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The Industry 4.0 revolution is changing the manufacturing landscape. A broad set of new technologies emerged (including software and connected equipment) that digitize manufacturing systems. These technologies bring new vitality and opportunities to the manufacturing industry, but they also bring new challenges. This paper focuses on the impact of Industry 4.0 on production planning approaches and software. We first propose a digital twin framework that integrates production planning systems and frontier technologies. The frontier technologies that may impact production planning software are the internet of things, cloud manufacturing, blockchain, and big data analytics. Second, we provide a state-of-the-art on the application of each technology in the production planning, as well as a detailed analysis of the benefit and application status. Finally, this paper discusses the future research and application directions in the production planning. We conclude that Industry 4.0 will lead to the construction of data-driven models for production planning software. These tools will include models built accurately from data, account for uncertainty, and partially actuate the decision autonomously.

Introduction

With the Industry 4.0 revolution, the manufacturing shop floors are digitizing at a high pace, with more IoT (internet of things) devices, software, and interconnection with the external environment (suppliers, customers). The technologies of Industry 4.0 develop rapidly, and they include the digital twin (DT)/cyber-physical systems (CPS), internet of things (IoT), big data analytics (BDA)/artificial intelligence (AI), cloud manufacturing (CMg), and blockchain (BC) (Ivanov and Dolgui 2020;[START_REF] Ivanov | Scheduling in Industry 4.0 and Cloud Manufacturing[END_REF]. This new manufacturing landscape calls for a change in the production planning tools. To realize its full potential, production planning software must take advantage of the massive amount of data generated on the shop floor, integrate easily, take advantage of new technologies fostered by Industry 4.0, and adjust automatically to the constant changes on the shop floor.

The resulting tools will have a strong impact on the manufacturing industry. Despite the short return on investment of prescriptive analytic tools, most manufacturers are not using these tools due to the high initial investment or the lack of knowledge. According to a recent survey BARC (2016), 74% of companies still use Excel for production planning, and 33% rely solely on Excel to plan their production. The implementation of prescriptive analytic tools requires high consulting costs to adapt software. Big data analytics not only allows us to forecast the value of unknown parameters accurately, but it also allows us to incorporate uncertainties of these forecasts in the models. Adaptive stochastic/robust optimization provides decisions (production planning) that are not only robust to various uncertainties but select the states (resource utilization, inventory level) to react appropriately when unknown parameters unfold. In addition, machine learning tools can help automatically learn the production capacity from the data or simulation. Automated planning model creation from data will reduce the costs of the production planning software since the software will automatically adjust to the requirements of the shop floor. As a result, prescriptive analytics will be widely used in manufacturing systems. The resulting tools will lead to production plans with the right level of agility, which is crucial in the current production context with high complexity, high flexibility, mass customization, dynamic decisions, and volatile markets.

This paper focuses on production planning in Industry 4.0. We identify the challenges related with research and application of Industry 4.0 keywords, including internet of internet, cloud manufacturing, blockchain, big data analysis, machine learning, digital twin, cyber-physical system. The main challenges for the application of frontier technologies in production planning are listed as follows:

(1) The integration of data, software, and decisions remains a complex challenge.

This integration concerns the relations within the physical systems, the relations within virtual systems, and the relations between physical and virtual systems. ( 2) Massive data open both new possibilities and difficulties for developing an effective production plan using cutting-edge technologies.

(3) These cutting-edge technologies may give managers dynamic and automatic supports of production planning. The challenge is to develop tools that can react in real-time and interact properly with the shop floor managers and the workers.

A framework is proposed in this study for an intelligent digital production planning twin. Such a digital twin integrates the current trends in production planning: the use of IoT data, big data analytics, could manufacturing, advanced decision aid techniques based on stochastic and robust optimization, and hybrid simulation-optimization planning approach.

For each of these research trends, we provide a state-of-the-art. Note that we are not attempting to give an exhaustive bibliography based on a systematic review. Instead, we select the papers for their quality and their relevance, considering the following key dimensions: journal quality, number of citations, innovation, practical applications, and reference. Finally, we give a new vision of the intelligent digital twin for production planning that integrates all Industry 4.0 technologies to facilitate production planning decision in manufacturing.

The present paper differs strongly from existing reviews. [START_REF] Bueno | Smart production planning and control in the Industry 4.0 context: A systematic literature review[END_REF] provide a systematic review on the use of Industry 4.0 keywords in the production planning and control (PPC) papers. The authors show that most of work focuses on scheduling. On the contrary, this paper provides a vision of the future trends of production planning in the Industry 4.0 context, and we explain the benefits in this context of research that do not explicitly mention Industry 4.0 (e.g., papers on simulations, stochastic optimization, ...). [START_REF] Cadavid | Machine learning applied in production planning and control: A state-of-theart in the era of industry 4.0[END_REF] provide a systematic review on machine learning for PPC. Our review paper deals with a broader spectrum of Industry 4.0 technologies and methods. Ivanov and Dolgui (2020); [START_REF] Lu | Digital twindriven smart manufacturing: Connotation, reference model, applications and research issues[END_REF]; [START_REF] Rossit | Production planning and scheduling in cyber-physical production systems: A review[END_REF] propose frameworks or architectures of the supply chain or manufacturing system in the context of Industry 4.0. Zhang, [START_REF] Zhang | Digital twin-driven cyber-physical production system towards smart shop-floor[END_REF]; [START_REF] Agostino | Using a digital twin for production planning and control in Industry In Scheduling in Industry 4.0 and Cloud Manufacturing[END_REF] provide DT frameworks that focus on scheduling. However, the authors do not give clear information on the use of the emerging technologies of Industry 4.0 to support production planning decisions. Besides, [START_REF] Kasten | Engineering and manufacturing on the blockchain: A systematic review[END_REF]; [START_REF] Leng | Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey[END_REF]; Fosso [START_REF] Wamba | Bitcoin, blockchain and fintech: A systematic review and case studies in the supply chain[END_REF]; Li et al. (2021) present systematic reviews on blockchain for supply chain or manufacturing industry, but they do not discuss production planning issues in detail. Moreover, most of the existing literature review papers have focused on presenting what technologies are available for implementing Industry 4.0 rather than how Industry 4.0 factories make their decisions and manage operations. This paper fills in this gap.

Section 2 introduces classical functions of production planning, and Section 3 presents the main concepts of the intelligent digital twin for production planning. We then provide a stat of the art on the key elements of intelligent digital twins for production planning: IoT, cloud manufacturing, and blockchain (Section 4); big data analytics (Section 5); simulation and optimization (Section 6).

2. Definition, structure, and research scope for the production planning 2.1. Production planning and control (PPC) system Production planning and control (PPC) systems help companies match manufacturing performance with customer demands [START_REF] Bonney | Reflections on production planning and control (PPC)[END_REF]. PPC is a value-adding process [START_REF] Wiendahl | Stumbling blocks of PPC: Towards the holistic configuration of PPC systems[END_REF] that encompasses all tasks related to the management of the value creation processes in a company [START_REF] Bendul | The design space of production planning and control for industry 4.0[END_REF]. PPC is a function determining the global production quantities (production plan) for a given planning horizon to satisfy the commercial plan and to meet the profitability, productivity, and delivery time objectives [START_REF] Lolli | Machine learning for multi-criteria inventory classification applied to intermittent demand[END_REF]. PPC also includes the control of the manufacturing process for real-time resource synchronization and product customization. [START_REF] Moeuf | The industrial management of SMEs in the era of Industry 4.0[END_REF]. Scholars often use hierarchical frameworks to describe the process of PPC at different levels and planning horizons [START_REF] Oluyisola | Smart production planning and control: Concept, use-cases and sustainability implications[END_REF]. Although the details and terms for the framework of PPC systems are different in different studies, the core content remains the same. Existing research often describes the PPC framework at the long-term, medium-term and short-term [START_REF] Bonney | Reflections on production planning and control (PPC)[END_REF][START_REF] Oluyisola | Smart production planning and control: Concept, use-cases and sustainability implications[END_REF][START_REF] Garetti | Neural networks in production planning and control[END_REF][START_REF] Jacobs | Manufacturing Planning and Control for Supply Chain Management: APICS/CPIM Certification Edition[END_REF]. Figure 1 depicts such PPC frameworks.

The decision process in PPC includes multiple sub-processes (production planning, capacity planning, and rough-cut capacity planning, etc). This decomposition was defined even before computers allowing humans to plan by hand. The first software for PPC, e.g., MRP, followed this historical decomposition, and they provide a set of functionality, where each functionality corresponds to one of these sub-processes. As this decomposition is sub-optimal and inconvenient, the literature suggests integrating these decisions (e.g., sales and operations planning), and the software followed (e.g., enterprise resource planning (ERP) fosters the integration of procurement, production, and capacity planning). With the increase of computation power and the development of optimization approaches, decision support tools for production planning tend to integrate all the decisions and data at a given planning level.

