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Approaching transversal concepts with discrete mathematics: a situation 

from ongoing mathematical research for undergraduate students 

Cécile Ouvrier-Buffet 

 

Abstract. This article develops a situation, coming from ongoing mathematical research, that enables students to 
experience a mathematical activity involving the construction of definitions. An epistemological analysis “à la Lakatos” 
of this situation is developed: it highlights how the discrete situation allows a mathematical experience for undergraduate 
students and contains interesting and even challenging material for all levels, including teachers, lecturers and research 
mathematicians. Productions of freshmen from scientific and non-scientific courses who face the situation are also 
analyzed through their defining processes and open up perspectives for higher education, especially on defining processes 
and proofs, with concepts transversal to mathematics (generating set, minimality) in the background. 

Keywords. Discrete mathematics, generating set, minimality, definition, defining process.    

Résumé.  Cet article propose une situation, issue de la recherche en mathématiques, permettant de faire vivre aux étudiants 
une activité mathématique impliquant la construction de définitions. Une analyse épistémologique "à la Lakatos" de cette 
situation est développée : elle souligne comment la situation discrète permet une expérience mathématique pour des 
étudiants d’université et contient du matériel intéressant et même stimulant pour tous les niveaux, y compris les 
enseignants, les chargés de cours et les mathématiciens. Des productions d’étudiants de première année de filières 
scientifiques et non scientifiques sont proposées pour illustrer le propos et ouvrir des perspectives, pour l’enseignement 
supérieur, en particulier sur les processus de définition, la preuve, avec, en arrière-plan, des concepts transversaux aux 
mathématiques (ensemble générateur, minimalité).  

Mots-clés. Mathématiques discrètes, ensemble générateur, minimalité, définition, processus de définition.  
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1. Introduction 

The main feature of my mathematical and didactical research concerns the heuristics, and more 
precisely the “defining processes” which are used in mathematical research. Several studies about 
problem-solving have underscored the various interests of putting learners in a mathematical enquiry 
with open problems. These studies concern proof, modeling, changes of representations, use of new 
technologies etc. but little is found about “defining” even if the study of defining activities is a discreet 
but constant didactical topic of research in mathematics education since the 90s (e.g Mariotti & 
Fischbein, 1997; Zandieh & Rasmussen, 2010; see Ouvrier-Buffet 2013 for a synthesis). This is one 
of the reasons that prompts me to initiate further discussion about “definitions” between 
mathematicians and mathematics educators, through this article: the definitions and their construction 
have definitely a place in mathematical research. I have the following guiding idea: I consider that 
definitions are concepts holders. During a research process, they are not finite products. Definitions 
evolve through several statements, each one giving new features of the involved connected concepts. 
In fact, to understand how concept formation works implies exploring the wide field of mathematical 
definitions considered as concepts holders. Studying the dialectic between the construction of 
definitions and the formation of concepts should be useful to design didactical situations where 
learners would have to build new concepts in order to solve a problem. That leads me to several major 
questions: how can one characterize defining processes in mathematics? Are learners able to define? 
Do they understand concepts better if they are involved in a defining process? How are linked defining 
and proving processes? I therefore had to work out a theoretical framework through epistemological, 
didactical and empirical research in order to characterize defining processes (Ouvrier-Buffet, 2013, 
2015ab). I have conducted several experiments1 at the university level: the results of these 
experiments show that the students’ ability to define is real. Moreover, I have interviewed 
mathematicians who think suitable to implement defining activities at the university level, but without 
conceptualizing the way it can be implemented with students (Ouvrier-Buffet 2013, 2015b). They are 
very interested in the didactical research that can lead to new situations for the university. The main 

 
1 My experiments were conducted in discrete mathematics with the following concepts which are of different natures: 
trees (a known discrete concept, graspable in several ways), discrete straight lines (a concept which is still at work in 
mathematics and computer science, for instance in the perspective of the design of a discrete geometry) and a wide study 
of properties of displacements on a regular grid (e.g. Ouvrier-Buffet, 2003a, 2003b, 2006, 2011). 
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objective of such an approach is to engage students in a real mathematical activity dealing with 
transversal skills (defining, proving), while trying to overcome the well-known difficulties of students 
at the secondary-tertiary transition. Indeed, several syntheses (e.g. Gueudet & Vandebrouck 2022, 
Selden 2012) converge on students' difficulties and causes at this transition marked by a change in 
requirements and in the relationship to the objects and processes of proof, more complex and more 
formal, which requires an acculturation to the practices of mathematicians: abstract mathematical 
notions raising conceptualization difficulties, difference in institutional culture between secondary 
and higher education, lack of articulation between semantic, syntactic and pragmatic approaches etc. 
Early university students use inappropriate reasoning about mathematical concepts and their 
relationships and fail to construct proofs (e.g. Selden & Selden 2003). Besides, the students 
themselves feel that they have great difficulty with the logic and formalism. 

In this context, activities involving defining processes and proofs seem promising as pointed out by 
researchers in various domains e.g. Larsen & Zandieh (2005) quoting Freudenthal (1973) or Edwards 
& Ward (2008). Indeed, Edwards & Ward (2008) insist on the fact that undergraduate students “(…) 
do not use definitions the way mathematicians do, even in the apparent absence of any other course 
of action.” (p. 417) and ask for a promotion of an understanding of the role of definitions in 
mathematics. But how to characterize this role, the defining processes and defining activities? Does 
it mean transferring some of the research process done by mathematicians to the classroom? How to 
implement such a process with students in university? For what purposes? 

To begin with, I will present a part of my theoretical framework borrowed from epistemology, that 
of Lakatos (1961, 1976), focusing on definitions and definitional procedures. I will use it in order to 
highlight the potential defining processes in an original problem - displacements on a regular grid - 
still partially open from a mathematical point of view. This problem should bring a wealth of 
interesting material for students, lecturers and researchers, mainly in order to propose supervised 
research projects to students. I will then give some elements of the processes of freshmen at 
university, from scientific and non-scientific courses, when they face this problem, in order to 
illustrate the features and the obstacles of defining processes. The concluding section argues that this 
research opens new opportunities to deal with abstract contents at university, involving discrete 
mathematics but also defining processes, and engaging students in a mathematical exploration of a 
real ongoing problem, namely a research situation (in the sense of Gravier & Ouvrier-Buffet, 2022). 

