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Approaching concepts of linear algebra with discrete mathematics: a 

situation from ongoing mathematical research for freshmen 

Cécile Ouvrier-Buffet 

 

Abstract. Have you ever considered presenting concepts of linear algebra with objects and problems from discrete 

mathematics? This article provides such a situation. An epistemological analysis “à la Lakatos” of this situation is 

developed: it underscores how the discrete situation allows a mathematical experience for freshmen and contains 

interesting and even challenging material for all levels, including teachers, lecturers and research mathematicians. 

Productions of freshmen from scientific and non-scientific courses who face the situation are also analyzed through 

their defining processes.   

Keywords. Discrete mathematics, generating, minimality, definition, defining process.    

Résumé. Avez-vous déjà envisagé de présenter des concepts d'algèbre linéaire avec des objets et des problèmes issus 

des mathématiques discrètes ? Cet article présente une telle situation. Une analyse épistémologique "à la Lakatos" de 

cette situation est développée : elle souligne comment la situation discrète permet une expérience mathématique pour 

des étudiants de première année et contient du matériel intéressant et même stimulant pour tous les niveaux, y compris 

les enseignants, les chargés de cours et les mathématiciens. Les productions des étudiants de première année de filières 

scientifiques et non scientifiques sont également analysées à travers leurs processus de définition.   

Mots-clés. Mathématiques discrètes, générateur, minimalité, définition, processus de définition.  
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1. Introduction 

The main feature of my mathematical and didactical research concerns the heuristics, and more 

precisely the “defining processes” which are used in mathematical research. Several studies about 

problem-solving have underscored the various interests of putting learners in a mathematical 

enquiry with open problems. These studies concern proof, modeling, changes of representations, 

use of new technologies etc. but little is found about “defining” even if the study of defining 

activities is a discreet but constant didactical topic of research in mathematics education since the 

90s (e.g Mariotti & Fischbein, 1997; Zandieh & Rasmussen, 2010; Ouvrier-Buffet, 2003a, 2013). 

This is one of the reasons that prompts me to initiate further discussion about “definitions” between 

mathematicians and mathematics educators, through this article: the definitions and their 

construction have definitely a place in mathematical research. I have the following guiding idea: I 

consider that definitions are concepts holders. During a research process, they are not finite 

products. Definitions evolve through several statements, each one giving new features of the 

involved connected concepts. In fact, to understand how concept formation works implies exploring 

the wide field of mathematical definitions considered as concepts holders. Studying the dialectic 

between the construction of definitions and the formation of concepts should be useful to design 

didactical situations where learners would have to build new concepts in order to solve a problem. 

That leads me to several major questions: how can one characterize defining processes in 

mathematics? Are learners able to define? Do they understand concepts better if they are involved 

in a defining process? I therefore had to work out a theoretical framework through epistemological, 

didactical and empirical research in order to characterize defining processes (Ouvrier-Buffet, 2013, 

2015ab). I have conducted several experiments
1
 at the university level: the results of these 

experiments show that the students’ ability to define is real.  

To begin with, I will present a part of my theoretical framework borrowed from epistemology, that 

of Lakatos (1961, 1976), focusing on definitional procedures. I will use it in order to highlight the 

potential defining process in an original problem - displacements on a regular grid - still partially 

open from a mathematical point of view. This problem should bring a wealth of interesting material 

for students, lecturers and researchers. I will then compare the processes of freshmen at university, 

from scientific and non-scientific courses, when they face this problem. The concluding section 

argues that this research opens new opportunities to teach abstract contents at university, involving 

                                                 
1
 My experiments were conducted in discrete mathematics with the following concepts which are of different natures: 

trees (a known discrete concept, graspable in several ways), discrete straight lines (a concept which is still at work, for 

instance in the perspective of the design of a discrete geometry) and a wide study of properties of displacements on a 

regular grid (e.g. Ouvrier-Buffet, 2003a, 2003b, 2006, 2011). 
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discrete mathematics but also defining processes, and engaging students in a mathematical 

exploration of a real ongoing problem, namely a research situation. 

2. Framework 

Exploring the wide question of “definitions” can lead us to deal with philosophical notions (such as 

those of Aristotle), logical constraints linked to the construction of a formal theory, epistemological 

tendencies (e.g. Lakatos 1976) and cognitive aspects (e.g. Vinner, 1991, with concept image and 

concept definition). Different kinds of definitions have been described in the literature (procedural 

and structural, nominalist and essentialist, lexical and stipulative, intuitive and formal, among many 

others). Nevertheless, I would like to stress that looking at definitions as specific statements does 

not give us any clues to characterize defining processes. From a cognitive point of view, 