At the strategic level, manufacturing operations are viewed in a long-term, aggregated manner. [START_REF] Oluyisola | Smart production planning and control: Concept, use-cases and sustainability implications[END_REF]. Strategic decisions begin with sales and operations planning (S&OP) or aggregate planning. The tactical level considers the medium-term planning, which is called materials resource planning (MRP). The operational level concerns day-by-day, shift-by-shift detailed scheduling, and real-time control. The focus of this study is on long-term and medium-term production planning, and we do not discuss scheduling and real-time control.

Aggregate production planning

S&OP aims to balance the overall demand with the available resources. This process is dedicated to unifying plans traditionally produced independently by different departments related to production, distribution, procurement, and sales [START_REF] Pereira | Tactical sales and operations planning: A holistic framework and a literature review of decisionmaking models[END_REF]. S&OP is performed monthly, at an aggregated level (based on product family), and for a planning horizon of up to a few years since S&OP decisions (buying new machine, hiring workers) must be taken long before implementation [START_REF] Noroozi | Sales and operations planning in the process industry: A literature review[END_REF]. The input of S&OP includes demand data (volumes per product family per planning period), metadata (such as forecast uncertainty) from demand management (DM), as well as future available aggregate capacity from resource planning (RP) [START_REF] Oluyisola | Smart production planning and control: Concept, use-cases and sustainability implications[END_REF][START_REF] Jacobs | Manufacturing Planning and Control for Supply Chain Management: APICS/CPIM Certification Edition[END_REF].

The S&OP process gathers people from different functional areas, to balance the demand and the capacity plans. S&OP might lead to jointly deciding pricing with the production plan. S&OP is sometimes classified as a strategic process since it might lead to capacity extension, but most of the literature considers it a tactical process.

Master production scheduling

While S&OP considers product families, the master production schedule (MPS) generates the production target for each end-item by period typically monthly. In recent planning systems, MPS integrates rough-cut capacity planning (RCCP) [START_REF] Rossi | Improving production planning through finite-capacity MRP[END_REF], where planners check that the capacity of critical resources (bottleneck, labor, critical materials) is sufficient to meet the production target. If this is not the case, the The key elements for production planning in Industry 4.0 include IoT, BDA, IoT, CMg, and CPS. The interaction between them is illustrated in this graph, as well as how they collaborate to assist with the decision-making of the production planning.

planners may increase capacity through overtime, temporary workers, subcontracting, or they may reduce the production target.

Materials requirements planning

MRP combines the MPS records with the bill of materials (BOM) data and inventory data to obtain the requirements of components and parts. Using the results of MPS as the input, MRP makes recommendations on the release replenishment orders for materials. Based on the production capabilities and lead times which dictate the capacity requirements planning (CRP), MRP releases, typically weekly, detailed material replenishment and capacity plans for a planning horizon of a few months [START_REF] Oluyisola | Smart production planning and control: Concept, use-cases and sustainability implications[END_REF]. These plans are often updated, and the output of MRP are the input for the operational level [START_REF] Dolgui | Supply planning under uncertainties in MRP environments: A state of the art[END_REF].

Intelligent digital twin for the production planning and structure of the state-of-the-art

In recent years, the growing requirement for customized products and the extension of supply chains to all the globe led to various uncertainties in the supply chain, like delays in deliveries and unpredictable demands. Therefore, the supply chain is characterized by high complexity, high flexibility, mass customization, dynamic conditions, and volatile markets [START_REF] Bonney | Reflections on production planning and control (PPC)[END_REF]. In Industry 4.0, the fast changes in the industrial environment motivate the evolution and integration of supply chain management [START_REF] Bueno | Smart production planning and control in the Industry 4.0 context: A systematic literature review[END_REF]. Industry 4.0 leads to a fast digitalization of the shop floors, and this provides new perspectives for production planning methods and software. Figure 2 shows the key elements and their relationships. As manufacturing digital twin integrates most digital advances fostered by Industry 4.0, we explain below the concept of a DT for production planning, and this concept guides the rest of this literature review. While the essence of digital twins is simulation models, DT is very different from the traditional simulation model. The DT is multi-physics, multi-scale, data-driven, and ultra-fidel. DT reflects the state of a corresponding twin in a timely manner based on the historical data, real-time sensor data, and physical models [START_REF] Glaessgen | The digital twin paradigm for future NASA and US Air Force vehicles[END_REF]. With the development of Industry 4.0, the concept of DTs has been expanded. Nowadays, the DT includes not only the simulation model but also the mathematical and data models.

There are many frameworks for the DT and CPS, but they share the same core elements shown in Figure 3. A classical digital twin requires 5 elements: (1) a physical object, (2) a virtual model, (3) data, (4) data connections, (5) services provided to the end-users. In addition, a digital twin usually provides the following characteristic:

• The data are collected from the physical object, and send to the model automatically. • The computer model stay in synchronisation with a physical object. That is, any change in the physical object must be passed on to the virtual models. • The model is able to pass instruction to the physical object.

• The model accounts for uncertainties. On the one hand, the model must account for uncertainties in the environment of the physical object since it include some parameters that can never be forecasted perfectly. On the other hand, any model merely a rough approximation of the complex real world. The model should be robust enough to provide valid decisions despite these approximations.

This definition is broad enough to encompass any physical object, and any type of virtual model (simulation, mathematical models, data model, ...). This generality explains the rising interest among researchers and industrial on the topic. As a broad concept able to gather all technologies used in computer science for manufacturing, and with the impulsion of Industry 4.0 revolution, the DT is becoming a core concept of the Industry 4.0 revolution. This will likely lead to the design of DTs for production planning [START_REF] Luo | A digital twin-driven methodology for material resource planning under uncertainties[END_REF]. In fact, there is a growing literature on all components of such a digital twin. (1) Intelligent perception aims to collect accurate input from the real world, which is the key for building a high-fidelity model. Intelligent perception mainly involves measurement technology. In a manufacturing environment, the data are collected from IoT devices, various software, that constitutes a cyber-physical system (CPS). In a communication network, the CPS is a group of embedded systems that communicate and interact with each other [START_REF] Geisberger | Agenda CPS: Integrierte forschungsagenda cyberphysical systems[END_REF]. The CPS is the primary data and information source of the DT. The CPS is referred to as the cyber-physical production system (CPPS) in the context of production technologies [START_REF] Weyrich | Evaluation model for assessment of cyber-physical production systems[END_REF]). The information and data collected from CPPS can be used to build DTs for production planning. Generally, the CPPS collects hardware, software, and real-time information [START_REF] Biesinger | A digital twin for production planning based on cyber-physical systems: A case study for a cyber-physical system-based creation of a digital twin[END_REF]. Section 4 provides a state-of-the-art on the impact of IoT data in the production planning, and it reviews the integration between various data sources.

(2) Data management: The data of digital twins is massive, multi-time scale, multi-dimensional, multi-source, and heterogeneous. Therefore, data management is essential for the implementation of DTs. The domain model serves as a link between the physical and virtual systems. This domain model combines data from a variety of sources such as MES (manufacturing execution system), ERP, and IoT devices. It also gives a rich data structure for the user to interpret. New paradigms emerge in the framework of Industry 4.0 for collecting and storing huge volumes of data in real time and across productive and logistical activities, enabling the development of the DT concept and associated techniques [START_REF] Agostino | Using a digital twin for production planning and control in Industry In Scheduling in Industry 4.0 and Cloud Manufacturing[END_REF]. Following the digital twin perspective, the digital model must be as accurate as possible, and the progress in big data analytics (BDA) helps to provide a good prediction of the planning parameters. Section 5 provides a state-of-the-art on BDA methods in the production planning.

(3) Modeling and simulation: Mathematical and simulation models are the most used quantitative approaches for decision-making in the production planning. These models convert physical entities into virtual objects that can be analyzed with computers. Mathematical models provide a systematic way of expression for further analysis and optimization. The correctness and accuracy of these models directly affect production planning. The simulation models help the user validate a production plan by providing a precise execution of the plan at a detailed level (with each machine, employee, transport between machines, etc.). The simulation gives a clear understanding of the performance of a production plan since it can compute various KPIs relevant to the user. The simulation is also a valuable tool to enrich optimization models. Section 6 provide the state-of-the-art on databased simulation in the production planning, simulation-optimization approach, and optimization under uncertainties. (4) Actuation: An important aspect of the DT is the ability of the model to act on the physical object. Digital twins that do not provide this feature are sometimes called digital shadows. An automated actuation of some production planning decisions (e.g., number of workers to hire) is not possible. Nevertheless, the cloud manufacturing research trends provides a paradigm that allows manufacturers to share their production capacity in real time on the cloud. Besides, the blockchain leads to smart contract that enable real-time acceptance and tracking of production order. Section 4 provides a state-of-the-art on CMg and BC in the production planning. (5) Interconnection: The main purpose of interconnection is to obtain effective and accurate data in the real physical world. The sharing of information and data can include interaction between different information systems, virtual system and physical system, and man-machine interface. Interconnection is an essential element for production planning, because the production plan involves data and information of the entire production system (supply chain). Moreover, only when the system interaction is efficient, the production plan can be implemented in real production.