2. Epistemological framework 

Exploring the wide question of “definitions” can lead us to deal with philosophical notions (such as 
those of Aristotle, Leibniz or Popper), logical constraints linked to the construction of a formal theory, 
epistemological tendencies (e.g. Lakatos 1976) and cognitive aspects (e.g. Vinner, 1991, with concept 
image and concept definition). As pointed out by Alcock & Simpson (2009, p.3-17), “definitions 
themselves may be complicated and considerably harder to work with” (p. 13) for students. They use 
Vinner’s tool to exemplify and underline students’ difficulties with various concepts (functions, 
limits, convergence, groups…) when concept images (i.e. knowledge and experience associated with 
a concept) and spontaneous conceptions interfere with concept definition (i.e. the mathematical 
definition). Regarding these students’ difficulties with definitions, Alcock & Simpson (2009) also 
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stress the need “to give students access to more authentic mathematical experience.” (p. 16), for 
example in small-class situations.   

I would like to underline that looking at definitions as specific statements does not give us any clues 
to characterize defining processes. From a cognitive point of view, Freudenthal (1973, p. 458) has 
studied two kinds of defining activities: the descriptive (a posteriori) defining and the constructive (a 
priori) defining. In both cases, the mathematical concept involved is already known by the learners; 
the learners do not build it in order to solve a problem, they do not encounter a quite new concept. 
Indeed, the descriptive defining “outlines a known object by singling out a few characteristics 
properties”, and the constructive defining “models new objects out of familiar ones” by examining 
changes to a given definition. I would like to go further in the direction of the constructive defining, 
but for concepts unknown by the learners. The aim is to design defining situations with unfamiliar 
concepts for students in order to avoid any pre-existing concept images or conceptions.  

Let me consider an aspect of Lakatos’s work (the concept-stretching), which in my opinion does not 
get all the attention it deserves: “A definitional procedure is a procedure of concept formation” (1961, 
p. 54). This kind of procedure focuses on knowledge expressed in skills and processes. Lakatos’s 
original contribution to the debate consisted in his attempt at a modeling of the mathematical 
discovery while integrating both the social2 and the conceptual3 aspects of the matter. He was strongly 
influenced by Pólya’s mathematical heuristics, Hegel’s dialectic, and Popper’s fallibilism. Lakatos 
has clearly influenced mathematics education, especially in the development of new kinds of 
interactions between teacher and students and in the implementation of the game of proofs and 
refutations in the classroom4 (e.g. Larsen & Zandieh, 2008). However, Lakatos’s modeling of 
definitional procedures, more present in his PhD thesis (1961) than in his book ‘Proof and 
Refutations’ (1976), is little known, or rather little used. I will take this work about defining processes 
into account and test it on a research situation.  

We should be well-aware that the processes (the defining processes and the process of proof and 
refutations) described by Lakatos strongly depend on the starting situation which consists of: a 
situation of classification (which delimitates what is the class of polyedra), an initial conjecture (Euler 
formula), a first representation of the mathematical objects at stake5 (polyedra), and a new proof (that 
of Cauchy, where a change of thinking is required because it implies a topological view). In particular, 
with this context of geometrical objects, it means that the concepts have a pre-existence, as well as 
there exists a pre-axiomatic theory. Very few situations following the whole Lakatosian model of 
refutations have been experimented in mathematics education with freshmen: all of them have the 
previously quoted aspects (e.g. Larsen & Zandieh 2005, 2008; Zandieh & Rasmussen 2010) and 
emphasize the didactical interests of revising a definition and its dialectic with proving processes. I 

 
2 The debate context. 
3 The connection between concept and proof, on the one hand, and between concept formation and definitions, on the 
other hand. 
4 The limits of the use of the Lakatosian method have been pointed out by De Villiers (2002) and Hanna (2007), both of 
them quoting Conway. In particular, they said that Lakatos’s method couldn’t be applied generally. In defense of Lakatos, 
in his original thesis, he denies that the unique logic of mathematical discovery exists. 
5 The intended concept is then partially known a priori. 
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will extend the use of (a part of) the Lakatosian modeling to a less restrictive situation (see section 
3). Let me first present this modeling which is specific to definitions. 

I point out that Lakatos leaves aside the first encounter with a mathematical object and also the 
axiomatization, the latter being, for him, the end of the creative process. His study of the mathematical 
process leads him to focus on refutational processes and definitions in connection with concept 
formation. Lakatos precisely identifies three kinds of definitions: the naive definitions, the zero-
definitions and the proof-generated definitions, whose respective functions are to denominate, to 
communicate a result and to prove. A naive definition can be stated first, but it cannot evolve6, 
contrary to a zero-definition that marks the beginning of the research process (hence the term “zero”). 
A zero-definition can be vague, outside of any formalism, it does not matter: it has to evolve into a 
“better” one. Hence a fundamental question arises: how can a zero-definition mutate? Lakatos relies 
on two cases (see also Larvor, 1998):  

- The concept is altered by the presentation of a new kind of object. Here, the conjecture should be 
protected from such a counter-example (a monster), the zero-definition can be modified; 

- Or the concept is altered by the presentation of a new proof: a work of translation is engaged, when 
one deals with a new proof in another mathematical framework. This is where a system of 
mathematical concepts can grow. Then, a zero-definition becomes a proof-generated definition with 
a validation by a proof. Note that it is every difficult to transpose such processes in education, because, 
usually, definitions come first, are not built by students and not revisited in proof. 

A 'good' characteristic of a concept that lends itself to a defining activity is that there are several 
potential zero-definitions (for example, in different mathematical frameworks or with different views 
of the concept), as proved by Ouvrier-Buffet (2013) with a synthesis of literature. Indeed, working 
on zero-definitions makes possible the process of constructing a mathematical concept: the dialectic 
between concept construction and definition construction is visible in the evolution of zero-
definitions. 

I will show you in an example that this modeling of definition processes is helpful to analyze 
mathematical situations involving defining processes and also to characterize students’ procedures. 
The chosen situation involves concepts which are unfamiliar. The mathematical results are also 
unfamiliar and may be surprising for students. They belong to discrete mathematics. This choice of 
discrete concepts is justified by the fact that discrete mathematics is an active branch of contemporary 
mathematics with accessible problems and concepts, several ways of reasoning, questioning and 
modeling. It also brings new ways of dealing with axiomatic construction and providing mathematical 
experiences (e.g. Ouvrier-Buffet 2020, Hart & Sandefur 2018). 

 
6 Lakatos explains that we can do nothing with a naive concept, because we cannot extend it, unless you are able to fit it 
in a theory, then the considered concept will not be naive anymore! 
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3. A discrete problem: epistemological analysis 

3.A. The problem  

I present here a very natural statement of the problem I consider. Take a regular squared grid7 and 
some displacements which can be described with integers (or only positive integers) on this grid 
(Table 1). A starting point is given. An experimental fact is easy to grasp: starting from the starting 
point, a point of the grid is reachable or not, when one uses the given displacements. So “the” 
question: which points of the grid can one reach using positive integer combinations of these 
displacements? 