Freudenthal (1973, p. 458) has studied two kinds of defining activities: the descriptive (a posteriori) 

defining and the constructive (a priori) defining. In both cases, the mathematical concept involved 

is already known by the learners; the learners do not build it in order to solve a problem, they do not 

encounter a quite new concept. Indeed, the descriptive defining “outlines a known object by 

singling out a few characteristics properties”, and the constructive defining “models new objects out 

of familiar ones” by examining changes to a given definition. I would like to go further in the 

direction of the constructive defining, but for concepts unknown by the learners, and from an 

epistemological point of view. Let me consider an aspect of Lakatos’s work (the concept-

stretching), which in my opinion does not get all the attention it deserves: “A definitional procedure 

is a procedure of concept formation” (1961, p. 54). This kind of procedure focuses on knowledge 

expressed in skills and processes. Lakatos’s original contribution to the debate consisted in his 

attempt at a modeling of the mathematical discovery while integrating both the social
2
 and the 

conceptual
3
 aspects of the matter. He was strongly influenced by Pólya’s mathematical heuristics, 

Hegel’s dialectic, and Popper’s fallibilism. Lakatos has clearly influenced mathematics education, 

especially in the development of new kinds of interactions between teacher and students and in the 

implementation of the game of proofs and refutations in the classroom
4
 (e.g. Larsen & Zandieh, 

2008). However, Lakatos’s modeling of definitional procedures, more present in his PhD thesis 

(1961) than in his book ‘Proof and Refutations’ (1976), is little known, or rather little used. I will 

take this work about defining processes into account and test it on a research situation.  

We should be well-aware that the processes (the defining processes and the process of proof and 

refutations) described by Lakatos strongly depend on the starting situation which consists of: a 

situation of classification (which delimitates what is the class of polyedra), an initial conjecture 

(Euler formula), a first representation of the mathematical objects at stake
5
 (polyedra), and a new 

proof (that of Cauchy, where a change of thinking is required because it implies a topological view). 

                                                 
2
 The debate context. 

3
 The connection between concept and proof, on the one hand, and between concept formation and definitions, on the 

other hand. 
4
 The limits of the use of the Lakatosian method have been pointed out by De Villiers (2002) and Hanna (2007), both of 

them quoting Conway. In particular, they said that Lakatos’s method couldn’t be applied generally. In defense of 

Lakatos, in his original thesis, he denies that the unique logic of mathematical discovery exists. 
5
 The intended concept is then partially known a priori. 
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In particular, with this context of geometrical objects, it means that the concepts have a pre-

existence, as well as there exists a pre-axiomatic theory. Very few situations following the whole 

Lakatosian model of refutations have been experimented in mathematics education: all of them 

have the previously quoted aspects (e.g. Larsen & Zandieh, 2008). I will extend the use of (a part 

of) the Lakatosian modeling to a less restrictive situation (see section 3). Let me first present this 

modeling which is specific to definitions. 

I point out that Lakatos leaves aside the first encounter with a mathematical object and also the 

axiomatization, the latter being, for him, the end of the creative process. His study of the 

mathematical process leads him to focus on refutational processes and definitions in connection 

with concept formation. Lakatos precisely identifies three kinds of definitions: the naive definitions, 

the zero-definitions and the proof-generated definitions, whose respective functions are to 

denominate, to communicate a result and to prove. A naive definition can be stated first, but it 

cannot evolve
6
, contrary to a zero-definition that marks the beginning of the research process (hence 

the term “zero”). A zero-definition can be vague, outside of any formalism, it does not matter: it has 

to evolve into a “better” one. Hence a fundamental question arises: how can a zero definition 

mutate? Lakatos relies on two cases (see also Larvor, 1998):  

- The concept is altered by the presentation of a new kind of object. Here, the conjecture should be 

protected from such a counter-example (a monster), the zero definition can be modified; 

- Or the concept is altered by the presentation of a new proof: a work of translation is engaged, 

when one deals with a new proof in another mathematical framework. This is where a system of 

mathematical concepts can grow. Then a zero definition becomes a proof-generated definition with 

a validation by a proof.  

This modeling of defining processes can seem to be reduced, but I will show you in an example that 

it is helpful to analyze mathematical situations involving defining processes and also to characterize 

students’ procedures. The chosen situation involves concepts which are unfamiliar. The 

mathematical results are also unfamiliar and may be surprising for students. They belong to discrete 

mathematics and are close to concepts from linear algebra whose teaching and learning are known 

to be problematic. 

3. Discrete problem versus linear algebra 

3.A. Well-known obstacles in teaching and learning linear algebra  

Let me summarize the main results of studies on the teaching of linear algebra in order to 

emphasize some recurrent difficulties and obstacles and then to justify my attempt to problematize 

certain concepts in a new perspective (see also Carlson et al. 1997, Kalman & Day, 2001). Dorier 

explains that students “are overwhelmed by the number of new definitions and feel like they are 

landing on a new planet” (Dorier, 2000, p. 185). He underscores the obstacle of formalism in linear 

algebra as well, characterizing this field of mathematics as a unifying and generalizing theory 

(Dorier, 2000; Dorier et al. 2000a; Dorier et al. 2000b). The lack of connections with previous 

                                                 
6
 Lakatos explains that we can do nothing with a naive concept, because we cannot extend it, unless you are able to fit it 

in a theory, then the considered concept will not be naive anymore! 
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knowledge, the lack of practice in basic logic and set theory (misunderstanding of implicit 

quantifiers and of necessary and sufficient conditions) and the impossibility of using geometrical 

intuition also lead to difficulties for students in learning linear algebra. Besides, the multiple proofs 

and kinds of reasoning in this branch of mathematics make it complex for students (e.g. Sierpinska, 

2000; Uhlig, 2002). This last point leads us to the problem of the meaning and of the control we can 

have on proofs when we construct them, especially in an abstract theory. Several propositions, 

different in nature, have been made to help overcome students’ difficulties (Harel, 1998; Rogalski, 

2000; Uhlig, 2002), using the historical roots of linear algebra (for instance, through the concept of 

‘rank’ and the pivotal cluster of concepts ‘linear combination’, ‘dependence’ and ‘independence’). 

