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Abstract

Production yield can be highly volatile and uncertain, especially in industries where exogenous

and environmental factors such as the climate or raw material quality can impact the manufac-

turing process. Thus, for production planning, it is necessary to take into account the production

yield uncertainty to obtain robust and efficient plans. In this paper, we consider lot-sizing problems

under yield uncertainty. We propose a multi-period, single-item lot-sizing problem with backorder

and yield uncertainty via a robust optimization methodology. First, we formulate a robust model

under a budgeted uncertainty set, which is optimized under the worst case perspective to ensure

the feasibility of the proposed plan for any realization of the yield described by the uncertainty set.

Second, we analyze the structure of the optimal lot-sizing solution, and we derive the optimal robust

policy for the special case of the inventory management problem under a box uncertainty. These

results help us develop a dynamic program with polynomial complexity for the lot-sizing problem

with stationary yield rate. Finally, extensive computational experiments show the robustness and

effectiveness of the proposed model through an average and worst case analyses. The results demon-

strate that the robust approach immunizes the system against uncertainty. Moreover, a comparison

of the robust model with the nominal model, the deterministic model with safety stock, and the

stochastic model shows that the robust model balances the costs better by reducing the backorders

at the expense of more often producing a larger amount of goods.
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1. Introduction

Many industries constantly face exogenous factors that can affect the quality of their products.

In addition, the new products have become increasingly more complex with shorter life cycles, and

product customization breaks the regularity of the production process and increases the number

of failure sources (Duncan et al., 2021). It becomes particularly challenging to precisely estimate

the production yields that are necessary in the production process. In this context, accounting for

yield uncertainty is crucial in production planning because an underestimation of the production

yield leads to excess inventory, whereas an overestimation creates significant stock-outs (Yano &

Lee, 1995; Khouja, 1999).

The production yield incorporates quality factors into the lot-sizing model by measuring the

expected quantity of non-defective items resulting from the release of a given production lot. Tra-

ditionally, this production yield is estimated based on historical data or machine specifications, but

such estimations can be imprecise. In practice, the production yield is subject to multiple sources of

uncertainty, such as deviations from standard operating procedures, environmental factors such as

temperature and humidity, failures in the machinery of the system, a lack of a quality control sys-

tem, material imperfections, process dysfunction, workforce inefficiency (Grosfeld-Nir & Gerchak,

2004). The yield uncertainty concerns the inability to predict precisely the output quantities asso-

ciated with a lot size. This uncertainty occurs in many industries, such as electronics (e.g., Akella

et al., 1992; Schemeleva et al., 2018), pharmaceuticals (Cho, 2010), food (Kazaz, 2004), agriculture

(e.g., Jones et al., 2001; Anderson & Monjardino, 2019; Roell et al., 2020), steel and metallurgical

industries (Lalpoor et al., 2011), as well as in remanufacturing processes (Panagiotidou et al., 2013).

In this paper, we will consider lot-sizing problems under yield uncertainty. Lot size decisions

are a crucial step in production planning when aiming to meet customers’ needs and minimize

the overall costs (Dolgui & Proth, 2010). Although modelers often rely on deterministic variants

of lot-sizing problems (LSPs) based on the hypothesis that all data is known or can be correctly

predicted, in practice, many parameters are uncertain (Jans & Degraeve, 2008). The discrepancy

between data estimation and their actual values can have a critical impact on the quality of the

lot-sizing decision. There is a need to develop LSPs that take these uncertainties into account.

There are static and adaptive strategies for production planning under uncertainty (Bookbinder &

Tan, 1988). In a static strategy, the production decisions are fixed for the entire horizon. In an

adaptive strategy, some decisions are updated to react to the realization of the uncertainty in the

previous periods. This work provides the first in-depth investigation of a static strategy for robust
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LSPs under yield uncertainty.

A static strategy has a practical relevance to reduce system nervousness at minimal computa-

tional effort (Blackburn et al., 1986). Sereshti et al. (2021) indicates that static lot-sizing plans do

not experience nervousness, as the amount of assembly and production remains the same despite

the realization of uncertainty. The authors also report that the static strategy combined with the

receding horizon is a good approximation of the corresponding robust adaptive strategy. Thus,

the static solution can be executed in a rolling horizon framework to tackle the dynamic strategy

(Blackburn et al., 1986; Sereshti et al., 2021).

The yield uncertainty may have different impacts depending on the situation, such as an increase

in the production costs, processing duration, or lead times, and it often results in a waste of materials

and available resources. The consequences of these losses can be highly damaging to the system

(Inderfurth & Vogelgesang, 2013). Most studies on LSPs with uncertain yield consider the single-

item single-period problem (Yano & Lee, 1995; Khouja, 1999). In this simple setting, the optimal lot

size can be derived through a mathematical analysis based on the newsboy inventory management

model (Khouja, 1999). This technique, however, cannot be efficiently applied in a more general

context of multi-period lot-sizing, because it can lead to poor solutions (Yano & Lee, 1995).

Another classic technique to increase the feasibility of a production plan over exogenous un-

certainties (such as demand and supply delivery lead time) and endogenous uncertainties (such as

production yield) is the use of safety stocks (Dolgui & Prodhon, 2007). Although the safety stock

approach helps mitigate the impact of uncertain yield, safety stock calculations rely on separate

calculations and strong assumptions. This results in sub-optimal solutions as shown in Thevenin

et al. (2020). The authors indicate that the safety stock levels are computed either manually to

meet a given service level in the master production schedule, or based on strict assumptions (e.g.,

static demand, base stock policy, lot-for-lot policy, critical stock policy). Since the lot sizes and the

safety stocks are not defined simultaneously, this often results in sub-optimal decisions.

Safety stock can be integrated into the LSPs as a lower bound on the inventory level (De Bodt

et al., 1982). Zhao et al. (2001) report different approaches to define the safety stock level at

the master production schedule with the following parameters: safety coverage, service level and

standard deviation of the forecast errors. The newsboy model, as presented in Khouja (1999), helps

to determine safety stocks to balance inventory and backorder cost, rather than to satisfy a given

service level. To improve the quality of non-deterministic decisions, formulating the problems as

mixed-integer linear programs (MILP) has emerged as promising approach.
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Stochastic programming (SP) and robust optimization (RO) are good methodologies to incorpo-

rate uncertainty into the decision-making process in a systematic way. They implicitly calculate a

satisfactory inventory level to achieve greater cost savings and reduce nervousness (Thevenin et al.,

2020). SP represents uncertain parameters with their probability distributions, and the aim here

is to make decisions by minimizing the expected costs in a MILP formulation (Birge & Louveaux,

2011). Although SP is efficient for small-size instances with a limited number of scenarios, it does

not scale up well for large instances or for a large number of scenarios, notably those within dynamic

contexts (Brandimarte, 2006). Unlike the SP method, RO does not rely on a probabilistic distri-

bution. RO tackles non-deterministic problems when distributional information on the unknown

parameters is inaccurate or incomplete, and it optimizes for the worst case value of the uncertain

parameter within a bounded and convex uncertainty set (Ben-Tal et al., 2009; Bertsimas et al.,

2011). RO models often yield feasible and tractable easy-to-solve formulations, although modelers

should be careful of possible conservative behavior in the decision-making process (Thiele, 2010).

In this paper we propose a methodology based on robust optimization for the non-stationary

multi-period LSP under yield uncertainty, and we analyze it in terms of its applicability, optimality,

and efficiency. To the best of our knowledge, we are the first to consider robust optimization for an

LSP under yield uncertainty in a non-stationary production context, where the production parame-

ters such as costs, demands, and production yield rates may change at each production period. The

contribution of the current paper is fourfold. First, we derive an optimal policy for the stationary

case of the nominal and maximum deviation values of the uncertain yield. This special case consid-

ers the box uncertainty set without setup, much like the case for the demand uncertainty presented

by Bertsimas & Thiele (2006). Second, we propose a polynomial-time dynamic programming algo-

rithm for the special case of the lot-sizing problem with stationary yield rate, non-stationary costs

and demands, and box uncertainty set. Third, we propose a robust optimization formulation for a

non-stationary multi-period LSP under budgeted uncertainty set and yield uncertainty. Finally, we

perform an in-depth analysis of the resulting methods in terms of the quality of the solution, scala-

bility, stability, robustness, and flexibility. In particular, we compare the production plans resulting

from the robust, nominal, deterministic with safety stock in, and stochastic models. Although the

robust models guarantee the robustness and feasibility of the proposed plan, the stochastic programs

seek the production plan with the best expected costs. In addition, the deterministic problem with

safety stock aims to reduce the risk of shortages. Thus, we intend to analyze when each technique

is best suited to deal with production yield uncertainty.
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This paper is organized as follows: Section 2 gives a review of previous work on non-deterministic

lot-sizing problems, with a focus on uncertain production yield. Section 3 formally describes the

considered problem and introduces the robust optimization methodology, more specifically, the

mixed-integer linear formulation for the non-stationary case of the problem, the optimal robust

properties and policies, and a dynamic programming formulation for the problem with stationary

yield and non-stationary costs and demands. Section 4 presents the instances and simulation frame-

work used in our experiments, as well as the experimental results. Finally, Section 5 concludes this

work and provides some future research directions.

2. Literature Review

Because of their practical importance, LSPs have attracted a wide range of research from the

manufacturing and operations research communities. Although most studies concern the determin-

istic LSP, there is a growing amount of research on non-deterministic lot-sizing. The bibliography

on non-deterministic LSPs by Aloulou et al. (2014) confirms the prevalence of studies on demand

uncertainty, which is the most natural source of uncertainty within a production planning context.

From the literature on LSPs, it is evident that only a few studies consider other uncertain pa-

rameters such as lead time uncertainty, production yield, and cost uncertainty, even though these

other parameters may similarly affect solution quality (Brahimi et al., 2017). Aloulou et al. (2014);

Brahimi et al. (2017) also indicate that the most common approaches to solve non-deterministic

LSPs rely on mathematical analytical methods (e.g., newsboy models or the use of safety stocks in

the nominal problem), stochastic programming and robust optimization, among others. We refer

the interested readers to Pochet & Wolsey (2006); Brahimi et al. (2017) for further information

on the deterministic LSPs, and to Aloulou et al. (2014); Brahimi et al. (2017) for references on

the non-deterministic problems. As our work concerns the application of robust optimization for

lot-sizing under yield uncertainty, the rest of this section reviews the related publications on robust

optimization for lot-sizing problems.