 

 

 

 

 

 
or (2 ; 1) or ...  

A discrete grid A displacement Some points reached with this displacement 

Table 1 – The objects at stake 

There are a lot of underlying questions: is it possible to reach all the points of the grid? or some 
sectors of the grid? Can one characterize generating sets of displacements? Are they minimal ones? 
What about the cardinality of minimal generating sets? Etc. 

This situation makes it possible to work on objects (grids, displacements and points reached) and 
implies mathematical questions on transversal concepts to be defined such as generator and 
minimality. The terms generator, generating set8 are used in mathematics (and also in physics) in 
various domains: linear algebra, commutative and abstract algebra (generating set of a group, a ring, 
an ideal, a module), in category theory, in topology, in differential equations (with tangent space), in 
graph theory, in computer science and combinatorics. The study of the “idea” of the concept of 
generator/generating set is usually done separately in each of these domains, but it is transversal in 
mathematics, as are the questions about minimality and minimum cardinality. Here, minimality is 
used when searching for a minimal generating set, i.e. a set of displacements that can be used to reach 
every point of the grid, but, if even one of those displacements is missing, this ability is lost. And the 
cardinality of minimal generating sets is not necessarily unique.  

Let me develop the underlying defining process at stake in this problem. 

 
7 One can take another regular tessellation... not easy! 
8 But also linear combination (and its derivative concepts: linear independence and linear dependence). See the 
development of epistemological justification of Harel (2018). 
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3.B. An epistemological analysis of the problem  

I will propose one possible exploration9 of the discrete problem through the Lakatosian kinds of 
definitions, while making room for heuristics as they can be involved in such a mathematical enquiry.  

According to Pólya (1945, 1954), heuristic is a set of strategies for solving mathematical problems to 
learn, to teach and to reconstruct mathematics. Pólya emphasizes induction and analogy, but also 
several heuristics, such as generalizing (a result or a problem), specializing, modifying the problem, 
tabulating the observations, simplifying a problem, studying examples, studying extreme cases, 
studying concepts/problems/results from various standpoints, using what we call in mathematics 
education generic examples10. I consider that the following actions are heuristics: proving, 
conjecturing, refuting, creating, modeling, defining, extending but also transforming a questioning 
process, being able to mobilize non-linear reasoning, experimenting, decomposing-recomposing. In 
fact, fallibilism is central concern for Lakatos, with a specific focus on defining processes (not 
considered by Pólya) and their interactions with proof, reaching the growing of the mathematical 
knowledge. I will emphasize this dimension of the mathematical activity and discovery in the analysis 
of the mathematical problem. This kind of analysis has helped me to design a didactical situation for 
freshmen (see appendix and Ouvrier-Buffet 2003a, 2011).  

I will use letter G for the regular squared grid, A for a starting point, and the term integer point or 
point for lattice point. I have chosen to define a displacement on G with two positive integers and two 
directions (among up, down, left and right). For instance, “2 squares right and 3 squares down”. A 
displacement can be represented with a vector. One can also consider displacements and their 
opposite displacements (and so integer coordinates), it is still a real issue. The order of the 
displacements does not interfere because displacements are commutative (property easy to prove). 

3.B.a. First heuristic: exploring “small cases” to highlight phenomena and properties 

There is an obvious set of four displacements which allows us to reach every point of G (Fig. 1). It is 
also obvious that two displacements are not enough to reach all the integer points: either all the points 
of a sector of G (i.e. a set of integer points bounded by two rays) are reached (Fig. 2), or only some 
points of a sector are reached (Fig. 3). I would like to underscore two major facts: 

- The question of “reaching integer points” can be refined: one can study sets of displacements 
which allow to reach all the points of a given sector and/or sets of displacements which allow to reach 
all the integer points. In both cases, one can talk about “generating sets” (for a sector or for G) and 
define it. 

- If one tries to build generating sets made of three displacements – in order to do “better” from the 
optimization point of view than Fig. 1 – one can start from sets of two displacements for instance. 
Take Fig. 2: every point of the sector bounded by the two given displacements is reachable. I call this 

 
9 I encourage the reader to explore the discrete problem and to suggest other kinds of enquiries than the one proposed in 
this paper. 
10 “induction suggest deduction: the particular case suggests the general proof” (Pólya, 1954, p.50). Such a definition 
leads to Balacheff’s definition of generic examples: “involves making explicit the reasons for the truth of an assertion by 
means of operations or transformations on an object that is not there in its own right, but as a characteristic representative 
of its class” (Balacheff, 1988, p.219). 
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property “with Full Density” (FD). But, it is not always the case: Fig. 3 shows us that some points of 
the sector bounded by the displacements are not reachable. And now, I try to go “a little bit 
everywhere”11 (ALBE) when adding at least one displacement. A geometrical argument (translation 
of the reached sector for instance) brings a third displacement (as represented on Fig. 4, taking 
quadrants into account, or as we can operate on Fig. 2 with a very acute angle). 

 

Table 2 – Exploring “small cases” 

The exploration of small cases leads us to the following results:  

- I have emphasized two properties when trying to build generating sets: “with Full Density” 
(FD) and “a little bit everywhere” (ALBE).  

- One can reach all the points of the grid when the FD and ALBE properties are satisfied 
simultaneously. Then, a zero-definition of a generating set can be stated (see 3.B.b). 

- To reach the four cardinal points or to generate the four unit displacements implies to reach 
all the integer points. One then considers the grid through two directions (the horizontal and the 
vertical ones).  

If I outline here a vertical development of this discrete problem (as done in Sally & Sally, 2007), 
I should point out the wider NP-Hard Frobenius Problem (Ramirez Alfonsin, 2006), also called the 
“coin problem”: “given coins of denominations a1, a2,..., an (with no common factor), what is the 
largest amount that cannot be changed?”. Dealing with small cases of the Diophantine Frobenius 
problem can lead to the Pick Theorem, which has a lot of interesting applications (Sally & Sally 2007, 
Dissa 2020). Such a development would require another article. 

 
11 Allusion to “almost everywhere”. One can also link this property to the discrete mathematical field of “covers” and 
raise the question of the minimal cover. 
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3.B.b. Second heuristic: stating zero-definitions to progress in the solving process 

In the sense of Lakatos (1961, 1976) and interviewed mathematicians (Ouvrier-Buffet 2013, 2015b), 
a zero-definition12 marks a beginning of a research process. It can be modified in order to protect a 
primitive conjecture or because the concept is altered by the presentation of a proof: the proof is the 
master and the definitions evolve in order to continue the research. The formalization and the 
axiomatization come later. All such “local” definitions can have different functions: to denominate, 
to classify, to bring up several ways to grasp a concept, to circumscribe pre-formal ideas, to work on 
a proof, to delimit the range of use of an idea or of a conjecture or a proof, to communicate, to delimit 
a local theory. 