Most of them are produced within long-term studies (didactical engineering in the meaning of 

Artigue, 2014) and all of them are within the strict field of algebra. Furthermore, the attempts to 

connect linear algebra to 2D and 3D geometry in order to give an image of some concepts have 

shown their limits. Moreover, such approaches convey other obstacles: the problem of these 

metaphorical approaches has been studied by Hillel (2000) and is also pointed out by Harel (1990, 

1998). Indeed, geometry is limited to three dimensions and some concepts (such as linear 

(in)dependence or rank) have a very limited range of representation in the geometric context. And 

the loss of meaning through the transition to algebraic formalism actually turns out to be an issue in 

this type of geometric approach. I would also like to stress the complexity related to the 

understanding of the concepts in linear algebra with formal definitions, because “most of the 

models used in linear algebra for generalization and embodiment of concepts involve difficult 

mathematical ideas which students are not prepared to deal with.” (Harel, 1990, p. 388). Besides, 

Harel’s results underscore that, in linear algebra, “(...) students do not build effective concept 

images; rather, they place their full reliance on concept definitions, by memorizing them verbatim. 

(...) Once the concept definitions are forgotten, students are unable to retrieve or rebuild them on 

their own.” (Harel, 1998, p. 499). The importance of involving students in a mathematical 

experience here appears crucial to me. 

Faced with these obstacles, what kind of new approach can one propose? I have chosen to explore 

the following track: to engage students in a mathematical questioning close to that of linear algebra 

(but more “intuitive”) in order to explore relations between concepts similar to those of linear 

algebra. Similar but not so interrelated. And I have found a nice discrete problem, outside formal 

algebra, to achieve that. 

3.B. A discrete problem  

I present here a very natural statement of the problem I consider. Take a regular squared grid
7
 and 

some displacements which can be described with integers (or only positive integers) on this grid 

(Table 1). A starting point is given. An experimental fact is easy to grasp: starting from the starting 

point, a point of the grid is reachable or not, when one uses the given displacements. So “the” 

question: which points of the grid can one reach using positive integer combinations of these 

displacements? 

                                                 
7
 One can take another regular tessellation... not easy! 
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or (2 ; 1) or ... 
 

A discrete grid A displacement Some points reached with this displacement 

Table 1 – The objects at stake 

There are a lot of underlying questions: is it possible to reach all the points of the grid? or some 

sectors of the grid? Can one characterize generating sets of displacements? Are they minimal ones? 

What about the cardinality of minimal generating sets? Etc. 

3.C. An epistemological analysis of the problem  

I will propose one possible exploration
8
 of the discrete problem – the most natural and intuitive one 

– through the Lakatosian kinds of definitions, while making room for heuristics
9
 as they can be 

involved in such a mathematical enquiry. The analysis of the mathematical problem has helped me 

to design a didactical situation for freshmen (see section 4 and Ouvrier-Buffet 2003a, 2011).  

I will use letter G for the regular squared grid, A for a starting point, and the term integer point or 

point for lattice point. I have chosen to define a displacement on G with two positive integers and 

two directions (among up, down, left and right). For instance, “2 squares right and 3 squares down”. 

A displacement can be represented with a vector. One can also consider displacements and their 

opposite displacements (and so integer coordinates), it is still a real issue. The order of the 

displacements does not interfere because displacements are commutative (property easy to prove). 

3.D. Exploring “small cases”
10

 

There is an obvious set of four displacements which allows us to reach every point of G (Fig. 1). It 

is also obvious that two displacements are not enough to reach all the integer points: either all the 

points of a sector of G (i.e. a set of integer points bounded by two rays) are reached (Fig. 2), or only 

some points of a sector are reached (Fig. 3). I would like to underscore two major facts: 

- The question of “reaching integer points” can be refined: one can study sets of displacements 

which allow to reach all the points of a given sector and/or sets of displacements which allow to 

reach all the integer points. In both cases, one can talk about “generating sets” (for a sector or for 

G). 

