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Abstract A wide class of problems involves the minimization of a coercive and dif-
ferentiable function F on R

N whose gradient cannot be evaluated in an exact man-
ner. In such context, many existing convergence results from standard gradient-
based optimization literature cannot be directly applied and robustness to errors
in the gradient is not necessarily guaranteed. This work is dedicated to investigat-
ing the convergence of Majorization-Minimization (MM) schemes when stochastic
errors affect the gradient terms. We introduce a general stochastic optimization
framework, called SABRINA (StochAstic suBspace majoRIzation-miNimization
Algorithm) that encompasses MM quadratic schemes possibly enhanced with a
subspace acceleration strategy. New asymptotical results are built for the stochas-
tic process generated by SABRINA. Two sets of numerical experiments in the
field of machine learning and image processing are presented to support our theo-
retical results and illustrate the good performance of SABRINA with respect to
state-of-the-art gradient-based stochastic optimization methods.

Keywords Stochastic optimization, convergence analysis, Majorization-
Minimization, subspace acceleration, binary logistic regression, image recon-
struction.
Communicated by Nguyen Dong Yen

1 Introduction

We consider the problem:
minimize

x∈RN

F (x), (1)

where F : RN → R is a coercive and differentiable function on R
N . We focus on

the case when the gradient of F is altered by stochastic errors during the iterative
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optimization process. This problem has been widely studied in the optimization
literature, starting from seminal works [33, 61], and has known a renewed inter-
est in the last decade with applicative challenges arising in supervised learning
on large scale datasets [12,54]. The stability properties of gradient-based stochas-
tic schemes are also of high interest in approximate Bayesian inference, where
stochastic gradient steps are often used to improve the exploration capacities of
the samplers [32, 47, 51, 58].

Probably the most relevant gradient-based stochastic optimizer is the stochas-
tic gradient descent (SGD) algorithm, studied in [7, 33,61]. Extension of SGD to
non-differentiable case using proximal-based tools can be found in [2,4,26,46,64].
Few convergence studies made in the deterministic case extend straightforwardly
to the stochastic case. All the aforementioned works are grounded on specific
probabilistic tools such as [31, 62]. SGD is rather simple but can exhibit slow
convergence. Therefore, many recent works have focused on deriving accelerated
variants of it. Two main families of acceleration strategies can be distinguished in
the literature. The first approach, adopted for example in [30,39,45,49,55], relies
on subspace (i.e., momentum) acceleration. The convergence rate is improved by
using information from past iterates for the construction of new estimates. The
second approach to accelerate the convergence of SGD is based on a variable met-
ric strategy [19,29]. The underlying metric is modified at each iteration thanks to
a preconditioning matrix, which may incorporate second-order information about
the function to minimize. These acceleration techniques give rise to promising
practical results.

This work proposes a novel SGD-based scheme to solve Problem (1), by com-
bining the two aforementioned acceleration strategies. To do so, we rely on the
so-called Majorization-Minimization (MM) principle [69, 73]. At each iteration of
an MM algorithm, a surrogate function majorizing the problem cost function is
constructed. The next iterate is then obtained by minimizing the majorant. By
construction, MM method produces a sequence of iterates that decreases the cost
function monotonically. MM algorithms benefit from assessed convergence prop-
erties in the convex and non-convex settings [9, 23, 44]. The extension of MM
methodology to the stochastic context has been studied recently in [25, 27, 50]
in restricted scenarios. The method proposed by [27] is dedicated to introducing
stochastic errors into the expectation-minimization approach, a special case of
MM. The MISO approach from [50] combines an MM scheme with constraining
averaging rules both over surrogates and iterates to reach convergence. The work
of [25] studies a scheme close to the one proposed in our paper, but limits the
analysis to the specific case of a penalized least-square criterion whose gradient
is evaluated using a recursive least-squares implementation [35]. In this present
work, we introduce a versatile MM scheme relying on quadratic majorant sur-
rogates for F and allowing for subspace acceleration [22, 60]. In a nutshell, the
resulting algorithm benefits from a simple structure that can be understood as
an SGD method with both preconditioning and momentum-based term, and has
minimal parameter tuning. For the proposed scheme, our contributions are1:

1A preliminary version of this work has been presented in the conference proceedings [36].
The convergence result was weaker, and stated without proof. The experimental validation
was limited to a single, simpler, numerical scenario.



SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm 3

• almost sure convergence results for non necessarily convex F ;
• convergence rate analysis in the strongly convex case;
• illustration of the performance and comparison with state-of-the-art on two

numerical examples.

The rest of the article is organized as follows. Section 2 states notations and
introduces the considered MM stochastic optimization scheme. The probabilistic
framework is introduced in Section 3.1. Assumptions are listed in Section 3.2
along with a discussion in Section 3.3. Some technical lemmas, essential for our
theoretical study, are presented in Sections 3.4 and 3.5. Our main contribution is
concentrated in Section 4. Our main convergence results can be found in Theorem
1 (Section 4.2) and Theorem 2 (Section 4.3). Numerical experiments are provided
in Sections 5 and 6. Finally, we conclude the paper in Section 7.

2 Background and Proposed Formulation

2.1 Notations

We classically denote by ‖ · ‖2 = 〈·|·〉 the euclidean norm of RN , and ||| · ||| the
spectral norm (i.e., largest singular value) of elements of RM×N . If M is a sym-
metric definite positive matrix of RN×N , ‖.‖2M corresponds to 〈.|M .〉. Moreover,
we will use the Loewner order � [8, Ch.V] between two symmetric matrices M1,
M2 of RN×N , where relation M1 � M2 holds if and only if difference M2−M1 is
(symmetric) positive. IN states for the identity matrix of RN , 0N the zero vector
of size N , and ON the null matrix of RN×N . Bold symbols are used for matrix and
vectors. Italic style is retained for deterministic quantities. Ker and ran denote the
kernel and range (i.e., image) respectively of a linear operator.

Subject to existence, x̃ will state for a stationary point of F . Moreover, zer∇F
will denote the set of stationary points of F . We will write x∗ a global minimizer
for F and define F ∗ := F (x∗).

2.2 Quadratic MM approach

MM algorithm solves Problem (1) iteratively by generating a sequence (xk)k∈N

of elements of R
N , where the step from the iterate xk to its successor xk+1 is

achieved through the minimization of h(·,xk), a tangent majorant surrogate of F
around xk, i.e.

(∀x ∈ R
N ) h(x,xk) ≥ F (x) and h(xk,xk) = F (xk). (2)

An efficient strategy consists in resorting to a quadratic majorant function, struc-
turally analogous to a second-order Taylor’s expansion of F :

h : (x,y) 7→ F (y) +∇F (y)⊤(x− y) +
1

2
‖x− y‖2A(y). (3)

Hereabove, for every y ∈ R
N , A(y) is a symmetric positive definite matrix of

R
N×N chosen so as to ensure (2). The latter, called the majorant metric matrix,
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yields a complete description of h(·,y) and thus influences the approximation qual-
ity of F by this same surrogate. Several techniques for building suitable majorant
metric matrices can be found for a wide class of problems encompassing image
restoration, telecommunication or supervised learning in [23, 69, 73].

As a consequence of the invertibility of A(xk), for every k ∈ N, we obtain the
generic MM scheme [69]:

(∀k ∈ N) xk+1 = argminx∈RN h(x,xk),

= xk −A
−1
k ∇F (xk) (4)

with Ak := A(xk) and x0 ∈ R
N . The MM update (4) can be shown to map with

the half-quadratic algorithm [40] when F is a penalized least-squares function. By
construction, the sequence (xk)k∈N built by (4) guarantees a monotonic decrease
of (F (xk))k∈N. Convergence of (xk)k∈N to a stationary point of F can be shown
under suitable technical assumptions on F and (Ak)k∈N [3].