After the exploration of small cases, a first natural zero-definition of a generating set can be stated in 
order to denominate this concept, as follows: “a generating set is a set of displacements that allows 
access to all the points of G”. Such a zero-definition is not operational to build such sets (except in 
the graphic register, with only two displacements) and is very “costly” if we want to check whether 
a set of displacements is a generating one. That is the reason why such a zero-definition should evolve 
in a problem where the number of displacements is superior to 2. It can evolve into an operational 
definition including two properties, namely, FD and ALBE, illustrated during the previous phase. 
Such zero-definitions can be locally validated by the exploration of small cases and by their use for 
proving that a set is a generating one. 

One can give the following zero-definitions of FD and ALBE: 

o ZdefFD: a set of displacements has the FD property if and only if13 all the points of a sector 
of the grid are reached; 

o ZdefALBE: a set of displacements has the ALBE property if and only if there exists a 
positive number µ such that for any point X in the grid there exists a reachable point Y, “close to 
X”, i.e. whose distance from X does not exceed µ (here, it is possible to avoid a metric altogether). 

The minimality aspect is difficult and requires more than the study of small cases. A first zero-
definition of a minimal generating set can be: “a minimal generating set of displacements is a set of 
three displacements allowing access to all the points of the grid” (Fig. 4). Solving a problem with 
four independent displacements (Fig.1 is a counterexample) allows the invalidation of this zero-
definition. Then, a second zero-definition can be stated as follows: “a minimal generating set of 
displacements is a set of non-dependent displacements”. This zero-definition has a geometrical root; 
it can mobilize knowledge on collineation of vectors in the plane and coplanarity in space. 

As described by Ouvrier-Buffet (2011) with illustrations, “The status of these zero-definitions should 
evolve to that of proof-generated definitions through the following proof path: from proving the 
existence of minimal generating sets of displacements, to building such sets, to proving that a set is a 

 
12 that can also be called “working definition” or “conjectured definition”. 
13 The use of the expression “if and only if” for a definition is sometimes questioned by some philosophers or teachers 
for whom a definition is only a denomination (see Ouvrier-Buffet, 2003a). I choose not to deal with such conceptions in 
this article. 
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generating one, and to proving that a set is a minimal generating one.” (p. 173). It is obvious that the 
question of the existence is not easy. 

3.B.c. Third heuristic: stating new questions and generalization, first proofs 

After this prior exploration, more queries emerge: 

1) Existence: do such generating sets exist? 

2) Building generating sets: How can one build generating sets? Other generating sets? Do 
such sets have other mathematical properties? An integer k being given, can one build all the 
generating sets with k displacements? This last question makes sense when we deal with the notion 
of minimal generating sets. 

3) Removing a displacement: Is it possible to remove a displacement without changing the set 
of reachable points? One can say that a set of displacements is minimal when removing any of its 
displacements modifies the set of reachable points. With this definition, how to characterize a minimal 
generating set of displacements?  

4) Cardinality: Do the minimal generating sets of displacements always have the same number 
of elements? The answer is obviously no (see Fig. 1 and 4), and that is surprising, at least for students 
who are used to dealing with geometrical analysis and vector spaces. In fact, one can bring the discrete 
problem on the grid back to a problem on Z, and then mobilize knowledge from number theory. It is 
easy to build generating sets with different cardinalities. E = {1; -1} and F = {2; 3; -6} are two simple 
examples of minimal generating sets for Z (for E, if I remove 1, I loose the ALBE property. For F, if 
I remove 2 or 3, I loose the FD property and if I remove -6, I loose the ALBE property). 

A generalization leads us to the following result:  

Proposition 1: for any integer k, there exist, in Z, minimal generating sets of displacements 
with k elements. 

Remark: the search of the proof of proposition 1 can lead the solver to the use of known 
arithmetical results, but it can also lead the solver to explore arithmetical properties (see for instance 
Duchet (1994) for an experiment with 14-year-old students).  

And now, if one wants to build a minimal generating set on the squared grid, one can keep in 
mind the horizontal/vertical representation and choose displacements carefully, in order to keep the 
minimality. Therefore, one has the following proposition: 

Proposition 2: for any integer k, there exist, on grid G, minimal generating sets of 
displacements with k elements. 

Indications for the proof (in order to underscore its accessibility): one constructs a set of 
horizontal minimal generating displacements with (k-2) elements in order to generate Z (see above, k 
being as big as one wants) and then adds two vertical displacements in order to go everywhere by 
translation. � 

More questions to explore: can one build other kinds of minimal generating sets than those built in 
the previous proof? Do other proofs exist? I now directly address the readers: what kind of exploration 
of this discrete problem would you have conducted? With which major mathematical questions? What 
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kinds of heuristics would you have mobilized? And what happens if we change the grid or the 
mathematical framework (e.g. the continuous case), following Lakatos’ heuristic principle of 
translation? 

3.B.d. Obstacles for students 

The previous epistemological analysis emphasizes the mathematical concepts involved in the 
situation (mainly generating sets, minimality), with a focus on the defining process and the zero-
definitions. With undergraduate students, several obstacles can arise from the defining processes on 
the one hand, and from the concepts on the other hand. The concepts in question are essential in linear 
algebra, a field taught in the early years of university and widely investigated by didacticians. I will 
summarize the main obstacles below in terms of these two dimensions. 

Defining processes. In mathematics education, the experimental conditions of defining situations are 
always very specific. The experiments are carried out by the researchers themselves, with small 
numbers of students (from 2 to 15 or even 25), sometimes even with gifted students, in long-term 
situations (summer school for example) from primary school to university. The students' research 
work is always group work with supposed institutionalizations driven by the researcher (these 
institutionalizations are not described or questioned, but their existence is apparent in the articles). In 
these articles, when a student’s defining activity is described, the levers used by the researcher and 
which allow an evolution of the students' processes are often not made explicit, except in a few articles 
(e.g. Ouvrier-Buffet 2006, 2011; Chorlay 2019). The main difficulties students have with defining 
processes are the following: if the teacher does not ask for a definition or does not interfere, the 
students do not define (because it is unusual for them in their mathematical culture) or do not know 
where to stop when rewriting definitions. Playing with counter-examples (such as the Lakatosian one) 
should also be encouraged by the teacher.  A positive point is that students do not have difficulties to 
produce different definitions (when asked by the teacher) and are able to question their equivalence.  