                                                 
8
 I encourage the reader to explore the discrete problem and to suggest other kinds of enquiries than the one proposed in 

this paper. 
9
 According to Pólya (1945, 1954), heuristic is a set of strategies for solving mathematical problems to learn, to teach 

and to reconstruct mathematics. For instance, I consider that the following actions are heuristics: proving, conjecturing, 

refuting, creating, modeling, defining, extending but also transforming a questioning process, being able to mobilize 

non-linear reasoning, experimenting, decomposing-recomposing. 
10

 i.e. for two, three, and four displacements. 
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- If one tries to build generating sets made of three displacements – in order to do “better” from 

the optimization point of view than Fig. 1 – one can start from sets of two displacements for 

instance. Take Fig. 2: every point of the sector bounded by the two given displacements is reachable 

(I call this property “with Full Density” (FD)). It is not always the case: Fig. 3 shows us that some 

points of the sector bounded by the displacements are not reachable. And now, I try to go “a little 

bit everywhere”
11

 (ALBE) when adding at least one displacement. A geometrical argument 

(translation of the reached sector for instance) brings a third displacement (as represented on Fig. 4, 

taking quadrants into account, or as we can operate on Fig. 2 with a very acute angle). 

 

Table 2 – Exploring “small cases” 

The exploration of small cases leads us to these results:  

- Two major properties emerge: one can give the following zero-definitions of “with Full 

Density” (FD) and “a little bit everywhere” (ALBE). 

o ZdefFD: a set of displacements has the FD property if and only if
12

 all the points of a 

sector of the grid are reached; 

o ZdefALBE: a set of displacements has the ALBE property if and only if there exists a 

positive number µ such that for any point X in the grid there exists a reachable point Y, “close to 

X”, i.e. whose distance from X does not exceed µ (here, it is possible to avoid a metric 

altogether). 

                                                 
11

 Allusion to “almost everywhere”. One can also link this property to the discrete mathematical field of “covers” and 

raise the question of the minimal cover. 
12

 The use of the expression “if and only if” for a definition is sometimes questioned by some philosophers or teachers 

for whom a definition is only a denomination (see Ouvrier-Buffet, 2003a). I choose not to deal with such conceptions in 

this article. 
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- One can reach all the points of the grid when the FD and ALBE properties are satisfied 

simultaneously. Then, they imply a zero-definition of a generating set. 

- To reach the four cardinal points or to generate the four unit displacements implies to reach 

all the integer points. One then considers the grid through two directions (the horizontal and the 

vertical ones). If I outline here a vertical development of this discrete problem (as done in Sally & 

Sally, 2007), I should point out the wider NP-Hard Frobenius Problem (Ramirez Alfonsin, 2006), 

also called the “coin problem”: “given coins of denominations a1, a2,..., an (with no common 

factor), what is the largest amount that cannot be changed?”. Dealing with small cases of the 

Diophantine Frobenius problem can lead to the Pick Theorem, which has a lot of interesting 

applications (Sally & Sally, 2007). Such a development would require another article. 

After this prior exploration, more “natural” queries emerge: 

1) Existence: do such generating sets exist? 

2) Building generating sets: How can one build generating sets? Other generating sets? Do 

such sets have other mathematical properties? An integer k being given, can one build all the 

generating sets with k displacements? This last question makes sense when we deal with the notion 

of minimal generating sets. 

3) Removing a displacement: Is it possible to remove a displacement without changing the 

set of reachable points? One can say that a set of displacements is minimal when removing any of 

its displacements modifies the set of reachable points. With this definition, how to characterize a 

minimal generating set of displacements?  

4) Cardinality: Do the minimal generating sets of displacements always have the same 

number of elements? The answer is obviously no (see Figures 1 and 4), and that is surprising, at 

least for students who are used to dealing with geometrical analysis and “kind” vector spaces. In 

fact, one can bring the discrete problem on the grid back to a problem on Z, and then mobilize 

knowledge from number theory. It is easy to build generating sets with different cardinalities. E = 

{1; -1} and F = {2; 3; -6} are two simple examples of minimal generating sets for Z (for E, if I 

remove 1, I loose the ALBE property. For F, if I remove 2 or 3, I loose the FD property and if I 

remove -6, I loose the ALBE property). 

A generalization leads us to the following result:  

Proposition 1: for any integer k, there exist, in Z, minimal generating sets of displacements 

with k elements. 

Remark: the search of the proof of proposition 1 can lead the solver to the use of known 

arithmetical results, but it can also lead the solver to explore arithmetical properties (see for instance 

(Duchet, 1994) for an experiment with 14 year old students).  

And now, if one wants to build a minimal generating set on the squared grid, one can keep in 

mind the horizontal/vertical representation and choose displacements carefully, in order to keep the 

minimality. Therefore, one has the following proposition: 

Proposition 2: for any integer k, there exist, on grid G, minimal generating sets of 

displacements with k elements. 
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Indications for the proof (in order to underscore its accessibility): one constructs a set of 

horizontal minimal generating displacements with (k-2) elements in order to generate Z (see above, 

k being as big as one wants) and then adds two vertical displacements in order to go everywhere by 

 

More questions to explore: can one build other kinds of minimal generating sets than those built in 

the previous proof? Do other proofs exist? I now directly address the readers: what kind of 

exploration of this discrete problem would you have conducted? With which major mathematical 

questions? What kinds of heuristics would you have mobilized? 

4. Design of a didactical situation: choices and challenges 

4.A. A potential evolution of zero-definitions to proof-generated definitions? 