2.3 Subspace acceleration

When using update (4), one needs to invert an N ×N matrix. Such an operation
is undesirable when N is large. The authors from [22] proposed to integrate a
so-called subspace acceleration procedure [60, 72] into (4) leading to:

(∀k ∈ N) xk+1 = xk +Dkuk, (5)

with
(∀k ∈ N) uk ∈ argmin

u∈R
Mk

h(xk +Dku,xk), (6)

and x0 ∈ R
N . The key ingredient of the above method is the introduction of a

matrix Dk ∈ R
N×Mk with N ≥ Mk ≥ 1, which imposes a subspace to search

for the new iterate xk+1. Taking Mk = N and Dk = IN , the identity matrix
of R

N , (5) goes back to scheme (4). In practice, only a few degrees of freedom
are actually required to reach good convergence speed (see [24] for a detailed
analysis of the convergence rate of scheme (5) as a function of Dk and Ak), so
Mk is typically retained as very small compared to N . Interesting choices can
be found in [22, Tab.1]. Setting Dk = [−∇F (xk) | xk − xk−1] (with conven-
tion x−1 = x0) brings notably to the so-called MM Memory Gradient (3MG)
method whose great performances have been illustrated in [22, 23, 37, 66]. Other
choices for the subpace matrix can be found in [53, 60, 67, 74]. It is worth not-
ing that the minimization scheme (5) shares strong connections with non-linear
conjugate gradient algorithm [56], low-memory quasi-Newton approaches such as
L-BFGS [48, 56], trust-region strategies [1], and momentum-based methods [70].
In contrast with these aforementioned works, the MM subspace scheme presents
the key advantage of a simple linesearch procedure (6) associated with sounded
convergence guarantees. Indeed, assuming, without loss of generality that Dk has
full column rank, the quadratic structure of h(·,xk) allows to obtain an analytical
solution to sub-problem (6).

(∀k ∈ N) uk = −
(
D

⊤
k AkDk

)−1
D

⊤
k ∇F (xk). (7)
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The interest lies here in the fact that D⊤
k AkDk is an Mk ×Mk matrix making

its inversion far easier computable than the inversion of Ak, as soon as Mk is
small. Convergence properties of (5)-(6) have been established in the convex setting
in [22], and extended to the non-convex setting in [23] using recent tools of non
smooth analysis. The catalizing effect of the subspace acceleration for practical
convergence speed of MMmethods has been acknowledged in the survey paper [69].
We also refer the reader to [17,20,41] for practical implementation of MM subspace
approaches on modern high performance computing tools.

2.4 SABRINA, a stochastic subspace MM algorithm

We are now ready to introduce the algorithm studied in this paper. We focus on
the stability of the optimization scheme (5)-(6) when the gradient of F is affected
by an additive stochastic perturbation at each iteration k ∈ N, so that only the
approximate value gk, defined below, is available:

(∀k ∈ N) gk = ∇F (xk) + ek. (8)

Hereabove, (ek)k∈N corresponds to a zero-mean stochastic process with a bounded
variance in a sense that will be specified in Section 3.2. Formulating the stochas-
tic counterpart of (5)-(6) requires to introduce the concept of inexact majorant
function. For every k ∈ N, the majorant function h(·,xk) will be substituted by a

new function ĥk with the following expression:

ĥk : u ∈ R
N 7→ F (xk) + g

⊤
k (u− xk) +

1

2
‖u− xk‖

2
Ak
. (9)

In analogy with the deterministic formulation from Section 2.3, the update at
iteration k ∈ N will be grounded on the search of a minimizer of ĥk along the
directions spanned by the columns of a matrix Dk ∈ R

Mk×N .

Let us also introduce a positive stepsize sequence (γk)k∈N in order to promote
stability of the iterates. This finally leads us to our stochastic minimization scheme
called SABRINA (StochAstic suBspace majoRization mINimization Algorithm):

(∀k ∈ N) xk+1 = xk + γkDkuk, (10)

with

(∀k ∈ N) uk = −
(
D

⊤
k AkDk

)−1
D

⊤
k gk, (11)

and x0 ≡ x0 ∈ R
N , a deterministic quantity.

Remark 1 For the sake of clarity, throughout the paper, we distinguish deter-
ministic and random quantities, with italic and non-italic styles, respectively. In
particular, since the noise (ek)k∈N is random, the quantities (gk,xk,Dk,uk)k∈N

are too. The probabilistic notations (i.e., probability space, filtration), useful for
our theoretical analysis, will be made explicit in Sec. 3.1.



6 Emilie Chouzenoux, Jean-Baptiste Fest

2.5 Link with stochastic preconditioned gradient algorithm

It is straightforward to rewrite SABRINA iterations (10)-(11) under the compact
form:

(∀k ∈ N) xk+1 = xk − γkBkgk, (12)

with

(∀k ∈ N) Bk = Dk

(
D

⊤
k AkDk

)−1
D

⊤
k . (13)

The above formulation is interesting as it highlights similarities between SAB-

RINA and the preconditioned gradient scheme with inexact gradient term, stud-
ied for instance in [11, 16]. The main distinction is that the symmetric matrix
Bk ∈ R

N×N involved in (12) gathers information brought by the majorant matrix
Ak and by the retained subspace Dk, as described in (13). The formulation above
suggests that controlling the behaviour of (xk)k∈N requires studying the properties
of (Bk)k∈N, which raises two main theoretical challenges that we plan to tackle in
this work: (i) Bk is a random matrix with rank lower or equal than Mk, (ii) F is
not assumed to be a convex function. Up to our knowledge, the general scheme
(12) has never been analysed under these two restrictions.

3 Preliminary Lemmas

In this section, we introduce our probabilistic notations. We present and discuss
our assumptions. Finally, we prove three technical lemmas that appear essential
for establishing our main convergence results presented in Section 4.

3.1 Probabilistic framework

In the remainder of the paper, we consider (Ω,F , P ) a probability space to which
we associate the filtration (Fk)k∈N

where F0 = {Ω, ∅} and for all k ≥ 1, Fk =
σ (e0,x1, ..., ek−1,xk) corresponds to the sub-sigma algebra generated by the fam-
ily {e0,x1, ..., ek−1,xk} of random variables. For each k ∈ N, Fk gathers all the
information available from the origin of the process to iteration k. A mathematical
property will be said to be verified almost surely or a.s. if it holds on a probability-
one set belonging to F . We also remind that an element of F is negligible if it is
a probability-zero one. For a given k ∈ N and subject to existence, we will denote
E(.|Fk), the conditional expectancy operator associated to Fk.

3.2 Assumptions

The following assumptions will guide us throughout the rest of the study.

Assumption 1 F is coercive and β-Lipschitz differentiable on R
N , i.e. there ex-

ists β > 0 such that:

(∀(x,y) ∈ (RN )2) ‖∇F (x)−∇F (y)| ≤ β ‖x− y‖. (14)
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Assumption 2 There exists (η, ν) > 0 such that:

(∀k ∈ N) ηIN � Ak � νIN a.s. (15)

Assumption 3 For every iteration k ∈ N,

(i) rank(Dk) =Mk a.s.
(ii) gk ∈ ran(Dk) a.s.

Assumption 4 The stochastic noise process (ek)k∈N fulfills:

(i) (∀k ∈ N) E (ek|Fk) = 0 a.s.

(ii) There exists C ∈ (0, Cmax) with Cmax = 1
2

(
(1 + 4η

ν )
1

2 − 1
)
such that:

(∀k ∈ N) E

(
‖ek‖

2|Fk

)
≤ C2‖∇F (xk)‖

2 a.s. (16)

Assumption 5 (γk)k∈N
is a sequence of strictly positive scalars satisfying:

γk −→
k→+∞

0 and

+∞∑

k=0

γk = +∞.

3.3 Discussion on the assumptions

Assumption 1 is rather standard in the analysis of stochastic gradient-based meth-
ods [42,50]. It is worth noting that the knowledge of the Lipschitz constant of ∇F
is not necessary for the practical implementation of the method.

Assumption 2 is essential for ensuring convergence of MM methods involv-
ing quadratic majorant functions, as it ensures that the majorant metric matrices
remain well-conditioned. Let us remark that the existence of such matrices is guar-
anteed by the descent lemma, since one can set Ak ≡ βIN , with β the Lipschitz
constant of ∇F (see Assumption 1). For such choice, SABRINA identifies with
SGD with specific MM-based closed-form formulas for the stepsize and the mo-
mentum weight. As we will show in our experimental tests, it is however usually
worthy to search for more sophisticated choices for (Ak)k∈N, leading usually to
faster practical convergence (See also [3, Sec.IV], [24] for the role of majorant
mappings in the convergence speed of quadratic MM methods).