In Appendix, Table A1 summarizes the key technologies and corresponding tools [START_REF] Qi | Enabling technologies and tools for digital twin[END_REF] for each category with pointers to the literature for the interested readers. Digital twins can support decision-making in every stage or at each level of production planning systems. For aggregate planning, DTs can achieve multi-level data sharing, traceable data flows, as well as the integration with demand forecast, inventory control, MES, and ERP system [START_REF] Yu | Data mining based multi-level aggregate service planning for cloud manufacturing[END_REF]. DTs provide capabilities in realtime and dynamic production planning, with distributed and collaborative decisionmaking through MES, MPS/ERP, and CPS integration [START_REF] Rossit | Production planning and scheduling in cyber-physical production systems: A review[END_REF]. The DT model and CPS assist MRP in the automatic forecast, optimization, and re-planning [START_REF] Lin | Development of the digital model of the jewellery production process for resource optimisation and prediction[END_REF], as well as expand MRP with real-time calculations, early reporting, traceability, and visibility [START_REF] Shao | Mitigating risks of perishable products in the cyberphysical systems based on the extended MRP model[END_REF].

In the initial stage of the research about DTs, researchers mainly proposed digital twin frameworks for the entire supply chain management issues. With the deepening of research, researchers began to focus on more precise realisations dedicated to PPC systems. However, as scheduling is more sensitive to real-time data, most works on digital twins for PPC concern scheduling problems, and few studies discuss mid-term and long-term planning. Furthermore, with the published digital twin frameworks, there are few quantitative analyses and case studies. In Appendix, Table A2 reports papers that propose DT frameworks, and provides the author's viewpoint, core methods, and considered applications. Additionally, a series of remarkable studies that have emerged recently is the digital twin-enabled Graduation Intelligent Manufacturing System (GiMS) proposed by [START_REF] Guo | Towards Assembly 4.0: Graduation intelligent manufacturing system for fixed-position assembly Islands[END_REF]. This series of studies not only proposes a detailed implementable digital twin framework, but also investigates how the planning and scheduling are executed under the framework [START_REF] Lin | Graduation manufacturing system: synchronization with IoT-enabled smart tickets[END_REF]Guo et al. 2020a,b,c;Li and Huang 2021). Their research is very timely, intriguing, and worthy of further study.

Frontier technologies for the data collection and sharing in the production planning

Data are the source and foundation of the production planning, and the essential of any system in the digital twin framework. Therefore, we first introduce the data sources commonly used in the production planning, and then discuss the current status of application and research of frontier technologies for data collection and sharing in the production planning one by one, in the order of IoT, cloud manufacturing, and blockchain.

Relevant data sources for the production planning

The key of BDA technologies is massive data, which is used to gain autonomous computer knowledge [START_REF] Sharp | A survey of the advancing use and development of machine learning in smart manufacturing[END_REF]. When it comes to training a machine learning (ML) model, the selection of the data source is crucial since the final results depend largely on the quality of the data. We introduce five data sources that are very important for intelligent production planning [START_REF] Lu | Sales forecasting of computer products based on variable selection scheme and support vector regression[END_REF]Tao et al. 2018b;[START_REF] Cadavid | Machine learning applied in production planning and control: A state-of-theart in the era of industry 4.0[END_REF]), and we explain the importance of this data for production planning.

(1) Management data are the historical data collected from enterprise information systems, including the ERP, MES, etc. Besides providing basic parameters for production planning, the management data also include the historical production plans and execution results of production plans. Analyzing these historical production plans and execution results provides knowledge to improve future plans and not repeat mistakes. (2) Equipment data are collected from IoT devices. The equipment data helps to estimate the resource capacity in the production planning. The production resource includes machines, humans, space, and even containers. (3) Consumer data are collected from e-commerce platforms or other social media about consumers, who are the users of products. These data can be used to train machine learning models, which can provide support for demand forecasts. (4) User data are system feedback given by workers or experts, who are the user of production planning tools. This type of users data is usually obtained through interviews or questionnaires. These data can be used to optimize system performance. (5) Product data originated from products or services either during the production process or during their use by the final consumer. The production planning mainly concerns on the production data during the production process, including the BOM, process step, etc. This data help to estimate the production yield.

Management data are the most used data sources. Due to commercial reasons, the data of the enterprise is often confidential. Because it is difficult to access data coming from companies, researchers often use simulated data and public data to train the machine learning model. However, the result is often different from the real life situation.

IoT technologies motivate the BDA applications with equipment and product data [START_REF] Correa | IoT and BDA in the Brazilian future logistics 4.0 scenario[END_REF][START_REF] Hajjaji | Big data and IoT-based applications in smart environments: A systematic review[END_REF]. Nevertheless, accessing IoT data in the PPC system remains a challenge. The use of DTs could tackle this challenge, by collecting IoT data scattered in various systems, and automatically cleaning and integrating the data. While various studies provided tools and methods to create the digital twin (Tao et al. 2018a;[START_REF] Zheng | An application framework of digital twin and its case study[END_REF][START_REF] Lu | Digital twindriven smart manufacturing: Connotation, reference model, applications and research issues[END_REF], this still represents a research issue. Companies need to build general domain models to integrate interactive platforms, as well as to realize the data connection between the physical and virtual systems.

Internet of things

The IoT originated from the radio frequency identification devices (RFIDs) system proposed by MIT Auto-ID Labs in 1999 [START_REF] Ashton | That 'internet of things' thing[END_REF]). The international telecommunications union (ITU) defined IoT as the intelligent connectivity for anything at any time and anywhere [START_REF] Atzori | The internet of things: A survey[END_REF]. The internet of things (IoT) is the critical component of the CMg, DT, and BDA [START_REF] Hwang | Understanding Internet of Things (IoT) diffusion: Focusing on value configuration of RFID and sensors in business cases (2008-2012)[END_REF].

The core function of IoT is to acquire real-time data from the shop floor and its environment. With the IoT technology, a product can be equipped with a uniquely identifiable code. Through uniquely identifiable code, we can monitor and track this product throughout its entire life cycle by sensors and wireless sensor networks [START_REF] Fang | Optimization for a threestage production system in the Internet of Things: Procurement, production and product recovery, and acquisition[END_REF]. The key technologies of IoT are RFID and wireless communication technologies. The RFID enables tracking and distinguishing every single product. The wireless communication technologies embedded in intelligent devices enable real-time access to data on the status of products. Finally, the IoT collects various data (e.g., the information of sound, light, heat, electricity, mechanics, chemistry, biology, and location) by global position systems (GPS), infrared sensors, laser scanners, gas sensors, and other devices (Tao et al. 2014a).

The IoT is exploited industrially at several different levels of production and logistics systems, such as the inventory management, assembly processes, and after-sales services [START_REF] Fang | Optimization for a threestage production system in the Internet of Things: Procurement, production and product recovery, and acquisition[END_REF]. As shown in Figure 5, the IoT increases the accuracy and flexibility of production planning by providing up to data from physical systems [START_REF] Bueno | Smart production planning and control in the Industry 4.0 context: A systematic literature review[END_REF][START_REF] Rauch | Complexity reduction in engineer-to-order industry through real-time capable production planning and control[END_REF]. For instance, [START_REF] Tao | Impact of RFID technology on inventory control policy[END_REF]; [START_REF] Zuo | An Internet of things and cloud-based approach for energy consumption evaluation and analysis for a product[END_REF] find that RFID reduces inventory shrinkages due to damage and thieves. Typically, the data gathered by IoT devices help production planner to know the demand of customers, the inventory levels of materials, the capacity of the workshop, and the status of suppliers. With the accurate collection of data in real-time, IoT helps production planning become more automatic and intelligent. As a result, production planning can respond quickly to various events such as machine breakdown, and urgent incoming customer orders, a late material delivery.

In Industry 4.0, one important task of IoT is the integration of information systems, such as the ERP systems and MES, to enable information exchange and cooperation [START_REF] Fang | Optimization for a threestage production system in the Internet of Things: Procurement, production and product recovery, and acquisition[END_REF]. Most IoT research focuses on the collection of real-time data and its use in scheduling [START_REF] Zhang | The 'Internet of Things' enabled real-time scheduling for remanufacturing of automobile engines[END_REF]). However, little research concerns the application of IoT in the production planning [START_REF] Wang | Framework for an IoT-based shop floor material management system for panelized homebuilding[END_REF][START_REF] Zhong | Visualization of RFID-enabled shopfloor logistics big data in cloud manufacturing[END_REF]. In Appendix, Table A3 summarizes the IoT literature about production planning. Thus various production planning issues still need to be addressed. These issues include the integration of information systems while minimizing their complexity, the development of methods to take advantage of IoT in data-driven and dynamic planning, the development of tools for distributed and collaborative planning among different workshops.

Cloud manufacturing

CMg is a new paradigm that require real time actuation of production planning decisions. Cloud manufacturing relies on IoT, cloud computing, virtualization, serviceoriented architectures, and advanced computing technologies (Wu et al. 2013a). CMg aims to package as services the production resources and capabilities of all manufacturers in the supply chain. The supply chain becomes a cloud of manufacturing services that provide on-demand, self-service, and agile commercial manufacturing resources. As a result, the production resources of an enterprise are shared (as manufacturing services) not only to major downstream distributors of the supply chain but also to provide customized manufacturing services for customers. Meanwhile, a manufacturing enterprise can outsource its resources to other manufacturers, and it can use the production resources of other enterprises for an efficient and low-cost production.