The shift from zero-definitions to proof-generated definitions is not easy to re-implement in the 

classroom when one designs a didactical situation. Indeed, Lakatos has based his historical 

reconstruction upon several mathematical backgrounds, using Cauchy’s proof as a motivation to 

boost concept formation. And yet, this part of the defining process would be bringing learning 

potentials to teach proof and highlight the relations between proof and definitions, especially at 

university. In fact, no study in mathematics education has showed yet didactical situations involving 

such a shift from zero definitions to proof-generated definitions. If one wants to make the most of 

the Lakatosian view of definitions, one can start by focusing on the zero definitions and on their 

potential evolution to other “better” zero-definitions. It implies a view of the constructive and 

tentative nature of definitions which are socially constructed. The proof generation aspect comes 

later. I do not forget that some studies reveal that students can have difficulties in understanding the 

“very nature of mathematical definitions” (Edward & Ward, 2004, p. 411). Studying the zero 

definitions and their features can be a real opportunity for us to solve this understanding problem. 

4.B. Zero-definitions at stake 

I have designed a situation (made up by three problems) for freshmen who have not yet encountered 

linear algebra (or very partially) starting from the problem of displacements. I kept in mind the 

epistemological, logical and cognitive obstacles mentioned above, in particular the fact that students 

may have concept images coming from analytical geometry for instance (they can think that two 

displacements are enough to reach every integer points). I have tried to motivate the emergence of 

questionings and of zero definitions (generating sets, minimal generating sets, FD, ALBE). The 

validation of the constructed zero-definitions comes in their use when building new sets of 

displacements and testing new sets of displacements (generating and minimal aspects). Table 3 

synthesizes the choices I have made for the design of the didactical situation (see also the 

appendix). 

Problems Exploration leads to ... Validation / Potential evolution  

Problem 1: Two 

displacements on the grid 

- assimilate the rules of the 

displacements and the 

questionings.  

Aim: to dismiss students’ pre-

existent concept image coming 

from vector space of dimension 2 
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Fig. 5 

- in order to generate all the points 

of the grid, more than two 

displacements are required”. 

- a conjecture: “three 

displacements are enough to reach 

all the points of the grid.” 

- a first natural Zdefgenerating set: “a 

generating set is a set of 

displacements which allows 

access to all the points of G”. 

 

- ZdefALBE and ZdefFD possibly. 

where two vectors are enough to 

build a basis. 

 

 

 

 

This Zdef is not operational to 

build generating sets (even if it is 

operational in the graphic register 

for two displacements).  

 

The use of them to prove that a 

set is a generating one testifies to 

their validity. 

Problem 2: Two or three 

displacements or four 

displacements where two of 

them are dependent

 

Fig. 6 

- Zdef minimal generating set: “a minimal 

generating set of displacements is 

a set of three displacements 

allowing access to all the points of 

the grid”. 

- Zdef minimal generating set bis: “a 

minimal generating set of 

displacements is a set of non-

dependent displacements”. 

 

 

- Towards the proof that “three 

displacements can be enough to 

generate all the points of the 

grid”. But one cannot conclude 

that all the generating sets are 

made up of three elements. 

To explore a problem where four 

displacements are independent 

allows the invalidation of this 

Zdef.  

 

Aims: To prove the existence of 

minimal generating sets, to 

generate such sets, to prove that a 

set is a generating one and to 

prove that a set is a minimal 

generating one. 

 

 

Distinction between minimal and 

minimum. 

Problem 3: A minimal 

generating set made up of 4 

displacements (one can 

prove that this generating set 

is a minimal one) 

To demonstrate that “three 

displacements are not always 

enough”. In fact, the set presented 

here features four displacements 

and is a minimal generating one.  

The corollary of the exchange 

theorem (i.e. the existence of 

dimension, true in a vector space) 

is false in the discrete case
13

. 

                                                 
13

 Remark: the invariance of dimension makes sense when one shows in which instances it does not work. 
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Fig. 7 

Table 3 – Choices for the didactical situation 

4.C. Main features of the discrete problem compared with “classical” linear algebra 

From an historical point of view, the fundamental importance of modules over a ring is confirmed, 

vector spaces over a field being as a subsidiary notion (as done in Mac Lane and Birkhoff’s Algebra 

(1967))
14

. The contemporary works of researchers in didactics about the teaching and the learning 

of linear algebra take this branch of mathematics as a “self-sufficient” full fledged system. It is 

obvious that making connections with modules over a ring is not the easiest way to teach linear 

algebra at the beginning of university. The discrete situation I suggest is a way to situate linear 

algebra’s questionings in a wider context, but in an easier way than Mac Lane and Birkhoff’s 

approach. It also gives a “natural” exploration of some results that are not “always true”. Indeed, a 

minimal generating system, a maximal linearly independent system are not basis in the general case. 

For instance, for Z/(6), considered as a Z-module, there is no linearly independent system (non-

empty) and {2; 3} is a minimal generating system. And in Q, considered as a Z-module, every 

system reduced to one element (non-zero) is a maximal linearly independent system and there exists 

no basis. 