Assumptions 3(i) and 3(ii) work as a peer, and control the validity of the
subspace construction. These requirements are standard in subspace-based opti-
mization methods [22,60,72]. Assumption 3(i) ensures the non-redundancy of the
information within the subspace. Assumption 3(ii) enhances some descent prop-
erties of the algorithm. Note that the latter Assumption is verified as soon as
one of the columns of Dk identifies with −gk (i.e. the SGD direction). A prac-
tical way to build Dk satisfying Assumption 3(ii) is thus to set its first column
as −gk, and to add extra columns including, for example, difference on past iter-
ates/directions. A list of valid subspace constructions can be found in [25, Tab.II].
A (column) rank reduction is performed, so as to satisfy Assumption 3(i). Interest-
ingly, for Dk ≡ −gk, SABRINA reads as a preconditioned SGD algorithm, with
MM-based preconditioner.
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Assumption 4(i) is often required for studying the stability of gradient-based
optimization schemes in the presence of stochastic errors [28,42]. Assumption 4(ii)
corresponds to a second order moment property and can be seen as a particular
case of [13, Assumption 4.3.c]. It states that uncertainty ek should remain rea-
sonable with respect to the norm of the (true) gradient of F at xk. The larger
condition number η/ν of the majorant metrics, the more permissive upper bound

Cmax is. The maximum theoretical bound
√
5−1
2 ≃ 6.18 × 10−1 is reached if and

only if η ≡ ν. Such a situation occurs for instance when Ak equals to a posi-
tive constant times identity. Typical choice would be Ak ≡ βIN , but, as already
mentioned, this choice might be detrimental to the convergence speed. In con-
trast, one can easily show that Cmax ∼ η/ν for η/ν → 0+, which means that
poorly conditioned majorant mappings would demand a high level of precision
on the gradient’s uncertainty. This suggests that a compromise must be achieved
between the convergence speed and the requirements in terms of stability to noise.

Assumption 5 is a relaxed version of the classical σ-sequence hypothesis [38].
In particular, a main feature of our study is that it is not necessary to impose the
usual condition

∑+∞
k=0 γ

2
k < +∞. Assumption 5 allows to choose a stepsize (γk)k∈N

with a slow convergence to 0 (e.g., an inverse logarithmic one).

3.4 Properties of the preconditioning matrices

As mentioned in Section 2.5, the behaviour of SABRINA iterates depends on the
properties of (Bk)k∈N expressed in (13). We derive some useful technical properties
for these matrices, gathered in the lemma below.

Lemma 1 Under Assumptions 2 and 3(i), for all k ∈ N, Bk is almost surely
well-defined and satisfies:

Dkuk = −Bkgk, (17a)

ON � Bk �
1

η
IN , (17b)

(∀x ∈ ran(Dk)) x
⊤
Bkx ≥

1

ν
‖x‖2. (17c)

Proof Let k ∈ N.

Matrix D⊤
k AkDk is symmetric. Using Loewner order properties [8, Ch. V]

and Assumption 2, we almost surely have 2 :

ηD⊤
k Dk � D

⊤
k AkDk � νD⊤

k Dk. (18)

Assumption 3(i) ensures that Dk is an injective operator. It follows that D⊤
k Dk

is a symmetric definite positive matrix and according to (18) and η > 0, so is
D⊤

k AkDk. This ensures that Bk, as defined in (13), exists. Then, (17a) directly
comes from (10) and (12).

2If A � B and D is a non-necessary square matrix, then D⊤AD � D⊤BD.



SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm 9

Moreover, since the three terms in (18) are invertible matrices, we have:

1

ν
(D⊤

k Dk)
−1 � (D⊤

k AkDk)
−1 �

1

η
(D⊤

k Dk)
−1, (19)

so that (by footnote 2):

1

ν
Dk(D

⊤
k Dk)

−1
D

⊤
k � Bk �

1

η
Dk(D

⊤
k Dk)

−1
D

⊤
k . (20)

Let us denote:

Pk = Dk(D
⊤
k Dk)

−1
D

⊤
k . (21)

Pk ∈ R
N×N is an orthogonal projection operator since it is symmetric and verifies

P2
k = Pk. This latter equality can be rewritten asPk = P⊤

k ∆Pk with∆ a diagonal
matrix of RN×N with only binary entries, so that ON � ∆ � IN . Using again
footnote 2, it follows that:

ON � Pk � IN . (22)

(17b) is then directly obtained by replacing (22) in (20).

As an orthogonal projection matrix, Pk satisfies

(∀x ∈ Ker(Pk)
⊥) Pkx = x. (23)

Combining (23) with the left inequality of (20) yields:

(∀x ∈ Ker(Pk)
⊥) x

⊤
Bkx ≥

1

ν
x
⊤
Pkx =

1

ν
‖x‖2. (24)

There remains to show the relation ran(Dk) = Ker(Pk)
⊥. To do so, we rely on the

classical linear algebra relation ran(Dk)
⊥ = Ker(D⊤

k ) and thus prove Ker(D⊤
k ) =

Ker(Pk) instead. Inclusion Ker(D⊤
k ) ⊂ Ker(Pk) is straightforward. Since x ∈

Ker(Pk), from the expression of Pk and left multiplication by x⊤, we have

x
⊤
Dk(D

⊤
k Dk)

−1
D

⊤
k x = 0. (25)

Since D⊤
k Dk is definite positive matrix, its inverse is too, so that D⊤

k x = 0, i.e.
x ∈ Ker(D⊤

k ) which concludes the proof of (17c).

⊓⊔

Relation (17c) brings light into our interpretation of Assumption 3(ii) as a
descent condition. Indeed, taking x = −gk in (17c) leads to the gradient-related
inequality [6] considered for instance in the analysis of [22,23]. Relation (17c) will
actually play a key role in the asymptotical analysis of Section 4.
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3.5 Two additional technical lemmas

The next lemma is essential as it guarantees the integrability of all the probabilistic
quantities we will manipulate in our convergence analysis. It especially validates
the use of the conditional expectation operator and of its associate properties in
every situation encountered in our proofs.

Lemma 2 Under Assumptions 1, 2, 3(i) and 4(ii), for every k ∈ N, xk, ∇F (xk), ek
and gk are square-integrable random vectors of RN . Moreover, F (xk) is an inte-
grable random variable of R.

Proof First, according to Assumption 1, F is a differentiable and coercive
function on R

N , which ensures the existence of a global minimizer x∗ satisfy-
ing ∇F (x∗) = 0N . Let us denote by F ∗ the minimal value of F on R

N , i.e.
F ∗ = F (x∗).

We start by proving the desired property for sequence (xk)k∈N. We here pro-
ceed by induction.

The case k = 0 is straightforward as x0 is a deterministic variable.

Assume that xk is square-integrable for a given k ∈ N. Then almost surely,
and using Lemma 1,

‖xk+1‖
2 = ‖xk − γkBkgk‖

2 (26)

≤ 2‖xk‖
2 + 2γ2k‖Bkgk‖

2 (27)

≤ 2‖xk‖
2 + 2

γ2k
η2

‖gk‖
2. (28)

with

‖gk‖
2 = ‖∇F (xk) + ek‖

2 (29)

≤ 2‖∇F (xk)‖
2 + 2‖ek‖

2. (30)

Hereabove, the positivity of all the manipulated random variables makes possible
to take the conditional expectations. Since ∇F (xk) is Fk-measurable, the next
inequalities follow by using Assumptions 1 and 3(i), almost surely

E(‖gk‖
2|Fk) = E(‖∇F (xk) + ek‖

2|Fk), (31)

≤ 2 E(‖∇F (xk)‖
2|Fk) + 2 E(‖ek‖

2|Fk), (32)

= 2‖∇F (xk)‖
2 + 2 E(‖ek‖

2|Fk), (33)

≤ 2(1 + C2)‖∇F (xk)‖
2, (34)

≤ 2β2(1 + C2)‖xk − x
∗‖2, (35)

≤ 4β2(1 + C2)(‖xk‖
2 + ‖x∗‖2). (36)

Taking the expectations yields

E

[
‖gk‖

2
]
= E

[
E(‖gk‖

2|Fk)
]

(37)

≤ 4(1 + C2)β2(E
[
‖xk‖

2
]
+ ‖x∗‖2). (38)
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By the induction hypothesis, we have E
[
‖xk‖

2
]
< +∞, so that using (28)-(38)

E[‖xk+1‖
2] ≤ 2 E

[
‖xk‖

2
]
+ 8β2 γ

2
k

η2
(1 + C2)

(
E

[
‖xk‖

2
]
+ ‖x∗‖2

)
(39)

< +∞, (40)

which concludes this part of the proof.