The robust LSP has gained interest from the research community over the last decades, and

different approaches exist to solve robust problems (Gabrel et al., 2014). Robust models are often

handled through reformulation per constraint and dualization, or adversarial approaches. Note

that the adversarial techniques (Yanıkoğlu et al., 2019) refer to the approaches which does not

rely on a tractable reformulation of the robust counterpart but typically by iteratively solving a

restricted robust model with a limited set of uncertainty realizations to determine a possible robust
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solution, and then finding a scenario realization which makes this solution candidate infeasible. If

such a scenario is found, this scenario realization is then added to the restricted robust model. The

process terminates when a possible robust solution is guaranteed to be feasible. The reformulation

per constraint and dualization leverages the optimality condition of the duality theory. In fact, the

constraint-wise formulation, where the uncertain parameters appear only in the constraints, allows

us to directly exploit the duality technique of Beck & Ben-Tal (2009), for which the best dual in

robust models is proved to be equal to the worst primal. Thus, a robust counterpart model can be

defined by reformulating all the constraints subject to uncertainty by a worst case perspective of

the uncertain parameter under a predetermined uncertainty set.

Tractable robust models requires a convex optimization formulation which is are often handled

by dualization (Bertsimas & de Ruiter, 2016), reformulation of the robust counterpart (e.g., See &

Sim, 2010; Guillaume et al., 2017), Lagrangian duality (Rodrigues et al., 2021), dynamic programs

(e.g., Bienstock & Özbay, 2008; Agra et al., 2016) and decomposition algorithms (e.g., Bienstock &

Özbay, 2008; Attila et al., 2021). Although these techniques often yield feasible formulations that are

easy to solve, they can lead to conservative solutions (Thiele, 2010). Gorissen & Den Hertog (2013)

discuss different ways to alleviate the conservatism of the formulations. For further information on

recent advances in robust optimization, we refer the interested readers to Gabrel et al. (2014).

Bertsimas & Thiele (2004) proposed a first reformulation per constraint and dualization to solve

the robust LSP and its variations or simplifications (e.g., the inventory management problem, which

is a simplification of the lot-sizing problem where setup decisions are not taken into account). The

authors consider the inventory management problem under a budgeted uncertainty set and uncertain

demand, which results in a MILP formulation that can be solved by a commercial solver. The

authors suggest carrying out a simulation to define a budget of uncertainty that best mitigates the

uncertainties. The objective is to find a suitable compromise between cost and robustness (Thiele,

2010). In the same dualization vein, Zhang (2011) propose a formulation for the uncapacitated LSP

with uncertain demand, where the inner maximization is reformulated as a longest path problem.

The authors take the dual of the longest path problem to obtain the final robust model as an

MILP, and this final model can also be solved by a commercial solver. Considering an example

of adversarial approach, Bienstock & Özbay (2008) propose some decomposition techniques to

iteratively constrain the space of realization of the uncertain parameter. The resulting approach

provides plans that are sufficiently robust, and it scales well to solve large instances.

The production yield was first introduced by Bowman (1955) as the proportion of items that
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were accepted, and that reached a high enough quality to be sent to costumers. We use the same

notion to capture the proportion of good quality items in a lot. Studies on robust LSPs under

yield uncertainty are scarce. Unlike the case of uncertain demand for which the quantity of quality

goods obtained from the production is known, yield uncertainty affects the quantity of quality items

obtained from a production lot. The dependence of the optimal amount of quality goods on the

realization of the production yield increases the complexity of the adaptive formulation for the LSP

(Ben-Tal et al., 2005). Since the production yield multiplies the decision variable, the adaptive

robust model is intractable. Therefore, our goal is to derive solutions within a static decision

strategy to understand the impact of the uncertain yield on the lot-sizing decision in a context with

low or no nervousness, and to solve it with tractable models. We refer the reader to Yano & Lee

(1995) for more on an LSP under yield uncertainty.

To the best of our knowledge, Kazemi Zanjani et al. (2010) and Quezada et al. (2020) are the

only publications on stochastic programming for an LSP under yield uncertainty; and there is no

existing study on robust optimization for lot-sizing under yield uncertainty. While Kazemi Zanjani

et al. (2010) address the uncertain yield in terms of quality of raw materials, Quezada et al. (2020)

formulate the production yield of refurbished items in a remanufacturing context. These articles

show that the stochastic method is efficient within a static strategy because it minimizes the occur-

rence of the backorder. However, the stochastic models require the use of a sufficiently large scenario

set to approximate properly the underlying distributions, and they may not scale well. Considering

the robust optimization approach, Vayanos et al. (2012) tackle a stationary inventory management

model with an uncertain production yield and fixed inventory and backorder costs, but they ignore

the setup decisions and production costs. The authors propose a constraint sampling approximation

to mitigate over conservative solutions. In a similar approach, Chu et al. (2019) propose a robust

model for the procurement perspective of a stationary inventory management problem under the

budgeted uncertainty set. They restrict the maximum value of the production yield to its nominal

value, and they show that the problem can be formulated as a nominal problem with modified

deterministic demand in terms of the accumulated deviation of both the uncertain demand and

uncertain yield. The authors analyze the impact of the budget controlling the uncertainty and av-

erage and standard deviation of the uncertain parameters on the average performance of the robust

models. Even though Chu et al. (2019) propose an insightful analysis of a inventory management

problem with uncertain yield, they perform their studies in a procurement perspective, for which

the production yield is set to its nominal value. Thus, Chu et al. (2019) do not allow obtaining an
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amount of quality goods larger than the nominal ordered quantities to be obtained. In addition,

Chu et al. (2019) do not compare the performance of the robust optimization approach with the

stochastic programming and deterministic models.

This paper aims to fill the knowledge gap on the impact of the uncertain production yield

on a multi-period lot-sizing problem within a robust perspective for a non-stationary case of pro-

duction yield, costs and demands. Our work differs from the aforementioned literature in several

aspects. First, to the best of our knowledge, the current paper is the first to formulate the non-

stationary case of single-item and multi-period LSPs under yield uncertainty via robust optimiza-

tion. Second, we derive the optimal robust policies for the single-period and multi-period LSPs

with stationary nominal value and maximum deviation of the yield rate, with non-stationary in-

ventory/backorder/production costs and demands, and with zero setup costs. Third, we propose

a polynomial-time dynamic programming algorithm based on optimal robust policies to solve the

considered problem for the special case where setup costs are considered. This helps us provide

simple tools to compute a sufficiently robust plan, better suited for small decision settings or when

an efficient commercial solver is not available. Fourth, we give an in-depth analysis of the impact

of robust optimization for production planning based on numerical experiments. The results show

that robust optimization is highly efficient and produces production plans that are more robust to

different yield scenarios when compared to other decision-making methods (e.g., stochastic program,

nominal problem, deterministic problem with safety stock) in terms of quality of the solution, cost

savings, and robustness to changes or uncertainties in the system.

3. Problem statement and proposed robust approaches

This section introduces the considered model and some robust solution approaches. For the sake

of clarity, we present the nominal lot-sizing problem prior to introducing the robust optimization

models under an uncertainty set. First, we provide a robust optimization model for the LSP under

yield uncertainty. Second, we derive a closed-form solution for the single-period model with a box

uncertainty set. Next, we show how this closed-form solution can be extended to the multi-period

inventory management problem, where we provide an optimal policy for the inventory management

problem. Based on the optimal policy for the inventory management problem, we derive properties

on the optimal solution of the lot-sizing problem. Finally, the aforementioned properties allow us to

develop a dynamic programming algorithm to compute optimal solutions for the LSP with uncertain

yield, with non-stationary costs and demands, and with stationary nominal value and maximum
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deviation of the production yield.

3.1. Nominal problem

A single-item multi-period uncapacitated LSP with backorder and production yield determines

the quantity to produce in each period of the finite planning horizon T = {1, ..., |T |}. The objective

is to meet demands efficiently and with quality goods while minimizing the overall costs. For each

period t ∈ T , we are given the setup cost st, the unit production cost vt, the inventory holding cost

ht, the backorder cost bt, and the demand dt. The model comprises the following decision variables:

the lot size Xt to be produced, the inventory level It and the backorder level Bt at the end of the

period, and the setup decision Yt, such that Yt = 1 if a setup occurs in t (Xt > 0) and Yt = 0

otherwise. We define ρt as the strictly positive production yield in period t, such that 0 < ρt ≤ 1.

The formulation of the deterministic LSP with production yield is as follows:

min
∑
t∈T

stYt + vtXt + htIt + btBt (1)

s.t. :

It −Bt = It−1 −Bt−1 + ρtXt − dt ∀t ∈ T (2)

Xt ≤ MtYt ∀t ∈ T (3)

Xt, It, Bt ≥ 0 ∀t ∈ T

Yt ∈ {0, 1} ∀t ∈ T

Without a loss of generality, we assume that there is no stock or backorder at the beginning of the

planning horizon. The objective function (1) minimizes the total cost comprising the setup, unit

production, inventory, and backorder costs. The inventory balance constraints (2) compute the level

of backorder and inventory in period t from the demand, the produced goods at period t, and the

inventory and backorder levels in period t−1. The constraints (3) are setup-forcing constraints that

relate the production quantities (Xt) to the setup decisions (Yt), whereas Mt =
∑

t∈T dt

minτ≤tρτ
. These

constraints set the setup variable Yt to 1 if any production occurs in period t, and the setup remains

inactive otherwise (Yt = 0). In addition, constraints (3) can represent the capacity constraint by

setting Mt = min{Ct,
∑

t∈T dt

minτ≤tρτ
} , where Ct is the available capacity in period t.

3.2. Definition of the uncertainty set

The robust optimization considers that the uncertain parameter belongs to a bounded and con-

vex uncertainty set. However, the tractability of the robust counterpart model depends on the
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tractability of the uncertainty set (Bertsimas & Brown, 2009). Modelers often rely on some statis-

tical consideration of historical data or previous knowledge of the studied system. The first robust

optimization models used the box uncertainty set, introduced by Soyster (1973), which describes

the uncertainty within an interval of possible values and which is bounded by its minimal and max-

imal acceptable realizations. To alleviate the over-conservatism of this approach, Bertsimas & Sim

(2004) propose the box polyhedral uncertainty set, which is also known as the budgeted uncertainty

set, where the uncertain parameter takes values within a range of values whose size is controlled by

the decision-maker through a budget of uncertainty Γ. This budget of uncertainty reduces the size

of the uncertainty set and reflects the degree of risk aversion of the decision-maker. The budget is

a threshold for the number of uncertain parameters that can take their worst value (Thiele, 2010).

This budget indicates a degree of acceptable variance of the uncertainty from its nominal value,

where the larger the budget, the more averse to risk the decision-maker is. Note that the box

uncertainty corresponds to the budgeted uncertainty set with the largest Γ value.

In the present work, we consider the widely adopted budgeted uncertainty set that is given by

Ut = {−1 ≤ Zt
τ ≤ 1 :

∑t
τ=1 |Zt

τ | ≤ Γt; t ∈ T ; τ ≤ t}. This set is based on the nominal value

and maximum deviation of the uncertain yield because these values are largely used in statistical

quality control to bound the quality in terms of the key performance indicators (Godfrey, 1999).