Obstacles coming from linear algebra. Obstacles will emerge in the discrete situations if students 
have concept images coming from linear algebra and geometry. In their synthesis paper, Stewart and 
al. (2019) point out that there is “a scarce literature on proof in linear algebra” (p. 4) and emphasize 
the results that “students could not completely and correctly state the formal definition” (p. 12) and 
have “differences in attribution meanings to certain words and expressions” (p. 4) ; students also have 
a rare understanding of basis (p. 5) and struggle to grasp proofs. Moreover, Stewart & Thomas (2019, 
p. 1070) recall that Britton and Henderson (2009, p. 964) “claim that conceptual understanding is at 
the root of the problem” and that Inglis & Alcock (2012) emphasize that “students may be more 
concerned with processing algebraic manipulations and focus proportionately less on words and 
logical relationships”. I would also like to stress the complexity related to the understanding of the 
concepts in linear algebra with formal definitions and definitional reasoning (Harel, 1990 & 2017)14 
and to point out the students’ difficulties with the form of mathematical statements (definitions and 

 
14 Besides, Harel’s results underscore that, in linear algebra, “(...) students do not build effective concept images; rather, 
they place their full reliance on concept definitions, by memorizing them verbatim. (...) Once the concept definitions are 
forgotten, students are unable to retrieve or rebuild them on their own.” (Harel, 1998, p. 499). 
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proofs), structures, the use of quantifiers and with linear combination, linear dependance, linear 
independence and its negation (Harel, 2017).  

All of these results are in line with previous research on the teaching and learning of linear algebra 
which is still being quoted. Indeed, Dorier explains that students “are overwhelmed by the number of 
new definitions and feel like they are landing on a new planet” (Dorier, 2000, p. 185). He underscores 
the obstacle of formalism in linear algebra as well, characterizing this field of mathematics as a 
unifying and generalizing theory (Dorier, 2000; Dorier et al. 2000a; Dorier et al. 2000b). The lack of 
connections with previous knowledge, the lack of practice in basic logic and set theory 
(misunderstanding of implicit quantifiers and of necessary and sufficient conditions) and the 
impossibility of using geometrical intuition also lead to difficulties for students in learning linear 
algebra. Besides, the multiple proofs and kinds of reasoning in this branch of mathematics make it 
complex for students (e.g. Sierpinska, 2000; Uhlig, 2002). Several propositions, different in nature, 
have been made to help overcome students’ difficulties (e.g. Harel, 1998; Rogalski, 2000; Uhlig, 
2002), using the historical roots of linear algebra (for instance, through the concept of ‘rank’ and the 
pivotal cluster of concepts ‘linear combination’, ‘dependence’ and ‘independence’). Most of them are 
produced within long-term studies (didactical engineering in the meaning of Artigue, 2014) and all 
of them are within the strict field of algebra. Furthermore, the attempts to connect linear algebra to 
2D and 3D geometry in order to give an image of some concepts have shown their limits. Moreover, 
such approaches convey other obstacles: the problem of these metaphorical approaches has been 
studied by Hillel (2000) and is also pointed out by Harel (2017). Indeed, geometry is limited to three 
dimensions and some concepts (such as linear (in)dependence or rank) have a very limited range of 
representation in the geometric context. And the loss of meaning through the transition to algebraic 
formalism actually turns out to be an issue in this type of geometric approach.  

The importance of involving students in “new” mathematical experience here appears crucial. 

3.C. Main features of the discrete problem compared with “classical” linear algebra 

From an historical point of view, the fundamental importance of modules over a ring is confirmed, 
vector spaces over a field being as a subsidiary notion (as done in Mac Lane and Birkhoff’s Algebra 
(1967))15. The contemporary works of researchers in didactics about the teaching and the learning of 
linear algebra take this branch of mathematics as a “self-sufficient” full-fledged system. It is obvious 
that making connections with modules over a ring is not the easiest way to teach linear algebra at the 
beginning of university. The discrete situation I suggest can be a way to situate linear algebra’s 
questionings in a wider context, but in an easier way than Mac Lane and Birkhoff’s approach. It also 
gives a “natural” exploration of some results that are not “always true”. Indeed, a minimal generating 
system, a maximal linearly independent system are not basis in the general case. For instance, for 
Z/(6), considered as a Z-module, there is no linearly independent system (non-empty) and {2; 3} is a 
minimal generating system. And in Q, considered as a Z-module, every system reduced to one 
element (non-zero) is a maximal linearly independent system and there exists no basis. 

 
15 See Moore (1995) for a wider historical study. In particular, Moore points out that “Birkhoff notwithstanding, the recent 
history of linear algebra has continued to confirm the fundamental importance of modules over a ring, with vector spaces 
over a field as a vital but subsidiary notion. This was how the subject was treated in Mac Lane and Birkhoff's Algebra 
(1967), where modules precede vector spaces-- presumably under the influence of Mac Lane.” (Moore, 1995, p. 295). 
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Let me go back to the discrete problem. The discrete problem is an open problem, which the students 
do not know. They can “do” mathematics, as a researcher does, without looking at a pre-existing 
course in a textbook. The discrete object “displacement” is different than in the continuous case: there 
is no + and – and there is no modification of a displacement by a scalar multiplication. In linear 
algebra, the scalar multiplication brings the FD property; and the use of + and – brings us the 
possibility to go everywhere but not necessarily with the ALBE property. Moreover, the question of 
“dimension” is typically a part of linear algebra whereas the discrete case deals with the question of 
“minimality”: the concept of “dimension” would be problematized, provided that students have 
already encountered this concept in other contexts. 

The queries are common to discrete and continuous problems, but it seems that they are more intuitive 
in the discrete case, even if the mathematics behind the displacements can be quite advanced. 
Furthermore, the concepts are highly interrelated in vector space whereas the discrete problem clearly 
separates the concepts (the “same” concepts as in vector space): it then especially allows work to be 
done on the links between the concepts involved in the problem and on the necessary and sufficient 
conditions. Besides, the links between concepts are more important than the concepts themselves, 
which are not an obstacle in studying the discrete case. The discrete queries – which can also be found 
in other fields of mathematics – and an exploration of links between definitions and proofs should be 
fruitful.  

The situation proposed in discrete mathematics is then decontextualized in comparison with a 
classical introduction of concepts in linear algebra. The concepts of “generator”, “minimality” but 
also “dependence”, and later “basis”, can be studied while avoiding excessive formalism. The shift 
from N and Z to R+ and R has to be introduced by the teacher. All these features show the potentialities 
of this discrete situation, in order to highlight mathematical questionings, under certain didactical 
conditions. Such conditions should have the following characteristics: a specific research contract 
with the students, a long-term situation, and an institutionalization of enquiries which are common to 
the discrete problem, to linear algebra and to other domains in which the concepts being explored are 
used. If such conditions are not met in the university classroom, supervised research projects may be 
considered with twofold aims: to study the differences between discrete and continuous situations 
and to work on a mathematical experience involving searching, defining, and proving. It reaches 
Harel’s propositions about definitional reasoning i.e. “the way of thinking by which one examines 
concepts and proves assertions in terms of well-defined statements—is likely to understand the 
concept of dimension of a subspace as intended—the number of vectors in a basis of the subspace—
but he or she would also realize that such a definition is meaningless without answering the question 
whether all bases of a subspace have the same number of vectors. Another student, for whom 
definitional reasoning has not yet reached full maturity, may have the same understanding without 
realizing the need to settle this question.” (Harel, 2018, p. 5). 