The cloud manufacturing creates a challenge in the production planning. On the one hand, in the CMg environment, enterprises can schedule and integrate various re-sources within the enterprise to improve resource utilization and reduce costs. On the other hand, the service-oriented CMg paradigm makes production patterns and application scenarios more diversified and complex. Therefore, the difficulty of production planning under the CMg environment will increase sharply. Although, decision-makers can obtain more information about the whole supply chain to optimize production plans under the cloud manufacturing paradigm. However, how to integrate production resources in the supply chain, how to reduce production costs in all aspects, and how to increase the speed corresponding to customer needs to achieve agile manufacturing is still challenging for production planning and deserves scholars' attention.

CMg application in the production planning includes the applications in the enterprise and among enterprises. Figure 6 illustrates the interconnection within an enterprise and the connection between enterprises.The application of CMg in the enterprise promotes the integration of the information related to production, product, and other business management information, as well as the integration of the IoT-based workshop and other enterprise information subsystems. The application of CMg among enterprises can address the information integration, storage, retrieval, analysis, use, data security, and other issues during these ubiquitous service management and application process among different enterprises. With the support of CMg, the production planning can obtain more valuable data from various sources to improve the practicality of plans. Finally, cloud computing facilitates the storage and interaction of massive data, and it can speed up the optimization of planning.

Many papers discuss the architecture and application of CMg from a macroscopic point of view [START_REF] Ning | The architecture of cloud manufacturing and its key technologies research[END_REF][START_REF] Hasan | Decentralized cloud manufacturing-as-a-service (CMaaS) platform architecture with configurable digital assets[END_REF]. However, few studies have focused on PPC in CMg. Most research on PPC for cloud manufacturing focus on scheduling [START_REF] Erol | Intelligent production planning and control in the cloudtowards a scalable software architecture[END_REF][START_REF] Yu | Data mining based multi-level aggregate service planning for cloud manufacturing[END_REF][START_REF] Arunarani | Task scheduling techniques in cloud computing: A literature survey[END_REF]Liu et al. 2019b), and few works consider production planning. This is surprising, because CMg requires careful management of production resources and capacities of service providers, and the possible subcontracting through CMg must be included in the planning tool of the manufacturers. Therefore, the production planing under the CMg paradigm deserves in-depth research by scholars. In Appendix, Table A4 presents the CMg literature about the production planning.

The application of CMg within a company started gradually [START_REF] Yu | Data mining based multi-level aggregate service planning for cloud manufacturing[END_REF]Wang et al. 2019b). However, the application of CMg among enterprises is difficult (especially in the entire supply chain) because of commercial confidentiality, data security, and access to heterogeneous data sources. To solve this problem, blockchain (BC), an emerging technology, has captured the interest of academics. We describe the definition and application of the blockchain in detail in the next section.

Blockchain

Blockchain (BC) is an emerging technology that protects security and privacy through a new type of safe and reliable peer-to-peer communication platform [START_REF] Lakhani | The truth about blockchain[END_REF]. While the academic community does not provide a uniform and strict definition for blockchain [START_REF] Tan | A novel service level agreement model using blockchain and smart contract for cloud manufacturing in industry 4.0[END_REF], the following definition is commonly accepted. The blockchain is a decentralized and collaborative database, where all members (or nodes) of a network can equally shares, verifies and maintains stored data [START_REF] Li | Toward a blockchain cloud manufacturing system as a peer to peer distributed network platform[END_REF]. The BC has no centralized node, and thus no third parties [START_REF] Zhu | Controllable and trustworthy blockchain-based cloud data management[END_REF]. This approach enhances the trust between nodes. The BC provides a stable and reliable way of data storage (Vatankhah [START_REF] Barenji | Blockchain-based ubiquitous manufacturing: A secure and reliable cyberphysical system[END_REF]), because the data stored in BC can only be added, not deleted, or modified. Therefore, the BC permanently records all operations on data. This guarantees the traceability of history, and the cost of doing evil becomes very high.

BC is also a trading platform that executes "smart contracts" [START_REF] Hofmann | Discussion-how does the full potential of blockchain technology in supply chain finance look like?[END_REF]. Smart contracts, also called chain codes [START_REF] Tsai | Blockchain application development techniques[END_REF], are digital agreements between nodes. Programs created in high-level programming languages form these smart contracts, which are stored and copied in the form of a BC. Smart contracts can be automatically executed once meeting specific conditions [START_REF] Dolgui | Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain[END_REF].

Although the current typical BC applications focus on the cryptocurrency. There is growing attention to the applications of BC in manufacturing contexts, such as in supply chain management, BDA, CPS, DT, IoT, CMg. In Appendix, Table A5 lists the relevant literature about the BC applied in Industry 4.0. The current research is more concerned with the architecture of the application, and there remain some limitations. Nowadays, supply chains are global, but the BC has not formed a unified international standard yet. Before extensive and large-scale application, a series of issues such as transaction mechanism, credit mechanism, compatibility, and connectivity still need to be resolved.

Blockchain makes it possible to have new service models for production planning. BC enables smart contracts that can automate the order acceptance process, as shown in Figure 7. Consumers submit their demands (product types, quantities, expected price, and various personalized needs). Suppliers submit their available resources (product inventory, production resources). If the customer demand matches the supplier resources, a digital signature generates the smart contract. BC also enables the continuous monitoring of the fulfilment of the smart contract. Suppliers can update idle resources in real-time, and customers may respond dynamically. This process involves flexible and reactive production plans, and this enhances the utilization efficiency of production resources. Moreover, through the credit and reward and punishment mechanism, the BC system can reward or punish suppliers or consumers based on the fulfilment of the smart contract.

To effectively deal with smart contracts, manufacturers need production planning software with an accurate description of the production capacity. In addition, the production plan must account for uncertain demand, and to modify the plan when firm orders arrive. The application research of BC in the manufacturing industry mainly focuses on the macro-system level [START_REF] Yu | Blockchain-based shared manufacturing in support of cyber physical systems: Concept, framework, and operation[END_REF][START_REF] Vu | Blockchain adoption in food supply chains: A review and implementation framework[END_REF]. Up to now, few researchers have considered the implications of BC in the production planning [START_REF] Rahmanzadeh | Integrated innovative product design and supply chain tactical planning within a blockchain platform[END_REF][START_REF] Herrgoß | Development and evaluation of a Blockchain concept for production planning and control in the semiconductor industry[END_REF].

Limitation and future direction

IoT and cloud manufacturing enable the digitization of the entire supply chain and its environment. IoT can provide valuable data. CMg and blockchain can enhance collaborations between companies. While IoT, CMg, and blockchain can support production planning by providing and sharing valuable data, studies on the application of IoT, CMg, and blockchain in the production planning remain scarce. The major limitations and future directions on these topics are summarized as follows:

(1) IoT collects a large amount of data, and it interconnects the virtual and real systems. The resulting information systems are often large and complex, with heavy memory load and slow calculation. Reducing the complexity of the result- (3) The integration of information from different systems remains a challenge because it requires reconciling data from heterogeneous sources. Other difficulties include the use of different standards in information systems and data interaction. Solutions to overcome this integration issue include service-oriented architectures [START_REF] Niknejad | Understanding service-oriented architecture (SOA): A systematic literature review and directions for further investigation[END_REF]) and blockchain [START_REF] Korpela | Digital supply chain transformation toward blockchain integration[END_REF] for the flexibility and security of data transmission, as well as ontologies [START_REF] Kumar | Ontologies for industry 4.0[END_REF] for the mapping of different data models. Nevertheless, future work is required to ease the integration of the information collected from IoT devices, software, and between information systems from different shop floors. This requires the development of the standard for data format, protocols for system interaction, and the data management procedure that ensures safety and reliability. Future works also include the development of tools to automatically clean the data, and to detect and fix incoherent information (e.g., the level of inventory in the ERP and computed from RFID). ( 4 

Big data analytics applied in the production planning

With the development of the industrial internet, a variety of sensors have been installed in the plant to track the state of equipment and product quality [START_REF] Sun | PlanningVis: A visual analytics approach to production planning in smart factories[END_REF]). These sensors along with the growing number of software systems in the factory collect a massive amount of data from physical systems that support the decision-making for production planning. The recent development in big data analytics/artificial intelligence led to better consideration of uncertainties in the production planning [START_REF] Bonney | Reflections on production planning and control (PPC)[END_REF]. Based on the vast amount of data gathered by IoT, BDA/AI tools can forecast the distribution of input parameters required for production planning, such as demand, production yield, supply/product lead times, process duration, and production capacity (Gonzalez-Vidal, Jimenez, and Gomez-Skarmeta 2019; [START_REF] Lolli | Machine learning for multi-criteria inventory classification applied to intermittent demand[END_REF]. The development of BDA/AI tools and the increasing amount of data leads to better accuracy of the forecast. As a forecast will never be correct, these tools allow computing the variability of the parameters to account for the uncertainty. As a result, production planning models represent more precisely the production process on the workshop. Accounting for uncertainty leads to plans that are more often implementable in practice.