We now focus on gk. The developments above shown that E
[
‖gk‖

2
]
is upper-

bounded by a positive affine function of E
[
‖xk‖

2
]
, itself being strictly lower

than +∞. Consequently, E
[
‖gk‖

2
]
< +∞.

Regarding ∇F (xk), we almost surely have

‖∇F (xk)‖
2 ≤ β2‖xk − x

∗‖2 (41)

≤ 2β2(‖xk‖
2 + ‖x∗‖2). (42)

The right member in the above equation is integrable, and so is the same for
‖∇F (xk)‖

2.

The integrability of ‖ek‖
2 arises directly from Assumption 4(ii), passing di-

rectly to the expectation.

The descent lemma applied to F , which is a β-Lipschitz differentiable function
of RN according to Assumption 1, leads to

F (xk)− F ∗ ≤
β

2
‖xk − x

∗‖2 (43)

≤ β(‖xk‖
2 + ‖x∗‖2). (44)

The integrability of the right member of the above inequality yields the integra-
bility of F (xk).

⊓⊔

We end this section with one last technical result which provides a rational for
the expression of the bound Cmax introduced in Assumption 4.

Lemma 3 For every C ∈ (0, Cmax), there exists ρ0 > 0 such that Pρ0
is strictly

negative on [0, C] where for all ρ > 0, Pρ refers to the polynomial

Pρ(X) =

(
1 +

νρ

2η

)
X2

η
+
X

η
+

(
νρ

2η2
−

1

ν

)
. (45)

Proof For all ρ > 0, Pρ is a second order polynomial whose discriminant ∆ρ is

∆ρ =
1

η2
+

4

η

(
1 +

νρ

2η

)(
1

ν
−

νρ

2η2

)
. (46)

Taking ρ ∈
(
0, 2 (η/ν)2

)
, it follows that ∆ρ is strictly positive. Thus, Pρ admits

two distinct roots

wρ,1 = −
η2
√
∆ρ + η

νρ+ 2η
< 0, and wρ,2 =

η2
√
∆ρ − η

νρ+ 2η
. (47)
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Taking the limit for vanishing ρ yields:

lim
ρ→0+

wρ,2 =
η
√

1
η2 + 4

ην − 1

2
(48)

=
1

2

(√
1 +

4η

ν
− 1

)
(49)

= Cmax. (50)

Using C < Cmax and (50) ensures the existence of ρ0 ∈
(
0, 2 (η/ν)2

)
such that

wρ0,2 > C. Moreover, the second degree coefficient of Pρ0
is strictly positive, so

that Pρ0
is strictly negative on (wρ0,1, wρ0,2) ⊃ [0, C] which completes the proof.

⊓⊔

4 Asymptotical Analysis of SABRINA

4.1 Stochastic majoration of (F (xk))k∈N

Proposition 1 Under Assumptions 1-4, the following majoration holds almost
surely:

(∀k ∈ N) E [F (xk+1)|Fk] ≤ F (xk) + γk‖∇F (xk)‖
2Pγk

(C), (51)

where Pγk
is the polynomial quantity defined in Lemma 3.

Proof Let k ∈ N. We start by using the majoration property (2)-(3) of h(.,xk) on
F at xk+1

F (xk+1) ≤ F (xk) +∇F (xk)
⊤(xk+1 − xk) +

1

2
‖xk+1 − xk‖

2
Ak
, (52)

≤ F (xk) +∇F (xk)
⊤(xk+1 − xk) +

ν

2
‖xk+1 − xk‖

2 a.s. (53)

where (53) is a direct consequence of Assumption 2.
Using scheme (12) and the definition (8), inequality (53) can be written:

F (xk+1) ≤ F (xk)− γk∇F (xk)
⊤
Bkgk +

ν

2
‖xk+1 − xk‖

2, (54)

= F (xk)− γk g
⊤
k Bkgk + γk e

⊤
k Bkgk +

ν

2
‖xk+1 − xk‖

2, (55)

= F (xk)− γk g
⊤
k Bkgk + γk e

⊤
k Bk∇F (xk) + γk e

⊤
k Bkek

+
ν

2
‖xk+1 − xk‖

2 a.s. (56)

On the one hand, Assumption 3(ii) guarantees that gk ∈ Ker(D⊤
k )⊥ almost

surely. Hence, the left inequality (17c) of Lemma 1 yields

g
⊤
k Bkgk ≥

1

ν
‖gk‖

2 a.s. (57)
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On the other hand, the use of Cauchy-Schwarz inequality and relation (17b) from
Lemma 1 gives

e
⊤
k Bk∇F (xk) ≤

1

η
‖∇F (xk)‖ ‖ek‖ a.s. (58)

Moreover, (17b) also leads to:

e
⊤
k Bkek ≤

1

η
‖ek‖

2 a.s. (59)

And, again as a consequence of (17b),

‖xk+1 − xk‖
2 = γ2k‖Bkgk‖

2 (60)

≤
γ2k
η2

‖gk‖
2 a.s. (61)

Plugging (57)-(61) into (56) leads to:

F (xk+1) ≤ F (xk)−
γk
ν
‖gk‖

2 +
γk
η
‖∇F (xk)‖ ‖ek‖+

γk
η
‖ek‖

2 +
νγ2k
2η2

‖gk‖
2 a.s.

(62)

Thanks to Lemma 2, we can take the conditional expectation in (62) and use
the fact that it is a linear operator. Moreover, accounting for Fk-measurability of
F (xk) and ∇F (xk), we obtain

E [F (xk+1)|Fk] ≤ F (xk) −
γk
ν

E

[
‖gk‖

2|Fk

]
+
γk
η

‖∇F (xk)‖ E [‖ek‖ |Fk]

+
γk
η

E

[
‖ek‖

2|Fk

]
+
νγ2k
2η2

E

[
‖gk‖

2|Fk

]
a.s. (63)

The end of the proof aims at finding an upper bound of the last four terms
in (63), depending only on ∇F (xk).

First, Definition (8) and the parallelogram identity give

E

[
‖gk‖

2|Fk

]
= ‖∇F (xk)‖

2 + 2 E

[
∇F (xk)

⊤
ek|Fk

]
+ E

[
‖ek‖

2|Fk

]
a.s. (64)

Since ∇F (xk) is Fk-measurable, and using Assumption 4(i), we have

E

[
∇F (xk)

⊤
ek|Fk

]
= ∇F (xk)

⊤
E [ek|Fk] (65)

= 0 a.s, (66)

which leads to the conditional equality

E

[
‖gk‖

2|Fk

]
= ‖∇F (xk)‖

2 + E

[
‖ek‖

2|Fk

]
a.s. (67)

Using Assumption 4(ii) we then deduce the following bounds for ‖gk‖
2

‖∇F (xk)‖
2 ≤ E

[
‖gk‖

2|Fk

]
≤
(
1 + C2

)
‖∇F (xk)‖

2 a.s. (68)
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Second, the following stochastic majoration of E [‖ǫk‖ |Fk] is obtained by Jensen’s
inequality and Equation (16)

E [‖ek‖ |Fk] ≤
√
E [‖ek‖2|Fk] (69)

≤ C‖∇F (xk)‖ a.s. (70)

where (70) arises from Assumption 4(ii).
Finally, Inequalities (16), (68), (70) combined with (63) give the desired result

E [F (xk+1)|Fk] ≤ F (xk)+γk‖∇F (xk)‖
2

[(
1 +

νγk
2η

)
C2

η
+
C

η
+

(
νγk
2η2

−
1

ν

)]
a.s.

(71)

⊓⊔

Proposition 2 Under Assumptions 1-5, for every ρ > 0, there exists kρ such that

(∀k ≥ kρ) E [F (xk+1)|Fk] ≤ F (xk) + γk‖∇F (xk)‖
2Pρ(C) a.s. (72)

Proof By Assumption 5, γk −→
k→+∞

0, which ensures the existence of kρ such that

γk ≤ ρ for all k ≥ kρ. Thus,

Pγk
(C) =

[(
1 +

νγk
2η

)
C2

η
+
C

η
+

(
νγk
2η2

−
1

ν

)]
,

≤

[(
1 +

νρ

2η

)
C2

η
+
C

η
+

(
νρ

2η2
−

1

ν

)]
= Pρ(C). (73)

Inequality (72) directly follows from (51) of Proposition 1.

