, more scholars have studied more generic approaches able to cope with
the complex multi-level/multi-periods/multi-item lot-sizing problems (Li, Tao, and
Wang 2012; Thevenin, Adulyasak, and Cordeau 2021; Meistering and Stadtler 2019).
Many studies consider a single uncertainty parameter (Yano and Lee 1995; Zikopoulos
2017; Kroer et al. 2018; Afsar et al. 2020), but more scholars have paid attention to
the consideration of multiple uncertain parameters in recent years. For instance, de-
mand and lead time are sometimes considered together (Tang et al. 2019; Köchel and
Thiem 2011; Song and Dinwoodie 2008). Considering multi uncertain parameters in
the stochastic optimization model to describe the production system more accurately
is a future research trend, and it will also be a challenge. Finally, a large variety of
methods were proposed to solve lot-sizing problems, such as fuzzy logic, scenario-based
stochastic optimization, robust optimization, and game theory (Su 2017; Cunha et al.
2018; Carvalho et al. 2018; Simon Thevenin 2021; Zarei, Rasti-Barzoki, and Hejazi
2021).

6.6. Limitation and future direction

(1) We find it difficult to solve the complicated lot-sizing problem under uncertainty,
particularly in the dynamic decision framework. Because once new information
is coming, production settings will be updated. Existing research only considers
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small-scale cases in a basic setting (Thevenin, Adulyasak, and Cordeau 2020).
When considering large-scale instances with multi-echelon BOM in a long plan-
ning horizon, we have to provide more effective heuristic algorithms. For instance,
Thevenin, Adulyasak, and Cordeau (2021) demonstrate that the two-stage ap-
proximation is a useful heuristic algorithm for solving the lot-sizing problem
with uncertain demand in the static-dynamic decision framework. More research
is needed, however, to tackle a large-scale problem in a long time horizon, and one
of the future directions is the fix-and-optimize method. Furthermore, we must
build approaches to handle the problem in the dynamic decision framework.

(2) While most approaches assume the probability is known, this will never be true
in practice, and the distribution can only be estimated. Distributionally robust
optimization is an interesting class of approaches that optimize for the expected
cost of the worst case distribution (Zhang, Shen, and Mathieu 2016), and its
application to production planning must be further explored.

(3) The development of frontier technologies provides a better platform for data
collection and sharing for stochastic optimization of production planning, and
also puts forward new requirements for the solution speed and quality. More
research is required to link optimization approaches with frontier technologies
from Industry 4.0, and to validate these work in a realistic environment.

7. Conclusion and further research perspectives

In this study, we give a literature review and assessment on production planning in
Industry 4.0. The paper focuses on how to apply the Internet of Things, cloud man-
ufacturing, big data analytics, digital twins, simulation-optimization, and stochastic
optimization in the production planning.

We will perform and apply these cutting-edge technologies in a real company for
future research purposes, and will present a complete framework that covers not just
production planning but also scheduling and connectivity protocols in detail. Fur-
thermore, improving the heuristic algorithm and machine learning approach is also
necessary for the MMCLP. Finally, another intriguing research work is to find ways
to improve efficiency while minimizing the complexity of the integration system when
it is integrated with other systems under the CPS environment in Industry 4.0.
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A Comparison of Machine Learning and Classical Demand Forecasting Methods: A Case
Study of Ecuadorian Textile Industry, edited by H. Diego and Israel D. Herrera-Granda,
International Conference on Machine Learning, Optimization, and Data Science, 131–142.

Louly, Mohamed-Aly, and Alexandre Dolgui. 2013. “Optimal MRP parameters for a single item
inventory with random replenishment lead time, POQ policy and service level constraint.”
International Journal of Production Economics 143 (1): 35–40.

Lu, Chi-Jie. 2014. “Sales forecasting of computer products based on variable selection scheme
and support vector regression.” Neurocomputing 128: 491–499.

Lu, Yuqian, Chao Liu, I. Kevin, Kai Wang, Huiyue Huang, and Xun Xu. 2020. “Digital twin-
driven smart manufacturing: Connotation, reference model, applications and research is-
sues.” Robotics and Computer-Integrated Manufacturing 61: 101837.

Luo, Dan, Zailin Guan, Cong He, Yeming Gong, and Lei Yue. 2021. “Data-driven cloud sim-
ulation architecture for automated flexible production lines: Application in real smart fac-
tories.” International Journal of Production Research 1–23.

Luo, Dan, Simon Thevenin, and Alexandre Dolgui. 2021. “A digital twin-driven methodology
for material resource planning under uncertainties.” In IFIP International Conference on
Advances in Production Management Systems, 321–329. Springer.