In addition, some approaches incorporate the dynamic of the decision process, where the plan can change over the time, and this leads to adaptable planning.

Even though manufacturing generates huge data sets, and despite the growing interest in BDA/AI in the production planning, the exploitation of big data in the production planning is still immature compared with other fields like IT, finance, and e-commerce [START_REF] Lamba | Big data in operations and supply chain management: Current trends and future perspectives[END_REF]. Figure 8 shows how to use the BDA method in the production planning. The application of big data analytics requires a combination of understanding and knowledge about the domain and the right BDA algorithms. Therefore, companies have collected massive data, but they cannot currently get the best value of this data. This section analyzes research on big data analytics applied in the production planning in the context of Industry 4.0.

The processes for implementing BDA/AI tools in the production planning include data collection and cleaning, predictive models, model training, validation, and testing [START_REF] Cheng | Data and knowledge mining with big data towards smart production[END_REF]. We review below the literature on BDA/AI tools for demand forecast, before surveying the works on time estimation, as shown in Figure 8.

Demand forecast with BDA/AI tools for the production planning

For manufacturing organizations, demand forecasting is critical because it serves as a foundation for production planning. Demand forecasting is challenging, however, since consumer demands frequently shift due to a variety of factors, such as policy, economic trends, market competition [START_REF] Kück | Forecasting of customer demands for production planning by local k-nearest neighbor models[END_REF]. On the one hand, in the framework of the digital twin, companies can collect huge amounts of data for demand forecasting, which brings new and unlimited opportunities for profitability. On the other hand, the current state of application and research shows that demand forecasting errors are persistent and their results are frustrating and costly. Demand forecasting has long been stuck in a backwards-looking perspective. In fact, demand forecasting based on only a few years of order information makes little meaning for long-term production planning. The focus of demand forecasting should b to explain the changing context and factors that influence each crucial turning point, but this is difficult.

Compared with traditional methods, machine learning methods, such as artificial neural networks (ANN) (Kourentzes 2013; Kourentzes, Barrow, and Crone 2014), support-vector machines (SVM) [START_REF] Lu | Sales forecasting of computer products based on variable selection scheme and support vector regression[END_REF][START_REF] Villegas | A support vector machine for model selection in demand forecasting applications[END_REF], Bayesian networks (BNs), random forest, have shown promising results in current studies, and have surpassed traditional methods in precision and performance. Although these ML approaches have exploded in popularity in recent years for time series forecasting in a variety of fields, including banking, power generation, and water resources [START_REF] Dudek | Multilayer perceptron for short-term load forecasting: From global to local approach[END_REF][START_REF] Salinas | DeepAR: Probabilistic forecasting with autoregressive recurrent networks[END_REF]. But these forecasting approaches are still not widely used in the production planning, and the demand forecasting and production planning are still mostly based on the planner's expertise (Lorente-Leyva and Alemany 2020). One of the main reasons behind this is that research in the area of big data applied to prediction is not mature. Apart from the immaturity of demand forecasting models, how to generate meaningful demand forecasts for production planning based on big data inputs is also a problem to be solved. Currently, demand forecasting and production planning are often studied in isolation, but the coupling between them is a key issue to be considered.

Time estimation with BDA/AI tools for the production planning

BDA-based time estimation is promising to adjust different time-related parameters to current working conditions. The time estimation includes the prediction of lead time, cycle time, production time, and even the yield (it is also related to the time). In Appendix, Table A6 summarizes the literature on BDA-based methods to predict time-related parameters in the production planning.

Only a few works consider lead time prediction in the research community [START_REF] Cadavid | Machine learning applied in production planning and control: A state-of-theart in the era of industry 4.0[END_REF]. [START_REF] Lingitz | Lead time prediction using machine learning algorithms: A case study by a semiconductor manufacturer[END_REF] , on the one hand, compare the performance of several ML methods for predicting lead times. They, on the other hand, do not examine high variance processes and do not require process mining-based information. [START_REF] Meidan | Cycle-time key factor identification and prediction in semiconductor manufacturing using machine learning and data mining[END_REF] also evaluate several ML methods, however they only take into account the waiting time. In a flow-shop setting, [START_REF] Mori | Planning and scheduling of steel plates production. Part I: Estimation of production times via hybrid Bayesian networks for large domain of discrete variables[END_REF] focus on product characteristics to anticipate lead times, but disregard the complexity of the processes involved. [START_REF] Öztürk | Manufacturing lead time estimation using data mining[END_REF] compare the accuracy of predicted lead times, and employ only simulated data as the input for their models. [START_REF] Alenezi | Real-time prediction of order flowtimes using support vector regression[END_REF] demonstrate that support vector machines outperform neural networks for order flow time predictions. However, the authors use data from computer simulation rather than real-world data from the work floor. [START_REF] Wang | Big data driven cycle time parallel prediction for production planning in wafer manufacturing[END_REF] compute the probability distribution based on operating conditions, but the authors concentrates mostly on the difficulties of working with binarized variables. [START_REF] Schuh | Databased learning of influencing factors in order specific transition times[END_REF] provide a methodology as well as a research based on real-world data to illustrate how ML algorithms may be used to anticipate the transition time, which consists of post-process waiting time, transport time, and pre-process waiting time. Despite the fact that their case study is highly process-oriented, data mining is not employed to improve features.

Limitation and future direction

The majority of currently available research concentrates on demand forecasts, and they just seek to forecast a single parameter. Few publications consider ML approaches to predict the joint distribution of multiple parameters, whereas production planning parameters may be related (e.g., the demand and lead time). Furthermore, the volume of data available and its use vary widely from one manufacturer to the other. ML approaches available for predictive analysis are various [START_REF] Kusiak | Smart manufacturing must embrace big data[END_REF][START_REF] Kusiak | Fundamentals of smart manufacturing: A multi-thread perspective[END_REF]. Hence, trying to develop a general big data cleaning and prediction method for MRP systems may be a new research trend.

There are many discussions about the possible advantages of BDA technologies in the supply chain. In recent years, enterprises and researchers pay more and more attention to this research field. However, research focusing on the application of BDA in the production planning is very scarce. We identify the following avenues for future works on BDA in the production planning:

(1) The research of BDA in manufacturing systems is still at the preliminary stage.

Some researchers study how to use BDA in supply chains. But they only test different BDA methods, do not provide a breakthrough in forecasting models. More research is required to provide the best way to apply generic machine learning tools in the production planning context. (2) In terms of applications, companies have collected massive amounts of data, but have not sufficiently exploited them to support decision-making in the production planning. Some studies are required to validate the use of BDA in real use cases, by integrating BDA methods in the production planning of enterprises. In addition, the actual application of BDA would require focusing research on data cleaning, domain model, and predictive models for ERP systems.

(3) Research on the planning optimisation models based on BDA. Few papers further consider the impact of the forecast on the final production plans. There exist no comparison between BDA-based production planning and traditional production planning methods.

6. Simulation, optimization for the production planning in the Industry 4.0 era Supported by IoT technologies, the DT provides a real-time picture of the factory.

Based on historical data, BDA can predict the future value of planning parameters and estimate their variability. This section discusses prescriptive analytics methods, that combine machine learning, simulation, and optimization to prescribes the best course of actions to optimize the future plan. This section successively discusses data- driven simulation, cloud simulation, simulation-optimization, and optimization under uncertainty approaches for production planning.

Data-driven automatic modeling and simulation technology

Manufacturing systems are very different from a company to the next, and it is not possible to create a generic simulation model for manufacturing. The construction of simulation models for large-scale production systems requires knowledge from business experts, and it is time-consuming. To shorten the time it takes to develop simulation models, researchers have proposed a data-driven method to automatically build simulation models (Liu et al. 2019a;[START_REF] Zhang | Digital twin-driven cyber-physical production system towards smart shop-floor[END_REF], which is named data-driven automatic modeling and simulation (DDAMS). These tools can reduce the total modeling time from several months to several weeks (Wang et al. 2021;[START_REF] Wy | A data-driven generic simulation model for logistics-embedded assembly manufacturing lines[END_REF]) and they reduce errors in the modeling process.

Figure 9 shows how the data-driven modeling and simulation technology works. First, we extract original information from the data centre of information systems (MES, ERP, APS (Advanced Planning & Scheduling System), etc.), and standardise these data. Second, we further classify and associate the data to build a structured data model. Third, based on original simulation objects, we personalise the internal logic and attributes of objects to build the general simulation model library, which meets the needs of the particular industry. Fourth, with the help of resource generation engine, we can use the objects in the general model library to generate the model layout quickly and automatically based on the layout data. Lastly, driven by real-time data, we can obtain a specific simulation operation model, and run it to get simulation results.