4. Design of a didactical situation: choices and challenges 

4.A. A potential evolution of zero-definitions to proof-generated definitions? 

The shift from zero-definitions to proof-generated definitions is not easy to re-implement in the 
classroom when one designs a didactical situation. Indeed, Lakatos has based his historical 
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reconstruction upon several mathematical backgrounds, using Cauchy’s proof as a motivation to 
boost concept formation. And yet, this part of the defining process would be bringing learning 
potentials to teach proof and highlight the relations between proof and definitions, especially at 
university. In fact, no study in mathematics education has showed yet didactical situations involving 
such a shift from zero-definitions to proof-generated definitions. If one wants to make the most of the 
Lakatosian view of definitions, one can start by focusing on the zero-definitions and on their potential 
evolution to other “better” zero-definitions. It implies a view of the constructive and tentative nature 
of definitions which are socially constructed. The proof generation aspect comes later. I do not forget 
that some studies reveal that students can have difficulties in understanding the “very nature of 
mathematical definitions” (Edward & Ward, 2004, p. 411). Studying the zero-definitions and their 
features can be a real opportunity for us to solve this understanding problem. 

4.B. Zero-definitions at stake 

Starting from the problem of displacements, I have designed a situation (made up by three problems) 
for freshmen who have not yet encountered linear algebra (or only very partially), nor other 
mathematical domains involving generating sets. I kept in mind the epistemological, logical and 
cognitive obstacles mentioned above, in particular the fact that students may have concept images 
coming from analytical geometry for instance: they can think that two displacements are enough to 
reach every integer points.  

I have tried to motivate the emergence of “natural” questionings and of zero-definitions (generating 
sets, minimal generating sets, FD, ALBE) with the exploration of “small” cases. The validation of 
the constructed zero-definitions will come in their use when building new sets of displacements and 
testing new sets of displacements (generating and minimal aspects). Table 3 synthesizes the choices 
I have made for the design of the didactical situation (see also the appendix). 

Problems Exploration leads to ... Validation / Potential evolution  

Problem 1: Two 
displacements on the grid 

 

 

 

Fig. 5 

- assimilate the rules of the 
displacements and the 
questionings.  

-  a fact: “in order to generate all 
the points of the grid, more than 
two displacements are required”. 

- a conjecture: “three 
displacements are enough to reach 
all the points of the grid.” 

- a first natural Zdefgenerating set: “a 
generating set is a set of 
displacements which allows access 
to all the points of G”. 

 

- ZdefALBE and ZdefFD possibly. 

Aim: to dismiss students’ pre-
existent concept image coming 
from vector space of dimension 2 
where two vectors are enough to 
build a basis. 
 
 

 

 

This Zdef is not operational to 
build generating sets (even if it is 
operational in the graphic register 
for two displacements).  
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The use of them to prove that a set 
is a generating one testifies to their 
validity. 

Problem 2: Two or three 
displacements or four 

displacements where two of 
them are dependent

 

Fig. 6 

- Zdef minimal generating set: “a minimal 
generating set of displacements is 
a set of three displacements 
allowing access to all the points of 
the grid”. 

- Zdef minimal generating set bis: “a 
minimal generating set of 
displacements is a set of non-
dependent displacements”. 

 

 

- Towards the proof that “three 
displacements can be enough to 
generate all the points of the grid”. 
But one cannot conclude that all 
the generating sets are made up of 
three elements. 

To explore a problem where four 
displacements are independent 
allows the invalidation of this 
Zdef.  

 

Aims: To prove the existence of 
minimal generating sets, to 
generate such sets, to prove that a 
set is a generating one and to 
prove that a set is a minimal 
generating one. 

 

 

Distinction between minimal and 
minimum. 

Problem 3: A minimal 
generating set made up of 4 

displacements (one can 
prove that this generating set 

is a minimal one) 

 

Fig. 7 

To demonstrate that “three 
displacements are not always 
enough”. In fact, the set presented 
here features four displacements 
and is a minimal generating one.  

The corollary of the exchange 
theorem (i.e. the existence of 
dimension, true in a vector space) 
is false in the discrete case16. 

Table 3 – Choices for the didactical situation 

 
16 Remark: the invariance of dimension makes sense when one shows in which instances it does not work. 
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5. Undergraduate students faced with displacements on a regular grid 

I have experimented the situation of displacements with freshmen from scientific and non-scientific 
courses at university. The first time with freshmen in science training for my didactical research, and 
the second time with future economists for the needs of my teaching, before a course about linear 
algebra. I will not go into the details of the methodology, it is not my purpose here. Students from 
scientific courses are used to working in groups (3 or 4 students per group, around 30 students) and 
the intervention (audio-taped) lasted 3 consecutive hours. The future economists (around 30 students) 
were not recorded (except one group), I will report notes I have taken for this group of students. I will 
give the general tracks followed by the students from scientific courses and focus on the main 
differences between these two groups of freshmen (see the appendix for excerpts) and on their 
obstacles. My aim is to highlight the potentialities of the situation for the teaching at university level 
in terms of transversal skills and definitional reasoning (in Harel’s 2018 meaning above described). 
This experiment provided an isolated occasion for freshmen to experience situation of ongoing 
mathematics which is typical of mathematics, with an emphasis on defining processes. 

5.A. With freshmen from scientific and non-scientific courses17 

I must point out that the freshmen who took part in the intervention had a small academic knowledge 
in linear algebra: they knew the notions of “linear independency”, “basis” and “vector space” (they 
knew their definitions in a vague manner). The situation of displacements allows a work on 
mathematical objects graspable through a basic representation close to that of vectors. The objects do 
not represent an obstacle in themselves. The main difficulty lies in the fact that properties have to be 
characterized (generating sets, minimality, among others) and to be denominated. These specificities 
of the situation of displacements partially explain why the students did not engage in characterizing 
mathematical properties. Indeed, only some statements were produced, but they were not recognized 
as important mathematical statements and they did not evolve into institutionalized zero-definitions. 
Moreover, the persistence of concept images coming from analytical geometry was real (they said for 
instance: “We have four displacements. We need only two vectors as a basis.”). Nevertheless, in 
students’ works, I have identified a natural definition of “generating” (“to reach all the points of the 
grid”18). It has been transformed into an operational property (“to generate the four cardinal points or 
unit displacements”). It has not been connected to the ALBE and FD properties, even if these 
properties were implicit in the students’ dialogues: the ALBE property is predominant. Furthermore, 
I have identified two definitions-in-action19 (i.e. statements that enable students to pick up the most 
adequate selection of information according to the situation, but without any explicit definitions):  

- one for “minimal generating set”: “when all the displacements are used during the search of 
four unit displacements”,  

- and one for “minimal”: “a set of displacements is not minimal when one of them is an integer 
combination of the others”.  