Meidan, Yair, Boaz Lerner, Gad Rabinowitz, and Michael Hassoun. 2011. “Cycle-time key
factor identification and prediction in semiconductor manufacturing using machine learning
and data mining.” IEEE Transactions on Semiconductor Manufacturing 24 (2): 237–248.

Meistering, Malte, and Hartmut Stadtler. 2019. “Stabilized-cycle strategy for a multi-item, ca-
pacitated, hierarchical production planning problem in rolling schedules.” Business Research
1–36.

Moeuf, Alexandre, Robert Pellerin, Samir Lamouri, Simon Tamayo-Giraldo, and Rodolphe
Barbaray. 2018. “The industrial management of SMEs in the era of Industry 4.0.” Interna-
tional Journal of Production Research 56 (3): 1118–1136.

31



Mori, Junichi, and Vladimir Mahalec. 2015. “Planning and scheduling of steel plates produc-
tion. Part I: Estimation of production times via hybrid Bayesian networks for large domain
of discrete variables.” Computers & Chemical Engineering 79: 113–134.

Nagato, Tsuyoshi, Hiroki Shibuya, Hiroaki Okamoto, and Tetsuo Koezuka. 2017. “Machine
learning technology applied to production lines: Image recognition system.” Fujitsu Scien-
tific & Technical Journal 53 (4): 52–58.

Niknejad, Naghmeh, Waidah Ismail, Imran Ghani, Behzad Nazari, Mahadi Bahari, et al. 2020.
“Understanding service-oriented architecture (SOA): A systematic literature review and
directions for further investigation.” Information Systems 91: 101491.

Ning, Fanghua, Weizong Zhou, Fengying Zhang, Qian Yin, and Xiajing Ni. 2011. “The architec-
ture of cloud manufacturing and its key technologies research.” In 2011 IEEE International
Conference on Cloud Computing and Intelligence Systems, 259–263. IEEE.

Noroozi, Sayeh, and Joakim Wikner. 2017. “Sales and operations planning in the process
industry: A literature review.” International Journal of Production Economics 188: 139–
155.

Oluyisola, Olumide Emmanuel, Fabio Sgarbossa, and Jan Ola Strandhagen. 2020. “Smart
production planning and control: Concept, use-cases and sustainability implications.” Sus-
tainability 12: 3791.

Osorio, Carolina, and Michel Bierlaire. 2013. “A simulation-based optimization framework for
urban transportation problems.” Operations Research 61 (6): 1333–1345.
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Table A1. Literature review about key techniques and tools for the implementation of a digital twin-driven

production planning system.

Category Key technique Content Examples of tools Related papers

Intelligent per-
ception

Measurement Laser measurement,
image recogni-
tion measurement,
conversion mea-
surement, and mi-
cro/nano precision
measurement

Micro-sensor, RFID,
light detection and
ranging system,
depth camera, global
positioning system

Donges and Noll (2016);
Nagato et al. (2017);
Jacob and Thiemann
(2017); Dachyar, Za-
gloel, and Saragih
(2019); Tavana, Ha-
jipour, and Oveisi
(2020)

Data manage-
ment

Data collec-
tion, transmis-
sion, storage,
processing,
fusion and
visualization

Wire and wire-
less transmis-
sions, database,
interpretable-
operable traceable
heterogeneous data
fusion, data cleaning,
data compression,
data smoothing,
data reduction, data
clustering storage

Aspera, HBase,
Spark, Echarts,
Spyder

Lei (2018); Cupek et al.
(2019); Ge et al. (2020);
Liu et al. (2020); Xiao
et al. (2021)

Modeling and
simulation

Modeling of
mathematical
and simulation
model

Mixed integer
programming, Data-
driven modeling
and simulation,
virtual reality, and
augmented reality
technology

Cplex, Pulp,
Flexsim, Solid-
Works,Anylogic

Shapiro (1993); Wu
et al. (2013b); Pochet
and Wolsey (2006);
Salah et al. (2019); Luo
et al. (2021)

Actuation Cloud Man-
ufacturing,
blockchain

Cloud computing,
smart contracts

Fernández-Caramés
and Fraga-Lamas
(2018); Wang et al.
(2019b); Hasan
and Starly (2020);
Fosso Wamba et al.
(2020); Rožman,
Diaci, and Corn
(2021)

Interconnection Virtual-real in-
teraction

Heterogeneous re-
sources real-time
perception and
access technology,
multi-source/modal
data fusion and
encapsulation tech-
nology, multi-source
data communication
and distribution
technology

MindSphere of
Siemens, Jasper
Control Center
of Cisco Jasper,
Thingworx of PTC

Ray (2016); Berg and
Vance (2017); Heidari
(2019); Wang et al.
(2019a); Wang and Luo
(2021)
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Table A2. Literature review about DT framworks.