⊓⊔

4.2 General convergence theorem

We start with the following theorem which gives a general result for SABRINA

without any convexity hypothesis:

Theorem 1 Under Assumptions 1-5, sequence (F (xk))k∈N converges a.s. to an
almost surely finite random variable. Moreover, (xk)k∈N is such that

+∞∑

k=0

‖xk+1 − xk‖
2 < +∞ a.s., (74a)

lim inf
k→+∞

‖∇F (xk)‖ = 0 a.s. (74b)

Proof From Lemma 3, there exists ρ0 > 0 for which Pρ0
is strictly negative on

[0, C]. Applying Proposition 2 with ρ = ρ0, yields the existence of kρ0
such that

(∀k ≥ kρ0
) E [F (xk+1)|Fk] ≤ F (xk) + γk‖∇F (xk)‖

2Pρ0
(C) a.s. (75)

Subtracting F ∗, the minimal value of F on each side of (75) yields

(∀k ≥ kρ0
) E

[
F (xk+1)− F ∗|Fk

]
≤ [F (xk)− F ∗] + γk‖∇F (xk)‖

2Pρ0
(C) a.s.

(76)
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All random variables involved in (76) are positive and integrable. Moreover,
we have Pρ0

(C) < 0 (since Pρ0
is strictly negative on [0, C]). Thus, we can invoke

Robbins-Siegmund’s lemma [62]. The a.s. convergence of (F (xk) − F ∗)k∈N to an
a.s. finite random variable is guaranteed, and so it is for (F (xk))k∈N. Moreover
again from Robbins-Siegmund’s lemma, we have the following property

+∞∑

k=0

γk‖∇F (xk)‖
2 < +∞ a.s. (77)

First, using (12), (17b) and then (68), yields

+∞∑

k=0

E

[
‖xk+1 − xk‖

2|Fk

]
≤

+∞∑

k=0

γ2k
η2

E[‖gk‖
2|Fk] (78)

≤
1 + C2

η2

+∞∑

k=0

γ2k‖∇F (xk)‖
2 a.s. (79)

By Assumption 5, (γk)k∈N is positive and converges to 0. Thus, γ2k‖∇F (xk)‖
2 ≤

γk‖∇F (xk)‖
2 from a certain range k. It follows that the right term in (79) is a

finite random variable and, as a consequence,
+∞∑
k=0

E
[
‖xk+1 − xk‖

2|Fk

]
< +∞.

Positivity of sequence
(
‖xk+1 − xk‖

2
)
k∈N

finally allows us to apply [52, Ch.1,

Th. 21] which gives (74a).

Our proof of (74b) is similar to the one of Zoutendijk condition for gradient-
based optimization methods [10], adapted to a stochastic framework. To do so, we

stand on complementary set

{
ω ∈ Ω | lim inf

k→+∞
‖∇F (xk(ω))‖ > 0

}
and prove that

it is of zero probability.

For all ω ∈ Ω such that lim inf
k→+∞

‖∇F (xk(ω))‖ > 0, following the definition

of lim inf, there exists ε(ω) > 0 and a range k0(ω) ∈ N for which for all k ≥
k0(ω), ‖∇F (xk(ω))‖ ≥ ε(ω). Thus

(∀k ≥ k0(ω)) γk‖∇F (xk(ω))‖
2 ≥ γkε(ω)

2. (80)

Summing (80) from k0(ω) to +∞, and using Assumption 5, we deduce

+∞∑

k=k0(ω)

γk‖∇F (xk(ω))‖
2 ≥ ε(ω)2

+∞∑

k=k0(ω)

γk (81)

= +∞. (82)

This leads to inclusion

{
ω ∈ Ω | lim inf

k→+∞
‖∇F (xk(ω))‖ > 0

}
⊂

{
ω ∈ Ω |

+∞∑

k=0

γk‖∇F (xk(ω))‖
2 = +∞

}
.

(83)
The term in the right side of (83) is a negligible set according to (77). As a
consequence, the left side of (83) is also a negligible set and (74b) holds by taking
the complement.
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⊓⊔

Although some recent works consider (74b) as a sufficient convergence crite-
rion [42], its scope remains limited since it only holds for a given subsequence of
(xk)k∈N. In the following, we make use of topological arguments to derive useful
corollaries of Theorem 1.

Corollary 1 Under Assumptions 1-5, there exists a full measure subset Λ such
that, for every ω ∈ Λ, the following statements hold:

(i) (F (xk(ω))k∈N
converges to a finite limit ;

(ii) (xk(ω))k∈N is bounded ;
(iii) χ∞(ω), the set of accumulation points of (xk(ω))k∈N, is non empty, compact,

connex and contains at least one element of zer∇F .

Proof Since Theorem 1 holds a.s., there exists a set Λ ⊂ Ω of probability one
where, for all ω ∈ Λ,

lim
k→+∞

F (xk(ω)) < +∞, (84a)

+∞∑

k=0

‖xk+1(ω)− xk(ω)‖
2 < +∞ (84b)

lim inf
k→+∞

‖∇F (xk(ω))‖ = 0. (84c)

Inequality (84a) implies that (F (xk(ω)))k∈N is a bounded sequence. The
coercivity of F , in Assumption 1, ensures this same property for (xk(ω))k∈N. It
follows that the set of cluster points χ∞(ω) is non empty and bounded. Moreover,
it is compact due to its closure (in finite dimension).

Moreover, (84b) leads to:

xk+1(ω)− xk(ω) −→
k→+∞

0N . (85)

Equation (85), and the boundedness of (xk(ω))k∈N
enables the use of Ostrowski’s

theorem 3 [57, Th. 26.1]) which directly gives the connexity of χ∞(w).

From the boundedness of (xk(ω))k∈N, and (84c), we deduce that there exists
a convergent sub-sequence

(
xϕ(k)(ω)

)
k∈N

such that

∇F (xϕ(k)(ω)) −→
k→+∞

0N . (86)

Let us denote by x∞(w) the limit point of
(
xϕ(k)(ω)

)
k
. By construction, x∞(ω)

belongs to χ∞(ω). Since F is gradient-Lipschitz, by Assumption 1, its gradient is
continuous and we finally obtain:

∇F (x∞(ω)) = 0N . (87)
⊓⊔

3Let (zk)k∈N a bounded sequence of RN , verifying zk+1 − zk −→
k→+∞

0. Then the set of

cluster points of (zk)k∈N is connex.
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Corollary 1 provides us an overview of the distribution formed by the accu-
mulation points of sequence (xk)k∈N

. In order to refine the convergence theorem,
we must introduce extra assumptions on the level sets of function F (see 2.1 for
useful notations). From this perspective, we propose a result, when F is convex
with isolated stationary points.

Corollary 2 Under Assumptions 1-5, if F is convex with isolated stationary points.
Then (xk)k∈N converges almost surely to the (global) minimizer of F .

Proof Convexity of F ensures that zer∇F matches with the set of minimizers of
F , and that this set is convex. Thus, if the stationary points of F are isolated, F
admits a unique minimizer x∗ and then zer∇F = {x∗}.

Let us now consider the probability set Λ from Corollary 1 and some ω ∈ Λ. Se-
quence (xk(ω))k∈N possesses a cluster point which lies in zer∇F . Since zer∇F =
{x∗}, it follows that x∗ ∈ χ∞(ω). Moreover, F is continuous and F (xk(ω))k∈N

converges to a finite limit. Thus, F (xk(ω)) −→
k→+∞

F (x∗). It follows that every

x̃ ∈ χ∞(ω) also verifies F (x̃) = F (x∗) and thus is a minimizer of F . The unique-
ness of the latter gives χ∞(ω) = {x∗}. Finally, the boundedness of the sequence
(xk(ω))k∈N ensures its convergence to x∗.

The fact that Λ is a set of probability one concludes the proof.

4.3 Convergence rate analysis

We provide here our second main theoretical result, regarding the convergence rate
of SABRINA, in the case when F satisfies a strong convexity property.