Let me go back to the discrete problem. The discrete problem is an open problem, which the 

students do not know. They can “do” mathematics, as a researcher does, without looking at a pre-

existing course in a textbook. The discrete object “displacement” is different than in the continuous 

case: there is no + and – and there is no modification of a displacement by a scalar multiplication. 

In linear algebra, the scalar multiplication brings the FD property; and the use of + and – brings us 

the possibility to go everywhere but not necessarily ALBE. Moreover, the question of “dimension” 

is typically a part of linear algebra whereas the discrete case deals with the question of “minimality” 

(the concept of “dimension” would be problematized, provided that students have already 

encountered this concept in other contexts.) 

The queries are common to discrete and continuous problems but they are more intuitive in the 

discrete case than in linear algebra, even if the mathematics behind the displacements can be quite 

advanced. Furthermore, the concepts are highly interrelated in vector space whereas the discrete 

problem clearly separates the concepts (the “same” concepts as in vector space): it then especially 

allows work to be done on the links between the concepts involved in the problem and on the 

necessary and sufficient conditions. Besides, the links between concepts are more important than 

                                                 
14

 See G.H. Moore, The Axiomatization of linear algebra: 1875-1940, Historia Mathematica 22 (1995), 262-303 for a 

wider historical study. 
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the concepts themselves, which are not an obstacle in studying the discrete case. The discrete 

queries – which can also be found in other fields of mathematics – and an exploration of links 

between definitions and proofs should be fruitful.  

The situation proposed in discrete mathematics is then decontextualized in comparison with a 

classical introduction of concepts in linear algebra. The concepts of “generator”, “minimality” but 

also “dependence”, and later “basis”, can be studied while avoiding excessive formalism. The shift 

from N and Z to R
+
 and R has to be introduced by the teacher. All these features show the 

potentialities of this discrete situation, which can be an introduction to a linear algebra course, in 

order to highlight mathematical questionings, under certain didactical conditions. Such conditions 

should follow these features: a specific research contract in the classroom, a long-term situation, 

and an institutionalization of enquiries which are common to the discrete problem and to linear 

algebra. 

5. Students faced with displacements on a regular grid 

I have experimented the situation of displacements with freshmen from scientific and non-scientific 

courses at university. The first time with freshmen in science training for my didactical research, 

and the second time with future economists for the needs of my teaching, before a course about 

linear algebra. I will not go into the details of the methodology, it is not my purpose here. Students 

from scientific courses are used to working in groups (3 or 4 students per group, around 30 

students) and the intervention (audio-taped) lasted 3 consecutive hours. The future economists 

(around 30 students) were not recorded (except one group), I will report notes I have taken for this 

group of students. I will give the general tracks followed by the students from scientific courses and 

focus on the main differences between these two groups of freshmen (see the appendix for 

excerpts). 

5.A. With freshmen from scientific courses
15

 

I must point out that the freshmen who took part in the intervention had a small academic 

knowledge in linear algebra: they knew the notions of “linear independency”, “basis” and “vector 

space” (they knew their definitions in a vague manner). The situation of displacements allows a 

work on mathematical objects graspable through a basic representation close to that of vectors. The 

objects do not represent an obstacle in themselves. The main difficulty lies in the fact that properties 

have to be characterized (generating sets, minimality, among others) and to be denominated. These 

specificities of the situation of displacements partially explain why the students did not engage in 

characterizing mathematical properties. Indeed, only some statements were produced but they were 

not recognized as important mathematical statements and they did not evolve into institutionalized 

definitions. Moreover, the persistence of concept images coming from analytical geometry was real 

(they said for instance: “We have four displacements. We need only two vectors as a basis.”). 

Nevertheless, I have identified a natural definition of “generating” (“to reach all the points of the 

grid”
16

). It has been transformed into an operational property (“to generate the four cardinal points 
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 For a more descriptive study of the students’ productions, see Ouvrier-Buffet (2003a). 
16

 The sentences in quotes come from the students’ dialogues. I have formalized them a little bit, because students did 

not institutionalize them, they only used these properties or definitions in the action. 
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or unit displacements”). It has not been connected to the ALBE and FD properties, even if these 

properties were implicit in the students’ dialogues (the ALBE property is predominant). 

Furthermore, I have identified two definitions-in-action
17

 (i.e. statements that enable students to 

pick up the most adequate selection of information according to the situation, but without any 

explicit definitions): one for “minimal generating set” (“when all the displacements are used during 

the search of four unit displacements”) and one for “minimal” (“a set of displacements is not 

minimal when one of them is an integer combination of the others”). Students can work efficiently 

with these two definitions-in-action, which are both connected to the same proposition-in-action 

(“to have the four directions represented is a necessary condition in order to have a generating set of 

displacements”). Such a definition-in-action can become powerful. But in this case, the definition-

in-action of “minimal” was imported by the students from their previous knowledge in linear 

algebra. In fact, in this example, “minimal” is a translation of “independent”. This kind of 

definition-in-action (an imported one) blocks the students’ conceptualization. Students stayed in the 

action, in the proposed configurations. Their process did not move to a generalization which would 

have allowed an evolution of their definitions-in-action. For them, there is no explicit need for 

formalization (Harel, 1998). Moreover, the management conducted by the teacher-observer is not 

definition-oriented, it is neutral. A plausible hypothesis is that this distance between manipulation 

and formalization (formalization merely being a first step, not a complete theorization) is too rarely 

approached in the teaching process. It goes along the lines of previous epistemological and 

didactical results which conclude that formalism is a crucial obstacle in the teaching of linear 

algebra. It underlines that putting students into a mathematical experience is a necessary condition 

in order to help them in their learning process at university. Besides, the short time format (three 

hours) probably did not encourage the evolution of definitions, a wider exploration of defining 

processes requiring more time. 