These values are easily obtained from historical data, and they reflect the basic characteristics of

the uncertain parameter. We estimate the uncertain production yield ρ̃ through a natural parame-

terization ρ̃(Z) = ρ̄ + Zρ̂, with Z ∈ [−1, 1]. Here, the uncertain yield belongs to a range centered

on its nominal value ρ̄ and spread by its maximum deviation ρ̂. The disturbance arising from the

nominal value is given by the term Z. Therefore, we replace the production yield ρt in constraints

(2) by the uncertain production yield ρ̃t.

3.3. A robust counterpart formulation for the LSP with uncertain yield

In similar manner to Bertsimas & Thiele (2004), we rely on the reformulation per constraint

approach and robust formulation under a budgeted uncertainty set to determine the production plan

that minimizes the total costs for the LSP under yield uncertainty. The robust model is similar to

the nominal model, but the inventory balance constraints are replaced by a pair of inequalities based

on the convexity and the piecewise linearity of the inventory and backorder cost functions. Because

the backorder corresponds to a negative stock level, these costs are complementary (Bertsimas &

Thiele, 2004). We can then drop the inventory and backorder variables, so we directly compute

the inventory and backorder costs according to the difference between the number of quality goods

and demand. Thus, the constraints (5) and (6) replace the constraints (2), and Ht represents
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either the inventory or backorder cost in period t, and the constraints (5) (resp. (6)) compute

the worst case inventory (resp. backorder) costs. In addition, the inventory and backorder costs

constraints are subject to yield uncertainty, and they are optimized under the worst case realization

of the uncertain parameter in the uncertainty set. Since the reformulation per constraint and

dualization approach is applied, Ht is independently defined for each period t as the highest cost

between the worst inventory cost and the worst backorder cost under the uncertainty set Ut. While

the adversarial approach usually requires more computation time than the dualization method, it

yields less conservative lot-sizing solutions than the reformulation per constraints and dualization

approach. In the reformulation per constraint and dualization approach, the worst case is computed

independently in each period (the computation of the inventory/backorder costs in each period may

rely on different yield realizations), whereas the adversarial approach finds a unique worst case yield

vector for all time periods. As a result, the total cost of the robust model includes the setup cost,

the production costs, and the maximum periodic inventory and backorder costs for any production

yield value in the uncertainty set Ut for each period t. Therefore, we can model a robust counterpart

for the LSP with uncertain yield as follows:

min
∑
t∈T

(
stYt + vtXt +Ht

)
(4)

s.t. :

Ht ≥ max
ρ̃∈Ut

[
ht

t∑
τ=1

(ρ̃τXτ − dτ )

]
∀t ∈ T (5)

Ht ≥ max
ρ̃∈Ut

[
−bt

t∑
τ=1

(ρ̃τXτ − dτ )

]
∀t ∈ T (6)

Xt ≤ MtYt ∀t ∈ T

Xt, Ht ≥ 0 ∀t ∈ T

Yt ∈ {0, 1} ∀t ∈ T

where the upper bound on the production quantity Mt can be set based on the lowest possible value

of the production yield, that is, minτ≤t(ρ̄τ − ρ̂τ ) . Thus, for an LSP under yield uncertainty, Mt is

set to Mt =
∑

t∈T dt
minτ≤t(ρ̄τ−ρ̂τ )

.

3.4. A robust mixed integer linear formulation for the LSP with uncertain yield reformulation

Since our robust counterpart is a constraint-wise formulation, for which the uncertain yield

occurs on the right side of the inventory and backorder cost constraints, it can be addressed via

the reformulation per constraint and dualization approach. In addition, we rely on the budgeted

uncertainty set to alleviate the conservatism with a sufficiently good budget of uncertainty. We only
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show the detailed steps of reformulation per constraint for the inventory inequalities (5), because

the application for backorder inequalities is analogous. In fact, the inequalities differ only by the

sign and the costs associated with the inventory level. Thus, the inventory level is negative in case

of a backorder, and positive if the production exceeds the demand. As a result, within the worst

case perspective of the robust approach, the optimal plan corresponds to a decision leading to a

higher cost among these two groups of constraints.

The constraints (5) are nonlinear because of the maximization function. Therefore, the refor-

mulation per constraint allows us to transform the non-linear constraints into linear ones. To avoid

the inclusion of all possible quantifiers of the uncertainty in the uncertainty set and to linearize

the constraints, the reformulation per constraint and dualization approach consists of three steps:

1) reformulation of the constraints subject to uncertainty as a worst case reformulation; 2) dual-

ization of the reformulation problem; and 3) dropping the dualized reformulation into the initial

formulation without the inner optimization term (Ben-Tal & Nemirovski, 2000).

The first step is the worst case reformulation of the constraints (5) that becomes:

Ht ≥ ht

[
t∑

τ=1

(ρ̄τXτ − dτ ) + max
ZZZ∈Ut

t∑
τ=1

ρ̂τXτZ
t
τ

]
∀t ∈ T (7)

For the inventory cost constraints, the worst case scenario occurs only when the deviation is positive,

that is, when Zt
τ ≥ 0 for t ∈ T ; τ ≤ t. Then, we perform the second step to obtain a dual. Assuming

that λλλ and µµµ are the dual variables, by following the dualization technique presented by Beck &

Ben-Tal (2009), we obtain the follow primal-dual problem:

max
∑t

τ=1 ρ̂τXτZ
t
τ minΓtλt +

∑t
τ=1 µ

t
τ∑t

τ=1 Z
t
τ ≤ Γt −−−−−→

dualized
λt + µt

τ ≥ ρ̂τXτ ∀τ ≤ t

Zt
τ ≤ 1 ∀τ ≤ t λt, µ

t
τ ≥ 0 ∀τ ≤ t

We can finally perform the third step, and replace the worst case reformulation with its dual

formulation. Therefore, the constraints (7) are reformulated as follows:

Ht ≥ ht

[
t∑

τ=1

(ρ̄τXτ − dτ ) + min
λt+µt

τ≥ρ̂τXτ

(
Γtλt +

t∑
τ=1

µt
τ

)]
∀t ∈ T

Similarly, the application of the reformulation per constraint and dualization in the constraints (6)

leads to the following reformulation:

Ht ≥ −bt

[
t∑

τ=1

(ρ̄τXτ − dτ )− min
λt+µt

τ≥ρ̂τXτ

(
Γtλt +

t∑
τ=1

µt
τ

)]
∀t ∈ T

Note that for each period t, the computation of the worst case inventory cost in the constraints

(5) maximizes
∑

τ≤t ρ̂τZ
t
τ , while the computation of the worst case backorder cost in the constraints
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(6) seeks to minimize this quantity. The uncertainty set Ut is symmetric in Zt
τ . This symmetry is

due the convexity and piecewise linearity exploited in the inventory balance constraints. As a result,

the worst realization of Zt
τ ∈ [−1, 1] ∀ τ ≤ t for the constraints (6) are the opposite of the values

obtained for the constraints (5), and no feasible production yield in the uncertainty set realizes both

constraints at once. Thus, we can use the same dual variables (λt and µt
τ ) for both cases, but they

have a positive coefficient in the constraints (9) and negative in the constraints (10).

From the duality theory, since the primal worst equals dual best holds (Beck & Ben-Tal, 2009),

it only takes at least one pair of feasible dual variables in the inner minimization to ensure that the

solution holds for the outer minimization. Therefore, we can drop the minimization terms of the

reformulated constraints. Hence, we obtain the final reformulation of the robust counterpart under

budgeted uncertainty set, which is given as follows:

min
∑
t∈T

stYt + vtXt +Ht (8)

s.t. :

Ht ≥ ht

[
t∑

τ=1

(ρ̄τXτ − dτ + µt
τ ) + λtΓt

]
∀t ∈ T (9)

Ht ≥ −bt

[
t∑

τ=1

(ρ̄τXτ − dτ − µt
τ )− λtΓt

]
∀t ∈ T (10)

λt + µt
τ ≥ ρ̂τXτ ∀t ∈ T ; τ ≤ t (11)

Xt ≤ MtYt ∀t ∈ T

Xt, Ht, λt ≥ 0 ∀t ∈ T

µt
τ ≥ 0 ∀t ∈ T ; τ ≤ t

Yt ∈ {0, 1} ∀t ∈ T

Our final robust reformulation shares some similarities with the model for the inventory management

problem with uncertain demand proposed by Bertsimas & Thiele (2004). However, in the model for

uncertain demand, the deviation affects the uncertain parameter (demand) only. On the contrary,

in our model, the deviation corresponds to the worst case impact of the uncertain parameter on the

resulting production quantity.

3.5. Properties of an optimal robust policy for the inventory management problem

This section derives a closed-form solution and the optimal robust policy for special cases of the

considered problem. The closed-form solution can be determined for the inventory management

problem under the following assumptions. First, we consider the inventory management problem
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where the setup and the unit production cost are equal to zero, while the inventory and backorder

costs are non-stationary. Second, we consider a stationary case of the nominal value and maximum

deviation of the yield. Third, our policy is derived from the inventory management problem under

a box uncertainty set, where the box uncertainty set is given by Ut = {−1 ≤ Zt
τ ≤ 1 :

∑t
τ=1 |Zτ

t | ≤

t, t ∈ T, ∀τ ≤ t}. Fourth, we assume that the unit inventory cost ht is lower than the unit

backorder cost bt, and that demands are positive to obtain a positive production quantity Xt. The

first two assumptions are common in the inventory management literature, and they are also often

encountered in practice. Furthermore, although the worst case perspective from a model under a

box uncertainty set is a conservative approach to handle the robust LSP with uncertain yield, it

helps us derive the property of an optimal policy to compute a fully immunized plan.

This section is organized as follows. First, we prove that the optimal policy for the inventory

management problem under yield uncertainty sets the production quantity such that the worst

case inventory cost equals the worst case backorder cost. Second, we derive the optimal policy for

the single period problem with uncertain yield. Third, we extend the single period policy for the

multi-period inventory management problem. Fourth, we show that these policies remain valid for

the LSP that accounts for unit production costs under mild assumptions. Finally, we indicate the

need to anticipate the impact of uncertain yield on future costs in order to extend the policy to the

budgeted-based model and the problem with non-stationary yield information.

Based on Proposition 3.1 we obtain the property for an optimal solution for the inventory

management problem with uncertain yield, Proposition 3.2 gives the optimal policy for the single-

period problem.

Proposition 3.1. The optimal production quantity for the inventory management problem is at the

point where the worst inventory cost is equal to the worst backorder cost.