Theorem 2 If F is α-strongly convex (i.e., F − α
2 ‖ · ‖

2 is convex) and Lipschitz

differentiable function on R
N then, under Assumptions 2-5, there exists a sequence

(rk)k∈N such that, for k sufficiently large,

E
[
F (xk+1)− F ∗] ≤ erk , (88)

where

rk ∼
k→+∞

2α |Pρ0
(C)| ×

(
−

k∑

i=0

γi

)
, (89)

with Pρ0
the polynomial defined in Lemma 3.

Proof First, Theorem 2 assumes that F is supposed to be α-convex and Lipschitz
differentiable. Thus, Assumption 1 holds. Since Assumptions 2-5 also hold, we
can thus come back to (76) (from the proof of Theorem 1, and using the same
notations), and take the expectation to obtain:

(∀k ≥ kρ0
) E

[
F (xk+1)− F ∗] ≤ E

[
F (xk)− F ∗]+γkPρ0

(C) E
[
‖∇F (xk)‖

2
]

a.s.

(90)
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Let us make use of [13, Eq. (4.12)] related to strongly convex functions, which
reads:

(∀k ∈ N) ‖∇F (xk)‖
2 ≥ 2α(F (xk)− F ∗). (91)

Substituting (91) in (90) then leads to:

(∀k ≥ kρ0
) E

[
F (xk+1)− F ∗] ≤ (1 + γ̂k)E

[
F (xk)− F ∗] , (92)

with

γ̂k = 2αPρ0
(C)γk (93)

< 0 (since Pρ0
(C) < 0). (94)

Moreover, by Assumption 5, (γk)k∈N converges to 0 so that there exists k1 > kρ0

such that:
(∀k ≥ k1) 1 + γ̂k ∈ (0, 1). (95)

Then, by induction, it follows that for all k ≥ k1 + 1,

E
[
F (xk)− F ∗] ≤ E

[
F (xk1

)− F ∗]
k−1∏

i=k1

(1 + γ̂i) . (96)

Taking the logarithm in (96), by virtue of Condition (95), then yields:

ln
(
E
[
F (xk)− F ∗]) ≤

k−1∑

i=k1

ln (1 + γ̂i) + ln
(
E
[
F (xk1

)− F ∗]) . (97)

The end of the proof consists in searching for an asymptotic equivalent of the right
member of (97). Convergence of (γk)k∈N to 0 (by Assumption 5) ensures:

ln(1 + γ̂k) ∼
k→+∞

γ̂k. (98)

Sequences (ln(1 + γ̂k))k≥k1
, (γ̂k)k≥k1

are both negative. Moreover, Assumption 5
yields:

+∞∑

i=k1

γ̂i = −∞. (99)

We can thus deduce:

k−1∑

i=k1

ln(1 + γ̂i) ∼
k→+∞

k−1∑

i=k1

γ̂i, (100)

= 2αPρ0
(C)

k−1∑

i=k1

γi. (101)

Since the series
k−1∑
i=k1

ln(1 + γ̂i) diverges to −∞, it follows that

k−1∑

i=k1

ln (1 + γ̂i) + ln
(
E
[
F (xk1

)− F ∗ ]) ∼
k→+∞

2αPρ0
(C)

k−1∑

i=k1

γi (102)

∼
k→+∞

2αPρ0
(C)

k∑

i=0

γi. (103)
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Going from (102) to (103) arises from Assumption 5. The desired conclusion is
reached passing to the exponential.

⊓⊔

Since
∑k

i=0 γk = +∞ (by Assumption 5), Theorem 2 guarantees the L1 con-
vergence to F ∗ for sequence F (xk)k∈N generated by SABRINA. It should be
emphasized that Assumption 5 is rather mild. One interesting practical choice
consists in setting (γk)k∈N

as a sequence converging to zero as slow as allowed by
Assumption 5. As a result, relation (89) ensures that the logarithmic expectation
in (88) converges fast to minus infinity.

4.4 Link to existing works

Our “liminf” convergence criterion (74b) is probably the most encountered one in
optimization [10, Ch. 1.4] among those introduced in Theorem 1. Similar result
is also obtained in [39, 42] considering a stochastic context. The aforementioned
works focused on an method close to ADAM [45], that has been quite notorious
in the field of deep learning this last decade. To a certain extent, the scheme
in [39, 42] can be interpreted as a specific case of ours without using MM metric
(i.e., Ak ≡ IN ) and where subspace acceleration is replaced by momentum weights
combining with a manually tuned stepsize. By including an MM approach in a
non-convex situation, the MISO algorithm from [50] shares common features with
the one we develop here. The asymptotical result from [50, Prop. 3.3] is also
expressed as a “liminf” condition but, up to our knowledge, might appear harder
to interpret than (74b). Our result (74a) is not as common in the litterature of
stochastic optimization, as its counterpart (74b), probably since it is slightly less
tractable. It shares structural similarities with the finite length condition stated
in [23, Th. 3] studying the MM subspace algorithm without noisy gradient. When
considering noisy gradient, we manage here to show (74a), which is weaker in the
sense that the square norm summation does not ensure necessarily that (xk)k∈N is
a Cauchy sequence, and thus does not allow to easily conclude on its almost sure
convergence.

More generally, Robbins-Siegmund’s lemma [62] is a widely used tool to deduce
asymptotical properties of stochastic approximation schemes [31, 38]. Our use of
Ostrowski’s theorem [57, Th. 26.1] and the connexity argument to obtain Corollary
1 is reminiscent from [25]. However, in contrast with the aforementioned work, we
use the convexity hypothesis only at the very end in Corollary 2. The idea of using
level-set as an alternative arises from [38].

The supervised learning context has highly promoted studies relative to speed
estimation of stochastic algorithms and especially for gradient methods both in
a convex [13, 38, 55] and more recently in a non-convex setting [34]. [11, 16] also
focus on quasi-Newton approximation approaches (and obtain an L1 convergence
result). These methods are actually similar to SABRINA, for a particular subspace
choice. However, in contrast with our approach, no MM metric/stepsize is used
in [11,16].
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5 Application to Binary Classification

As a first illustrative example, we focus on a supervised binary classification prob-
lem. We consider M feature vectors (vm)1≤m≤M ∈ R

N , with their associated la-
bels (ym)1≤m≤M ∈ {−1, 1} as a training dataset. In a linear classification context,
one possibility to estimate the parameter model x∗ ∈ R

N consists in searching the
best linear classifier through the minimization of the log-loss penalized empirical
risk [15]:

(∀x ∈ R
N ) F (x) =

1

M

M∑

m=1

log (1 + exp (−[Hx]m)) + µ

N∑

n=1

log

(
1 +

x2n
δ2

)
.

(104)
Matrix H = Diag{(ym)1≤i≤M}[v1, ..., vM ]⊤ ∈ R

M×N involved in the so-called
data-fidelity term, gathers the information brought by the training dataset. The
second term in (104) is a regularization term weighted by µ > 0, which aims at
promoting the sparsity of the estimated model so as to limit overfitting issues. The
retained regularization is a coercive, continuous but non-convex approximation of
the ℓ0 norm, which is at the core of re-weighted ℓ1 schemes [18,59]. Function (104)
is Lipschitz differentiable on R

N and coercive. However, it is non convex due to
the regularization term.

5.1 Majorant mapping and convergence guarantees

Let us to build a majorant mapping for the objective function (104). Thanks to the
additivity of the majoration property (see, for eg, [69]), we can majorize each term
separately. A majorant mapping for the log-loss can be deduced from [14, Eq.5],
while a majorant mapping for the non-convex penalty was provided in [25, Tab.I].
This yields the following majorant mapping A(·) for the objective function (104):

(∀x ∈ R
N ) A(x)

= H
⊤Diag {(ϑ([Lx]m)1≤m≤M}H + µDiag

{(
2

x2n + δ2

)

1≤n≤N

}
+ τIN ,

(105)

with ϑ : u 7→ 1
u

(
1

1+exp(−u) −
1
2

)
extended by continuity in 0. Moreover, τ is a

strictly positive constant ensuring the fulfilment of Assumption 2. For such choice
of mapping, Assumption 2 holds with:

η = τ, ν = τ +
1

4M
|||H|||2 + 2

µ

δ2
. (106)

We propose to implement SABRINA by considering two choices for the sub-
space, namely Dk = IN , and Dk = [−gk | xk − xk−1]. For the latter, the second
column of Dk is removed if the rank of Dk gets lower than Mk = 2. Note that this
situation never happened in our practical experiments. Both subspaces thus satisfy
Assumption 3 and respectively yield the so-called SABRINA-I and SABRINA-

MG algorithms. If Assumptions 4 and 5 hold, sequences generated by these two
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algorithms verify Theorem 1 and Corollary 1. Otherwise stated, for suitable step-
size and noise perturbation settings, our theoretical analysis ensures an almost sure
convergence to a stationary point of F for a subsequence of (xk)k∈N. Function F
is non convex and does not have finite level sets, so that the stronger convergence
results established in our study cannot be applied.