 
17 For a more descriptive study of the students’ productions, see Ouvrier-Buffet (2003a). 
18 The sentences in quotes come from the students’ dialogues. I have formalized them a little bit, because students did not 
institutionalize them, they only used these properties or definitions in the action. 
19 For this concept of definitions-in-action, I was inspired by Vergnaud (1996) and his characterization of concepts-in-
action. 
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Students can work efficiently with these two definitions-in-action, which are both connected to the 
same proposition-in-action (“to have the four directions represented is a necessary condition in order 
to have a generating set of displacements”). Such a definition-in-action can become powerful. But in 
this case, the definition-in-action of “minimal” was imported by the students from their previous 
knowledge in linear algebra. In fact, in this example, “minimal” is a translation of “independent”. 
This kind of imported definition-in-action obviously blocks the students’ conceptualization. Students 
stayed in the action, in the proposed configurations. Their process did not move to a generalization 
which would have allowed an evolution of their definitions-in-action. For them, there is clearly no 
explicit need for formalization (Harel, 1998). Moreover, the management conducted by the teacher-
observer is not definition-oriented, it is neutral. A plausible hypothesis is that this distance between 
manipulation and formalization (formalization merely being a first step, not a complete theorization) 
is too rarely approached in the teaching process. It goes along the lines of previous epistemological 
and didactical results which conclude that formalism is a crucial obstacle in the teaching of linear 
algebra (e.g. Dorier, 2000; Harel, 2017). Besides, the short time format (three hours) probably did not 
encourage the evolution of definitions, a wider exploration of defining processes requiring more time. 
It underlines that putting students into a mathematical experience is a necessary condition in order to 
help them in their learning process at university.  

The mathematical exploration of the discrete problem is more natural and more intuitive for freshmen 
from non-scientific courses (NS group) than for freshmen from scientific courses (S group). It is not 
so surprising: the S group tries to mobilize their previous knowledge and that limits the students in 
their study of the mathematical problem. Moreover, studying cases where the cardinality of the 
minimal generating sets is not an invariant feature is not a common practice at the beginning of 
university. The NS group were more accurate on their characterization of sectors, focusing on the 
ALBE and the FD properties, but (again) without defining them: these students stayed in the action 
too. In fact, it is as though having (partial) knowledge in linear algebra blocks students in their 
exploration of the discrete problem.  

5.B. Conclusions: discrete displacements on a grid, what for? 

In fact, the difficulty of the task is in solving the problem itself: the concepts one is working on 
do not need to be explicitly defined at the beginning of the solving process. These characteristics of 
the situation partly explain why there was no real activity to define the properties of the 
displacements. This shows that the students were not able to distance themselves sufficiently from 
the objects they were handling. Moreover, the use of some words and expressions (even if poorly 
used) coming from the students’ courses of linear algebra may have short-circuited the definitional 
reasoning. Nevertheless, the “natural” definition of generator (to reach all the points of the grid) 
moved into an operational property (to build 4 points of elementary displacements); and I have 
identified two definitions-in-action (for minimal generating set and minimal, see 5.A above). 

It seems that the place in a course of the discrete situation should be before a course of linear algebra 
in order to make room for the mathematical exploration of the discrete case. An institutionalization 
of the questionings (common to the discrete and the continuous cases) should be done: it should lead 
to identify the interest of the continuous case, where one has the theorem of the dimension, which is 
not true in the discrete case. Besides, a study of the relations between the concepts involved in the 
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discrete situation opens new opportunities to engage students in a work on implication (necessary and 
sufficient conditions).  

I am studying the way one can use the discrete case with undergraduate students to introduce to 
concepts and mathematical questionings in the most beneficial manner. I pay attention to the distance 
between manipulation and formalization and also to the difficulties that students encounter with 
formulation and validation (in Brousseau’s 1997 meaning): the articulation between defining and 
proving should be built in students’ practices as well as a work on mathematical statements in order 
to deepen the work on proof. Such a research is linked to the study of defining and proving processes 
of mathematicians (e.g Ouvrier-Buffet, 2013, 2015ab). This work is still in process. 

 

6. Opening 

“Ideas concerning the mathematical understanding of students at all levels are germane 
to the study of the mathematical process.” (Vinner, 1991, p. 120) 

“Students should have experiences that focus on the use of mathematical definitions 
and experiences in the process of defining.” (Edward & Ward, 2004, p. 422) 

6.A. An efficient tool in epistemology and didactic to study defining processes 

The Lakatosian kinds of definitions (especially zero-definitions) allow an epistemological analysis 
useful from a didactical point of view, bringing a (partial) modeling of defining processes and 
elements in order to make the construction of definitions more dynamical. Adding the notion of 
definitions-in-action, students’ processes can be described, as well as the lacks in students’ defining 
processes. It is a way to grasp definitional reasoning. I also keep in mind Harel’s necessity principle20 
and the fact that “Intellectual need and epistemological justification are two sides of the same coin 
—they are different but inextricably related constructs.” (Harel, 2018, p.11). It remains difficult to 
design didactical situations involving these constructs for the defining processes. Not only because 
students have not yet encountered such processes, but also because “all” the features of the defining 
processes are not yet well known, even if some researchers have characterized the heuristics and 
behaviors of mathematicians (e.g. Burton, 2004; Schoenfeld, 1994; Ouvrier-Buffet, 2013). 

Bearing in mind the above described obstacles in the teaching and the learning of linear algebra, 
especially the fact that many students struggle with the understanding the basic concepts and 
questionings in linear algebra and with proof (e.g. Stewart & Thomas, 2019), emphasizing the 
definitional reasoning can be useful to address this issue. The long-term discrete situation opens a 
door, bringing in a frame where statements are not equivalent as in the continuous case and 
problematizing mathematical (difficult) questionings about generator, minimality and existence. I 

 
20 Harel (1998, p. 502) explains the Necessity Principle translating as three steps: 
1) Recognize what constitutes an intellectual need for a particular population of students, relative to the concept to be 
learned.  
2) Present the students with a problem that corresponds to their intellectual need, and from whose solution the concept 
can be elicited. 
3) Help students elicit the concept from the problem solution. 
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agree with Stewart & Thomas (2019, p. 1070) quoting Harel (1997)21: “While Harel acknowledges 
that this model of teaching requires many hours of class time, he believes there is no other 
alternative.”  

