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Production yield can be highly volatile and uncertain, especially in industries where exogenous and environmental factors such as the climate or raw material quality can impact the manufacturing process. Thus, for production planning, it is necessary to take into account the production yield uncertainty to obtain robust and efficient plans. In this paper, we consider lot-sizing problems under yield uncertainty. We propose a multi-period, single-item lot-sizing problem with backorder and yield uncertainty via a robust optimization methodology. First, we formulate a robust model under a budgeted uncertainty set, which is optimized under the worst case perspective to ensure the feasibility of the proposed plan for any realization of the yield described by the uncertainty set.

Second, we analyze the structure of the optimal lot-sizing solution, and we derive the optimal robust policy for the special case of the inventory management problem under a box uncertainty. These results help us develop a dynamic program with polynomial complexity for the lot-sizing problem with stationary yield rate. Finally, extensive computational experiments show the robustness and effectiveness of the proposed model through an average and worst case analyses. The results demonstrate that the robust approach immunizes the system against uncertainty. Moreover, a comparison of the robust model with the nominal model, the deterministic model with safety stock, and the stochastic model shows that the robust model balances the costs better by reducing the backorders at the expense of more often producing a larger amount of goods.

Introduction

Many industries constantly face exogenous factors that can affect the quality of their products.

In addition, the new products have become increasingly more complex with shorter life cycles, and product customization breaks the regularity of the production process and increases the number of failure sources [START_REF] Duncan | Transforming quality and warranty through advanced analytics[END_REF]. It becomes particularly challenging to precisely estimate the production yields that are necessary in the production process. In this context, accounting for yield uncertainty is crucial in production planning because an underestimation of the production yield leads to excess inventory, whereas an overestimation creates significant stock-outs [START_REF] Yano | Lot sizing with random yields: A review[END_REF][START_REF] Khouja | The single-period (news-vendor) problem: literature review and suggestions for future research[END_REF].

The production yield incorporates quality factors into the lot-sizing model by measuring the expected quantity of non-defective items resulting from the release of a given production lot. Traditionally, this production yield is estimated based on historical data or machine specifications, but such estimations can be imprecise. In practice, the production yield is subject to multiple sources of uncertainty, such as deviations from standard operating procedures, environmental factors such as temperature and humidity, failures in the machinery of the system, a lack of a quality control system, material imperfections, process dysfunction, workforce inefficiency [START_REF] Grosfeld-Nir | Multiple lotsizing in production to order with random yields: Review of recent advances[END_REF]. The yield uncertainty concerns the inability to predict precisely the output quantities associated with a lot size. This uncertainty occurs in many industries, such as electronics (e.g., [START_REF] Akella | Part dispatch in random yield multistage flexible test systems for printed circuit boards[END_REF][START_REF] Schemeleva | Evaluation of solution approaches for a stochastic lot-sizing and sequencing problem[END_REF], pharmaceuticals [START_REF] Cho | The optimal composition of influenza vaccines subject to random production yields[END_REF], food [START_REF] Kazaz | Production planning under yield and demand uncertainty with yield-dependent cost and price[END_REF], agriculture (e.g., [START_REF] Jones | Matching supply and demand: The value of a second chance in producing hybrid seed corn[END_REF][START_REF] Anderson | Contract design in agriculture supply chains with random yield[END_REF][START_REF] Roell | Comparing a random forest based prediction of winter wheat yield to historical production potential[END_REF], steel and metallurgical industries [START_REF] Lalpoor | Cold cracking in dc-cast high strength aluminum alloy ingots: An intrinsic problem intensified by casting process parameters[END_REF], as well as in remanufacturing processes [START_REF] Panagiotidou | Optimal procurement and sampling decisions under stochastic yield of returns in reverse supply chains[END_REF].

In this paper, we will consider lot-sizing problems under yield uncertainty. Lot size decisions are a crucial step in production planning when aiming to meet customers' needs and minimize the overall costs [START_REF] Dolgui | Supply chain engineering: useful methods and techniques[END_REF]. Although modelers often rely on deterministic variants of lot-sizing problems (LSPs) based on the hypothesis that all data is known or can be correctly predicted, in practice, many parameters are uncertain [START_REF] Jans | Modeling industrial lot sizing problems: a review[END_REF]. The discrepancy between data estimation and their actual values can have a critical impact on the quality of the lot-sizing decision. There is a need to develop LSPs that take these uncertainties into account.

There are static and adaptive strategies for production planning under uncertainty [START_REF] Bookbinder | Strategies for the probabilistic lot-sizing problem with service-level constraints[END_REF]. In a static strategy, the production decisions are fixed for the entire horizon. In an adaptive strategy, some decisions are updated to react to the realization of the uncertainty in the previous periods. This work provides the first in-depth investigation of a static strategy for robust LSPs under yield uncertainty.

A static strategy has a practical relevance to reduce system nervousness at minimal computational effort [START_REF] Blackburn | A comparison of strategies to dampen nervousness in mrp systems[END_REF]. [START_REF] Sereshti | The value of aggregate service levels in stochastic lot sizing problems[END_REF] indicates that static lot-sizing plans do not experience nervousness, as the amount of assembly and production remains the same despite the realization of uncertainty. The authors also report that the static strategy combined with the receding horizon is a good approximation of the corresponding robust adaptive strategy. Thus, the static solution can be executed in a rolling horizon framework to tackle the dynamic strategy [START_REF] Blackburn | A comparison of strategies to dampen nervousness in mrp systems[END_REF][START_REF] Sereshti | The value of aggregate service levels in stochastic lot sizing problems[END_REF].

The yield uncertainty may have different impacts depending on the situation, such as an increase in the production costs, processing duration, or lead times, and it often results in a waste of materials and available resources. The consequences of these losses can be highly damaging to the system [START_REF] Inderfurth | Concepts for safety stock determination under stochastic demand and different types of random production yield[END_REF]. Most studies on LSPs with uncertain yield consider the singleitem single-period problem [START_REF] Yano | Lot sizing with random yields: A review[END_REF][START_REF] Khouja | The single-period (news-vendor) problem: literature review and suggestions for future research[END_REF]. In this simple setting, the optimal lot size can be derived through a mathematical analysis based on the newsboy inventory management model [START_REF] Khouja | The single-period (news-vendor) problem: literature review and suggestions for future research[END_REF]. This technique, however, cannot be efficiently applied in a more general context of multi-period lot-sizing, because it can lead to poor solutions [START_REF] Yano | Lot sizing with random yields: A review[END_REF].

Another classic technique to increase the feasibility of a production plan over exogenous uncertainties (such as demand and supply delivery lead time) and endogenous uncertainties (such as production yield) is the use of safety stocks [START_REF] Dolgui | Supply planning under uncertainties in MRP environments: A state of the art[END_REF]. Although the safety stock approach helps mitigate the impact of uncertain yield, safety stock calculations rely on separate calculations and strong assumptions. This results in sub-optimal solutions as shown in [START_REF] Thevenin | Material requirements planning under demand uncertainty using stochastic optimization[END_REF]. The authors indicate that the safety stock levels are computed either manually to meet a given service level in the master production schedule, or based on strict assumptions (e.g., static demand, base stock policy, lot-for-lot policy, critical stock policy). Since the lot sizes and the safety stocks are not defined simultaneously, this often results in sub-optimal decisions. Safety stock can be integrated into the LSPs as a lower bound on the inventory level [START_REF] De Bodt | Lot sizing and safety stock decisions in an mrp system with demand uncertainty[END_REF]. [START_REF] Zhao | Evaluation of safety stock methods in multilevel material requirements planning (mrp) systems[END_REF] report different approaches to define the safety stock level at the master production schedule with the following parameters: safety coverage, service level and standard deviation of the forecast errors. The newsboy model, as presented in [START_REF] Khouja | The single-period (news-vendor) problem: literature review and suggestions for future research[END_REF], helps to determine safety stocks to balance inventory and backorder cost, rather than to satisfy a given service level. To improve the quality of non-deterministic decisions, formulating the problems as mixed-integer linear programs (MILP) has emerged as promising approach.

Stochastic programming (SP) and robust optimization (RO) are good methodologies to incorporate uncertainty into the decision-making process in a systematic way. They implicitly calculate a satisfactory inventory level to achieve greater cost savings and reduce nervousness [START_REF] Thevenin | Material requirements planning under demand uncertainty using stochastic optimization[END_REF]. SP represents uncertain parameters with their probability distributions, and the aim here is to make decisions by minimizing the expected costs in a MILP formulation [START_REF] Birge | Introduction to stochastic programming[END_REF]. Although SP is efficient for small-size instances with a limited number of scenarios, it does not scale up well for large instances or for a large number of scenarios, notably those within dynamic contexts [START_REF] Brandimarte | Multi-item capacitated lot-sizing with demand uncertainty[END_REF]. Unlike the SP method, RO does not rely on a probabilistic distribution. RO tackles non-deterministic problems when distributional information on the unknown parameters is inaccurate or incomplete, and it optimizes for the worst case value of the uncertain parameter within a bounded and convex uncertainty set [START_REF] Ben-Tal | Robust optimization[END_REF][START_REF] Bertsimas | Theory and applications of robust optimization[END_REF]. RO models often yield feasible and tractable easy-to-solve formulations, although modelers should be careful of possible conservative behavior in the decision-making process [START_REF] Thiele | A note on issues of over-conservatism in robust optimization with cost uncertainty[END_REF].