In addition, in the simulation operation phase, when production demands or production layout change, the traditional offline simulation will take several hours to update the data and adjust the model manually. The data-driven modeling and simulation method can update the data and adjust the model automatically and quickly. Therefore, with the data-driven automatic modeling and simulation technology, the production planning can response to the uncertain parameters quickly. The data-driven modeling and simulation technology is also one of the important technologies in the DT (Zhang et al. 2019a;Wang et al. 2021;Luo et al. 2021). At the same time, the implementation of this technology is very dependent on the deployment of IoT and CMg in the system. This is because there are high requirements for collecting, storing and sharing data from the information systems when performing automated modeling and simulation. Within the scope of our knowledge, there is little literature on the use of data-driven automatic modeling and simulation technology in the production planning. When we consider the data-driven automatic modeling and simulation for production planning, multi-level and multi-fidelity modeling is a research trend [START_REF] Zhang | Improved multifidelity simulation-based optimisation: application in a digital twin shop floor[END_REF]. Because the scale of the model affects the efficiency of the model and the accuracy of the analysis, it is necessary to model and simulate the system at different levels and fidelity for different planning periods.

Cloud simulation technology

The modeling and simulation cycle of the manufacturing system is long and requires considerable expertise, time, and effort. Moreover, the real production system requires a scalable simulation solution that can be supported by cloud computing systems when they are expanded. Therefore, cloud-based simulation services have been proposed recently. Cloud simulation (CS), i.e. cloud-based factory simulation, uses cloud resources and services to simulate factories. In the framework of the digital twin, cloud simulation is no longer isolated from the actual production system. The cloud simulation platform is connected to the production physical system and can update the cloud simulation model in real-time with real-time data collected by IoT devices, which has higher requirements for platform security, transmission speed, and integration than merely storing the simulation model in the cloud.

At present, cloud simulation construction across various manufacturing fields has been studied to some extent [START_REF] Zhou | Real-time scheduling of cloud manufacturing services based on dynamic data-driven simulation[END_REF]. When companies apply cloud simulation to the real system, they still face many challenges. Because the cloud simulation model is not general and reconfigurable, building a large-scale simulation model in the cloud is very difficult and time-consuming. The existing cloud simulation models cannot reconfigure and update automatically according to the changes in systems [START_REF] Yu | Cloud computing and its impact on service level: A multi-agent simulation model[END_REF]. In some proposed cloud systems, the client cannot upload other models for simulation, and the user interface operability is poor [START_REF] Chi | A web-based virtual factory and simulator for industrial statistics[END_REF]. When conducting factory visualization and large-scale simulation in the cloud, the largest problem is the running speed of systems [START_REF] Lindskog | Combining point cloud technologies with discrete event simulation[END_REF]. For cloud simulation technology, the technology, which is used in the distributed simulation to transfer simulation components and add nodes to distributed architecture during running, can not be directly applied to cloud-based simulations (D'Angelo and Marzolla 2014). The differences of existing factory simulation systems in input format, processing logic, and data structure also hinder the smooth running of the cloud simulation system during operation [START_REF] Chen | Estimating the simulation workload for factory simulation as a cloud service[END_REF]. Besides, the construction of the digital twin also needs to improve the cloud simulation technology [START_REF] Coronado | Part data integration in the shop floor digital twin: Mobile and cloud technologies to enable a manufacturing execution system[END_REF]. For cloud simulation in the production planning, our focus should be on the coupling between different cloud simulation models. For example, the coupling between long-term and short-term planning cloud simulation models, the integration of planning cloud simulation models between different workshops in the same company, and the interaction between planning cloud simulation models of different customers and suppliers.

Optimization model for the production planning

Optimization models for production planning problems involve replenishment planning and lot-sizing problems. The target of the lot-sizing problem is to obtain production and procurement quantities and their timing [START_REF] Yano | Lot sizing with random yields: A review[END_REF]. Since the beginning of the twentieth century, researchers have solved some expansions of the lot-sizing problem, and have proposed numerous modeling approaches and algorithms [START_REF] Buschkühl | Dynamic capacitated lot-sizing problems: A classification and review of solution approaches[END_REF]. With the deepening of research, the focus of research on the lot-sizing problem gradually changed [START_REF] Louly | Optimal MRP parameters for a single item inventory with random replenishment lead time, POQ policy and service level constraint[END_REF][START_REF] Hnaien | Single-period inventory model for one-level assembly system with stochastic lead times and demand[END_REF][START_REF] Schemeleva | Evaluation of solution approaches for a stochastic lot-sizing and sequencing problem[END_REF]; Tavaghof-Gigloo and Minner 2020) from single-product single-period single-machine systems to complex multi-product multiperiod multi-machine systems [START_REF] Cunha | An integrated approach for production lot sizing and raw material purchasing[END_REF]. One of the most generic versions for the lot-sizing problem in the production planning is the multi-echelon multi-item capacitated lot-sizing problem (MMCLP). This problem's target is to determine when to produce as well as the size of production lots to minimize the expected total cost, based on the demand, the BOM, the production capacity, and the lead time. The total cost comprises inventory holding costs, backlog costs, setup costs, production costs, and extra capacity costs. For the MMCLP, the mathematical optimization is the best instrument at present. In fact, the operation research community has put much effort into lot-sizing models, and has proposed several reformulations, cuts, and solution algorithms such as Lagrangian relaxation and cutting planes. [START_REF] Tempelmeier | A heuristic for dynamic multi-item multilevel capacitated lotsizing for general product structures[END_REF]; [START_REF] Tempelmeier | Material-Logistik: Modelle und Algorithmen für die Produktionsplanung und-steuerung in Advanced Planning-Systemen[END_REF]; [START_REF] Helber | Lot sizing in capacitated production planning and control systems[END_REF]; Helber and Sahling (2010) have done a series of studies about the decomposition approaches and Lagrangian relaxation based heuristic algorithms for the multi-level capacitated lot-sizing problem. These solution approaches offer opportunities for the improvement of large problem instances. Table A8 in Appendix gives the literature review about stochastic and distributionaly robust optimization for MMCLP.

Furthermore, the new paradigm of an intelligent digital twin for production planning changes the optimization tools. Although the main mathematical model will remain mostly the same, its parameters can be better anticipated through BDA and ML. Another main change comes from constraint learning, which can make the model more accurate.

Simulation-optimization approaches

Simulation methods mainly include discrete event simulation (DES), agent-based simulation (ABS), and system dynamic simulation (SDS). These methods are commonly used for facility resource planning, capacity planning, and job planning. Simulation can provide a detailed representation of the production process, and can simulate the execution of a policy. Most simulation-optimization approaches use optimization methods (e.g., local search, gradient descent, genetic algorithms, . . . ) to optimize the input parameter of the simulation. In this context, the simulation is embedded in the optimization approach to evaluate the costs associated with the input parameters. For instance, [START_REF] Lim | A simulation-optimization approach for sales and operations planning in build-to-order industries with distant sourcing: Focus on the automotive industry[END_REF] simulate the use of a dynamic inventory control policy under various sources of uncertainties, and optimize the parameters of the policy with a local search. Similarly, [START_REF] Liu | Production planning for semiconductor manufacturing via simulation optimization[END_REF] use a genetic algorithm that evaluates the expected cost of a production plan through a simulation. A major drawback of such approaches is the time-consuming solution evaluation by simulation, especially when multiple replicates are required to approximate the expected cost in an uncertain environment, or when the simulation is very detailed. An approach to circumvent this issue is to build surrogate models (e.g., [START_REF] Osorio | A simulation-based optimization framework for urban transportation problems[END_REF] to approximate the expected cost evaluated with the simulation. These surrogate models are learned with machine learning from past simulation, and they are used to reduce the number of solutions evaluated through simulation.

The state-of-the-art optimization approaches for lot-sizing models commonly encountered in the production planning rely on mathematical models solved with commercial solvers. This approach was also used in combination with simulation. In a simple framework, the simulation is only used to complete the decisions made by the analytical optimization model. For instance, [START_REF] Lim | A simulation approach for production-distribution planning with consideration given to replenishment policies[END_REF] use an optimization approach to set the capacity in the factory and a simulation model to compute the production plan. A more advanced setting is the recursive optimization-simulation approach, where the mathematical model is improved iteratively with the result of the simulation. For instance, [START_REF] Jung | A simulation based optimization approach to supply chain management under demand uncertainty[END_REF] solves a deterministic lot-sizing problem and iteratively adjusts the safety stock after evaluation in simulation that accounts for uncertain demand. This iterative approach was also recently applied for planning in a collaborative assembly line [START_REF] Vieira | A two-level optimisation-simulation method for production planning and scheduling: The industrial case of a human-robot collaborative assembly line[END_REF], and for planning in a wafer fabrication production plant [START_REF] Kim | Synchronized production planning and scheduling in semiconductor fabrication[END_REF].