6.B. Discrete mathematics: a way to consider mathematical objects 

Of primary interest in the situation of displacements on a grid is the use of discrete structures to grasp 
transversal concepts (such as generating sets, minimality, etc.) and transversal questionings which 
belong to several fields of mathematics. Moreover, the discrete situation allows an access to the 
reasoning behind the construction of concepts and then contributes to the development of proof 
abilities through an active mathematical exploration of the problem (construction of relations between 
properties and proofs of implications) (see for other examples Gravier & Ouvrier-Buffet, 2022; 
Ouvrier-Buffet, 2020).  

If one tries to problematize the same concepts in other mathematical situations involving material 
objects (such as displacements, for the reason of the devolution of the problem), one can foresee the 
following tracks: to cover the plane with fractals, to generate some kinds of graphs. One also has to 
question the invariants in the discrete mathematics which are common to the continuous cases: if the 
discrete problems are sometimes (and even often) easier to grasp than the continuous ones, the 
mathematics behind can be quite advanced. Such a discussion leads us to further studies. There is 
room to explore new questionings about the teaching of continuous structures, with the help of the 
discrete ones. This comparatively young branch of mathematics arouses interest because it brings 
new potentialities for education: Goldin (2004, p. 58) emphasizes “how experiences in discrete 
mathematics may provide a basis for developing powerful heuristic processes and powerful affect” 
(cf. a special issue of ZDM about Discrete Mathematics and Proof in the High School, 2004). 
Exploring this avenue is worthwhile for the investigation of mathematical practice. 

 

Appendix 
1) The problems which make up the situation 

On a regular squared grid, for each problem, use a set of displacements and choose a starting point (called A), 
any one. The questions are: 

1- Starting from point A, which points of the grid can we reach? 

2- What are the consequences if we remove one or more displacements? 

Problems Sets of displacements 

Problem 1 d1: 2 squares to the right and 1 square up  

 
21 Harel (1997, pp. 119–122) has offered four recommendations for achieving this goal. 
1. Students should take an active part in the construction of relations between ideas and in the production of their 
justifications; 2. Students should be helped to build proofs on their intuitions; 3. Students should be encouraged to read 
proofs; 4. Students should learn that understanding a proof is more than understanding each of the proof’s steps. 
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d2: 3 squares to the left and 3 squares down 

Problem 2 

d1: 2 squares to the right and 3 squares up 

d2: 5 squares to the left and 2 squares down  

d3: 5 squares to the right and 3 squares down 

d4: 1 square to the right 

Problem 3 

d1: 3 squares to the right and 3 squares up 

d2: 2 squares up 

d3: 1 square to the left 

d4: 1 square to the left and 3 squares down  

 

2) Students’ dialogues – Some excerpts 

Group from non-scientific background (NS group) 

During the following excerpts, Samy and Yohan try to build a generating set of displacements (O 
is the Observer). 

- Concept image “two displacements are enough” 

444 S: But why couldn’t it work with two displacements?  

- Definition-in-action of ALBE. Horizontal/vertical representation and use of number theory 

458 S: I can cover all the squares upright, because I can go down each time for one square. And with 
this... I can go to the right and to the left. Then, this set of displacements works for me. (...) 

505 O: Why did you take 2 squares to the left?  

506 S: Because I had 3 squares to the right.  

507 Y: You want to come back from 1 (...) 

510 S: I think that with a combination with 3 and 2, one reaches all the numbers.  

- Four cardinal points and four unit displacements (see Fig. 10) 

564 S: In fact, when I use these displacements several times, I reach these points (he shows the four 
cardinal points). They would symbolize a unit-displacement up, a unit-displacement to the right, a unit-
displacement down and a unit-displacement to the left (...) they are commutative (...) the four elementary 
points ... I say “elementary” because they allow the production... 

565 Y: ... of all the points. 
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Fig. 8 

 
Fig. 9 

 
Fig. 10 

Representations used by the NS group 

Groups from scientific courses (excerpts of four groups) 

- Concept image “two displacements are enough” 

 138 P: We have four displacements. We only need two vectors as a basis. (Yellow group –  problem 
2)  

- Knowledge from linear algebra 

  350 S: The thing is ... no, I don’t think that it is the same thing (as linear algebra), because here, 
we can’t reach this point.   

  351 P: Each time, you try to reuse your courses, you realize that it is useless!  

  352 S: No, but here, it is obvious. But a linear combination, it is a ‘lambda v’ thing, where v is 
any vector...  

  353 P: I don’t know what it is! (...) 

  373 S: Because it is precisely not a vector space, I mean that it looks like a vector space, but it is 
not a vector space. First, there is no zero element, and besides the ‘lambda’ that we can use can’t be 
negative. How would you say that? ... in fact, you only have two kinds of displacements, but for instance, 
when you use the (displacement) (3; 3) like this, you can’t use the (displacement) (3; 3) in the other 
direction. And the same thing happens with the (2; 1), you can’t use the (-2; -1). (Pink group – problems 
1 & 2) 
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(Translation) “We can make an analogy with vector spaces. The reachable points are reached with linear 
combinations such as with  and  we have linear combinations , and we can’t 
reach the “unreachable” zone because . One also notices that the set of the found points is 
not a vector space because there is no zero element, because , and ”. (Purple 
group – an excerpt of their notes) 

- FD property 

 1430 R: We noticed that if we remove d4, it is not like removing d2 where a whole sector  disappears. 
If we remove d4, a lot of points are removed, but we still have points in a whole  zone. (Pink group – 
problem 2) 

- Four cardinal points and algebraic systems 

  178 B: In order to go everywhere, you try, and if you find (1; 1), it means that you can reach this 
point. After that you go on with this system to see if you have solutions. You process with (1; -1) in order 
to see if you can reach this point and with (-1; 1) and with (-1; -1).  

  179 A: Yes! You can see if you can reach the four points around!  

  180 B: Therefore, it means that you can go everywhere. If we can prove that, we have no more 
questions. And if we can’t prove it ... it means that there are other conditions, it is complicated, or there is 
a technique…  

  181 A: It is not these four points. We have to take those.  

  182 B: Ah yes! We have to take (1; 0) (-1; 0) (0; 1) and (0; -1). We have a lot of systems to solve! 
(they solve systems) There are many solutions, but proving that there is one is enough. And this solution 
should work for the others too...  

  199 A: With that, we have proven that we can go everywhere. (Blue group – problem 2) 
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Representations used by the S groups 
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