5.B. Main differences between freshmen from scientific and non-scientific 

backgrounds 

The mathematical exploration of the discrete problem is more natural and more intuitive for 

freshmen from non-scientific courses (NS group) than for freshmen from scientific courses (S 

group). It is not so surprising: the S group tries to mobilize their previous knowledge and that limits 

the students in their study of the mathematical problem. Moreover, studying cases where the 

cardinality of the minimal generating sets is not an invariant feature is not a common practice at the 

beginning of university. The NS group were more accurate on their characterization of sectors, 

focusing on the ALBE and the FD properties, but (again) without defining them (these students 

stayed in the action too). In fact, it is as though having (partial) knowledge in linear algebra blocks 

students in their exploration of the discrete problem. That is the reason why the place in a course of 

the discrete situation should be before a course of linear algebra in order to make room for the 

mathematical exploration of the discrete case. Then, an institutionalization of the questionings 

(common to the discrete and the continuous cases) should be done. Besides, a study of the relations 
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 For this concept of definitions-in-action, I was inspired by Vergnaud (1996) and his characterization of concepts-in-

action. 
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between the concepts involved in the discrete situation opens new opportunities to engage students 

in a work on implication (necessary and sufficient conditions).  

I am studying the way one can use the discrete case during the first university year to introduce to 

concepts and questionings of linear algebra in the most beneficial manner. I pay attention to the 

distance between manipulation and formalization and also to the difficulties that students encounter 

with formulation and validation (in Brousseau’s 1997 meaning): the articulation between defining 

and proving should be built in students’ practices as well as a work on mathematical statements in 

order to deepen the work on proof. Such a research is linked to the study of defining and proving 

processes of mathematicians (e.g Ouvrier-Buffet, 2013, 2015ab). This work is still in process. 

6. Opening 

“Ideas concerning the mathematical understanding of students at all levels are 

germane to the study of the mathematical process.” (Vinner, 1991, p. 120) 

“Students should have experiences that focus on the use of mathematical definitions 

and experiences in the process of defining.” (Edward & Ward, 2004, p. 422) 

6.A. An efficient tool in epistemology and didactic 

The Lakatosian kinds of definitions (especially zero-definitions) allow an epistemological analysis 

useful from a didactical point of view, bringing a (partial) modeling of defining processes and 

elements in order to make the construction of definitions more dynamical. With the notion of 

definitions-in-action, students’ processes can be described, as well as the lacks in students’ defining 

processes. I also keep in mind Harel’s necessity principle
18

, but it remains difficult to design 

didactical situations involving this principle for the defining processes. Not only because students 

have not yet encountered such processes, but also because “all” the features of the defining 

processes are not yet well known, even if some researchers have characterized the heuristics and 

behaviors of mathematicians (e.g. Burton, 2004; Schoenfeld, 1994; Ouvrier-Buffet, 2013). 

6.B. Discrete mathematics: a way to consider mathematical objects 

Of primary interest in the situation of displacements on a grid is the use of discrete structures to 

grasp transversal concepts (such as generating sets, the question of minimality, etc.) and transversal 

questionings which belong to several fields of mathematics. Moreover, the discrete situation allows 

an access to the reasoning behind the construction of concepts and then contributes to the 

development of proof abilities through an active mathematical exploration of the problem 

(construction of relations between properties and proofs of implications) (see for other examples 

Gravier & Ouvrier-Buffet, 2022; Ouvrier-Buffet, 2020).  

                                                 
18

 Harel (1998, p. 502) explains the Necessity Principle translating as three steps: 

1) Recognize what constitutes an intellectual need for a particular population of students, relative to the concept to be 

learned.  

2) Present the students with a problem that corresponds to their intellectual need, and from whose solution the concept 

can be elicited. 

3) Help students elicit the concept from the problem solution. 
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If one tries to problematize the same concepts in other mathematical situations involving material 

objects (such as displacements, for the reason of the devolution of the problem), one can foresee the 

following tracks: to cover the plane with fractals, to generate some kinds of graphs. One also has to 

question the invariants in the discrete mathematics which are common to the continuous cases: if 

the discrete problems are sometimes (and even often) easier to grasp than the continuous ones, the 

mathematics behind can be quite advanced. Such a discussion leads us to further studies. There is 

room to explore new questionings about the teaching of continuous structures, with the help of the 

discrete ones. This comparatively young branch of mathematics arouses interest because it brings 

new potentialities for education: Goldin (2004, p. 58) emphasizes “how experiences in discrete 

mathematics may provide a basis for developing powerful heuristic processes and powerful affect” 

(cf. a special issue of ZDM about Discrete Mathematics and Proof in the High School, 2004). 