Proof. See Appendix A

Proposition 3.2. The optimal robust policy for the stationary case of a single-period inventory

management problem under box uncertainty set and yield uncertainty is as follows:

X =
d

ρ̄+ ρ̂
(
h−b
h+b

)
Proof. See Appendix B

We extend our analysis to the multi-period inventory management problem under box uncer-

tainty set and yield uncertainty, with stationary nominal value and maximum deviation of the yield,

14



with non-stationary costs, and with no setup costs. It leads to Proposition 3.3.

Proposition 3.3. The optimal robust policy for the multi-period inventory management problem

under box uncertainty set and yield uncertainty, with no setup costs, with stationary nominal value

and maximum deviation of the production yield, non-stationary inventory, backorder and unit pro-

duction costs is given as follows:

Xt =
ρ̄dt + ρ̂

[(
ht−1−bt−1

ht−1+bt−1

)
D̄t −

(
ht−bt
ht+bt

)
D̄t−1

]
(
ρ̄+ ρ̂

(
ht−bt
ht+bt

))(
ρ̄+ ρ̂

(
ht−1−bt−1

ht−1+bt−1

))
if the following condition is respected: vt ≤ (ρ̄− ρ̂)bt, ∀t ∈ T .

Proof. See Appendix C

Note that for the special case of the multi-period inventory management problem under box

uncertainty set and yield uncertainty, with stationary production, inventory and backorder costs

(i.e., vt = vt−1 = v , ht = ht−1 = h and bt = bt−1 = b) and without setup cost, the optimal robust

policy can be simplified as follows:

Xt =
dt

ρ̄+ ρ̂
(
h−b
h+b

)
Note also that this formula is a direct extension from Proposition 3.2, if we replace dt with d. In

addition, if v = 0, then the condition v ≤ (ρ̄− ρ̂)b is always valid.

Proposition 3.3 does not hold for the case with non-stationary nominal value and maximum

deviation of the production yield. The policy described in Proposition 3.3 is myopic in the sense that

the computation of Xt does not consider parameter values at period later than t (i.e., vτ , hτ , bτ , dτ ,

for τ > t). We explain with an example that a myopic policy cannot be optimal if the nominal

value and maximum deviation of the yield are not constant. Let us consider an extreme case for

three periods, with h = 1, b = 10, ρ̄ = (0.55, 1, 0.6), ρ̂ = (0.45, 0, 0.4), d = (15, 10, 25), s = v = 0.

The robust model returns an optimal value equal to 175 with a lot size X = (0, 50.0, 0), where

the production for the entire production horizon is done in the second period for which the yield

is maximum. A myopic policy cannot obtain the aforementioned optimal solution, because this

solution requires not performing the setup in period 1 to favor production in period 2, where the

deviation of the production yield from its nominal value is zero. The policy should anticipate the

occurrence of better production yields in later periods for the definition of an optimal production

quantity that respects the inventory balance constraints. However, it is not trivial to impose such

condition to obtain an analytical solution.
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While Proposition 3.2 can be adapted to take into account the budgeted uncertainty set, the

extension of Proposition 3.3 becomes more complicated. For the single period problem, the budgeted

set restricts only the range of the maximum deviation, which leads to a worst case scenario that

changes from |Z| = 1 to |Z| = min{Γ, 1}. If the optimal policy for the budgeted uncertainty set

in the single-period model can be obtained by replacing ρ̂ by min{ρ̂; ρ̂Γ}, that is not the case for

Proposition 3.3. Returning to the example from the previous paragraph, we set the nominal value

to ρ̄ = 0.55 and the maximum deviation to ρ̂ = 0.05. To transform the box-based formulation into a

budgeted-based formulation, we replace ρ̂t by ρ̂tΓt in the policy given in Proposition 3.3. Assuming

Γt = 0.5t, our policy gives a lot size X = (28.33, 19.64, 51.16) which leads to a budgeted-based

optimal value equal to 12, while the robust model returns a budgeted-based optimal value equal to

10 with a lot size X = (28.33, 19.24, 47.97). The budget of uncertainty prevents setting all the values

of Zt to 1 or −1. In each period, the value of Zt changes such that it takes the highest value for the

period with largest production quantity. However, the disturbance values are period independents.

As the value of Zt changes depending on the decided production quantity, the anticipation of the

occurrence of better production yields in later periods is also needed to compute an optimal lot.

Similarly to the case of non-stationary nominal value and maximum deviation of the yield rate, it

is complex to define an analytical solution.

Our myopic policy gives an optimal solution for the case of stationary nominal value and maxi-

mum deviation under a box uncertainty set. In Section 3.6 we provide a dynamic program based on

the optimal policy to solve the stationary LSP under yield uncertainty with non-stationary demands

and costs (including the setup and production costs). As our myopic policy does not optimize within

a global perspective of the planning horizon, it does not anticipate the occurrence of better produc-

tion yields for later periods, and so it gives a sub-optimal solution for the case of non-stationary

nominal value and maximum deviation of the yield rate, and also for the budgeted-based robust

solution.

3.6. Dynamic programming for the uncapacitated robust LSP with uncertain yield and static costs

In this section, we propose a dynamic programming algorithm to address the lot-sizing prob-

lem with non-stationary costs and demands, and with a stationary nominal value and maximum

deviation of the yield. The proposed dynamic programming algorithm extends the method of Zang-

will (1969) that computes a solution from a succession of regeneration intervals. The approach of

Zangwill (1969) is based on the property that between any two periods with production there is

a regeneration period where the inventory level is 0. This property is not true in the robust LSP
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under yield uncertainty, since we consider backorders and uncertain yield. However, Proposition 3.4

shows that between two periods with production there is a point where the worst inventory cost is

equal to the worst backorder cost. We define such a period as a regeneration period. In addition, the

approach of Zangwill (1969) must be adjusted because our extension for the case of uncertain yield

allows the backorder at the end of the production horizon. This section successively introduces

the main concepts that support our reasoning, the property of an optimal solution for the LSP

with uncertain yield and the optimal policy in Section 3.6.1, and finally the dynamic programming

algorithm in Section 3.6.2.

3.6.1. Structure of the optimal solution to the LSP under yield uncertainty

Let us define the cumulative demand as D̄t =
∑t

τ=1 dτ and the cumulative production quantity

up to period t as X̄t =
∑t

τ=1Xτ . The worst inventory cost (Ît(X̄t)) and the worst backorder cost

(B̂t(X̄t)) in period t can be written as follows:

We assume D̄t =
∑t

τ=1 dτ to be the cumulative demand, while X̄t =
∑t

τ=1Xτ is the cumulative

production quantity in period t. Similarly to the proof of Proposition 3.1, Ît(X̄t) and B̂t(X̄t) can

be given as follows:

Ît(X̄t) = max
{
ht

[
X̄t(ρ̄+ ρ̂)− D̄t

]
; 0
}

B̂t(X̄t) = max
{
bt
[
D̄t − X̄t(ρ̄− ρ̂)

]
; 0
}

Definition 3.1 (Regeneration period). A regeneration period is a period r where the worst inven-

tory cost (Îr(X̄r)) equals to the worst backorder cost (B̂r(X̄r)). Therefore, the regeneration period

r is such that: Îr(X̄r) = B̂t(X̄t).

Definition 3.2 (Regeneration interval). A regeneration interval [m,n] is a set of consecutive periods

such that Îm(X̄m) = B̂m(X̄m), În(X̄n) = B̂n(X̄n) and Ît(X̄t) ̸= B̂t(X̄t) for all t ∈ [m+ 1, n− 1]. In

addition, the production is strictly positive in the setup period1 β in the interval [m,n], and it is 0

for all periods t, t ̸= β in the interval [m+ 1, n− 1].

Proposition 3.4. The solution to the robust LSP under yield uncertainty with stationary nomi-

nal value and maximal deviation of the yield is a succession of regeneration intervals. For each

regeneration interval, there is a setup period, beta, that minimizes the total cost over the interval.

Proof. Given two consecutive periods with production β and γ (with no production in the interval

[β + 1,γ − 1], the worst case inventory and backorder cost Hτ in the interval [β, γ] depends only on

1A setup period can be a regeneration period for a regeneration interval of only one period.
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the cumulative production X̄β in period β. Note that the costs after period γ will depend on the

production quantity of period γ. Therefore, the production quantity in period β only impacts the

costs in the interval [β, γ]. We redefine the worst case inventory or backorder cost in period τ in

terms of the cumulative production in t by Hτ (X̄t) that is given as follows:

Hτ (X̄t) = max

 Îτ (X̄t)

B̂τ (X̄t)

 = max

h
[
X̄t(ρ̄+ ρ̂)− D̄τ

]
b
[
D̄τ − X̄t(ρ̄− ρ̂)

]


where D̄t is the cumulative demand up to period t.

Figure 1: Piecewise inventory and backorder cost functions

Figure 1 illustrates the total costG[β,γ](X̄β) over the interval [β, γ] as a function of the cumulative

production X̄β in period β. X̄β must be chosen to minimize the sum of the inventory and backorder

cost in the interval [β, γ]: G[β,γ](X̄β) =
∑

τ∈[β,γ]Hτ (X̄β). If the production quantity is low in

the period with production β (e.g., X̄ β = X̄α, where α is the period with production before β),

the function
∑γ

τ=β Hτ (X̄β) corresponds to the sum of the backorder
∑γ

τ=β B̂τ (X̄β) in all periods,

because the production is too low to cover the demand in any period of the interval [β, γ], and the

worst case cost corresponds to backorder over the entire interval [β, γ]. If the quantity X̄β increases

to meet the demand in period β, the worst case cost corresponds to inventory in period β and to

backorder afterwards
∑γ

τ=β Hτ (X̄β) = Îβ(X̄β)+
∑γ

τ=β+1 B̂τ (X̄β). In the last segment, where X̄β is

large enough to meet the demand until period γ, the worst case cost corresponds to
∑γ

τ=β Îτ (X̄β).

Note that backorder costs are decreasing with the production quantity, whereas the inventory costs

are increasing with X̄β. Therefore, G[β,γ] is a piecewise linear and convex function, such that the

minimum is at a breakpoint. Each breakpoint in the function G[β,γ] corresponds to the case where

the worst case backorder cost equals the worst case inventory cost in a period. As Xβ is chosen to

minimize G[β,γ], it is chosen such that the worst case backorder cost equals the worst case inventory

cost in a period n ∈ [β, γ]. We call such a period a regeneration period, and a regeneration interval

is a set of period [m,n] where m and n are regeneration periods. As there is a regeneration period
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between each successive period with setup, each regeneration interval contains one period with

setup. In the case the last regeneration period r occurs before the end of the production horizon,

that is r < T , then we cannot define a complete regeneration interval and the minimum cost in the

interval [r, T ] corresponds to G[r,T ] =
∑T

τ=r+1Hτ (X̄r). In this case, all demands are backordered

from the last regeneration period until the end of the production horizon.