Paper Application Viewpoint Core meth-
ods/focus

Case study

Tao et al.
(2018a,
2019)

Product
design

Product BDA and CPS The power trans-
former and bicycle,
no data

Ivanov
et al.
(2019);
Ivanov
and Dolgui
(2020)

Digital supply
chain twins

Supply chain Additive Man-
ufacturing, BC,
and BDA

No

Qi et al.
(2019)

Digital supply
chain twins

Supply chain Five-dimension
model, enabling
technologies,
enabling tools

No

Tao et al.
(2018b)

Smart manu-
facturing

Manufacturing
system

Lifecycle of man-
ufacturing data,
framework

Silicon wafer pro-
duction line, fig-
ures of implemen-
tation interface

Lu et al.
(2020)

Smart manu-
facturing

Manufacturing
system

Review, conno-
tation, reference
model, appli-
cations, and
research issues

No

Rossit,
Tohme,
and Frutos
(2019)

Smart Manu-
facturing

PPC Review in CPS No

Agostino
et al. (2020)

Smart job
shop

PPC CPS Scheduling in a job
shop of a Brazilian
supplier for the au-
tomotive industry

Zhang,
Zhang, and
Yan (2019)

Smart shop-
floor

Workshop CPS Scheduling of the
blisk machining,
data

Ding et al.
(2019)

Smart shop-
floor

Workshop CPS, operations
control

Interface of oper-
ations control, no
data

Guo et al.
(2020c)

Fixed-
position
assembly
islands

Graduation
Intelligent
Manufacturing
System

The decision
making mech-
anism with by
IoT,cloud-based
services and in-
dustrial wearable
technologies

Laser equipment
manufacturer

Li and
Huang
(2021)

Flexible as-
sembly lines

GiMS Production-
intralogistics
processes

Air conditioner
manufacturer
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Table A3. IoT literature about production planning.

Paper Focus The degree of attention
to the production plan-
ing

Tao et al. (2014a) Cloud manufacturing service system Mentioned
Zhong et al. (2016) Shop floor logistics Mentioned
Fang et al. (2016) Production system (the product life cy-

cle includes procurement, production and
product recovery, and acquisition)

Mentioned

Tao et al. (2017) Inventory control policy Focus on local issues
Wang et al. (2018) Production planning and control One of several concerns
Zuo, Tao, and Nee
(2018)

Capacity consumption evaluation and
analysis

Focus on local issues

Wang et al. (2020) Shop floor material management Focus on local issues
Bueno, God-
inho Filho, and
Frank (2020)

Smart production planning and control One of several concerns

Table A4. CMg literature about the production planning.

Paper Focus The degree of atten-
tion to the produc-
tion planing

Ning et al. (2011) Architecture and key technologies Mentioned
Wu et al. (2013a) Strategic vision Mentioned
Tao et al. (2014b) Manufacturing service system Mentioned
Erol and Sihn (2017) Intelligent production planning and control One of several con-

cerns
Ren et al. (2017) Key characteristics and applications Mentioned
Yu et al. (2018) Multi-level aggregate service planning Focus on
Henzel and
Herzwurm (2018)

Literiture review Mentioned

Wang et al. (2019b) Additive manufacturing Focus on
Li et al. (2019) Multiobjective optimization Focus on
Suginouchi and
Mizuyama (2021)

Production planning and revenue allocation One of two concerns
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Table A5. Blockchain literature about Industy 4.0.

Paper Focus The degree of attention
to the production plan-
ing

Fosso Wamba et al. (2020);
Leng et al. (2020); Li et al.
(2021); Vu, Ghadge, and
Bourlakis (2021)

Literiture review about the sup-
ply chain/manufacturing system

Mentioned

Herrgoß et al. (2020) PPC in the semiconductor indus-
try

One of several concerns

Rahmanzadeh, Pishvaee, and
Rasouli (2020)

Integrated innovative product
design and supply chain tactical
planning

Mentioned

Christidis and Devetsikiotis
(2016)

Smart contracts for IoT Not mentioned

Zhang et al. (2019c,b); Pal
et al. (2020)

IoT in in supply chain or smart
manufacturing

Not mentioned

Kaynak, Kaynak, and Uygun
(2019)

CMg architecture Related

Hasan and Starly (2020) Contemporary CMg-as-a-Service
platforms including smart con-
tract

Related

Kumar et al. (2020); Tan et al.
(2021)

Smart contract for CMg Related

Shahbazi and Byun (2021a) Integration framework (BC, IoT
and ML) for smart manufactur-
ing

Weak related

Zhang et al. (2021) Service power calculation of
high-performance blockchain
consensus for CMg in smart
manufacturing

Not mentioned

Yu et al. (2020); Song and
Moon (2019)

Framework for CPS Mentioned

Vatankhah Barenji et al.
(2020)

Ubiquitous manufacturing archi-
tecture for CPS

Not mentioned

Tao et al. (2020) Smart manufacturing service col-
laboration and management in
DT

Related

Deepa et al. (2020) Approaches, opportunities, and
future directions for BDA

Not mentioned

Shahbazi and Byun (2021b) Smart Manufacturing Real-Time
Analysis using ML method

Not mentioned
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Table A6. Big data analytics based time estimation.