In this paper we propose a methodology based on robust optimization for the non-stationary multi-period LSP under yield uncertainty, and we analyze it in terms of its applicability, optimality, and efficiency. To the best of our knowledge, we are the first to consider robust optimization for an LSP under yield uncertainty in a non-stationary production context, where the production parameters such as costs, demands, and production yield rates may change at each production period. The contribution of the current paper is fourfold. First, we derive an optimal policy for the stationary case of the nominal and maximum deviation values of the uncertain yield. This special case considers the box uncertainty set without setup, much like the case for the demand uncertainty presented by [START_REF] Bertsimas | A robust optimization approach to inventory theory[END_REF]. Second, we propose a polynomial-time dynamic programming algorithm for the special case of the lot-sizing problem with stationary yield rate, non-stationary costs and demands, and box uncertainty set. Third, we propose a robust optimization formulation for a non-stationary multi-period LSP under budgeted uncertainty set and yield uncertainty. Finally, we perform an in-depth analysis of the resulting methods in terms of the quality of the solution, scalability, stability, robustness, and flexibility. In particular, we compare the production plans resulting from the robust, nominal, deterministic with safety stock in, and stochastic models. Although the robust models guarantee the robustness and feasibility of the proposed plan, the stochastic programs seek the production plan with the best expected costs. In addition, the deterministic problem with safety stock aims to reduce the risk of shortages. Thus, we intend to analyze when each technique is best suited to deal with production yield uncertainty. This paper is organized as follows: Section 2 gives a review of previous work on non-deterministic lot-sizing problems, with a focus on uncertain production yield. Section 3 formally describes the considered problem and introduces the robust optimization methodology, more specifically, the mixed-integer linear formulation for the non-stationary case of the problem, the optimal robust properties and policies, and a dynamic programming formulation for the problem with stationary yield and non-stationary costs and demands. Section 4 presents the instances and simulation framework used in our experiments, as well as the experimental results. Finally, Section 5 concludes this work and provides some future research directions.

Literature Review

Because of their practical importance, LSPs have attracted a wide range of research from the manufacturing and operations research communities. Although most studies concern the deterministic LSP, there is a growing amount of research on non-deterministic lot-sizing. The bibliography on non-deterministic LSPs by [START_REF] Aloulou | A bibliography of non-deterministic lot-sizing models[END_REF] confirms the prevalence of studies on demand uncertainty, which is the most natural source of uncertainty within a production planning context.

From the literature on LSPs, it is evident that only a few studies consider other uncertain parameters such as lead time uncertainty, production yield, and cost uncertainty, even though these other parameters may similarly affect solution quality [START_REF] Brahimi | Single-item dynamic lot-sizing problems: An updated survey[END_REF]. [START_REF] Aloulou | A bibliography of non-deterministic lot-sizing models[END_REF]; [START_REF] Brahimi | Single-item dynamic lot-sizing problems: An updated survey[END_REF] also indicate that the most common approaches to solve non-deterministic LSPs rely on mathematical analytical methods (e.g., newsboy models or the use of safety stocks in the nominal problem), stochastic programming and robust optimization, among others. We refer the interested readers to [START_REF] Pochet | Production planning by mixed integer programming[END_REF]; [START_REF] Brahimi | Single-item dynamic lot-sizing problems: An updated survey[END_REF] for further information on the deterministic LSPs, and to [START_REF] Aloulou | A bibliography of non-deterministic lot-sizing models[END_REF]; [START_REF] Brahimi | Single-item dynamic lot-sizing problems: An updated survey[END_REF] for references on the non-deterministic problems. As our work concerns the application of robust optimization for lot-sizing under yield uncertainty, the rest of this section reviews the related publications on robust optimization for lot-sizing problems.

The robust LSP has gained interest from the research community over the last decades, and different approaches exist to solve robust problems [START_REF] Gabrel | Recent advances in robust optimization: An overview[END_REF]. Robust models are often handled through reformulation per constraint and dualization, or adversarial approaches. Note that the adversarial techniques [START_REF] Yanıkoglu | A survey of adjustable robust optimization[END_REF] refer to the approaches which does not rely on a tractable reformulation of the robust counterpart but typically by iteratively solving a restricted robust model with a limited set of uncertainty realizations to determine a possible robust were accepted, and that reached a high enough quality to be sent to costumers. We use the same notion to capture the proportion of good quality items in a lot. Studies on robust LSPs under yield uncertainty are scarce. Unlike the case of uncertain demand for which the quantity of quality goods obtained from the production is known, yield uncertainty affects the quantity of quality items obtained from a production lot. The dependence of the optimal amount of quality goods on the realization of the production yield increases the complexity of the adaptive formulation for the LSP [START_REF] Ben-Tal | Retailer-supplier flexible commitments contracts: A robust optimization approach[END_REF]. Since the production yield multiplies the decision variable, the adaptive robust model is intractable. Therefore, our goal is to derive solutions within a static decision strategy to understand the impact of the uncertain yield on the lot-sizing decision in a context with low or no nervousness, and to solve it with tractable models. We refer the reader to [START_REF] Yano | Lot sizing with random yields: A review[END_REF] for more on an LSP under yield uncertainty.

To the best of our knowledge, Kazemi Zanjani et al. ( 2010) and [START_REF] Quezada | A multi-stage stochastic integer programming approach for a multi-echelon lot-sizing problem with returns and lost sales[END_REF] are the only publications on stochastic programming for an LSP under yield uncertainty; and there is no existing study on robust optimization for lot-sizing under yield uncertainty. While Kazemi Zanjani et al. ( 2010) address the uncertain yield in terms of quality of raw materials, [START_REF] Quezada | A multi-stage stochastic integer programming approach for a multi-echelon lot-sizing problem with returns and lost sales[END_REF] formulate the production yield of refurbished items in a remanufacturing context. These articles show that the stochastic method is efficient within a static strategy because it minimizes the occurrence of the backorder. However, the stochastic models require the use of a sufficiently large scenario set to approximate properly the underlying distributions, and they may not scale well. Considering the robust optimization approach, [START_REF] Vayanos | A constraint sampling approach for multi-stage robust optimization[END_REF] tackle a stationary inventory management model with an uncertain production yield and fixed inventory and backorder costs, but they ignore the setup decisions and production costs. The authors propose a constraint sampling approximation to mitigate over conservative solutions. In a similar approach, [START_REF] Chu | A robust optimization approach to model supply and demand uncertainties in inventory systems[END_REF] propose a robust model for the procurement perspective of a stationary inventory management problem under the budgeted uncertainty set. They restrict the maximum value of the production yield to its nominal value, and they show that the problem can be formulated as a nominal problem with modified deterministic demand in terms of the accumulated deviation of both the uncertain demand and uncertain yield. The authors analyze the impact of the budget controlling the uncertainty and average and standard deviation of the uncertain parameters on the average performance of the robust models. Even though [START_REF] Chu | A robust optimization approach to model supply and demand uncertainties in inventory systems[END_REF] propose an insightful analysis of a inventory management problem with uncertain yield, they perform their studies in a procurement perspective, for which the production yield is set to its nominal value. Thus, [START_REF] Chu | A robust optimization approach to model supply and demand uncertainties in inventory systems[END_REF] do not allow obtaining an amount of quality goods larger than the nominal ordered quantities to be obtained. In addition, [START_REF] Chu | A robust optimization approach to model supply and demand uncertainties in inventory systems[END_REF] do not compare the performance of the robust optimization approach with the stochastic programming and deterministic models. This paper aims to fill the knowledge gap on the impact of the uncertain production yield on a multi-period lot-sizing problem within a robust perspective for a non-stationary case of production yield, costs and demands. Our work differs from the aforementioned literature in several aspects. First, to the best of our knowledge, the current paper is the first to formulate the nonstationary case of single-item and multi-period LSPs under yield uncertainty via robust optimization. Second, we derive the optimal robust policies for the single-period and multi-period LSPs with stationary nominal value and maximum deviation of the yield rate, with non-stationary inventory/backorder/production costs and demands, and with zero setup costs. Third, we propose a polynomial-time dynamic programming algorithm based on optimal robust policies to solve the considered problem for the special case where setup costs are considered. This helps us provide simple tools to compute a sufficiently robust plan, better suited for small decision settings or when an efficient commercial solver is not available. Fourth, we give an in-depth analysis of the impact of robust optimization for production planning based on numerical experiments. The results show that robust optimization is highly efficient and produces production plans that are more robust to different yield scenarios when compared to other decision-making methods (e.g., stochastic program, nominal problem, deterministic problem with safety stock) in terms of quality of the solution, cost savings, and robustness to changes or uncertainties in the system.

Problem statement and proposed robust approaches

This section introduces the considered model and some robust solution approaches. For the sake of clarity, we present the nominal lot-sizing problem prior to introducing the robust optimization models under an uncertainty set. First, we provide a robust optimization model for the LSP under yield uncertainty. Second, we derive a closed-form solution for the single-period model with a box uncertainty set. Next, we show how this closed-form solution can be extended to the multi-period inventory management problem, where we provide an optimal policy for the inventory management problem. Based on the optimal policy for the inventory management problem, we derive properties on the optimal solution of the lot-sizing problem. Finally, the aforementioned properties allow us to develop a dynamic programming algorithm to compute optimal solutions for the LSP with uncertain yield, with non-stationary costs and demands, and with stationary nominal value and maximum deviation of the production yield.

Nominal problem

A single-item multi-period uncapacitated LSP with backorder and production yield determines the quantity to produce in each period of the finite planning horizon T = {1, ..., |T |}. The objective is to meet demands efficiently and with quality goods while minimizing the overall costs. For each period t ∈ T , we are given the setup cost s t , the unit production cost v t , the inventory holding cost h t , the backorder cost b t , and the demand d t . The model comprises the following decision variables: the lot size X t to be produced, the inventory level I t and the backorder level B t at the end of the period, and the setup decision Y t , such that Y t = 1 if a setup occurs in t (X t > 0) and Y t = 0 otherwise. We define ρ t as the strictly positive production yield in period t, such that 0 < ρ t ≤ 1.

The formulation of the deterministic LSP with production yield is as follows:

min t∈T s t Y t + v t X t + h t I t + b t B t (1)
s.t. :

I t -B t = I t-1 -B t-1 + ρ t X t -d t ∀t ∈ T (2) X t ≤ M t Y t ∀t ∈ T (3) X t , I t , B t ≥ 0 ∀t ∈ T Y t ∈ {0, 1} ∀t ∈ T
Without a loss of generality, we assume that there is no stock or backorder at the beginning of the planning horizon. The objective function (1) minimizes the total cost comprising the setup, unit production, inventory, and backorder costs. The inventory balance constraints (2) compute the level of backorder and inventory in period t from the demand, the produced goods at period t, and the inventory and backorder levels in period t -1. The constraints (3) are setup-forcing constraints that relate the production quantities (X t ) to the setup decisions (Y t ), whereas M t = t∈T dt min τ ≤t ρτ . These constraints set the setup variable Y t to 1 if any production occurs in period t, and the setup remains inactive otherwise (Y t = 0). In addition, constraints (3) can represent the capacity constraint by setting M t = min{C t , t∈T dt min τ ≤t ρτ } , where C t is the available capacity in period t.