5.2 Numerical settings

When using the SABRINA-I scheme, the majorant function minimization requires
to invert an N ×N system, which is performed using the linear solver from [68].
The gradient perturbation is simulated by applying a multiplicative noise following
a uniform law centered in 0 on every component of the gradient at each iteration
that is, for every k ∈ N,

ek = C ×Diag{(un,k)1≤n≤N}∇F (xk), (107)

where each entry of uk = (un,k)1≤n≤N ∈ R
N is an independant realization of a

uniform law between [−1, 1]. By construction, Condition (16) holds since, for every
k ∈ N:

E

[
‖ek‖

2|Fk

]
≤ C2

E [‖Diag{(un,k)1≤n≤N}uk‖∞|Fk] ‖∇F (xk)‖
2 (108)

= C2‖∇F (xk)‖
2. (109)

Equation (108) also guarantees the integrability of ek. Moreover, uk is zero-mean
so that Assumption 4(i) also holds. We set the decreasing step-size γk = 1/(k +
1)0.01, for k ∈ N, thus satisfying Assumption 5. Performance of SABRINA are
evaluated against those of state-of-the-art stochastic gradient-based schemes from
the machine learning field, namely SGD [7], ADAGRAD [29] and RMSprop [71].
The parameter tuning for these methods (e.g., learning rate, momentum weight)
was made empirically, following recommendations from [65], to obtain best possible
practical convergence behaviours.

Datasets rcv1 and a8a are extracted from LIBSVM library [21]. Table 1 lists
properties of these datasets and the retained hyperparameters µ, δ and τ . The
latter has been manually chosen to ensure a satisfying compromise between a
good conditioning of the majorant mapping (and then, a wide range of values for
C, see Sec. 3.3) and a fast convergence rate.

Dataset Train M Test Features N |||H|||2/(4M) µ δ τ Cmax

rcv1 20242 677399 47236 5.5× 10−3 10−1 1 1 0.54
a8a 9865 22696 122 1.6 10−2 1 0.5 0.2

Table 1: Dataset properties and hyperparameter settings

5.3 Experimental results

In Figs. 1 and 2, we illustrate the efficiency of every competitor through the evo-
lution of the objective function, and of the gradient norm of their iterates along
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time for a Matlab 2020a code ran on a desktop computer equipped with an Intel
Core i7 3.2 GHz pro and 16 GB RAM. In Fig. 1, F ∗ (with a slight abuse of no-
tation) denotes the function value computed numerically after running 3MG [23]
method (i.e., SABRINA-MG without noise in the gradient), for a large number of
iterations. For both figures, we set C = 0.95×Cmax, so as to meet the conditions
imposed by Assumption 4(ii) and then convergence of SABRINA is ensured in the
sense of Theorem 1 and Corollary 1. It is noticeable that both SABRINA variants
reach the best performance when compared to their competitors. Moreover, for
both datasets, the interest of subspace acceleration is visible, as SABRINA-MG

reaches faster convergence than SABRINA-I. Finally, let us emphasize that SAB-

RINA implementation does not impose any tedious manual learning/momentum
rate tuning, as it was the case for the other methods. Table 2 lists classification
scores obtain by SABRINA-MG at convergence for both datasets.
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Fig. 1: Evolution of the objective function along time for various algorithms, on
dataset rcv1 (left) and a8a (right). Noise amplitude C = 0.95× Cmax.
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Fig. 2: Evolution of the gradient norm along time for various algorithms, on dataset
rcv1 (left) and a8a (right). Noise amplitude C = 0.95× Cmax.
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Dataset Accuracy AUC Precision Recall
rcv1 9, 2× 10−1 9, 7× 10−1 9, 3× 10−1 9, 1× 10−1

a8a 8, 4× 10−1 8, 9× 10−1 7, 5× 10−1 5, 2× 10−1

Table 2: Classification scores after running SABRINA-MG for 60 s.

Fig. 3 illustrates the evolution of the gradient norm along SABRINA-MG it-
erations for various levels of noise on the gradient term, when considering the rcv1
example. Increasing the noise level obviously slows down the convergence of the
method. Moreover, one can see that SABRINA-MG starts showing some oscil-
lating behaviour when C ≥ Cmax. Considering an order of magnitude ten times
higher than Cmax, one can observe a change of regime where the convergence of the
algorithm seems compromised. Such phenomenons suggest that the bound Cmax

involved in Assumption 4 is consistent and not over pessimistic in this example
for ensuring practical stability of the algorithm.
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Fig. 3: rcv1: Evolution of the gradient norm along time for various noise amplitudes
affecting the gradient term in SABRINA-MG.

6 Application to Robust Blur Kernel Identification

We now consider an inverse problem of robust blur kernel identification. The ob-
servation model is similar than in [25], namely

y = B(x)z + n, (110)

where z ∈ R
M and y ∈ R

M are original and (blurry and noisy) degraded ver-
sions of a given image with M pixels, x ∈ R

N is an unknown blur kernel to be
estimated, and n ∈ R

M models additive noise. The blur operation corresponds to
a 2D discrete convolution (with circulant-padding assumption) between z and x,
represented by the linear operator B : RN → R

M . The goal is to retrieve an esti-
mation of x from the pair of images (z,y). This inverse problem typically arises
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in the calibration of optical instruments [5, 43]. The observation model (110) can
be expressed equivalently as

y = Hx+ n, (111)

where the blur operation is rewritten as the application of the linear Hankel-block
operator H ∈ R

M×N (related to z) on the kernel x. In contrast with [25], we con-
sider the challenging noise scenario where outliers can arise in the observed data.
Specifically, n ∈ R

N is the realization of a Gaussian mixture noise with standard
deviations (σ1, σ2) > 0 and mixing rate ̺ ∈]0, 1[, where typically σ1 ≪ σ2. An
efficient strategy for solving (111) consists in minimizing a penalized criterion:

(∀x ∈ R
N ) F (x) = L(x) +R(x), (112)

where L plays the role of the data fidelity term, accounting for the mixture noise
model, and R is a regularization function promoting desirable prior assumption
on the sought x.

Due to the presence of outliers in the noise, we opt for the following Huber
data fidelity term, well suited for robust inverse problem resolution,

(∀x ∈ R
N ) L(x) =

M∑

m=1

ℓm([Hx]m]), (113)

where

(∀m = 1, . . . ,M)(∀t ∈ R) ℓm(t) =

{
1
2 (t− ym)2 if |t− ym| ≤ p

p|t− ym| − 1
2p

2 otherwise,
(114)

with p > 0 some outlier threshold constant. Moreover, we choose to promote
smoothness of the restored kernel, by setting:

(∀x ∈ R
N ) R(x) =

N∑

n=1

ψ(‖∆nx‖). (115)

Hereabove, for every n ∈ {1, . . . , N}, ∆n ∈ R
2×N corresponds to the discrete ver-

tical and horizontal gradient operators applied to the n-th pixel of the 2D reshaped
kernel x. Moreover, ψ : u 7→ λ

√
1 + u2/κ2 is the hyperbolic penalty with smooth-

ness parameter κ > 0. Function (115) can thus be viewed as a smoothed version
of the classical total-variation norm widely used in image processing. Parameter
λ > 0 is a regularization parameter.

The resulting function (112) is convex and Lipschitz differentiable on R
N .

Moreover, according to [63, Proposition 2.5], F is coercive if and only if

Ker(H) ∩Ker(∆1) ∩ . . . ∩Ker(∆N ) = {0N}. (116)

Note that, for our practical choice for the original image z, operator H has full
rank and thus (116) holds.
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6.1 Majorant mappings and convergence guarantees

The Huber potential terms (ℓm)1≤m≤M satisfy the assumptions from [22, Sec.III]
so that we can build the following majorant mapping:

(∀x ∈ R
N ) AL(x) = H

⊤Diag (ζm([Hx]m]))H, (117)

with

(∀m = 1, . . . ,M)(∀t ∈ R) ζm(t) =

{
1 if |t− ym| ≤ p

p
|t−ym| otherwise.