Paper Application Parameter BDA-method If
con-
sider
plan-
ning
model?

If com-
pare
with tra-
ditional
method?

Garre,
Ruiz, and
Hontoria
(2020)

Food indus-
tries

The pro-
portion of
produc-
tion losses
(Yield)

Linear model with step-
wise selection, regression
tree, bagged tree, random
forest, gradient boosting,
ridge regression, lasso regres-
sion, elastic net, and spline
regression

No No

Meidan
et al.
(2011)

Semiconductor
manufac-
turing

Cycle time Selective naive Bayesian clas-
sifier (SNBC)

No No

Wang et al.
(2018)

Semiconductor
wafer fab-
rication
systems
(SWFS)

Cycle time Density peak based radial
basis function network (DP-
RBFN)

No No

Mori and
Mahalec
(2015)

Eyeglasses
(a flow-
shop man-
ufacturing
environ-
ment)

Lead time Hybrid Bayesian network No No

Gyulai
et al.
(2018)

Steel pro-
duction

Production
time

Linear regression, regression
tree, random forests, support-
vector regression

No Yes

Lingitz
et al.
(2018)

Semiconductor
manufac-
turer

Lead time Random forest No No

Öztürk,
Kayalıgil,
and
Özdemirel
(2006)

Hypothetical
manufac-
turing en-
vironment
(Simula-
tion)

Lead time Regression tree No Yes

Alenezi,
Moses, and
Trafalis
(2008)

Multi-
resource,
multi-
product
systems

Order flow-
times

Support vector regression No Yes

Schuh et al.
(2019)

Demonstration
Factory
Aachen

Transition
time

A methodology for databased
identifying influencing factors
in order specific

No No
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Table A7. Literature review about frontier simulation and modeling technologies.

Paper Key simulation
technology

Application Relevance to the
production plan

Wy et al. (2011) DDAMS Logistics-embedded assembly
manufacturing lines

Mentioned

Liu et al. (2019a) DDAMS Many disciplines (physical
and information) of science

Not mentioned

Zhang, Zhang, and
Yan (2019)

DDAMS CPPS towards smart shop-
floor

Mentioned

Zhang et al. (2019a) DDAMS Digital twin manufacturing
cell

Mentioned

Wang et al. (2021) DDAMS In digital twin for the de-
sign, production, operation,
and service of elevators

Mentioned

Zhou et al. (2019) DDAMS and CS Numerical control machining
in cloud manufacturing

Mentioned

Luo et al. (2021) DDAMS and CS Automated flexible produc-
tion lines in real smart facto-
ries

Mentioned

Chi, Pepper, and
Spedding (2004)

CS Production lines of automo-
tive components

Not mentioned

Lindskog et al.
(2012)

CS Discrete event simulation us-
ing 3D scans

Not mentioned

D’Angelo and Mar-
zolla (2014)

CS A new simulation middleware
and generic adaptive interac-
tion architecture)

Mentioned

Chen and Lin (2017) CS Model conversion among var-
ious simulation systems and
the digital equipment identi-
fier system

Not mentioned

Yu, Cao, and
Schniederjans (2017)

CS Multi-agent simulation for
supply chain

Mentioned
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Table A8. Literature review about stochastic and distributionaly robust optimization for multi-echelon,

multi-period, capacitated lot-sizing.

Paper Focus Uncertainty Model Solution

Quezada
et al. (2020)

Production plan-
ning in remanu-
facturing system

Production ca-
pacity, demand,
and costs

Multi-stage
stochastic integer
program

Branch and cut

Behnamian
et al. (2017)

Multi-level pro-
duction planning

Levels Absorbing
Markov chain

No, Lingo 8

Haque et al.
(2021)

Multi-stage de-
centralized supply
chain

No Two-phase plan-
ning model

Goal program-
ming approach

Thevenin,
Adulyasak,
and
Cordeau
(2021)

Static-static and
static-dynamic
decision frame-
works

Demand A two-stage and a
multi-stage model

Scenario based
stochastic op-
timization
approaches(fix-
and-optimize,
S-policy, Q-policy
)

Meistering
and
Stadtler
(2019)

Production plan-
ning in rolling
schedules

Demand Mixed-integer
programming
models

Stabilized-cycle
strategy

Li, Tao,
and Wang
(2012)

Production plan-
ning

Demand Mixed-integer
programming
models consider-
ing joint setup
cost

Three-stage
heuristic
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