Definition of the uncertainty set

The robust optimization considers that the uncertain parameter belongs to a bounded and convex uncertainty set. However, the tractability of the robust counterpart model depends on the tractability of the uncertainty set [START_REF] Bertsimas | Constructing uncertainty sets for robust linear optimization[END_REF]. Modelers often rely on some statistical consideration of historical data or previous knowledge of the studied system. The first robust optimization models used the box uncertainty set, introduced by [START_REF] Soyster | Convex programming with set-inclusive constraints and applications to inexact linear programming[END_REF], which describes the uncertainty within an interval of possible values and which is bounded by its minimal and maximal acceptable realizations. To alleviate the over-conservatism of this approach, [START_REF] Bertsimas | The price of robustness[END_REF] propose the box polyhedral uncertainty set, which is also known as the budgeted uncertainty set, where the uncertain parameter takes values within a range of values whose size is controlled by the decision-maker through a budget of uncertainty Γ. This budget of uncertainty reduces the size of the uncertainty set and reflects the degree of risk aversion of the decision-maker. The budget is a threshold for the number of uncertain parameters that can take their worst value [START_REF] Thiele | A note on issues of over-conservatism in robust optimization with cost uncertainty[END_REF].

This budget indicates a degree of acceptable variance of the uncertainty from its nominal value,

where the larger the budget, the more averse to risk the decision-maker is. Note that the box uncertainty corresponds to the budgeted uncertainty set with the largest Γ value.

In the present work, we consider the widely adopted budgeted uncertainty set that is given by

U t = {-1 ≤ Z t τ ≤ 1 : t τ =1 |Z t τ | ≤ Γ t ; t ∈ T ; τ ≤ t}.
This set is based on the nominal value and maximum deviation of the uncertain yield because these values are largely used in statistical quality control to bound the quality in terms of the key performance indicators [START_REF] Godfrey | Juran's quality handbook[END_REF].

These values are easily obtained from historical data, and they reflect the basic characteristics of the uncertain parameter. We estimate the uncertain production yield ρ through a natural parame-

terization ρ(Z) = ρ + Z ρ, with Z ∈ [-1, 1].
Here, the uncertain yield belongs to a range centered on its nominal value ρ and spread by its maximum deviation ρ. The disturbance arising from the nominal value is given by the term Z. Therefore, we replace the production yield ρ t in constraints (2) by the uncertain production yield ρ t .

A robust counterpart formulation for the LSP with uncertain yield

In similar manner to [START_REF] Bertsimas | A robust optimization approach to supply chain management[END_REF], we rely on the reformulation per constraint approach and robust formulation under a budgeted uncertainty set to determine the production plan that minimizes the total costs for the LSP under yield uncertainty. The robust model is similar to the nominal model, but the inventory balance constraints are replaced by a pair of inequalities based on the convexity and the piecewise linearity of the inventory and backorder cost functions. Because the backorder corresponds to a negative stock level, these costs are complementary [START_REF] Bertsimas | A robust optimization approach to supply chain management[END_REF]. We can then drop the inventory and backorder variables, so we directly compute the inventory and backorder costs according to the difference between the number of quality goods and demand. Thus, the constraints ( 5) and ( 6) replace the constraints (2), and H t represents either the inventory or backorder cost in period t, and the constraints (5) (resp. ( 6)) compute the worst case inventory (resp. backorder) costs. In addition, the inventory and backorder costs constraints are subject to yield uncertainty, and they are optimized under the worst case realization of the uncertain parameter in the uncertainty set. Since the reformulation per constraint and dualization approach is applied, H t is independently defined for each period t as the highest cost between the worst inventory cost and the worst backorder cost under the uncertainty set U t . While the adversarial approach usually requires more computation time than the dualization method, it yields less conservative lot-sizing solutions than the reformulation per constraints and dualization approach. In the reformulation per constraint and dualization approach, the worst case is computed independently in each period (the computation of the inventory/backorder costs in each period may rely on different yield realizations), whereas the adversarial approach finds a unique worst case yield vector for all time periods. As a result, the total cost of the robust model includes the setup cost, the production costs, and the maximum periodic inventory and backorder costs for any production yield value in the uncertainty set U t for each period t. Therefore, we can model a robust counterpart for the LSP with uncertain yield as follows:

min t∈T s t Y t + v t X t + H t (4) s.t. : H t ≥ max ρ∈Ut h t t τ =1 ( ρ τ X τ -d τ ) ∀t ∈ T (5) H t ≥ max ρ∈Ut -b t t τ =1 ( ρ τ X τ -d τ ) ∀t ∈ T (6) X t ≤ M t Y t ∀t ∈ T X t , H t ≥ 0 ∀t ∈ T Y t ∈ {0, 1} ∀t ∈ T
where the upper bound on the production quantity M t can be set based on the lowest possible value of the production yield, that is, min τ ≤t (ρ τ -ρτ ) . Thus, for an LSP under yield uncertainty, M t is set to M t = t∈T dt min τ ≤t (ρτ -ρτ ) .

A robust mixed integer linear formulation for the LSP with uncertain yield reformulation

Since our robust counterpart is a constraint-wise formulation, for which the uncertain yield occurs on the right side of the inventory and backorder cost constraints, it can be addressed via the reformulation per constraint and dualization approach. In addition, we rely on the budgeted uncertainty set to alleviate the conservatism with a sufficiently good budget of uncertainty. We only show the detailed steps of reformulation per constraint for the inventory inequalities (5), because the application for backorder inequalities is analogous. In fact, the inequalities differ only by the sign and the costs associated with the inventory level. Thus, the inventory level is negative in case of a backorder, and positive if the production exceeds the demand. As a result, within the worst case perspective of the robust approach, the optimal plan corresponds to a decision leading to a higher cost among these two groups of constraints.

The constraints ( 5) are nonlinear because of the maximization function. Therefore, the reformulation per constraint allows us to transform the non-linear constraints into linear ones. To avoid the inclusion of all possible quantifiers of the uncertainty in the uncertainty set and to linearize the constraints, the reformulation per constraint and dualization approach consists of three steps:

1) reformulation of the constraints subject to uncertainty as a worst case reformulation; 2) dualization of the reformulation problem; and 3) dropping the dualized reformulation into the initial formulation without the inner optimization term [START_REF] Ben-Tal | Robust solutions of linear programming problems contaminated with uncertain data[END_REF].

The first step is the worst case reformulation of the constraints (5) that becomes:

H t ≥ h t t τ =1 (ρ τ X τ -d τ ) + max Z Z Z∈Ut t τ =1 ρτ X τ Z t τ ∀t ∈ T (7) 
For the inventory cost constraints, the worst case scenario occurs only when the deviation is positive, that is, when Z t τ ≥ 0 for t ∈ T ; τ ≤ t. Then, we perform the second step to obtain a dual. Assuming that λ λ λ and µ µ µ are the dual variables, by following the dualization technique presented by [START_REF] Beck | Duality in robust optimization: primal worst equals dual best[END_REF], we obtain the follow primal-dual problem:

max t τ =1 ρτ X τ Z t τ min Γ t λ t + t τ =1 µ t τ t τ =1 Z t τ ≤ Γ t -----→ dualized λ t + µ t τ ≥ ρτ X τ ∀τ ≤ t Z t τ ≤ 1 ∀τ ≤ t λ t , µ t τ ≥ 0 ∀τ ≤ t
We can finally perform the third step, and replace the worst case reformulation with its dual formulation. Therefore, the constraints (7) are reformulated as follows:

H t ≥ h t t τ =1 (ρ τ X τ -d τ ) + min λt+µ t τ ≥ ρτ Xτ Γ t λ t + t τ =1 µ t τ ∀t ∈ T
Similarly, the application of the reformulation per constraint and dualization in the constraints (6) leads to the following reformulation:

H t ≥ -b t t τ =1 (ρ τ X τ -d τ ) - min λt+µ t τ ≥ ρτ Xτ Γ t λ t + t τ =1 µ t τ ∀t ∈ T
Note that for each period t, the computation of the worst case inventory cost in the constraints

(5) maximizes τ ≤t ρτ Z t τ , while the computation of the worst case backorder cost in the constraints (6) seeks to minimize this quantity. The uncertainty set U t is symmetric in Z t τ . This symmetry is due the convexity and piecewise linearity exploited in the inventory balance constraints. As a result, the worst realization of Z t τ ∈ [-1, 1] ∀ τ ≤ t for the constraints (6) are the opposite of the values obtained for the constraints (5), and no feasible production yield in the uncertainty set realizes both constraints at once. Thus, we can use the same dual variables (λ t and µ t τ ) for both cases, but they have a positive coefficient in the constraints (9) and negative in the constraints (10).

From the duality theory, since the primal worst equals dual best holds [START_REF] Beck | Duality in robust optimization: primal worst equals dual best[END_REF], it only takes at least one pair of feasible dual variables in the inner minimization to ensure that the solution holds for the outer minimization. Therefore, we can drop the minimization terms of the reformulated constraints. Hence, we obtain the final reformulation of the robust counterpart under budgeted uncertainty set, which is given as follows:

min t∈T s t Y t + v t X t + H t (8) s.t. : H t ≥ h t t τ =1 (ρ τ X τ -d τ + µ t τ ) + λ t Γ t ∀t ∈ T (9) H t ≥ -b t t τ =1 (ρ τ X τ -d τ -µ t τ ) -λ t Γ t ∀t ∈ T (10) λ t + µ t τ ≥ ρτ X τ ∀t ∈ T ; τ ≤ t (11) X t ≤ M t Y t ∀t ∈ T X t , H t , λ t ≥ 0 ∀t ∈ T µ t τ ≥ 0 ∀t ∈ T ; τ ≤ t Y t ∈ {0, 1} ∀t ∈ T
Our final robust reformulation shares some similarities with the model for the inventory management problem with uncertain demand proposed by [START_REF] Bertsimas | A robust optimization approach to supply chain management[END_REF]. However, in the model for uncertain demand, the deviation affects the uncertain parameter (demand) only. On the contrary, in our model, the deviation corresponds to the worst case impact of the uncertain parameter on the resulting production quantity.