Figure 2: Representation of the regeneration period and regeneration interval concepts

Let m be the last regeneration period before starting production in the period β, such that n is

the next regeneration period after β and m ≤ β ≤ n. Figure 2 illustrates the regeneration interval

concept. Here, Î (resp. B̂) indicates that the worst case cost at each period corresponds to the

inventory (resp. backorder) costs. As previously mentioned, the production quantity in period β

in the regeneration interval [m,n] is chosen such that, at the regeneration periods m and n, the

worst inventory cost is equal to the worst backorder cost. In addition, the worst cost corresponds

to inventory costs (resp. backorder cost) from period β to n− 1 (resp. m+ 1 to β − 1).

Proposition 3.4 indicates that the solution to LSP under yield uncertainty is a succession of re-

generation periods, where each lot size covers the demand over the regeneration interval in which the

production quantity is defined. Proposition 3.5 gives the optimal lot size to cover each regeneration

interval.

Proposition 3.5. The amount to produce in the setup period β to cover the regeneration interval

[m,n] (with β ∈ [m,n] and m < n) is given by Xβ, and it is calculated as follows:

Xβ = X̄n − X̄m

Proof. The previous proposition (Proposition 3.4) show that the optimal quantity to produce to

fulfil demands over a regeneration interval [m;n] is hold in period β where the cost is minimal.

From Equation (C.1), the cumulative production quantity X̄m (resp. X̄n) at regeneration period

m and n (respectively) is X̄m =
∑m

τ=1 dτ

ρ̄+ρ̂
(

hm−bm
hm+bm

) (resp. X̄n =
∑n

τ=1 dτ

ρ̄+ρ̂
(

hn−bn
hn+bn

) ). Note that Equation

(C.1) applies here because the production in period β to cover a regeneration interval [m;n] equals

the difference between the cumulative production quantity in n (the end of the interval) and the

cumulative production quantity in m (the beginning of the interval). Since there is no production
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in interval [β+1, n], the cumulative production X̄β in period β is equal to X̄n. In addition, there is

no production in interval [m+ 1, β − 1] and the cumulative production in this interval corresponds

to X̄m. The production quantity in period β (with m < n) corresponds to the difference between

the cumulative production at the end of the regeneration interval and the cumulative production

at its beginning. Therefore, Xβ = X̄n − X̄m. Note that if a setup period is a regeneration period,

then the lot size in period β should cover only the demand from period β. For this special case, the

lot size is directly computed by the policy Xβ =
dβ

ρ̄+ρ̂

(
hβ−bβ
hβ+bβ

) given in Proposition 3.3.

3.6.2. The dynamic program for the LSP with uncertain yield

Our dynamic program for the LSP under yield uncertainty iteratively defines successive regen-

eration intervals from the first production period until the end of the production horizon. For each

interval, it defines the setup period that minimizes the costs over the interval. The dynamic pro-

gramming recursion requires low computational effort because it works with the optimal cumulative

policies that are easily computed, and it exploits forward recursion to avoid recalculating decision

values that have already been defined.

The function MCI(m,β, n) gives the minimal cost over the regeneration interval [m,n] for

a production setup in period β ∈ [m,n]. MCI(m,β, n) includes a setup cost, the production

cost associated with the optimal production quantity for the regeneration interval [m,n] (com-

puted according to Proposition 3.5) and the inventory balance costs over the regeneration in-

terval. From Proposition 3.4, we know that the cumulative production in n covers all the de-

mands up to n and that the cumulative production in m covers all demands up to m. Thus,

for the MCI(m,β, n)’s inventory management cost calculation is given by
∑β−1

τ=m+1Hτ (X̄m) in

[m+1, β−1] and by
∑n

τ=β Hτ (X̄n) in [β, n]. Thus, MCI(m,β, n) is then given by MCI(m,β, n) ={
sβ + vβXβ +

∑β−1
τ=m+1Hτ (X̄m) +

∑n
τ=β Hτ (X̄n)

}
, where Xβ = X̄n − X̄m if m < n, and Xβ =

dβ

ρ̄+ρ̂

(
hβ−bβ
hβ+bβ

) otherwise. Contrary to the deterministic case, it is possible to obtain a plan for which

the backorder level at the end of the production horizon is not zero. Thus, we denote by MCR(r, T )

the minimal cost from the last regeneration period r to T , the end of the planning horizon, when

only the backorder levels are considered. MCR(r, T ) =
∑T

τ=r+1Hτ (X̄r).

Finally, we define the dynamic program recursive function by F (t), which gives the optimal cost

from period 0 to t. The costs up to period t correspond to the cost of the last regeneration period

m plus the cost up to period t (that is in the interval [m, t]). Therefore, F (t) can be computed

recursively. Given the optimal cost F (m) up to period m < t, the computation of F (t) enumerates
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all possible values for the last regeneration period m and the period with setup β ∈ [m, t]. Thus,

F (t) is given by

F (t) = min
m≤β≤t

{F (m) +MCI(m,β, t)} ∀ t ≤ T − 1

Since the last regeneration period can occur before period T , the end of the production horizon, we

should modify F (T ) to take into account the possibility of backordering all unmet demands from

the last regeneration period r until T . Therefore, the optimal cost at the period T is given by

F (T ) = min

{
min

m≤β≤t
{F (m) +MCI(m,β, T )} ; min

m≤T
{F (m) +MCR(m,T )}

}
Proposition 3.6. The dynamic program for solving the LSP under yield uncertainty runs in O(T 3).

Proof. See Appendix Appendix D

Proposition 3.6 indicates that our dynamic program performs in O(T 3). The problem becomes

NP-hard when extended to the capacitated context, and this can be verified with a reduction from

the deterministic single-period capacitated LSP (Florian & Klein, 1971; Bitran & Yanasse, 1982).

4. Results and discussions

This section presents the experimental study, and its objective is threefold: 1) to demonstrate

the robustness of the presented approaches in coping with a non-deterministic LSP; 2) to report an

in-depth investigation on the robust LSP with uncertain yield, its performance, the quality of the

solutions, and the computational efficiency, and 3) to evaluate and compare the performance of the

different optimization approaches in terms of the average and worst case quality of the solution.

The experiments consider the following solution approaches: DETSS , the deterministic model

with safety stock, as presented in Appendix F; DET , the nominal model with ρt = ρ̄t, as presented

in Section 3.1; SP , the stochastic program, as presented in Appendix G; ROΓ, the LSP under

yield uncertainty, with uncertain yield and budget Γ, as presented in Section 3.3; and finally DP ,

the dynamic program for computing an optimal robust plan for the stationary LSP under box

uncertainty set and with uncertain yield, as presented in Section 3.6.

Note that DET and SP are natural benchmarks to compare solution approaches that cope with

uncertainties. DETSS corresponds to the approach commonly used in practice, where a safety stock

is computed separately from the lot sizes. This section is organized as follows: Section 4.1 presents

the instance generation method. Section 4.2 introduces the simulation framework used to compare

the methods. Finally, Section 4.3 presents an analysis of the developed models. We discuss the
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performance of the dynamic program in Section 4.3.1, the investigation of the price of robustness

in terms of the budget of uncertainty in Section 4.3.2, and the performance and quality of the plans

resulting from different optimization approaches in Section 4.3.3. We also highlight the advantages

of using robust optimization to hedge against uncertainties in a highly uncertain context.

4.1. Instance generation

We generate each parameter of the instances using uniform distributions. We set the value of the

support of these uniform distributions in a similar manner to Brandimarte (2006) to generate setup

and inventory costs. As Brandimarte (2006) considers demand uncertainty, we generate the demand

similarly to Alem et al. (2018)). The production costs, the inventory costs, the demands, the nominal

values of the production yield rate, and the maximum deviations of the production yield were

randomly generated using an uniform distribution within the following intervals: vt ∈ U(10, 20),

ht ∈ U(1, 10), dt ∈ U(140, 480), ρ̄t ∈ U(0.5, 0.7), and ρ̂t ∈ U(0.1, 0.3), respectively. The setup costs

are computed with the time between orders formula: st =
¯̄Dt·TBO2·ht

2 , where ¯̄Dt represents the

average demand up to period t. The capacity can be computed as Ct = Φ
∑

t∈T dt
minτ≤t(ρ̄τ−ρ̂τ )

, where Φ is

a factor to control the tightness of the capacity. To adapt these instances for the LSP under yield

uncertainty, we generate the nominal and maximum deviation of the yield with uniform distributions

with expectations in the range (0.5; 0.7) and (0.1; 0.3), respectively.

For instance, Chu et al. (2019) consider the stationary case, where they set the mean and

standard deviation of the production yield to 0, 95 and 0, 05, respectively. As we aim to study the

impact of yield uncertainty in the lot-sizing model, we consider here the non-stationary uncertain

production quality, where the quantity of quality goods varies significantly between periods. This

setting relates to complex production systems in which factors affecting production yield are difficult

to measure or estimate precisely due to lack of data. We consider instances with 4, 12, and 24

periods, a time between orders of 1, 2, or 4, and a backorder cost that equals 2, 5, or 10 times

the holding cost for each period t. In addition, we consider a capacity factor Φ of 25%, 50%, and

75% for the capacitated model, and we assume a capacity factor of 100% for the non-capacitated

model. We generate the instances with a full factorial design for these four parameters, which leads

to 108 instances. We set the inventory and backorder levels to zero at the beginning of the horizon.

Because the optimal policies are valid only for the uncapacitated models and the special case with

non-stationary costs and demands but with constant nominal value and maximum deviation of

the production yield, we generate 81 additional instances resulting from the factorial design of the

following parameters: 6, 12, 24, 30, 36, 48, 96, 192, 384 periods, time between orders of 1, 2 or 4,
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and backorder costs equaling 2ht, 5ht, or 10ht. We increase the instance size compared to the other

instances to measure in terms of computational time the performance of the dynamic program for

larger size problems.

4.2. Simulation

We analyze the quality of the production plans through a simulation with |Ω| = 5000 scenarios

generated with Monte Carlo sampling, where each scenario represents a possible realization of the

production yield over the horizon. We simulate the yield with a uniform distribution with support

[ρ̄t − ρ̂t; ρ̄t + ρ̂t] in period t. We note EV PI, the expected value of perfect information, the average

cost of the perfect information solutions, where EV PIω is the cost of the solution computed with

the deterministic model for scenario ω. To evaluate each optimization method, we fix Xt and Yt

obtained from the optimization step in the deterministic model for each scenario ω.

4.3. Experimental results

This section presents an average cost analysis for the uncapacitated and capacitated problems.