For more information on simulation-optimization approaches, the interested reader is referred to [START_REF] Figueira | Hybrid simulation-optimization methods: A taxonomy and discussion[END_REF]. In the context of Industry 4.0, there is a new trend in the research and application of simulation-optimization methods. The real-time data collected by IoT devices can help simulation models simulate production systems more accurately. This means that simulation-optimization methods can solve more complex and large-scale problems. Then this creates a new challenge for the speed of finding the optimal solution for simulation-optimization methods. How to use algorithms to enhance the speed of finding the optimal solution is a problem to be solved. Furthermore, the generality and reusability of the algorithm development module coupled with the simulation model is also a concern. Overall, there is growing attention toward the simulation-optimization approaches, but their applications in the production planning remain scarce. We believe that such approaches must be investigated, since a detailed simulation complement the optimization approaches, and ensure that the computed production plan is implementable on the shop floor. Stochastic optimization can be seen as an integration of simulation and optimization since it directly incorporates scenarios to describe possible realizations of uncertain parameters in the optimization model.

Uncertainty

While the first studies on lot-sizing considered that all parameters are known, in practice, none of the planning parameters can be forecasted perfectly. Uncertainty may be defined as the difference between the amount of information required to perform a task and the amount of information already possessed [START_REF] Galbraith | Designing complex organizations[END_REF]. Over the years, many researchers tried to formalize and model uncertainties in production systems [START_REF] Sethi | Optimal and hierarchical controls in dynamic stochastic manufacturing systems: A survey[END_REF][START_REF] Yano | Lot sizing with random yields: A review[END_REF]. The production planning literature provides various approaches and models that consider a variety of uncertainties. The main four uncertain parameters in the production planning are demand, lead time, capacity, and yield.

(1) Demand uncertainty is critical for production planning, particularly for manufacturers with long production lead times [START_REF] Aouam | Production planning with order acceptance and demand uncertainty[END_REF]. Demand uncertainty has various forms, such as the order size and due date. For example, customers submit a demand signal (a prediction of what their orders will be) long in advance of the due date in the semiconductor production system. They progressively change their orders as time passes until a firm order is secured. However, customers still want orders to be fulfilled on schedule, regardless of the extent of changes between the demand signal and firm order [START_REF] Higle | Production planning under supply and demand uncertainty: A stochastic programming approach[END_REF]. In the context of digital manufacturing, manufacturers can expand the number of finished products, which leads to production upgrades of mass customization and mass individualization. Nevertheless, a new problem arises, that is, it becomes more difficult to forecast the demand for each product. On the one hand, the product has a shorter life cycle, and the demand varies faster over its life cycle. On the other hand, thanks to the amount of data collected, a better forecast is possible, which diminished the demand uncertainty.

(2) Lead time refers to the number of periods between the placement of an order and its arrival. in the production planning, we may distinguish between delivery lead time and production lead time. The first refers to the time required by suppliers to deliver components, whereas the second refers to the time between the release of an order to the shop floor and its shipping date. Delivery lead time uncertainty is common in practice and it is due to issues at the supplier production level or transport [START_REF] Hnaien | Single-period inventory model for one-level assembly system with stochastic lead times and demand[END_REF]. The reason production lead times are uncertain involves several factors, such as inaccurate capacity constraints modeling when building the production plans, machine breakdowns, stochastic variations on the operation processing time [START_REF] Aghezzaf | Models for robust tactical planning in multi-stage production systems with uncertain demands[END_REF]. Some studies suggest modeling uncertain lead time with discrete support probability distribution built based on statistical data (Ben-Ammar and Dolgui 2018). In the context of mass manufacturing, more finished products mean more components are needed in the production process. This leads to an increase in the number of manufacturers and suppliers throughout the supply chain, resulting in a more complex overall supply chain. It also leads to an increased risk of late deliveries. With the DT, the lead time can be effectively shortened and predicted through real-time control and data traceability, while the interaction of data between upstream and downstream of the supply chain can also effectively reduce the risk of delivery delays. (3) Production capacity uncertainty refers to issues to ensure the shop floor can satisfy the required production load. There may be uncertainty about the available resource capacity due to machine breakdown or employee absenteeism, and uncertainty in the capacity consumption for an operation due to variable process duration, or product quality if the shop floor reworks or redoes bad quality parts. Another major source of problems is that the optimization models for planning only approximates the capacity roughly to produce a feasible plan. Note that the lead time uncertainty is often related to the capacity uncertainty. The capacity uncertainty is also related with workload, i.e. the demand from other clients or customers at the same time. In practice, even when a good scheduling tool is used, the resources may have idle times. In addition, in flexible production plants, it is difficult to estimate which resource will perform each task before doing the production schedule. While capacity uncertainty leads to infeasible plans, very few works consider planning under capacity uncertainty, when compared with the cases of demand and lead time uncertainty. In Industry 4.0 manufacturing systems, we can monitor machine breakdowns in time so that repairs can be made or production schedules can be adjusted promptly. Through DT-based scheduling and control, the uncertainty of produc-tion capacity can be greatly reduced. Furthermore, the information collected on the status of the machine can help to make maintenance forecasts and decrease the uncertainty of production capacity by scheduling more reasonable machine maintenance, which can also improve machine utilization. (4) Yield uncertainty occurs when bad quality parts cannot be re-worked or replaced by a new one. This situation occurs for operation with long processing time such as aluminum casting, or in multi-echelon systems, where producing an additional part is impossible when the components are not available. Yield uncertainty is also common in the disassembly of end-of-life items since the quality of components is only observed once the item is disassembled (Ben-Ammar, Bettayeb, and Dolgui 2020). Because the product life cycle becomes shorter, the production process lacks regularity and product quality is difficult to guarantee. The good news is that we can achieve quality control automatically through machine learning.

The classical approach computes the lot sizes under the assumption that all parameters are deterministic, whereas safety stock, safety lead times, and safety capacities are computed separately to hedge against the uncertainty. With the improvement of computation power and new development in optimization approaches, it is nowadays possible to integrate the uncertainty directly in the optimization problem with stochastic optimization (SO) approaches [START_REF] Spall | Introduction to stochastic search and optimization: Estimation[END_REF]. That is, random variables appear in the formulation of the optimization problem itself, which involves random objective functions or random constraints. Consequently, the research recently moved from the initial deterministic to non-deterministic lot-sizing model [START_REF] Aloulou | A bibliography of non-deterministic lot-sizing models[END_REF][START_REF] Tavaghof-Gigloo | Planning approaches for stochastic capacitated lot-sizing with service level constraints[END_REF]. The majority of the research considers restrictive assumptions (single level, single period, and single item) to develop analytical models [START_REF] Ertogral | Vendor-buyer lot sizing problem with stochastic demand: An exact procedure under service level approach[END_REF][START_REF] Sana | Optimal contract strategies for two stage supply chain[END_REF][START_REF] Aloulou | A bibliography of non-deterministic lot-sizing models[END_REF]. In particular, most studies don't take into account the capacity constraints of manufacturing systems, when calculating lot sizes. This results in impractical production plans, long and uncertain lead times, and massive work-in-process inventories. In recent years, more scholars have studied more generic approaches able to cope with the complex multi-level/multi-periods/multi-item lot-sizing problems [START_REF] Li | An effective approach to multi-item capacitated dynamic lot-sizing problems[END_REF][START_REF] Thevenin | Material requirements planning under demand uncertainty using stochastic optimization[END_REF][START_REF] Meistering | Stabilized-cycle strategy for a multi-item, capacitated, hierarchical production planning problem in rolling schedules[END_REF]. Many studies consider a single uncertainty parameter [START_REF] Yano | Lot sizing with random yields: A review[END_REF][START_REF] Zikopoulos | Remanufacturing lotsizing with stochastic lead-time resulting from stochastic quality of returns[END_REF][START_REF] Kroer | Planning and scheduling operating rooms for elective and emergency surgeries with uncertain duration[END_REF][START_REF] Afsar | Supplier replacement model in a one-level assembly system under lead-time uncertainty[END_REF], but more scholars have paid attention to the consideration of multiple uncertain parameters in recent years. For instance, demand and lead time are sometimes considered together [START_REF] Tang | Robust parameter design of supply chain inventory policy considering the uncertainty of demand and lead time[END_REF][START_REF] Köchel | Search for good policies in a single-warehouse, multi-retailer system by particle swarm optimisation[END_REF][START_REF] Song | Quantifying the effectiveness of VMI and integrated inventory management in a supply chain with uncertain lead-times and uncertain demands[END_REF]. Considering multi uncertain parameters in the stochastic optimization model to describe the production system more accurately is a future research trend, and it will also be a challenge. Finally, a large variety of methods were proposed to solve lot-sizing problems, such as fuzzy logic, scenario-based stochastic optimization, robust optimization, and game theory [START_REF] Su | A fuzzy multi-objective linear programming model for solving remanufacturing planning problems with multiple products and joint components[END_REF][START_REF] Cunha | An integrated approach for production lot sizing and raw material purchasing[END_REF][START_REF] Carvalho | Competitive uncapacitated lot-sizing game[END_REF]Simon Thevenin 2021;[START_REF] Zarei | A game theoretic approach for integrated pricing, lot-sizing and advertising decisions in a dual-channel supply chain[END_REF].