Properties of an optimal robust policy for the inventory management problem

This section derives a closed-form solution and the optimal robust policy for special cases of the considered problem. The closed-form solution can be determined for the inventory management problem under the following assumptions. First, we consider the inventory management problem where the setup and the unit production cost are equal to zero, while the inventory and backorder costs are non-stationary. Second, we consider a stationary case of the nominal value and maximum deviation of the yield. Third, our policy is derived from the inventory management problem under a box uncertainty set, where the box uncertainty set is given by

U t = {-1 ≤ Z t τ ≤ 1 : t τ =1 |Z τ t | ≤ t, t ∈ T, ∀τ ≤ t}.
Fourth, we assume that the unit inventory cost h t is lower than the unit backorder cost b t , and that demands are positive to obtain a positive production quantity X t . The first two assumptions are common in the inventory management literature, and they are also often encountered in practice. Furthermore, although the worst case perspective from a model under a box uncertainty set is a conservative approach to handle the robust LSP with uncertain yield, it helps us derive the property of an optimal policy to compute a fully immunized plan. This section is organized as follows. First, we prove that the optimal policy for the inventory management problem under yield uncertainty sets the production quantity such that the worst case inventory cost equals the worst case backorder cost. Second, we derive the optimal policy for the single period problem with uncertain yield. Third, we extend the single period policy for the multi-period inventory management problem. Fourth, we show that these policies remain valid for the LSP that accounts for unit production costs under mild assumptions. Finally, we indicate the need to anticipate the impact of uncertain yield on future costs in order to extend the policy to the budgeted-based model and the problem with non-stationary yield information.

Based on Proposition 3.1 we obtain the property for an optimal solution for the inventory management problem with uncertain yield, Proposition 3.2 gives the optimal policy for the singleperiod problem.

Proposition 3.1. The optimal production quantity for the inventory management problem is at the point where the worst inventory cost is equal to the worst backorder cost.

Proof. See Appendix A Proposition 3.2. The optimal robust policy for the stationary case of a single-period inventory management problem under box uncertainty set and yield uncertainty is as follows:

X = d ρ + ρ h-b h+b Proof. See Appendix B
We extend our analysis to the multi-period inventory management problem under box uncertainty set and yield uncertainty, with stationary nominal value and maximum deviation of the yield, with non-stationary costs, and with no setup costs. It leads to Proposition 3.3.

Proposition 3.3. The optimal robust policy for the multi-period inventory management problem under box uncertainty set and yield uncertainty, with no setup costs, with stationary nominal value and maximum deviation of the production yield, non-stationary inventory, backorder and unit production costs is given as follows:

X t = ρd t + ρ h t-1 -b t-1 h t-1 +b t-1 Dt -ht-bt ht+bt Dt-1 ρ + ρ ht-bt ht+bt ρ + ρ h t-1 -b t-1 h t-1 +b t-1
if the following condition is respected:

v t ≤ (ρ -ρ)b t , ∀t ∈ T . Proof. See Appendix C
Note that for the special case of the multi-period inventory management problem under box uncertainty set and yield uncertainty, with stationary production, inventory and backorder costs

(i.e., v t = v t-1 = v , h t = h t-1 = h and b t = b t-1 = b)
and without setup cost, the optimal robust policy can be simplified as follows:

X t = d t ρ + ρ h-b h+b
Note also that this formula is a direct extension from Proposition 3.2, if we replace d t with d. In addition, if v = 0, then the condition v ≤ (ρ -ρ)b is always valid.

Proposition 3.3 does not hold for the case with non-stationary nominal value and maximum deviation of the production yield. The policy described in Proposition 3.3 is myopic in the sense that the computation of X t does not consider parameter values at period later than t (i.e., v τ , h τ , b τ , d τ , for τ > t). We explain with an example that a myopic policy cannot be optimal if the nominal value and maximum deviation of the yield are not constant. Let us consider an extreme case for three periods, with h = 1, b = 10, ρ = (0.55, 1, 0.6), ρ = (0.45, 0, 0.4), d = (15, 10, 25), s = v = 0.

The robust model returns an optimal value equal to 175 with a lot size X = (0, 50.0, 0), where the production for the entire production horizon is done in the second period for which the yield is maximum. A myopic policy cannot obtain the aforementioned optimal solution, because this solution requires not performing the setup in period 1 to favor production in period 2, where the deviation of the production yield from its nominal value is zero. The policy should anticipate the occurrence of better production yields in later periods for the definition of an optimal production quantity that respects the inventory balance constraints. However, it is not trivial to impose such condition to obtain an analytical solution.

While Proposition 3.2 can be adapted to take into account the budgeted uncertainty set, the extension of Proposition 3.3 becomes more complicated. For the single period problem, the budgeted set restricts only the range of the maximum deviation, which leads to a worst case scenario that changes from |Z| = 1 to |Z| = min{Γ, 1}. If the optimal policy for the budgeted uncertainty set in the single-period model can be obtained by replacing ρ by min{ρ; ρΓ}, that is not the case for Proposition 3.3. Returning to the example from the previous paragraph, we set the nominal value to ρ = 0.55 and the maximum deviation to ρ = 0.05. To transform the box-based formulation into a budgeted-based formulation, we replace ρt by ρt Γ t in the policy given in Proposition 3.3. Assuming Γ t = 0.5t, our policy gives a lot size X = (28. 33, 19.64, 51.16) which leads to a budgeted-based optimal value equal to 12, while the robust model returns a budgeted-based optimal value equal to 10 with a lot size X = (28. 33, 19.24, 47.97). The budget of uncertainty prevents setting all the values of Z t to 1 or -1. In each period, the value of Z t changes such that it takes the highest value for the period with largest production quantity. However, the disturbance values are period independents.

As the value of Z t changes depending on the decided production quantity, the anticipation of the occurrence of better production yields in later periods is also needed to compute an optimal lot.

Similarly to the case of non-stationary nominal value and maximum deviation of the yield rate, it is complex to define an analytical solution.

Our myopic policy gives an optimal solution for the case of stationary nominal value and maximum deviation under a box uncertainty set. In Section 3.6 we provide a dynamic program based on the optimal policy to solve the stationary LSP under yield uncertainty with non-stationary demands and costs (including the setup and production costs). As our myopic policy does not optimize within a global perspective of the planning horizon, it does not anticipate the occurrence of better production yields for later periods, and so it gives a sub-optimal solution for the case of non-stationary nominal value and maximum deviation of the yield rate, and also for the budgeted-based robust solution.

3.6. Dynamic programming for the uncapacitated robust LSP with uncertain yield and static costs

In this section, we propose a dynamic programming algorithm to address the lot-sizing problem with non-stationary costs and demands, and with a stationary nominal value and maximum deviation of the yield. The proposed dynamic programming algorithm extends the method of Zangwill (1969) that computes a solution from a succession of regeneration intervals. The approach of [START_REF] Zangwill | A backlogging model and a multi-echelon model of a dynamic economic lot size production system-a network approach[END_REF] is based on the property that between any two periods with production there is a regeneration period where the inventory level is 0. This property is not true in the robust LSP under yield uncertainty, since we consider backorders and uncertain yield. However, Proposition 3.4

shows that between two periods with production there is a point where the worst inventory cost is equal to the worst backorder cost. We define such a period as a regeneration period. In addition, the approach of [START_REF] Zangwill | A backlogging model and a multi-echelon model of a dynamic economic lot size production system-a network approach[END_REF] must be adjusted because our extension for the case of uncertain yield allows the backorder at the end of the production horizon. This section successively introduces the main concepts that support our reasoning, the property of an optimal solution for the LSP with uncertain yield and the optimal policy in Section 3.6.1, and finally the dynamic programming algorithm in Section 3.6.2.

3.6.1. Structure of the optimal solution to the LSP under yield uncertainty

Let us define the cumulative demand as Dt = t τ =1 d τ and the cumulative production quantity up to period t as Xt = t τ =1 X τ . The worst inventory cost ( I t ( Xt )) and the worst backorder cost ( B t ( Xt )) in period t can be written as follows:

We assume Dt = t τ =1 d τ to be the cumulative demand, while Xt = t τ =1 X τ is the cumulative production quantity in period t. Similarly to the proof of Proposition 3.1, I t ( Xt ) and B t ( Xt ) can be given as follows:

I t ( Xt ) = max h t Xt (ρ + ρ) -Dt ; 0 B t ( Xt ) = max b t Dt -Xt (ρ -ρ) ; 0
Definition 3.1 (Regeneration period). A regeneration period is a period r where the worst inventory cost ( I r ( Xr )) equals to the worst backorder cost ( B r ( Xr )). Therefore, the regeneration period r is such that: I r ( Xr ) = B t ( Xt ). Proposition 3.4. The solution to the robust LSP under yield uncertainty with stationary nominal value and maximal deviation of the yield is a succession of regeneration intervals. For each regeneration interval, there is a setup period, beta, that minimizes the total cost over the interval.

Proof. Given two consecutive periods with production β and γ (with no production in the interval [β + 1,γ -1], the worst case inventory and backorder cost H τ in the interval [β, γ] depends only on 1 A setup period can be a regeneration period for a regeneration interval of only one period.

the cumulative production Xβ in period β. Note that the costs after period γ will depend on the production quantity of period γ. Therefore, the production quantity in period β only impacts the costs in the interval [β, γ]. We redefine the worst case inventory or backorder cost in period τ in terms of the cumulative production in t by H τ ( Xt ) that is given as follows:

H τ ( Xt ) = max    I τ ( Xt ) B τ ( Xt )    = max    h Xt (ρ + ρ) -Dτ b Dτ -Xt (ρ -ρ)   
where Dt is the cumulative demand up to period t. In the last segment, where Xβ is large enough to meet the demand until period γ, the worst case cost corresponds to γ τ =β Îτ ( Xβ ). Note that backorder costs are decreasing with the production quantity, whereas the inventory costs are increasing with Xβ . Therefore, G [β,γ] is a piecewise linear and convex function, such that the minimum is at a breakpoint. Each breakpoint in the function G [β,γ] corresponds to the case where the worst case backorder cost equals the worst case inventory cost in a period. As X β is chosen to minimize G [β,γ] , it is chosen such that the worst case backorder cost equals the worst case inventory cost in a period n ∈ [β, γ]. We call such a period a regeneration period, and a regeneration interval is a set of period [m, n] where m and n are regeneration periods. As there is a regeneration period between each successive period with setup, each regeneration interval contains one period with setup. In the case the last regeneration period r occurs before the end of the production horizon, that is r < T , then we cannot define a complete regeneration interval and the minimum cost in the interval [r, T ] corresponds to G [r,T ] = T τ =r+1 H τ ( Xr ). In this case, all demands are backordered from the last regeneration period until the end of the production horizon. Let m be the last regeneration period before starting production in the period β, such that n is the next regeneration period after β and m ≤ β ≤ n. Figure 2 illustrates the regeneration interval concept. Here, I (resp. B) indicates that the worst case cost at each period corresponds to the inventory (resp. backorder) costs. As previously mentioned, the production quantity in period β in the regeneration interval [m, n] is chosen such that, at the regeneration periods m and n, the worst inventory cost is equal to the worst backorder cost. In addition, the worst cost corresponds to inventory costs (resp. backorder cost) from period β to n -1 (resp. m + 1 to β -1). Proposition 3.4 indicates that the solution to LSP under yield uncertainty is a succession of regeneration periods, where each lot size covers the demand over the regeneration interval in which the production quantity is defined. Proposition 3.5 gives the optimal lot size to cover each regeneration interval.