The algorithms were implemented in Python 3.6, and the mathematical models were solved with

CPLEX version 12.10. The experiments were run on Intel(R) Xeon Broadwell 2683/2.1GHz pro-

cessors with 125GB of RAM. All the models for all the instances were solved until optimality. We

compare the methods based on the objective value provided by each optimization approach (e.g.,

the objective function given in (4) for ROΓ), the average computational time (in seconds), the

expected value (Exp. Cost) of each solution approach evaluated in the simulation, along with the

worst case cost in the simulation, and the 95th and 99th percentile cost (p.c.). We also report the

relative difference between the expected value of perfect information EV PI and the simulated ex-

pected value of each method given by GAPEV PI = 100× Exp. Cost− EVPI
EVPI . In addition, we define

by GAPOPT = 100 × Exp. Cost−Obj. Value
Obj. Value the relative difference between the objective value of a

solution approach and its simulated expected cost. Finally, we report the coefficient of variation

CV , an index that indicates a high variability of the costs in the simulation. Thus, CV is the ratio

of the standard deviation to the mean, such that the higher CV is, the more widely dispersed the

values are from the mean.

4.3.1. Performance of the dynamic program

First, we analyze the performance of the dynamic program to solve the multi-period LSP under

box uncertainty set and yield uncertainty, with constant nominal value and maximum deviation of
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the production yield, and with non-stationary costs and demands. Table 1 reports the computational

times (in seconds) for DP and RO on the 81 instances generated for the special case. Each column

corresponds to 9 instances with the same planning horizon, and we indicate the average time to

solve them.

Table 1: Computational time of the dynamic programming approach and the reformulated MILP

Planning horizon size

Approach 6 12 24 30 36 48 96 192 384

DP 0.002s 0.01s 0.15s 0.28s 0.54s 1.65s 22.05s 320.63s 5245.16s

RO 0.183s 0.21s 0.37s 0.35s 0.30s 0.48s 2.30s 26.41s 2182.94s

Table 1 shows that the robust dynamic program is computationally less demanding than the

robust model for instances with at most 30 periods, while DP becomes more computationally

demanding than RO for a production horizon greater than 30 periods. However, when we consider

the instances with production horizon larger than 30 periods, DP requires around 10.35 minutes

to determine a solution for instances with a planning horizon up to 384 periods, while RO takes

only 4.05 minutes on average to compute the same solution. These results show that the DP

approach is better suited for small instances or when an efficient commercial solver is not available.

However, for medium and large sized instances, the computational effort required by DP becomes

too expensive compared to the solution computed with the MILP robust model. Moreover, RO can

deal with more general LSPs, which makes its performance more competitive with a problem-specific

approach. Therefore, the MILP model can be extended to include different practical constraints

while it can still remain efficient in terms of speed in computing an optimal solution.

4.3.2. Price of robustness

To analyze the impact of the budget Γ, we consider different budgets to represent the decision-

maker’s risk aversion. For each instance, the budget varies from low aversion (Γ = 0.1T ) to extreme

aversion Γ = T , going through a progression with the size of the production planning. The budget

represents the maximum number of uncertain parameters that can take the worst case value (Thiele,

2010). Since Γ indicates the number of periods where the production yield can take its worst case

realization, it is convenient to express Γ as a proportion of T . Table 2 indicates the impact of the

budget of uncertainty on the costs for all the considered instances. While the Obj Value column

gives the average of the objective function values computed in the optimization step, the remaining
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columns report the average value for the features obtained in the simulation step.

Table 2: Impact of the budget of uncertainty on the robust lot-sizing decision

Γ

Uncapacitated Capacitated

Exp.

Cost

95th p.c. 99th p.c. Worst

Cost

Obj

Value

CV Exp.

Cost

95th p.c. 99th p.c. Worst

Cost

Obj

Value

CV

0.1T 124,759 154,848 185,884 243,203 132,004 10.8% 132,974 163,341 195,299 246,471 143,413 10.9%

0.2T 137,315 154,685 165,599 195,557 169,567 7.2% 145,625 164,536 175,202 201,651 184,442 7.5%

0.3T 146,202 163,330 170,991 188,427 192,411 6.6% 156,249 174,874 182,625 200,529 210,890 6.7%

0.4T 155,134 174,025 181,590 191,107 218,111 7.0% 166,748 187,231 195,255 208,007 237,618 6.9%

0.5T 157,734 178,326 186,106 195,401 227,836 7.4% 169,338 190,815 199,027 210,768 247,834 7.1%

0.6T 159,507 181,895 190,214 197,804 236,085 7.9% 172,066 194,805 203,491 213,806 256,740 7.7%

0.7T 159,353 182,381 190,537 197,941 237,278 8.3% 171,205 194,614 203,547 213,448 258,356 7.9%

0.8T 158,777 182,053 190,164 197,690 237,573 8.4% 170,770 194,318 203,299 213,112 258,566 7.9%

0.9T 158,883 182,202 190,322 197,836 237,732 8.4% 170,782 194,377 203,370 213,232 258,805 8.0%

1.0T 158,883 182,202 190,322 197,836 237,732 8.4% 170,782 194,377 203,370 213,232 258,805 8.0%

As reported in Table 2, for both the uncapacitated and capacitated model, the best solutions

in terms of objective value and expected cost are obtained for a very tiny budget (Γ equals 0.1T

and 0.2T ), so the decision-maker should be willing to accept a high degree of risk resulting from

uncertainties. Considering the 95th percentile costs, the lowest costs for the uncapacitated (resp.

capacitated) model are obtained for Γ between 0.1T and 0.3T , while the lowest 99th percentile costs

are given by a budget equaling 0.2T and 0.3T for both variants. In addition, the lowest worst case

costs are obtained for Γ between 0.2T and 0.5T for both uncapacitated and capacitated model, and

the lowest coefficient of variation CV can be achieved for a budget that equals 0.3T , 0.4T (resp.

0.3T , 0.4T or 0.5T ). However, for Γ lower than 0.1T , the robust objective value fails to cover the

95th percentile cost (and, consequently, the worst case cost). Therefore, with such a low Γ value, the

decision-maker has no guarantee that the plan will be sufficiently immunized from uncertainties. On

the other hand, although the solutions obtained for Γ greater than 0.4T achieve a robustness level

that covers the worst case scenarios, they are overly conservative. In fact, for Γ between 0.5T and

T , the objective value is much higher than the worst case cost. Thus, even if for the largest value

of Γ the solutions are robust, they do not result in the best option in terms of the expected costs

and stability. Therefore, the budget of uncertainty in the interval from 0.2T to 0.4T offers better

production plans, since the decisions are sufficiently stable because of a low CV , the expected cost

is relatively low, and the robust objective value covers at least the 99th percentile costs (and even
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the worst case costs for when Γ equals 0.3T or 0.4T ).

4.3.3. Comparison of the LSP with uncertain yield resolution approaches

We now compare the production plans resulting from RO, SP , DET and DETSS . We consider

RO with a budget that is equal to 0.2T , 0.3T , and 0.4T because we have previously shown that

these values result in better trade-offs in average costs, conservatism and robustness. We also

consider the extreme case of the robust approach with a more conservative solution for Γ = T . All

results reported in these sections are an average over all the considered instances. In addition, all

values are computed during the simulation step except for the optimal values and computational

time which are obtained from the optimization. Note that from the non-deterministic literature,

nominal models ignore the occurrence of uncertainties, and they tend to have higher costs compared

to other optimization approaches that take uncertainties into account. We also emphasize that the

safety stock is a classic complementary approach to control uncertainties in a non-deterministic

context, and such a safety stock can be incorporated into the deterministic model. The safety stock

calculation, which relies on different assumptions, can be done separately as preprocessing step.

Table 3 shows the simulation results for the uncapacitated LSP. Here, the computation times

required by DET (about 0.01s) and DETSS (about 0.03s) are extremely low. Next, RO takes on

average 0.38s to compute a solution, followed by SP , the most demanding approach, which takes

about 19.6s to propose a production plan. DET is the less robust method because its GAPOPT

and its CV are the highest among all the methods tested, which indicates a costly solution highly

impacted by yield disruptions. DET is followed by DETSS , SP and RO solutions. Considering

the quality of the solution in terms of GAPEV PI , SP proposes the best expected cost followed

respectively by the DETSS , DET and RO models. However, RO is less impacted by disruptions

of the production yield than SP , since the robust CV is about 7% on average, whereas SP gives a

production plan whose CV is 15% on average. In addition, although DETSS and DET give better

expected costs than RO, these models lead to large costs for more adverse production yield values

(since they have larger worst case, 99th and 95th percentile costs). Moreover, DETSS and DET

are much more impacted by yield uncertainty than RO. While, on average, DETSS has a CV of

around 19%, and DET has a CV of 25%.

Since DET and DETSS do not offer good solutions in terms of robustness, we focus on the

comparison between RO and SP . Although SP provides lower expected costs (115,624) than RO

(149,384, on average), the robust model leads to a lower worst case cost (about 193,232 on average
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Table 3: Performance of the uncapacitated models in terms of the average cost and worst case simulated costs

Model Exp. Cost 95th p.c. 99th p.c. Worst Cost Comp. Time CV GAPEVPI GAPOPT

EV PI 89,454 98,728 102,679 107,073 6%

DETSS 129,241 191,368 241,716 301,517 0.03 19% 36% 2%

DET 131,284 222,968 287,950 350,106 0.01 25% 27% 26%

SP 115,624 152,899 194,764 258,646 19.60 15% 20% -4%

ROΓ=0.2T 137,315 154,685 165,599 195,557 0.63 7% 44% -18%

ROΓ=0.3T 146,202 163,330 170,991 188,427 0.52 7% 53% -23%

ROΓ=0.4T 155,134 174,025 181,590 191,107 0.34 7% 60% -27%

ROΓ=T 158,883 182,202 190,322 197,836 0.04 8% 62% -32%

over the different budgets) than the worst cost obtained with the stochastic plan (258,646). In

addition, the robust models have a coefficient of variation of 7% on average, while SP has a CV equal

to 15%. This value confirms that SP is more impacted by disturbances on the production yield than

the robust plans. Nevertheless, we stress that the SP and RO methodologies have fundamentally

different objectives. Although the stochastic program seeks the minimum expected costs, the robust

optimization method aims the minimum objective value that covers the costs incurred even for the

worst realization of the uncertain yield. In the same vein, the relative difference between EV PI

and ROΓ is greater than the GAPEV PI between EV PI and SP because the robust models propose

a production plan that remains cost effective, even for the worst realization of the uncertain yield

for a well-chosen budget of uncertainty, while SP may be ineffective in case of adverse events. The

robust strategy leads to more conservative solutions than the production plan proposed by the

stochastic program, for which the strategy is defined regarding the probability of the realization of

the uncertainty. While SP is known to be prone to changes in the underlying uncertainty (e.g., if

the distribution changes), the RO remains stable and robust for different and unrelated uncertainty

realizations. This can be verified in the column 99th percentile and worst case average costs, for

which robust models are much less impacted by the uncertain parameter, leading to lower costs.