Limitation and future direction

(1) We find it difficult to solve the complicated lot-sizing problem under uncertainty, particularly in the dynamic decision framework. Because once new information is coming, production settings will be updated. Existing research only considers small-scale cases in a basic setting [START_REF] Thevenin | Stochastic dual dynamic programming for multi-echelon lot-sizing with component substitution[END_REF]. When considering large-scale instances with multi-echelon BOM in a long planning horizon, we have to provide more effective heuristic algorithms. For instance, [START_REF] Thevenin | Material requirements planning under demand uncertainty using stochastic optimization[END_REF] demonstrate that the two-stage approximation is a useful heuristic algorithm for solving the lot-sizing problem with uncertain demand in the static-dynamic decision framework. More research is needed, however, to tackle a large-scale problem in a long time horizon, and one of the future directions is the fix-and-optimize method. Furthermore, we must build approaches to handle the problem in the dynamic decision framework. (2) While most approaches assume the probability is known, this will never be true in practice, and the distribution can only be estimated. Distributionally robust optimization is an interesting class of approaches that optimize for the expected cost of the worst case distribution [START_REF] Zhang | Distributionally robust chanceconstrained optimal power flow with uncertain renewables and uncertain reserves provided by loads[END_REF], and its application to production planning must be further explored.

(3) The development of frontier technologies provides a better platform for data collection and sharing for stochastic optimization of production planning, and also puts forward new requirements for the solution speed and quality. More research is required to link optimization approaches with frontier technologies from Industry 4.0, and to validate these work in a realistic environment.

Conclusion and further research perspectives

In this study, we give a literature review and assessment on production planning in Industry 4.0. The paper focuses on how to apply the Internet of Things, cloud manufacturing, big data analytics, digital twins, simulation-optimization, and stochastic optimization in the production planning. We will perform and apply these cutting-edge technologies in a real company for future research purposes, and will present a complete framework that covers not just production planning but also scheduling and connectivity protocols in detail. Furthermore, improving the heuristic algorithm and machine learning approach is also necessary for the MMCLP. Finally, another intriguing research work is to find ways to improve efficiency while minimizing the complexity of the integration system when it is integrated with other systems under the CPS environment in Industry 4.0.
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 2 Figure 2. Caption: The overview of the production planning in Industry 4.0.Figure 2. Alt Text:The key elements for production planning in Industry 4.0 include IoT, BDA, IoT, CMg, and CPS. The interaction between them is illustrated in this graph, as well as how they collaborate to assist with the decision-making of the production planning.
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 3 Figure 3. Caption: The conceptual model for the digital twin.Figure 3. Alt Text:The conceptual model for the DT comprises information/service system, data interaction/integration platform, physical system, and virtual system.
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 1 Definition and characteristic of the DT in the production planning Shafto et al. (2010) published one of the first public definitions of a DT in 2010.
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 4 Figure 4. Caption: The digital twin framework for the production planning.Figure 4. Alt Text: The DT framework for the production planning details how advanced technologies in Industry 4.0 are integrated, how they collaborate, and how they can help in intelligent production planning
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 5 Figure 5. Caption: IoT for the production planning.Figure 5. Alt Text: The IoT gather data from suppliers, customers, logistcs, workshops, and warehouses by IoT devices, such as GPS, RFID, sensors. The data gathered by IoT devices, as the input of enterprise information systems, can help the decision-making for production planning.
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 6 Figure 6. Caption: CMg in the enterprise and among enterprises for the production planning.Figure 6. Alt Text: This figure illustrates the interconnection within an enterprise and the connection between enterprises in CMg environment. The objects of their services, as well as the data source, are different.
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 7 Figure 7. Caption: Blockchain application in the production planning.Figure 7. Alt Text: This figure describes how to use BC in the production planning. The BC in the production planning comprises the production planning module, chain code, node, and data interaction module.
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  ) Collaborative planning (between different firms) reduces the delivery lead times uncertainty and leads to better production capacity usage. Nevertheless, the contradiction between sharing information and protection of privacy and core technology is a barrier to the adoption of collaborative planning. Blockchain and cloud manufacturing are enablers to distributed and collaborative planning. Blockchain technology may be one of the potential solutions for creating a secure communication protocol for collaborative planning in the cloud (Vatankhah[START_REF] Barenji | Blockchain-based ubiquitous manufacturing: A secure and reliable cyberphysical system[END_REF][START_REF] Li | Toward a blockchain cloud manufacturing system as a peer to peer distributed network platform[END_REF].(5) Research is required to foster the application of cloud computing in the production planning and speed up the calculation. In particular, researchers must focus on the development of parallel algorithms to solve large-scale lot-sizing problems.
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 8 Figure 8. Caption: BDA methods for the production planning.Figure 8. Alt Text: The data sources for BDA include simulation data and history data. With these data, we can achieve the demand forecast and time estimation for production planning. The main processes of BDA in the production planning comprise data cleaning, model training, model evaluation, and prediction. Through these processes, we can obtain the distribution of uncertainties, which can be the input data of customized mathematical models for production planning.
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 9 Figure 9. Caption: The processes of data-driven automatic modeling and simulation method.Figure 9. Alt Text: This figure describes the workflow of the data-driven automatic modeling and simulation method. First, collect and standardise data from information systems. Second, build the structured data model. Third, build the general simulation model library. Fourth, generate the simulation layout model. Lastly, obtain the simulation operation model, and run it.
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Table A2 .

 A2 Literature review about DT framworks.

	Paper		Application	Viewpoint	Core	meth-	Case study
						ods/focus		
	Tao et al.	Product		Product	BDA and CPS	The power trans-
	(2018a,		design					former and bicycle,
	2019)							no data
	Ivanov		Digital supply	Supply chain	Additive	Man-	No
	et	al.	chain twins		ufacturing, BC,	
	(2019);					and BDA		
	Ivanov							
	and Dolgui						
	(2020)							
	Qi et al.	Digital supply	Supply chain	Five-dimension	No
	(2019)		chain twins		model, enabling	
						technologies,	
						enabling tools	
	Tao et al.	Smart manu-	Manufacturing	Lifecycle of man-	Silicon wafer pro-
	(2018b)		facturing		system	ufacturing data,	duction line, fig-
						framework	ures of implemen-
								tation interface
	Lu et al.	Smart manu-	Manufacturing	Review, conno-	No
	(2020)		facturing		system	tation, reference	
						model,	appli-	
						cations,	and	
						research issues	
	Rossit,		Smart Manu-	PPC	Review in CPS	No
	Tohme,		facturing					
	and Frutos						
	(2019)							
	Agostino	Smart	job	PPC	CPS		Scheduling in a job
	et al. (2020)	shop					shop of a Brazilian
								supplier for the au-
								tomotive industry
	Zhang,		Smart shop-	Workshop	CPS		Scheduling of the
	Zhang, and	floor					blisk	machining,
	Yan (2019)						data
	Ding et al.	Smart shop-	Workshop	CPS, operations	Interface of oper-
	(2019)		floor			control		ations control, no
								data
	Guo et al.	Fixed-		Graduation	The	decision	Laser equipment
	(2020c)		position		Intelligent	making	mech-	manufacturer
			assembly		Manufacturing	anism with by	
			islands		System	IoT,cloud-based	
						services and in-	
						dustrial wearable	
						technologies	
	Li	and	Flexible	as-	GiMS	Production-	Air	conditioner
	Huang		sembly lines		intralogistics	manufacturer
	(2021)					processes		

Table A5 .

 A5 Blockchain literature about Industy 4.0.

Table A7 .

 A7 Literature review about frontier simulation and modeling technologies.

	Paper				Key	simulation	Application	Relevance to the
					technology	production plan
	Wy et al. (2011)		DDAMS	Logistics-embedded assembly	Mentioned
							manufacturing lines
	Liu et al. (2019a)		DDAMS	Many disciplines (physical	Not mentioned
							and information) of science
	Zhang, Zhang, and	DDAMS	CPPS towards smart shop-	Mentioned
	Yan (2019)					floor
	Zhang et al. (2019a) DDAMS	Digital twin manufacturing	Mentioned
							cell
	Wang et al. (2021)	DDAMS	In digital twin for the de-	Mentioned
							sign, production, operation,
							and service of elevators
	Zhou et al. (2019)		DDAMS and CS	Numerical control machining	Mentioned
							in cloud manufacturing
	Luo et al. (2021)		DDAMS and CS	Automated flexible produc-	Mentioned
							tion lines in real smart facto-
							ries
	Chi, Pepper, and	CS		Production lines of automo-	Not mentioned
	Spedding (2004)				tive components
	Lindskog	et	al.	CS		Discrete event simulation us-	Not mentioned
	(2012)						ing 3D scans
	D'Angelo and Mar-	CS		A new simulation middleware	Mentioned
	zolla (2014)					and generic adaptive interac-
							tion architecture)
	Chen and Lin (2017) CS		Model conversion among var-	Not mentioned
							ious simulation systems and
							the digital equipment identi-
							fier system
	Yu,	Cao,	and	CS		Multi-agent simulation for	Mentioned
	Schniederjans (2017)			supply chain

Appendix A. Supplementary tables 36 Table A1. Literature review about key techniques and tools for the implementation of a digital twin-driven production planning system.

Category

Key