Proposition 3.5. The amount to produce in the setup period β to cover the regeneration interval [m, n] (with β ∈ [m, n] and m < n) is given by X β , and it is calculated as follows:

X β = Xn -Xm
Proof. The previous proposition (Proposition 3.4) show that the optimal quantity to produce to fulfil demands over a regeneration interval [m; n] is hold in period β where the cost is minimal. . Note that Equation (C.1) applies here because the production in period β to cover a regeneration interval [m; n] equals the difference between the cumulative production quantity in n (the end of the interval) and the cumulative production quantity in m (the beginning of the interval). Since there is no production in interval [β + 1, n], the cumulative production Xβ in period β is equal to Xn . In addition, there is no production in interval [m + 1, β -1] and the cumulative production in this interval corresponds to Xm . The production quantity in period β (with m < n) corresponds to the difference between the cumulative production at the end of the regeneration interval and the cumulative production at its beginning. Therefore, X β = Xn -Xm . Note that if a setup period is a regeneration period, then the lot size in period β should cover only the demand from period β. For this special case, the lot size is directly computed by the policy

X β = d β ρ+ρ h β -b β h β +b β
given in Proposition 3.3.

The dynamic program for the LSP with uncertain yield

Our dynamic program for the LSP under yield uncertainty iteratively defines successive regeneration intervals from the first production period until the end of the production horizon. For each interval, it defines the setup period that minimizes the costs over the interval. The dynamic programming recursion requires low computational effort because it works with the optimal cumulative policies that are easily computed, and it exploits forward recursion to avoid recalculating decision values that have already been defined.

The function M CI(m, β, n) gives the minimal cost over the regeneration interval [m, n] for a production setup in period β ∈ [m, n]. M CI(m, β, n) includes a setup cost, the production cost associated with the optimal production quantity for the regeneration interval [m, n] (computed according to Proposition 3.5) and the inventory balance costs over the regeneration interval. From Proposition 3.4, we know that the cumulative production in n covers all the demands up to n and that the cumulative production in m covers all demands up to m. Thus, for the M CI(m, β, n)'s inventory management cost calculation is given by

β-1 τ =m+1 H τ ( Xm ) in [m + 1, β -1] and by n τ =β H τ ( Xn ) in [β, n]. Thus, M CI(m, β, n) is then given by M CI(m, β, n) = s β + v β X β + β-1 τ =m+1 H τ ( Xm ) + n τ =β H τ ( Xn ) , where X β = Xn -Xm if m < n, and X β = d β ρ+ρ h β -b β h β +b β
otherwise. Contrary to the deterministic case, it is possible to obtain a plan for which the backorder level at the end of the production horizon is not zero. Thus, we denote by M CR(r, T ) the minimal cost from the last regeneration period r to T , the end of the planning horizon, when only the backorder levels are considered. M CR(r, T ) = T τ =r+1 H τ ( Xr ). Finally, we define the dynamic program recursive function by F (t), which gives the optimal cost from period 0 to t. The costs up to period t correspond to the cost of the last regeneration period m plus the cost up to period t (that is in the interval [m, t]). Therefore, F (t) can be computed recursively. Given the optimal cost F (m) up to period m < t, the computation of F (t) enumerates all possible values for the last regeneration period m and the period with setup β ∈ [m, t]. Thus, F (t) is given by

F (t) = min m≤β≤t {F (m) + M CI(m, β, t)} ∀ t ≤ T -1
Since the last regeneration period can occur before period T , the end of the production horizon, we should modify F (T ) to take into account the possibility of backordering all unmet demands from the last regeneration period r until T . Therefore, the optimal cost at the period T is given by Proof. See Appendix Appendix D Proposition 3.6 indicates that our dynamic program performs in O(T 3 ). The problem becomes NP-hard when extended to the capacitated context, and this can be verified with a reduction from the deterministic single-period capacitated LSP [START_REF] Florian | Deterministic production planning with concave costs and capacity constraints[END_REF][START_REF] Bitran | Computational complexity of the capacitated lot size problem[END_REF].

F (T ) =

Results and discussions

This section presents the experimental study, and its objective is threefold: 1) to demonstrate the robustness of the presented approaches in coping with a non-deterministic LSP; 2) to report an in-depth investigation on the robust LSP with uncertain yield, its performance, the quality of the solutions, and the computational efficiency, and 3) to evaluate and compare the performance of the different optimization approaches in terms of the average and worst case quality of the solution.

The experiments consider the following solution approaches: DET SS , the deterministic model with safety stock, as presented in Appendix F; DET , the nominal model with ρ t = ρt , as presented in Section 3.1; SP , the stochastic program, as presented in Appendix G; RO Γ , the LSP under yield uncertainty, with uncertain yield and budget Γ, as presented in Section 3.3; and finally DP , the dynamic program for computing an optimal robust plan for the stationary LSP under box uncertainty set and with uncertain yield, as presented in Section 3.6.

Note that DET and SP are natural benchmarks to compare solution approaches that cope with uncertainties. DET SS corresponds to the approach commonly used in practice, where a safety stock is computed separately from the lot sizes. This section is organized as follows: Section 4.1 presents the instance generation method. Section 4.2 introduces the simulation framework used to compare the methods. Finally, Section 4.3 presents an analysis of the developed models. We discuss the performance of the dynamic program in Section 4.3.1, the investigation of the price of robustness in terms of the budget of uncertainty in Section 4.3.2, and the performance and quality of the plans resulting from different optimization approaches in Section 4.3.3. We also highlight the advantages of using robust optimization to hedge against uncertainties in a highly uncertain context.

Instance generation

We generate each parameter of the instances using uniform distributions. We set the value of the support of these uniform distributions in a similar manner to [START_REF] Brandimarte | Multi-item capacitated lot-sizing with demand uncertainty[END_REF] to generate setup and inventory costs. As [START_REF] Brandimarte | Multi-item capacitated lot-sizing with demand uncertainty[END_REF] considers demand uncertainty, we generate the demand similarly to [START_REF] Alem | A computational study of the general lot-sizing and scheduling model under demand uncertainty via robust and stochastic approaches[END_REF]). The production costs, the inventory costs, the demands, the nominal values of the production yield rate, and the maximum deviations of the production yield were randomly generated using an uniform distribution within the following intervals: v t ∈ U (10, 20), (140,480), ρt ∈ U (0.5, 0.7), and ρt ∈ U (0.1, 0.3), respectively. The setup costs are computed with the time between orders formula:

h t ∈ U (1, 10), d t ∈ U
s t = Dt•T BO 2 •ht 2
, where Dt represents the average demand up to period t. The capacity can be computed as C t = Φ t∈T dt min τ ≤t (ρτ -ρτ ) , where Φ is a factor to control the tightness of the capacity. To adapt these instances for the LSP under yield uncertainty, we generate the nominal and maximum deviation of the yield with uniform distributions with expectations in the range (0.5; 0.7) and (0.1; 0.3), respectively.

For instance, [START_REF] Chu | A robust optimization approach to model supply and demand uncertainties in inventory systems[END_REF] consider the stationary case, where they set the mean and standard deviation of the production yield to 0, 95 and 0, 05, respectively. As we aim to study the impact of yield uncertainty in the lot-sizing model, we consider here the non-stationary uncertain production quality, where the quantity of quality goods varies significantly between periods. This setting relates to complex production systems in which factors affecting production yield are difficult to measure or estimate precisely due to lack of data. We consider instances with 4, 12, and 24 periods, a time between orders of 1, 2, or 4, and a backorder cost that equals 2, 5, or 10 times the holding cost for each period t. In addition, we consider a capacity factor Φ of 25%, 50%, and 75% for the capacitated model, and we assume a capacity factor of 100% for the non-capacitated model. We generate the instances with a full factorial design for these four parameters, which leads to 108 instances. We set the inventory and backorder levels to zero at the beginning of the horizon.

Because the optimal policies are valid only for the uncapacitated models and the special case with non-stationary costs and demands but with constant nominal value and maximum deviation of the production yield, we generate 81 additional instances resulting from the factorial design of the following parameters: 6, 12, 24, 30, 36, 48, 96, 192, 384 periods, time between orders of 1, 2 or 4, and backorder costs equaling 2h t , 5h t , or 10h t . We increase the instance size compared to the other instances to measure in terms of computational time the performance of the dynamic program for larger size problems.

Simulation

We analyze the quality of the production plans through a simulation with |Ω| = 5000 scenarios generated with Monte Carlo sampling, where each scenario represents a possible realization of the production yield over the horizon. We simulate the yield with a uniform distribution with support [ρ t -ρt ; ρt + ρt ] in period t. We note EV P I, the expected value of perfect information, the average cost of the perfect information solutions, where EV P I ω is the cost of the solution computed with the deterministic model for scenario ω. To evaluate each optimization method, we fix X t and Y t obtained from the optimization step in the deterministic model for each scenario ω.

Experimental results

This section presents an average cost analysis for the uncapacitated and capacitated problems.

The algorithms were implemented in Python 3.6, and the mathematical models were solved with CPLEX version 12.10. The experiments were run on Intel(R) Xeon Broadwell 2683/2.1GHz processors with 125GB of RAM. All the models for all the instances were solved until optimality. We compare the methods based on the objective value provided by each optimization approach (e.g., the objective function given in (4) for RO Γ ), the average computational time (in seconds), the expected value (Exp. Cost) of each solution approach evaluated in the simulation, along with the worst case cost in the simulation, and the 95 th and 99 th percentile cost (p.c.). We also report the relative difference between the expected value of perfect information EV P I and the simulated expected value of each method given by GAP EV P I = 100 × Exp. Cost-EVPI EVPI . In addition, we define by GAP OP T = 100 × Exp. Cost-Obj. Value Obj. Value the relative difference between the objective value of a solution approach and its simulated expected cost. Finally, we report the coefficient of variation CV , an index that indicates a high variability of the costs in the simulation. Thus, CV is the ratio of the standard deviation to the mean, such that the higher CV is, the more widely dispersed the values are from the mean.