Table 4 presents the results for the capacitated version of the LSP. Much like the uncapacitated

model, DET has the lowest computational time of 0.01s, followed by DETSS (about 0.03s), RO

(about 0.24s on average), and finally SP (around 15.64s). The capacitated DET is not robust

enough in comparison with other approaches, since it has the highest CV and it gives the highest

costs in terms of 95th and 99th percentile, and worst case costs. In addition, although the capacitated

DETSS model has a GAPOPT as good as SP , its 95th and 99th percentile costs, as well as its
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Table 4: Performance of the capacitated models in terms of the average cost and worst case simulated costs

Model Exp. Cost 95th p.c. 99th p.c. Worst Cost Comp. Time CV GAPEVPI GAPOPT

EV PI 99,655 112,824 118,132 124,212 8%

DETSS 136,003 188,261 232,546 289,263 0.03 17% 30% -4%

DET 137,722 222,418 281,401 346,124 0.01 24% 22% 23%

SP 124,029 162,394 204,674 263,150 15.64 16% 17% -4%

ROΓ=0.2T 145,625 164,536 175,202 201,651 0.31 7% 38% -20%

ROΓ=0.3T 156,249 174,874 182,625 200,529 0.37 7% 48% -25%

ROΓ=0.4T 166,748 187,231 195,255 208,007 0.24 7% 56% -28%

ROΓ=T 170,782 194,377 203,370 213,232 0.03 8% 59% -32%

worst case cost, are higher than the respective SP costs. DET is also less robust since its CV is

around 24%. Therefore, DET and DETSS are not competitive in terms of performance to mitigate

uncertainties when compared to SP and RO models. While the lowest expected cost is given by SP ,

the lowest 99th percentile and worst case costs are given by the robust models. RO not only gives

the lowest costs, especially for Γ equals 0.3T or 0.4T , but also fully immunizes the problem from

uncertainties with a production plan whose objective value covers any realization of the uncertain

yield. The CV of RO models remains the same in comparison with the uncapacitated version of

the problem, and the values are still lower than the CV for the SP solutions (that decreases to

24%). This indicates that the robust plans are more stable than the stochastic ones for different

realizations of the uncertain yield. In addition, the relative difference between the optimization

methods and EV PI becomes lower, and the optimality gap for RO also decreases. The results

show that the robust approach is efficient when mitigating uncertainties because it offers a good,

stable and robust production plan. Although the expected costs from the robust models (159,851

on average) are higher than the respective SP costs (about 124,029), the robust 99th percentile cost

(on average 189,113) is lower than the stochastic one (about 204,674). Similarly, the robust worst

case cost (about 205,855 on average) is much lower than the stochastic one (around 263,150). In

addition, for a budget of uncertainty greater than or equal to 0.3T , RO worst case cost is covered

by the objective value. As a result, the SP model is less efficient when uncertainty information is

relatively limited or if we want to limit a downside risk due to the realization of uncertainties.

The RO framework provides a systematic approach to determine a robust production plan

that mitigates uncertainties with a conservatism partially controlled by the budget of uncertainty.

Similarly to Hnaien & Afsar (2017), where the authors conclude that a robust capacitated LSP is
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easier to solve than the uncapacitated version, we also observe the same pattern. Our capacitated

RO model is generally easier to solve, which is not usually the case for the deterministic model

where the capacitated model is more difficult to solve (e.g., Brahimi et al. (2006)). Hnaien & Afsar

(2017) indicate that the capacitated model has a bound on the lot size lower than the natural

bound, and as the linear relaxation of the capacitated version may be less fractional, it may lead

to faster calculations. However, there may be other explanations. There are some capacitated

problems in the literature where the instances are designed to be the most challenging, and so time

consuming. As a result, the computational effort to solve the capacitated problem may change

depending on the instance configuration in size, structure (e.g., multi level), costs, setup features

(e.g., setup times, setup carryover, high setup costs), resource availability (e.g., tight capacity), and

resolution approach (Buschkühl et al., 2010). On the other hand, robust models search for solutions

that are immunized from uncertainties, which leads to a large number of feasible solutions. As a

consequence, capacitated RO models have a reduced amount of feasible solutions in the worst case

perspective, since limited resources lead to more restrictions defining the solution space (Zhanga

et al., 2020). Hence, the robust models with capacity constraints potentially require less computing

effort. This has also been observed in other literature (e.g., Hnaien & Afsar (2017); Zhanga et al.

(2020)).

To analyze the cost components incurred in the simulated production system, Figure 3 indicates

the setup frequency for the uncapacitated and capacitated models, Figure 4 reports the proportion

of the average expected costs imputable to the setup, production, inventory, and backorder costs

for the uncapacitated and capacitated models. Finally, Figure 5 reports the average lot size ∥X∥,

inventory ∥I∥, and backorders ∥B∥ levels accumulated over the entire production horizon, and the

inventory and backorder levels at the end of the production planning for the uncapacitated and

capacitated models.

Figure 3 shows the setup frequency for different capacity levels. As expected, the frequency of

setup increases when the capacity decreases. For the uncapacitated models, RO has the highest

setup frequency (with setup frequency of 62% on average). It is followed by SP with a setup

frequency of 46%, DETSS with a setup frequency of 44%, and finally DET with a setup frequency

of 43%. The RO models adopt a strategy with more frequent production setups to reduce the total

costs and to avoid backorder costs when the problem faces low-yield values. Figure 3 also reports

that the robust production plans for Γ from 0.2T to 0.4T not only mitigate uncertainties better,

they also provide a configuration setup that is still efficient even if resource availability is disrupted.
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As shown, for the different capacity factors, the setup frequency for these robust models does not

suffer major disturbances.

Figure 3: Characteristics of the solutions in terms of setup frequency

Figure 4 gives an overview of the cost distributions for all considered approaches. RO leads

to fewer backorders (6% of the cost for RO when Γ = 0.3T versus 20% for SP ) at the expense of

higher setup, production and inventory costs. RO tends to exceed the costs from DET , DETSS

and SP for all components except the backorder costs. However, the robust backorder costs are

much lower than the respective DET , DETSS and SP costs, which compensate for the highest

setup, production and inventory costs. Therefore, the robust plan offers more possibilities for the

decision-maker to take advantage of the available resources, while also reducing the impact of the

uncertain events on the production plan. For instance, when the availability of the resources is

more restricted, backordering becomes more frequent. RO manages to control (and even reduce)

the backorder cost by increasing the lot size and the frequency of production, yet lot size and

inventory levels remain acceptable. As a result, the robust model favors a large production level to

meet demands, DETSS relies on large stock level, and DET and SP take the risk of backordering

goods.

Figure 5 shows that all approaches keep as many goods in stock over the entire production

planning as possible. Although this strategy reduces the backorder levels (with little increase for

the capacitated models), it requires larger lot sizes to keep enough quality goods to meet demands.

The production quantity becomes even higher for the DETSS than for DET to ensure that the

safety stock is respected. DET and SP have quite similar production plans, with a more important

difference in terms of the inventory level. For the uncapacitated problem, RO produces an amount

of goods relatively close to that proposed by SP (6,411 units on average when considering all Γ

values versus 6,033 units produced on average with SP and 6,229 units produced with DET ), yet
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(a) Uncapacitated problem

(b) Capacitated problem

Figure 4: Characteristics of the solutions in terms of the cost distribution
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Figure 5: Characteristics of the solutions in terms of production, inventory and backorder levels

it leads to a low backorder level (an average of 507 units backordered with the robust plan versus

1,021 units backordered units with SP and 1,450 units with DET ). Besides, the robust models

have a larger inventory level on average of 192 units (resp. 241 units), versus 53 units (resp. 52

units) for SP and 115 units (resp. 111 units) for DET .

To conclude, the RO provides effective support for decision-makers. Contrary to DETSS , DET

and SP , RO provides an objective value that is larger than the expected simulated costs, and this

can reassure the decision-maker. In addition, unlike other approaches, the robust plan covers even

the most pessimistic scenario. When we investigate the stability and robustness of the proposed

plans, the robust approaches provide the production plan that copes better with uncertainties

because it tends to offer greater cost savings with a low impact of yield disturbance on the production

plan. In addition, contrarily to SP , DET andDETSS which adopt a strategy that places backorders

more often to reduce the inventory and production costs, RO relies on a sufficiently low stock level

that satisfies demands and which is supported by sparse production setups that minimize costs with

sporadic production backorders. Therefore, the robust models mitigate the impact of the realization

of unknown and pessimistic scenarios on the production plan better.

5. Conclusion

In this paper, we have introduced a robust formulation for lot-sizing under yield uncertainty.

We show that the multi-period problem under box uncertainty set, where the average and standard
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deviation of the production yield are constant over the planning horizon while costs and demands

are not, can be solved in polynomial time with a dynamic programming approach. This work also

proposes a mixed-integer linear program for the non-stationary LSP with uncertain yield, and it

provides insights into robust production plans. Our results show that with a proper budget of un-

certainty, the robust model mitigates uncertainties with a balance between production quantities,

setup costs, and inventory management costs. In addition, the robust optimization method requires

less computational effort than stochastic programming, and its solutions are less conservative, yet

more robust, compared to the classical approaches to dealing with uncertainties on LSPs (repre-

sented here by the nominal problem and the deterministic problem with safety stock). Other major

advantages of robust optimization over the other proposed approaches are that the robust approach

requires little information about the uncertainty factors and no strong assumption on the uncer-

tain parameter characteristic. Since the static solution is an upper bound of the adaptive solution,

our contributions will serve as a basis for future work that address the adaptive strategy. Further

investigation is still needed to propose an adaptive framework to cope with uncertainties within a

static-dynamic, or even a dynamic, decision framework. The present work could also be extended

to deal with multi-echelon systems.
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Appendices

Appendix A. Proof of Proposition 3.1

Proof. In the robust single-period inventory management problem under box uncertainty set, the

worst inventory (resp. backorder) cost corresponds to the largest (resp. lowest) production yield,

and this situation corresponds to Z = 1 (resp. Z = −1). For this special case, we denote by Î(X)

the worst inventory cost and by B̂(X) the worst backorder cost. These costs depend only on the

lot size X, and they are given as follows:

Î(X) = max {h [X(ρ̄+ ρ̂)− d] , 0} B̂(X) = max {b [d−X(ρ̄− ρ̂)] , 0}

The total cost TC = Î(X) + B̂(X) is piecewise linear convex in the lot size X, and it reaches

its minimum when Î(X) = B̂(X).