(118)

Function ψ satisfies the properties of [22, Sec.III], allowing us to build a ma-
jorant matrix for penalization (115):

(∀h ∈ R
N ) AR(x) = λ∆⊤Diag(ρ(x))∆, (119)

with ∆ = [∆⊤
1 | . . . | ∆⊤

N ]⊤ ∈ R
2N×N . Moreover,

(∀x ∈ R
N ) ρ(x) =




ω(‖∆1x‖)

[
1
1

]

...

ω(‖∆Nx‖)

[
1
1

]



∈ R

2N , (120)

with ω : u 7→ (1 + u2/κ2)−1/2. Studying the variations of function ω allows to
deduce:

(∀x ∈ R
N ) ON � AR(x) � λ

|||∆|||2

κ2
IN . (121)

In a nutshell, AR +AL would constitute a valid majorant mapping for func-
tion F . However, it does not necessarily satisfy Assumption 2 since no strictly
positive lower-bound is guaranteed for such mapping. We thus hereagain use the
corrected mapping:

(∀x ∈ R
N ) A(x) = AL(x) +AR(x) + τIN , (122)

with τ > 0. We can thus deduce from (121) and (117) that the mapping (122)
satisfies Assumption 2 with:

η = τ, ν = τ + |||H|||2 + λ
|||∆|||2

κ2
. (123)

We focus on the minimization of (112) using the proposed SABRINA scheme
for various choices of subspace matrices. We discard the choice Dk ≡ IN , that
appears to be not well suited with such large dimension problem. Instead, we
focus on the so-called super-memory gradient subspace family [67], where:

(∀k ∈ N) Dk = [−gk |xk − xk−1 | . . . |xk−Mk+1 − xk−Mk
] ∈ R

N×Mk , (124)

with the convention xi = 0N for i < 0, and Mk ≥ 1 a memory size parame-
ter. The resulting algorithms are denoted SABRINA-SMG-Mk. When Mk = 1,
we retrieve the gradient direction Dk = −gk, while for Mk = 2 we obtain the
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memory gradient subspace Dk = [−gk |xk − xk−1], so that SABRINA-SMG-2
identifies with SABRINA-MG considered in our previous experimental example.
Hereagain, if the rank of Dk gets lower than Mk, columns are removed until satis-
fying the full column rank assumption. Subspace (124) thus satisfies Assumption
3 for any Mk ≥ 1. Thus, Theorem 1 and Corollary 1 hold under a moderate gra-
dient noise (see Assumption 4). Assuming than F has isolated stationary points
would yield the applicability of Corollary 2, which would guarantee the almost sure
convergence of (xk)k∈N to a global minimizer of F . Although it is not possible to
show the fulfilment of this technical condition, we did not observe any convergence
instability on the sequence (xk)k∈N.

6.2 Presentation of the data and settings

The original image z is the satellite image SanDiego of size M = 1024 × 1024
pixels. The blur kernel is a non-uniform motion blur with size N = 21 × 21. The
noise parameters are σ1 = 5 × 10−4, σ2 = 200σ1 and ̺ = 0.1, so that the signal
to noise ratio of the observed image is 13.3 dB. The original image, its degraded
version y and the blur kernel to reconstruct are displayed in Fig. 4.

Fig. 4: (Left) Original image z ; (Middle) Blurred and noisy image y ; (Right)
Original blur kernel x.

The numerical experiments are performed on the same computer with the
same software details as for the example of Section 5. We use the same uniform
multiplicative noise (see Sec. 5.2) for the gradient perturbations in our proposed
method, so as to satisfy Assumption 4. Once again we set k = 1/(k + 1)0.01 as
the step-size for every k ∈ N. Finally, the hyperparameters are tuned through
gridsearch so as to minimize the relative mean square error (RMSE) on the kernel
estimation, to (p, λ, κ) = (1, 10, 10).

6.3 Calculation of Cmax

The ratio between bounds (η, ν) involved in (123) allows to compute the allowed
tolerance on the gradient uncertainty, following Assumption 4(ii). However, in the
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particular problem of blur identification, |||H|||2 may be very large so that η/ν ≪ 1
and thus Cmax ≪ 1. Typically, in our example, we obtain a theoretical Cmax close
to 8 × 10−9 which is very constraining in term of gradient noise. Actually, the
difficulty lies in the over pessimistic lower bound η = τ in (123). Let us first point
out that, according to (117),

(∀k ∈ N) (τ + min
1≤m≤M

ζm ([Hxk]m) |||H|||2)IN � Ak. (125)

According to (118), min
1≤m≤M

ζm ([Hxk]m) = 1 as soon as [Hxk−y]m ≤ p for every

m ∈ {1, . . . ,M}. This holds for p sufficiently large and/or Hxk sufficiently close
to y. We computed the actual values for min

1≤m≤M
ζm ([Hxk]m) along iterations, in

our practical experiment, and observed that this quantity actually goes rapidly to
1 after few iterations. This leads us to consider

η̃ = τ + |||H|||2 (126)

as an empirical lower bound. We denote

C̃max =
1

2

((
1 +

4η̃

ν

) 1

2

− 1

)
, (127)

and express the gradient perturbation level C used in the experiment, as a function
of C̃max. Note that, in the present experiment, C̃max = 6.18×10−1, which is closer
to the best case bound mentioned in Section 3.3.

6.4 Numerical results

We first compare the performance of SABRINA with classical stochastic algo-
rithms. We also include ADAM method [45], as it shows rather good performance

in that example. The gradient perturbation is set to C = 0.25× C̃max. The meth-
ods are compared in terms of RMSE between the current iterate and the sought
kernel x.
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Fig. 5: (Left) Evolution of the RMSE along time for various algorithms ; (Right)
Estimated kernel using SABRINA-SMG-2, RMSE = 4.4×10−4. Noise amplitude
C = 0.25× C̃max, and starting point x0 = 0N .
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Fig. 5(left) shows that SABRINA-SMG-2 is the fastest of the algorithms to
reach convergence. The other choices of memory size, for the super-memory gradi-
ent subspace, appear less competitive, which is in accordance with the observations
from [22,25]. The RMSE of the reconstructed kernel, displayed in Fig. 5(right), is
equal to 4.4× 10−4 for an estimated computational time of 600 s.
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Fig. 6: Evolution of the RMSE along time for various noise amplitudes affecting
the gradient term in SABRINA-SMG-2.

For the setting of Fig. 5(left), the value of C actually exceeds the maximal

numerical tolerance Cmax, but is chosen lower than C̃max which appears sufficient
in practice to reach convergence for all SABRINA variants tested here. In Fig. 6,
we now present the evolution of the RMSE along time for SABRINA-SMG-2,
when its gradient term is affected by various levels of noise C. One can notice that
our corrected bound C̃max clearly maps with the delineation of two regimes for
the convergence of SABRINA-SMG-2. As soon as C is sufficiently low compared
to C̃max, convergence is fast. On the contrary, a too high C seems to compromise
the behaviour of the method, as expected and divergence can even be observed for
large C.

7 Conclusion

Our work provides new insights into the stability of MM schemes suffering from
stochastic noise perturbations on their gradient evaluation. New asymptotical re-
sults and convergence rate analysis are demonstrated under reasonably mild as-
sumptions, and in the challenging scenario of a non necessarily convex cost func-
tion. Two numerical experiments in the fields of machine learning and image pro-
cessing illustrate the high relevancy of the considered MM schemes compared to
several classical competitors both regarding their speed of convergence and their
robustness to noise. In particular, the experimental results emphasize the impres-
sive performance of MM algorithm associated to a memory gradient subspace,
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already assessed in our previous works [22, 25]. It is remarkable to notice that,
for such subspace choice, our contribution can be understood as providing novel
theoretical guarantees on a stochastic non-linear conjugate gradient method with
MM-based formula for stepsize and conjugacy parameters. One avenue for future
work would be to extend our convergence rate analysis to a larger class of function
by alleviating the strong convexity condition.
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