Performance of the dynamic program

First, we analyze the performance of the dynamic program to solve the multi-period LSP under box uncertainty set and yield uncertainty, with constant nominal value and maximum deviation of the production yield, and with non-stationary costs and demands. Table 1 reports the computational times (in seconds) for DP and RO on the 81 instances generated for the special case. Each column corresponds to 9 instances with the same planning horizon, and we indicate the average time to solve them. Table 1 shows that the robust dynamic program is computationally less demanding than the robust model for instances with at most 30 periods, while DP becomes more computationally demanding than RO for a production horizon greater than 30 periods. However, when we consider the instances with production horizon larger than 30 periods, DP requires around 10.35 minutes to determine a solution for instances with a planning horizon up to 384 periods, while RO takes only 4.05 minutes on average to compute the same solution. These results show that the DP approach is better suited for small instances or when an efficient commercial solver is not available.

However, for medium and large sized instances, the computational effort required by DP becomes too expensive compared to the solution computed with the M ILP robust model. Moreover, RO can deal with more general LSPs, which makes its performance more competitive with a problem-specific approach. Therefore, the MILP model can be extended to include different practical constraints while it can still remain efficient in terms of speed in computing an optimal solution.

Price of robustness

To analyze the impact of the budget Γ, we consider different budgets to represent the decisionmaker's risk aversion. For each instance, the budget varies from low aversion (Γ = 0.1T ) to extreme aversion Γ = T , going through a progression with the size of the production planning. The budget represents the maximum number of uncertain parameters that can take the worst case value [START_REF] Thiele | A note on issues of over-conservatism in robust optimization with cost uncertainty[END_REF]. Since Γ indicates the number of periods where the production yield can take its worst case realization, it is convenient to express Γ as a proportion of T . Table 2 indicates the impact of the budget of uncertainty on the costs for all the considered instances. While the Obj Value column gives the average of the objective function values computed in the optimization step, the remaining columns report the average value for the features obtained in the simulation step. 1T 124,759 154,848 185,884 243,203 132,004 10.8% 132,974 163,341 195,299 246,471 143,413 10.9% 0.2T 137,315 154,685 165,599 195,557 169,567 7.2% 145,625 164,536 175,202 201,651 184,442 7.5% 0.3T 146,202 163,330 170,991 188,427 192,411 6.6% 156,249 174,874 182,625 200,529 210,890 6.7% 0.4T 155,134 174,025 181,590 191,107 218,111 7.0% 166,748 187,231 195,255 208,007 237,618 6.9% 0.5T 157,734 178,326 186,106 195,401 227,836 7.4% 169,338 190,815 199,027 210,768 247,834 7.1% 0.6T 159,507 181,895 190,214 197,804 236,085 7.9% 172,066 194,805 203,491 213,806 256,740 7.7% 0.7T 159,353 182,381 190,537 197,941 237,278 8.3% 171,205 194,614 203,547 213,448 258,356 7.9% 0.8T 158,777 182,053 190,164 197,690 237,573 8.4% 170,770 194,318 203,299 213,112 258,566 7.9% 0.9T 158,883 182,202 190,322 197,836 237,732 8.4% 170,782 194,377 203,370 213,232 258,805 8.0% 1.0T 158,883 182,202 190,322 197,836 237,732 8.4% 170,782 194,377 203,370 213,232 258,805 8.0% As reported in Table 2, for both the uncapacitated and capacitated model, the best solutions in terms of objective value and expected cost are obtained for a very tiny budget (Γ equals 0.1T and 0.2T ), so the decision-maker should be willing to accept a high degree of risk resulting from uncertainties. Considering the 95 th percentile costs, the lowest costs for the uncapacitated (resp. capacitated) model are obtained for Γ between 0.1T and 0.3T , while the lowest 99 th percentile costs are given by a budget equaling 0.2T and 0.3T for both variants. In addition, the lowest worst case costs are obtained for Γ between 0.2T and 0.5T for both uncapacitated and capacitated model, and the lowest coefficient of variation CV can be achieved for a budget that equals 0.3T , 0.4T (resp. 0.3T , 0.4T or 0.5T ). However, for Γ lower than 0.1T , the robust objective value fails to cover the 95 th percentile cost (and, consequently, the worst case cost). Therefore, with such a low Γ value, the decision-maker has no guarantee that the plan will be sufficiently immunized from uncertainties. On the other hand, although the solutions obtained for Γ greater than 0.4T achieve a robustness level that covers the worst case scenarios, they are overly conservative. In fact, for Γ between 0.5T and T , the objective value is much higher than the worst case cost. Thus, even if for the largest value of Γ the solutions are robust, they do not result in the best option in terms of the expected costs and stability. Therefore, the budget of uncertainty in the interval from 0.2T to 0.4T offers better production plans, since the decisions are sufficiently stable because of a low CV , the expected cost is relatively low, and the robust objective value covers at least the 99 th percentile costs (and even the worst case costs for when Γ equals 0.3T or 0.4T ).

Comparison of the LSP with uncertain yield resolution approaches

We now compare the production plans resulting from RO, SP , DET and DET SS . We consider RO with a budget that is equal to 0.2T , 0.3T , and 0.4T because we have previously shown that these values result in better trade-offs in average costs, conservatism and robustness. We also consider the extreme case of the robust approach with a more conservative solution for Γ = T . All results reported in these sections are an average over all the considered instances. In addition, all values are computed during the simulation step except for the optimal values and computational time which are obtained from the optimization. Note that from the non-deterministic literature, nominal models ignore the occurrence of uncertainties, and they tend to have higher costs compared to other optimization approaches that take uncertainties into account. We also emphasize that the safety stock is a classic complementary approach to control uncertainties in a non-deterministic context, and such a safety stock can be incorporated into the deterministic model. The safety stock calculation, which relies on different assumptions, can be done separately as preprocessing step.

Table 3 shows the simulation results for the uncapacitated LSP. Here, the computation times required by DET (about 0.01s) and DET SS (about 0.03s) are extremely low. Next, RO takes on average 0.38s to compute a solution, followed by SP , the most demanding approach, which takes about 19.6s to propose a production plan. DET is the less robust method because its GAP OP T and its CV are the highest among all the methods tested, which indicates a costly solution highly impacted by yield disruptions. DET is followed by DET SS , SP and RO solutions. Considering the quality of the solution in terms of GAP EV P I , SP proposes the best expected cost followed respectively by the DET SS , DET and RO models. However, RO is less impacted by disruptions of the production yield than SP , since the robust CV is about 7% on average, whereas SP gives a production plan whose CV is 15% on average. In addition, although DET SS and DET give better expected costs than RO, these models lead to large costs for more adverse production yield values (since they have larger worst case, 99 th and 95 th percentile costs over the different budgets) than the worst cost obtained with the stochastic plan (258,646). In addition, the robust models have a coefficient of variation of 7% on average, while SP has a CV equal to 15%. This value confirms that SP is more impacted by disturbances on the production yield than the robust plans. Nevertheless, we stress that the SP and RO methodologies have fundamentally different objectives. Although the stochastic program seeks the minimum expected costs, the robust optimization method aims the minimum objective value that covers the costs incurred even for the worst realization of the uncertain yield. In the same vein, the relative difference between EV P I and RO Γ is greater than the GAP EV P I between EV P I and SP because the robust models propose a production plan that remains cost effective, even for the worst realization of the uncertain yield for a well-chosen budget of uncertainty, while SP may be ineffective in case of adverse events. The robust strategy leads to more conservative solutions than the production plan proposed by the stochastic program, for which the strategy is defined regarding the probability of the realization of the uncertainty. While SP is known to be prone to changes in the underlying uncertainty (e.g., if the distribution changes), the RO remains stable and robust for different and unrelated uncertainty realizations. This can be verified in the column 99 th percentile and worst case average costs, for which robust models are much less impacted by the uncertain parameter, leading to lower costs. worst case cost, are higher than the respective SP costs. DET is also less robust since its CV is around 24%. Therefore, DET and DET SS are not competitive in terms of performance to mitigate uncertainties when compared to SP and RO models. While the lowest expected cost is given by SP , the lowest 99 th percentile and worst case costs are given by the robust models. RO not only gives the lowest costs, especially for Γ equals 0.3T or 0.4T , but also fully immunizes the problem from uncertainties with a production plan whose objective value covers any realization of the uncertain yield. The CV of RO models remains the same in comparison with the uncapacitated version of the problem, and the values are still lower than the CV for the SP solutions (that decreases to 24%). This indicates that the robust plans are more stable than the stochastic ones for different realizations of the uncertain yield. In addition, the relative difference between the optimization methods and EV P I becomes lower, and the optimality gap for RO also decreases. The results

show that the robust approach is efficient when mitigating uncertainties because it offers a good, stable and robust production plan. Although the expected costs from the robust models (159,851 on average) are higher than the respective SP costs (about 124,029), the robust 99 th percentile cost (on average 189,113) is lower than the stochastic one (about 204,674). Similarly, the robust worst case cost (about 205,855 on average) is much lower than the stochastic one (around 263,150). In addition, for a budget of uncertainty greater than or equal to 0.3T , RO worst case cost is covered by the objective value. As a result, the SP model is less efficient when uncertainty information is relatively limited or if we want to limit a downside risk due to the realization of uncertainties.

The RO framework provides a systematic approach to determine a robust production plan that mitigates uncertainties with a conservatism partially controlled by the budget of uncertainty.