Appendix B. Proof of Proposition 3.2

Proof. Since the optimal policy achieves its minimum cost when the worst inventory cost is equal

to the worst backorder cost, from Proposition 3.1, we can directly derive the optimal policy as

the production quantity X for which Î(X) = B̂(X). Thus, with a little algebra, we can isolate

X in the equality h [X(ρ̄+ ρ̂)− d] = b [d−X(ρ̄− ρ̂)], that results in our optimal robust policy

X = d
ρ̄+ρ̂(h−b

h+b )
.
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Appendix C. Proof of Proposition 3.3

Proof. As in the proof for the single-period problem, we define the inventory and backorder costs

in terms of the production quantities X[t] and disturbance from the mean Z[t] up to period t as

follows:

It(X[t], Z[t]) = max

{
ht

t∑
τ=1

[
Xτ (ρ̄+ ρ̂Zt

τ )− dτ
]
; 0

}

Bt(X[t], Z[t]) = max

{
bt

t∑
τ=1

[
dτ −Xτ (ρ̄+ ρ̂Zt

τ )
]
; 0

}

where X[t] (resp. Z[t]) is the vector of Xτ (resp. Zτ
q ) ∀τ ≤ t; q ≤ τ . We assume that the values of

Zt
τ are chosen independently for each period t. Therefore, the worst case perspective in a period t

sets Zt
τ to 1 (for inventory) or −1 (for backorder) for all τ ≤ t. Let us define the cumulative demand

as D̄t =
∑t

τ=1 dτ and the cumulative production quantity up to period t as X̄t =
∑t

τ=1Xτ . The

worst inventory cost (Ît(X̄t)) and the worst backorder cost (B̂t(X̄t)) in period t can be written as

follows:

Ît(X̄t) = max
{
ht

[
X̄t(ρ̄+ ρ̂)− D̄t

]
; 0
}

B̂t(X̄t) = max
{
bt
[
D̄t − X̄t(ρ̄− ρ̂)

]
; 0
}

The total cost TCt for period t is given by TCt = vtXt+ Ît(X̄t)+ B̂t(X̄t). TCt is a piecewise linear

convex function in X̄t. From Proposition 3.1, TCt reaches its minimum when Ît(X̄t) = B̂t(X̄t).

When vt ≥ 0, the function defining the total cost at period t only has an upward shift equivalent

to the total production costs in period t where Ît(X̄t) = B̂t(X̄t). The period where the minimum

is reached does not change. Therefore, the condition vt ≤ (ρ̄ − ρ̂)bt indicates that it is profitable

to produce while the production cost is lower than the backorder cost for the worst realization of

the production yield, that is, for the lowest production yield rate. Note that if vt > (ρ̄ − ρ̂)bt, the

production cost becomes larger than the backorder cost, and TCt is a strictly increasing function.

Thus, TCt reaches its minimum when Ît(X̄t) = B̂t(X̄t), if condition vt ≤ (ρ̄− ρ̂)bt is respected.

Since the cumulative demand increases with t, we seek for the cumulative production quantities

that optimize the total cost for each period and lead to a minimization of the sum maximum cost

over the horizon up to t. With a little algebra, from the equality Ît(X̄t) = B̂t(X̄t), we define the

optimal robust cumulative policy for each period t as follows:

X̄t =
D̄t

ρ̄+ ρ̂
(

ht−bt
ht+bt

) =

∑t
τ=1 dτ

ρ̄+ ρ̂
(

ht−bt
ht+bt

) (C.1)

Since the production in period t is equivalent to the difference between the cumulative production

up to t given by X̄t and the cumulative production up to period t− 1 given by X̄t−1, with a little
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algebra we define the optimal robust policy for the multi-period inventory management problem

under box uncertainty set and yield uncertainty, and with non-stationary inventory and backorder

costs as follows:

Xt = X̄t − X̄t−1 =
D̄t

ρ̄+ ρ̂
(

ht−bt
ht+bt

) − D̄t−1

ρ̄+ ρ̂
(

ht−1−bt−1

ht−1+bt−1

) =
ρ̄dt + ρ̂

[(
ht−1−bt−1

ht−1+bt−1

)
D̄t −

(
ht−bt
ht+bt

)
D̄t−1

]
(
ρ̄+ ρ̂

(
ht−bt
ht+bt

))(
ρ̄+ ρ̂

(
ht−1−bt−1

ht−1+bt−1

))

Appendix D. Proof of Proposition 3.6

Proof. Since our dynamic program relies on Proposition 3.4 and Proposition 3.5, it addresses the

uncapacitated LSPs under a box uncertainty set, with uncertain yield, with non-stationary costs

and demands, and with stationary nominal value and maximum deviation of the production yield.

Clearly, the execution time is dominated by the search for successive regeneration intervals and their

respective setup periods for each t in function F (t). The search for the best production setup β and

regeneration interval [m,n] that gives the minimal MCI(m,β, n) cost takes at most O(T 2). One

should also consider the function MCR(r, T ) that minimizes the costs from the last regeneration

period to the end of the planning horizon in O(T ) run time. However, O(T ) is dominated by

O(T 2). Since dominated complexities can be ignored, then we only consider O(T 2). With the

forward approach, we can access previously computed values in O(1). Thus, the recursive function

F (t) takes only O(1) to access the values for F (τ), τ < t. Running the dynamic program calls T

times the recursive function F (t). Consequently, the dynamic program takes at most O(T 3) run

time to propose a solution over the entire planning horizon.

Appendix E. The newsboy-based LSP under yield uncertainty

Khouja (1999) present an excellent review on the single period newsboy problem. An intro-

duction to the problem under yield uncertainty is presented by Noori & Keller (1986). Some

considerations about the lot sizing as a single-stage, single-item, multi-period newsboy problem

with deterministic demand random yields was proposed in Yano (1989). The authors present the

dynamic program for the newsboy-based formulation of the LSP with uncertain yield. Inspired

by the newsboy-based LSP formulation proposed by Yano (1989), for each period t ∈ T , we can

implement a newsboy-based problem (NB) to deal with a lot-sizing problem with uncertain yield

with a lot-for-lot policy that is given as follows:

NB : minE(Zt) = vtQt + bt

∫ βt

0
(dt − ρtQt)f(ρ)dρ+ ht

∫ 1

βt

(ρtXt − dt)f(ρ)dρ (E.1)
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where βt =
dt
Qt

is the expected production yield rate, and Qt the production quantity in period t.

The conditions for minimization optimality are Q∗
t ⇔ ∂E(Zt)

∂Qt
= 0; ∂2E(Zt)

∂Q2
t

≥ 0. We have

∂E(Zt)
∂Qt

= vt+htρ̄t+(bt+ht)E(β) as a first condition for optimality. Therefore, production happens

if and only if the first condition of optimality is met. Thus, we may produce when:

∂E(Z∗
t )

∂Q∗
t

= vt + htρ̄tE

(
dt
dt

= 1

)
+ (bt + ht)E(β∗

t ) = 0 ∴ E(β∗
t ) =

vt + htρ̄t
bt + ht

where β∗
t = dt

X∗
t
. The second condition for optimality is ∂2E(Zt)

∂Q2
t

=
(bt+ht)d2t

Q3
t

. The optimality

conditions say that given the expected production yield we may produce at least Qt = dt otherwise,

we may backorder the demands. Then, if any production is made, we have ∂2E(Zt)
∂Q2

t
≥ 0.

For the capacitated LSP, we check if the quantity to be produced respects the resource availabil-

ity. Any quantity not supported by available capacity must be backordered. We repeat this process

over the production planning horizon to compute the optimal newsboy-based LSP solution.

Appendix F. The deterministic LSP with safety stock

Inspired by the work of Absi & Kedad-Sidhoum (2009), we consider DETSS , the deterministic

LSP with production yield ρt and safety stock SSt, which is given as follows:

min
∑
t∈T

stYt + vtXt + htIt + btBt

s.t. :

It −Bt = It−1 −Bt−1 + ρtXt − dt ∀t ∈ T

Xt ≤ MtYt ∀t ∈ T

It ≥ SSt ∀t ∈ T

Xt, It, Bt ≥ 0 ∀t ∈ T

Yt ∈ {0, 1} ∀t ∈ T

We compute the safety stock with the newsboy-based solution, such that SSt = Qt − dt, where

Qt is the production quantity defined with NB. This leads to a situation where backorders and

inventory can occur in the same period, so that safety stock that is not respected is penalized

through backorder costs.
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Appendix G. The two-stage stochastic programming LSP with uncertain production

yield

SP handles uncertainty through a mathematical program whose objective is to minimize the

expected cost (Birge & Louveaux, 2011). The uncertain parameter is described by a probability

distribution and some statistical indicators (e.g., mean and standard deviation) that are usually

gathered by processing and analysis of data from historical data and other available data about

the decision system. The stochastic programs are a natural benchmark to compare the production

plans proposed by other methodologies and verify their performance and quality.

To evaluate the performance of our robust model, we propose a scenario-based stochastic pro-

gram to represent the lot-sizing problem under yield uncertainty, based on the case study presented

by Kazemi Zanjani et al. (2010). While the authors present a multi-stage formulation which deals

with a dynamic decision problem, our work addresses a static decision strategy. A two stage ap-

proach corresponds to a static decision in which the plan for the entire production horizon is defined

before the realization of the uncertainty. Since our work investigates the static version of the LSP

with uncertain yield, a two stage model is a more appropriate benchmark to measure the quality

of the static robust model. We consider a set Ω of possible yield scenarios, where each scenario ω

has a probability pω of realization. ρωt is the realization of the uncertain yield for the period t of in

scenario ω. The two-stage stochastic program for the LSP with uncertain yield is given as follows:

min
∑
ω∈Ω

pω
∑
t∈T

stYt + vtXt + htI
ω
t + btB

ω
t

s.t. :

Iωt −Bω
t = Iωt−1 −Bω

t−1 + ρωt Xt − dt ∀t ∈ T ; ω ∈ Ω

Xt ≤ Mt · Yt ∀t ∈ T

Xt ≥ 0 ∀t ∈ T

Iωt , B
ω
t ≥ 0 ∀t ∈ T ; ω ∈ Ω

Yt ∈ {0, 1} ∀t ∈ T

Although SP is largely applied within optimization under uncertainties, this approach often

suffers from scalability issues, being computationally prohibitive, and requiring advanced techniques

to generate possible scenarios. For this, as many scenarios as possible are generated in order to

reflect the uncertainty distribution, even though the number of scenarios may be limited to restrict

the computational efforts. For our numerical experiments, we used this stochastic problem with

500 scenarios, where the yield realizations are randomly drawn from a uniform distribution with

support [ρ̄t − ρ̂t; ρ̄t + ρ̂t] for each period t.
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