Exploring this avenue is worthwhile for the investigation of mathematical practice. 

Appendix 

1) The problems which make up the situation 

On a regular squared grid, for each problem, use a set of displacements and choose a starting point (called 

A), any one. The questions are: 

1- Starting from point A, which points of the grid can we reach? 

2- What are the consequences if we remove one or more displacements? 

Problems Sets of displacements 

Problem 1 
d1: 2 squares to the right and 1 square up  

d2: 3 squares to the left and 3 squares down 

Problem 2 

d1: 2 squares to the right and 3 squares up 

d2: 5 squares to the left and 2 squares down  

d3: 5 squares to the right and 3 squares down 

d4: 1 square to the right 

Problem 3 

d1: 3 squares to the right and 3 squares up 

d2: 2 squares up 

d3: 1 square to the left 

d4: 1 square to the left and 3 squares down  

 

2) Students’ dialogues – Some excerpts 

Group from non-scientific background (NS group) 

During the following excerpts, Samy and Yohan try to build a generating set of displacements 

(O is the Observer). 
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- Concept image “two displacements are enough” 

444 S: But why couldn’t it work with two displacements?  

- Definition-in-action of ALBE. Horizontal/vertical representation and use of number theory 

458 S: I can cover all the squares upright, because I can go down each time for one square. And 

with this... I can go to the right and to the left. Then, this set of displacements works for me. (...) 

505 O: Why did you take 2 squares to the left?  

506 S: Because I had 3 squares to the right.  

507 Y: You want to come back from 1 (...) 

510 S: I think that with a combination with 3 and 2, one reaches all the numbers.  

- Four cardinal points and four unit displacements (see Fig. 10) 

564 S: In fact, when I use these displacements several times, I reach these points (he shows the four 

cardinal points). They would symbolize a unit-displacement up, a unit-displacement to the right, a 

unit-displacement down and a unit-displacement to the left (...) they are commutative (...) the four 

elementary points ... I say “elementary” because they allow the production... 

565 Y: ... of all the points. 

 

 

Fig. 8 

 

Fig. 9 

 

Fig. 10 

Representations used by the NS group 

Groups from scientific courses (excerpts of four groups) 

- Concept image “two displacements are enough” 

 138 P: We have four displacements. We only need two vectors as a basis. (Yellow group –  problem 

2)  

- Knowledge from linear algebra 
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  350 S: The thing is ... no, I don’t think that it is the same thing (as linear algebra), because here, 

we can’t reach this point.   

  351 P: Each time, you try to reuse your courses, you realize that it is useless!  

  352 S: No, but here, it is obvious. But a linear combination, it is a ‘lambda v’ thing, where v is 

any vector...  

  353 P: I don’t know what it is! (...) 

  373 S: Because it is precisely not a vector space, I mean that it looks like a vector space, but it is 

not a vector space. First, there is no zero element, and besides the ‘lambda’ that we can use can’t be 

negative. How would you say that? ... in fact, you only have two kinds of displacements, but for 

instance, when you use the (displacement) (3; 3) like this, you can’t use the (displacement) (3; 3) in the 

other direction. And the same thing happens with the (2; 1), you can’t use the (-2; -1). (Pink group – 

problems 1 & 2) 

 

 

(Translation) “We can make an analogy with vector spaces. The reachable points are reached with linear 

combinations such as with  and  we have linear combinations , and we can’t 

reach the “unreachable” zone because . One also notices that the set of the found points is 

not a vector space because there is no zero element, because , and ”. (Purple 

group – an excerpt of their notes) 

- FD property 

 1430 R: We noticed that if we remove d4, it is not like removing d2 where a whole sector  disappears. 

If we remove d4, a lot of points are removed, but we still have points in a whole  zone. (Pink group – 

problem 2) 

- Four cardinal points and algebraic systems 

  178 B: In order to go everywhere, you try, and if you find (1; 1), it means that you can reach this 

point. After that you go on with this system to see if you have solutions. You process with (1; -1) in 

order to see if you can reach this point and with (-1; 1) and with (-1; -1).  

  179 A: Yes! You can see if you can reach the four points around!  

  180 B: Therefore, it means that you can go everywhere. If we can prove that, we have no more 

questions. And if we can’t prove it ... it means that there are other conditions, it is complicated, or there 

is a technique…  



18  Auteur(s) 
 

  181 A: It is not these four points. We have to take those.  

  182 B: Ah yes! We have to take (1; 0) (-1; 0) (0; 1) and (0; -1). We have a lot of systems to 

solve! (they solve systems) There are many solutions, but proving that there is one is enough. And this 

solution should work for the others too...  

  199 A: With that, we have proven that we can go everywhere. (Blue group – problem 2) 

 

 

 

Fig. 11 

 

 

 

Fig. 12 

 

 

 

Fig. 13 

 

Fig. 14 

Representations used by the S groups 
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