Similarly to [START_REF] Hnaien | Robust single-item lot-sizing problems with discrete-scenario lead time[END_REF], where the authors conclude that a robust capacitated LSP is easier to solve than the uncapacitated version, we also observe the same pattern. Our capacitated RO model is generally easier to solve, which is not usually the case for the deterministic model where the capacitated model is more difficult to solve (e.g., [START_REF] Brahimi | Single item lot sizing problems[END_REF]). [START_REF] Hnaien | Robust single-item lot-sizing problems with discrete-scenario lead time[END_REF] indicate that the capacitated model has a bound on the lot size lower than the natural bound, and as the linear relaxation of the capacitated version may be less fractional, it may lead to faster calculations. However, there may be other explanations. There are some capacitated problems in the literature where the instances are designed to be the most challenging, and so time consuming. As a result, the computational effort to solve the capacitated problem may change depending on the instance configuration in size, structure (e.g., multi level), costs, setup features (e.g., setup times, setup carryover, high setup costs), resource availability (e.g., tight capacity), and resolution approach [START_REF] Buschkühl | Dynamic capacitated lot-sizing problems: a classification and review of solution approaches[END_REF]. On the other hand, robust models search for solutions that are immunized from uncertainties, which leads to a large number of feasible solutions. As a consequence, capacitated RO models have a reduced amount of feasible solutions in the worst case perspective, since limited resources lead to more restrictions defining the solution space [START_REF] Zhanga | Robust drone selective routing problem in humanitarian transportation network assessment[END_REF]. Hence, the robust models with capacity constraints potentially require less computing effort. This has also been observed in other literature (e.g., [START_REF] Hnaien | Robust single-item lot-sizing problems with discrete-scenario lead time[END_REF]; Zhanga et al.

(

)).

To analyze the cost components incurred in the simulated production system, Figure 3 indicates the setup frequency for the uncapacitated and capacitated models, Figure 4 reports the proportion of the average expected costs imputable to the setup, production, inventory, and backorder costs for the uncapacitated and capacitated models. Finally, Figure 5 reports the average lot size ∥X∥, inventory ∥I∥, and backorders ∥B∥ levels accumulated over the entire production horizon, and the inventory and backorder levels at the end of the production planning for the uncapacitated and capacitated models.

Figure 3 shows the setup frequency for different capacity levels. As expected, the frequency of setup increases when the capacity decreases. For the uncapacitated models, RO has the highest setup frequency (with setup frequency of 62% on average). It is followed by SP with a setup frequency of 46%, DET SS with a setup frequency of 44%, and finally DET with a setup frequency of 43%. The RO models adopt a strategy with more frequent production setups to reduce the total costs and to avoid backorder costs when the problem faces low-yield values. Figure 3 also reports that the robust production plans for Γ from 0.2T to 0.4T not only mitigate uncertainties better, they also provide a configuration setup that is still efficient even if resource availability is disrupted.

As shown, for the different capacity factors, the setup frequency for these robust models does not suffer major disturbances. and SP for all components except the backorder costs. However, the robust backorder costs are much lower than the respective DET , DET SS and SP costs, which compensate for the highest setup, production and inventory costs. Therefore, the robust plan offers more possibilities for the decision-maker to take advantage of the available resources, while also reducing the impact of the uncertain events on the production plan. For instance, when the availability of the resources is more restricted, backordering becomes more frequent. RO manages to control (and even reduce)

the backorder cost by increasing the lot size and the frequency of production, yet lot size and inventory levels remain acceptable. As a result, the robust model favors a large production level to meet demands, DET SS relies on large stock level, and DET and SP take the risk of backordering goods.

Figure 5 shows that all approaches keep as many goods in stock over the entire production planning as possible. Although this strategy reduces the backorder levels (with little increase for the capacitated models), it requires larger lot sizes to keep enough quality goods to meet demands.

The production quantity becomes even higher for the DET SS than for DET to ensure that the safety stock is respected. DET and SP have quite similar production plans, with a more important difference in terms of the inventory level. For the uncapacitated problem, RO produces an amount of goods relatively close to that proposed by SP (6,411 units on average when considering all Γ values versus 6,033 units produced on average with SP and 6,229 units produced with DET ), yet To conclude, the RO provides effective support for decision-makers. Contrary to DET SS , DET and SP , RO provides an objective value that is larger than the expected simulated costs, and this can reassure the decision-maker. In addition, unlike other approaches, the robust plan covers even the most pessimistic scenario. When we investigate the stability and robustness of the proposed plans, the robust approaches provide the production plan that copes better with uncertainties because it tends to offer greater cost savings with a low impact of yield disturbance on the production plan. In addition, contrarily to SP , DET and DET SS which adopt a strategy that places backorders more often to reduce the inventory and production costs, RO relies on a sufficiently low stock level that satisfies demands and which is supported by sparse production setups that minimize costs with sporadic production backorders. Therefore, the robust models mitigate the impact of the realization of unknown and pessimistic scenarios on the production plan better.

Conclusion

In this paper, we have introduced a robust formulation for lot-sizing under yield uncertainty.

We show that the multi-period problem under box uncertainty set, where the average and standard deviation of the production yield are constant over the planning horizon while costs and demands are not, can be solved in polynomial time with a dynamic programming approach. This work also proposes a mixed-integer linear program for the non-stationary LSP with uncertain yield, and it provides insights into robust production plans. Our results show that with a proper budget of uncertainty, the robust model uncertainties with a balance between production quantities, setup costs, and inventory management costs. In addition, the robust optimization method requires less computational effort than stochastic programming, and its solutions are less conservative, yet more robust, compared to the classical approaches to dealing with uncertainties on LSPs (represented here by the nominal problem and the deterministic problem with safety stock). Other major advantages of robust optimization over the other proposed approaches are that the robust approach requires little information about the uncertainty factors and no strong assumption on the uncertain parameter characteristic. Since the static solution is an upper bound of the adaptive solution, our contributions will serve as a basis for future work that address the adaptive strategy. Further investigation is still needed to propose an adaptive framework to cope with uncertainties within a static-dynamic, or even a dynamic, decision framework. The present work could also be extended to deal with multi-echelon systems.

  Definition 3.2 (Regeneration interval). A regeneration interval [m, n] is a set of consecutive periods such that I m ( Xm ) = B m ( Xm ), I n ( Xn ) = B n ( Xn ) and I t ( Xt ) ̸ = B t ( Xt ) for all t ∈ [m + 1, n -1]. In addition, the production is strictly positive in the setup period 1 β in the interval [m, n], and it is 0 for all periods t, t ̸ = β in the interval [m + 1, n -1].
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 1 Figure 1: Piecewise inventory and backorder cost functions

Figure 1

 1 Figure 1 illustrates the total cost G [β,γ] ( Xβ ) over the interval [β, γ] as a function of the cumulative production Xβ in period β. Xβ must be chosen to minimize the sum of the inventory and backorder cost in the interval [β, γ]: G [β,γ] ( Xβ ) = τ ∈[β,γ] H τ ( Xβ ). If the production quantity is low in the period with production β (e.g., X β = Xα , where α is the period with production before β), the function γ τ =β H τ ( Xβ ) corresponds to the sum of the backorder γ τ =β Bτ ( Xβ ) in all periods, because the production is too low to cover the demand in any period of the interval [β, γ], and the worst case cost corresponds to backorder over the entire interval [β, γ]. If the quantity Xβ increases to meet the demand in period β, the worst case cost corresponds to inventory in period β and to backorder afterwards γ τ =β H τ ( Xβ ) = Îβ ( Xβ ) + γ τ =β+1 Bτ ( Xβ ).In the last segment, where Xβ is large enough to meet the demand until period γ, the worst case cost corresponds to γ τ =β Îτ ( Xβ ). Note that backorder costs are decreasing with the production quantity, whereas the inventory costs
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 2 Figure 2: Representation of the regeneration period and regeneration interval concepts

From

  Equation (C.1), the cumulative production quantity Xm (resp. Xn ) at regeneration period m and n (respectively) is Xm =

  min min m≤β≤t {F (m) + M CI(m, β, T )} ; min m≤T {F (m) + M CR(m, T )} Proposition 3.6. The dynamic program for solving the LSP under yield uncertainty runs in O(T 3 ).
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 3 Figure 3: Characteristics of the solutions in terms of setup frequency
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 4 Figure 4: Characteristics of the solutions in terms of the cost distribution

  

Table 1 :

 1 Computational time of the dynamic programming approach and the reformulated MILP

					Planning horizon size			
	Approach	6	12	24	30	36	48	96	192	384
	DP	0.002s 0.01s 0.15s 0.28s 0.54s 1.65s 22.05s 320.63s 5245.16s
	RO	0.183s 0.21s 0.37s 0.35s 0.30s 0.48s	2.30s	26.41s	2182.94s

Table 2 :

 2 Impact of the budget of uncertainty on the robust lot-sizing decision

			Uncapacitated				Capacitated		
	Γ	Exp.	95 th p.c. 99 th p.c. Worst	Obj	CV	Exp.	95 th p.c. 99 th p.c. Worst	Obj	CV
		Cost	Cost	Value		Cost	Cost	Value	
	0.								

  ). Moreover, DET SS and DET are much more impacted by yield uncertainty than RO. While, on average, DET SS has a CV of around 19%, and DET has a CV of 25%. Since DET and DET SS do not offer good solutions in terms of robustness, we focus on the comparison between RO and SP . Although SP provides lower expected costs (115,624) than RO (149,384, on average), the robust model leads to a lower worst case cost (about 193,232 on average

Table 3 :

 3 Performance of the uncapacitated models in terms of the average cost and worst case simulated costs

	Model	Exp. Cost 95 th p.c. 99 th p.c. Worst Cost	Comp. Time	CV	GAP EVPI	GAP OPT
	EV P I	89,454	98,728	102,679	107,073		6%		
	DET SS	129,241	191,368	241,716	301,517	0.03	19%	36%	2%
	DET	131,284	222,968	287,950	350,106	0.01	25%	27%	26%
	SP	115,624	152,899	194,764	258,646	19.60	15%	20%	-4%
	RO Γ=0.2T	137,315	154,685	165,599	195,557	0.63	7%	44%	-18%
	RO Γ=0.3T	146,202	163,330	170,991	188,427	0.52	7%	53%	-23%
	RO Γ=0.4T	155,134	174,025	181,590	191,107	0.34	7%	60%	-27%
	RO Γ=T	158,883	182,202	190,322	197,836	0.04	8%	62%	-32%

Table 4

 4 presents the results for the capacitated version of the LSP. Much like the uncapacitated model, DET has the lowest computational time of 0.01s, followed by DET SS (about 0.03s), RO (about 0.24s on average), and finally SP (around 15.64s). The capacitated DET is not robust enough in comparison with other approaches, since it has the highest CV and it gives the highest costs in terms of 95 th and 99 th percentile, and worst case costs. In addition, although the capacitated DET SS model has a GAP OP T as good as SP , its 95 th and 99 th percentile costs, as well as its

Table 4 :

 4 Performance of the capacitated models in terms of the average cost and worst case simulated costs Model Exp. Cost 95 th p.c. 99 th p.c. Worst Cost Comp. Time CV GAP EVPI GAP OPT

	EV P I	99,655	112,824	118,132	124,212		8%		
	DET SS	136,003	188,261	232,546	289,263	0.03	17%	30%	-4%
	DET	137,722	222,418	281,401	346,124	0.01	24%	22%	23%
	SP	124,029	162,394	204,674	263,150	15.64	16%	17%	-4%
	RO Γ=0.2T	145,625	164,536	175,202	201,651	0.31	7%	38%	-20%
	RO Γ=0.3T	156,249	174,874	182,625	200,529	0.37	7%	48%	-25%
	RO Γ=0.4T	166,748	187,231	195,255	208,007	0.24	7%	56%	-28%
	RO Γ=T	170,782	194,377	203,370	213,232	0.03	8%	59%	-32%
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solution, and then finding a scenario realization which makes this solution candidate infeasible. If such a scenario is found, this scenario realization is then added to the restricted robust model. The process terminates when a possible robust solution is guaranteed to be feasible. The reformulation per constraint and dualization leverages the optimality condition of the duality theory. In fact, the constraint-wise formulation, where the uncertain parameters appear only in the constraints, allows us to directly exploit the duality technique of [START_REF] Beck | Duality in robust optimization: primal worst equals dual best[END_REF], for which the best dual in robust models is proved to be equal to the worst primal. Thus, a robust counterpart model can be defined by reformulating all the constraints subject to uncertainty by a worst case perspective of the uncertain parameter under a predetermined uncertainty set.

Tractable robust models requires a convex optimization formulation which is are often handled by dualization [START_REF] Bertsimas | Duality in two-stage adaptive linear optimization: Faster computation and stronger bounds[END_REF], reformulation of the robust counterpart (e.g., [START_REF] See | Robust approximation to multiperiod inventory management[END_REF][START_REF] Guillaume | Robust material requirement planning with cumulative demand under uncertainty[END_REF], Lagrangian duality [START_REF] Rodrigues | Lagrangian duality for robust problems with decomposable functions: the case of a robust inventory problem[END_REF], dynamic programs (e.g., [START_REF] Bienstock | Computing robust basestock levels[END_REF][START_REF] Agra | A dynamic programming approach for a class of robust optimization problems[END_REF] and decomposition algorithms (e.g., [START_REF] Bienstock | Computing robust basestock levels[END_REF][START_REF] Attila | Robust formulations for economic lot-sizing problem with remanufacturing[END_REF]. Although these techniques often yield feasible formulations that are easy to solve, they can lead to conservative solutions [START_REF] Thiele | A note on issues of over-conservatism in robust optimization with cost uncertainty[END_REF]. [START_REF] Gorissen | Robust counterparts of inequalities containing sums of maxima of linear functions[END_REF] discuss different ways to alleviate the conservatism of the formulations. For further information on recent advances in robust optimization, we refer the interested readers to [START_REF] Gabrel | Recent advances in robust optimization: An overview[END_REF]. [START_REF] Bertsimas | A robust optimization approach to supply chain management[END_REF] proposed a first reformulation per constraint and dualization to solve the robust LSP and its variations or simplifications (e.g., the inventory management problem, which is a simplification of the lot-sizing problem where setup decisions are not taken into account). The authors consider the inventory management problem under a budgeted uncertainty set and uncertain demand, which results in a MILP formulation that can be solved by a commercial solver. The authors suggest carrying out a simulation to define a budget of uncertainty that best mitigates the uncertainties. The objective is to find a suitable compromise between cost and robustness [START_REF] Thiele | A note on issues of over-conservatism in robust optimization with cost uncertainty[END_REF]. In the same dualization vein, [START_REF] Zhang | Two-stage minimax regret robust uncapacitated lot-sizing problems with demand uncertainty[END_REF] propose a formulation for the uncapacitated LSP with uncertain demand, where the inner maximization is reformulated as a longest path problem.

The authors take the dual of the longest path problem to obtain the final robust model as an MILP, and this final model can also be solved by a commercial solver. Considering an example of adversarial approach, [START_REF] Bienstock | Computing robust basestock levels[END_REF] propose some decomposition techniques to iteratively constrain the space of realization of the uncertain parameter. The resulting approach provides plans that are sufficiently robust, and it scales well to solve large instances.

The production yield was first introduced by [START_REF] Bowman | Using statistical tools to set a reject allowance[END_REF] as the proportion of items that Proof. In the robust single-period inventory management problem under box uncertainty set, the worst inventory (resp. backorder) cost corresponds to the largest (resp. lowest) production yield, and this situation corresponds to Z = 1 (resp. Z = -1). For this special case, we denote by I(X) the worst inventory cost and by B(X) the worst backorder cost. These costs depend only on the lot size X, and they are given as follows:

The total cost TC = I(X) + B(X) is piecewise linear convex in the lot size X, and it reaches its minimum when I(X) = B(X).

Appendix B. Proof of Proposition 3.2

Proof. Since the optimal policy achieves its minimum cost when the worst inventory cost is equal to the worst backorder cost, from Proposition 3.1, we can directly derive the optimal policy as the production quantity X for which I(X) = B(X). Thus, with a little algebra, we can isolate

that results in our optimal robust policy

Proof. As in the proof for the single-period problem, we define the inventory and backorder costs in terms of the production quantities X [t] and disturbance from the mean Z [t] up to period t as follows:

where

) is the vector of X τ (resp. Z τ q ) ∀τ ≤ t; q ≤ τ . We assume that the values of Z t τ are chosen independently for each period t. Therefore, the worst case perspective in a period t sets Z t τ to 1 (for inventory) or -1 (for backorder) for all τ ≤ t. Let us define the cumulative demand as Dt = t τ =1 d τ and the cumulative production quantity up to period t as Xt = t τ =1 X τ . The worst inventory cost ( I t ( Xt )) and the worst backorder cost ( B t ( Xt )) in period t can be written as follows:

The total cost T C t for period t is given by T C t = v t X t + I t ( Xt ) + B t ( Xt ). T C t is a piecewise linear convex function in Xt . From Proposition 3.1, T C t reaches its minimum when I t ( Xt ) = B t ( Xt ).

When v t ≥ 0, the function defining the total cost at period t only has an upward shift equivalent to the total production costs in period t where I t ( Xt ) = B t ( Xt ). The period where the minimum is reached does not change. Therefore, the condition v t ≤ (ρ -ρ)b t indicates that it is profitable to produce while the production cost is lower than the backorder cost for the worst realization of the production yield, that is, for the lowest production yield rate. Note that if v t > (ρ -ρ)b t , the production cost becomes larger than the backorder cost, and T C t is a strictly increasing function.

Thus, T C t reaches its minimum when

Since the cumulative demand increases with t, we seek for the cumulative production quantities that optimize the total cost for each period and lead to a minimization of the sum maximum cost over the horizon up to t. With a little algebra, from the equality I t ( Xt ) = B t ( Xt ), we define the optimal robust cumulative policy for each period t as follows:

Since the production in period t is equivalent to the difference between the cumulative production up to t given by Xt and the cumulative production up to period t -1 given by Xt-1 , with a little algebra we define the optimal robust policy for the multi-period inventory management problem under box uncertainty set and yield uncertainty, and with non-stationary inventory and backorder costs as follows: Appendix E. The newsboy-based LSP under yield uncertainty [START_REF] Khouja | The single-period (news-vendor) problem: literature review and suggestions for future research[END_REF] present an excellent review on the single period newsboy problem. An introduction to the problem under yield uncertainty is presented by [START_REF] Noori | One-period order quantity strategy with uncertain match between the amount received and quantity requisitioned[END_REF]. Some considerations about the lot sizing as a single-stage, single-item, multi-period newsboy problem with deterministic demand random yields was proposed in [START_REF] Yano | Optimal finite and infinite horizon policies for single-stage production systems with random yields[END_REF]. The authors present the dynamic program for the newsboy-based formulation of the LSP with uncertain yield. Inspired by the newsboy-based LSP formulation proposed by [START_REF] Yano | Optimal finite and infinite horizon policies for single-stage production systems with random yields[END_REF], for each period t ∈ T , we can implement a newsboy-based problem (N B) to deal with a lot-sizing problem with uncertain yield with a lot-for-lot policy that is given as follows:

where β t = dt Qt is the expected production yield rate, and Q t the production quantity in period t. The conditions for minimization optimality are

as a first condition for optimality. Therefore, production happens if and only if the first condition of optimality is met. Thus, we may produce when:

The optimality conditions say that given the expected production yield we may produce at least

we may backorder the demands. Then, if any production is made, we have

For the capacitated LSP, we check if the quantity to be produced respects the resource availability. Any quantity not supported by available capacity must be backordered. We repeat this process over the production planning horizon to compute the optimal newsboy-based LSP solution.

Appendix F. 

We compute the safety stock with the newsboy-based solution, such that SS t = Q t -d t , where Q t is the production quantity defined with N B. This leads to a situation where backorders and inventory can occur in the same period, so that safety stock that is not respected is penalized through backorder costs.

Appendix G. The two-stage stochastic programming LSP with uncertain production yield SP handles uncertainty through a mathematical program whose objective is to minimize the expected cost [START_REF] Birge | Introduction to stochastic programming[END_REF]. The uncertain parameter is described by a probability distribution and some statistical indicators (e.g., mean and standard deviation) that are usually gathered by processing and analysis of data from historical data and other available data about the decision system. The stochastic programs are a natural benchmark to compare the production plans proposed by other methodologies and verify their performance and quality. 

Although SP is largely applied within optimization under uncertainties, this approach often suffers from scalability issues, being computationally prohibitive, and requiring advanced techniques to generate possible scenarios. For this, as many scenarios as possible are generated in order to reflect the uncertainty distribution, even though the number of scenarios may be limited to restrict the computational efforts. For our numerical experiments, we used this stochastic problem with 500 scenarios, where the yield realizations are randomly drawn from a uniform distribution with support [ρ t -ρt ; ρt + ρt ] for each period t.