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Displacement smoothness of entropic optimal transport

Guillaume Carlier∗ Lénäıc Chizat† Maxime Laborde‡

March 1, 2024

Abstract

The function that maps a family of probability measures to the solution of the dual
entropic optimal transport problem is known as the Schrödinger map. We prove that
when the cost function is Ck+1 with k ∈ N

∗ then this map is Lipschitz continuous from the
L2-Wasserstein space to the space of Ck functions. Our result holds on compact domains
and covers the multi-marginal case. We also include regularity results under negative
Sobolev metrics weaker than Wasserstein under stronger smoothness assumptions on
the cost. As applications, we prove displacement smoothness of the entropic optimal
transport cost and the well-posedness of certain Wasserstein gradient flows involving
this functional, including the Sinkhorn divergence and a multi-species system.

Keywords— Entropic Optimal Transport, Schrödinger map, Wasserstein gradient flows.
MSC Classification— 49Q22, 49K40, 35A15.

1 Introduction

The main goal of this paper is to study the regularity of the multi-marginal Entropic Optimal Trans-
port (EOT) problem under “displacement” of the marginals, and to apply these results to prove the
well-posedness of certain evolution equations and optimization methods involving EOT. For clarity of
presentation, let us first present the context and our results in the classical two marginals case. Let
X1,X2 ⊂ R

d be two compact convex sets, µ = (µ1, µ2) ∈ P(X1) × P(X2) two probability measures
and c ∈ Ck(X1 × X2) a k-times continuously differentiable cost function. We consider the entropic
optimal transport problem defined as

E(µ1, µ2) := min
γ∈Π(µ1,µ2)

∫

c(x1, x2)dγ(x1, x2) +H(γ|µ1 ⊗ µ2) (1)

where Π(µ1, µ2) is the set of transport plans between µ1 and µ2, that is probability measures on
X1×X2 with marginals µ1 and µ2, and H is the relative entropy defined as H(µ|ν) =

∫

log(dµ/dν)dµ
if µ is absolutely continuous w.r.t. ν and +∞ otherwise.

This problem can be seen as a regularization of the optimal transport problem [42, 40] that
benefits from improved computational [27, 12] and statistical properties [21, 32, 13], at the expense
of an approximation error that can be quantified [37, 43, 9, 11, 6, 19]. It is also tightly related to the
Schrödinger bridge problem [41, 30], which is a modification of Eq. (1) obtained by replacing µ1 ⊗µ2

by the product Lebesgue measure in the relative entropy term.
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1.1 Schrödinger Map

Eq. (1) defines a convex optimization problem which admits a dual concave maximization formulation

E(µ1, µ2) = max
φ1∈C

0(X1)

φ2∈C
0(X2)

∫

X1

φ1dµ1 +

∫

X2

φ2dµ2 + 1−

∫

X1×X2

eφ1(x1)+φ2(x2)−c(x1,x2)dµ1(x1)dµ2(x2).

This dual problem admits solutions which satisfy, for µ1⊗µ2 almost every (x1, x2), the following first
order optimality conditions, known as the Schrödinger system:















φ1(x1) = − log

∫

X2

eφ2(x2)−c(x1,x2)dµ2(x2)

φ2(x2) = − log

∫

X1

eφ1(x1)−c(x1,x2)dµ1(x1)

.

In this paper, our main object of interest is the particular solution (φ1, φ2) which satisfies the
Schrödinger system for every (x1, x2) ∈ X1 × X2. It is not difficult to see that this solution in-
herits the C

k regularity of c and is unique in the quotient space C̃k := C
k(X1)×C

k(X2)/ ∼ where the
equivalence relation

(φ1, φ2) ∼ (ψ1, ψ2) ⇔ ∃κ ∈ R such that φ1 = ψ1 + κ and φ2 = ψ2 − κ

captures the trivial invariance of the dual problem. This particular choice of solution (φ1, φ2) is
arguably the most natural to consider thanks to its stability. It is also useful in many contexts
because it represents the differential of the functional E [20]. We refer to this special solution (φ1, φ2)
as the Schrödinger potentials and we define the Schrödinger map S : P(X1)× P(X2) → C̃k as

S : µ = (µ1, µ2) 7→ φ = (φ1, φ2). (2)

1.2 Main result in the two-marginals case

Our main contribution is a proof that the Schrödinger map S is Lipschitz continuous with respect to
the following distances:

• We endow P(Xi) with the Wasserstein metric defined for two probability measures µ, ν ∈ P(Xi)
by

W2(µ, ν) :=

(

min
γ∈Π(µ,ν)

∫

Xi×Xi

‖y − x‖2dγ(x, y)

)
1
2

.

and then we endow P(X1) × P(X2) with the product Wasserstein W2 metric given for µ =
(µ1, µ2), ν = (ν1, ν2) ∈ P(X1)× P(X2)

W2(µ,ν) :=
(

W2(µ1, ν1)
2 +W2(µ2, ν2)

2
)

1
2 .

• We endow C̃k with the product, quotient supremum Ck norm defined from the usual Ck norm
‖ · ‖Ck as

‖(φ1, φ2)‖C̃k := inf
κ∈R

‖φ1 − κ‖Ck + ‖φ2 + κ‖Ck .

Our Lipschitz stability result for the Schrödinger map – which is a particular case of the more
general results Thm. 2.3 and Cor. 2.4 that cover the multi-marginal case and finer regularity results
– reads as follows (where by convention N

∗ := N \ {0}).

Theorem 1.1. If c ∈ Ck+1(X1×X2) for k ∈ N
∗, then there exists C > 0 that only depends on ‖c‖Ck+1

such that for all µ,µ′ ∈ P(X1)× P(X2),

‖S(µ)− S(µ′)‖
C̃k ≤ CW2(µ,µ

′).

This translates into a useful regularity result for the functional E (see Thm. 4.1).
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Corollary 1.2. If c ∈ C2(X1 × X2), then given (µt
1)t∈[0,1] and (µt

2)t∈[0,1] two Wasserstein geodesics,
the map h : t 7→ E(µt

1, µ
t
2) is differentiable and its derivative satisfies

|h′(t)− h′(s)| ≤ C|t− s|W2(µ
0,µ1)

where µt = (µt
1, µ

t
2) and C > 0 only depends on ‖c‖C2 . In particular, E and −E are displacement

semi-convex.

As an application of these results, we will prove the well-posedness of Wasserstein gradient flows
for several energies involving the functional E in Section 4, and also establish exponential convergence
to equilibrium in some cases. Since the Wasserstein gradient of E is ∇S1,∇S2 where S = (S1, S2) is
defined in (2), we have for example the following result (see Prop. 4.5), where H(µ) := H(µ|Leb) is
the (convex) differential entropy.

Corollary 1.3. Let c ∈ C2(X1 × X2) and µ0 = (µ0
1, µ

0
2) ∈ P(X1) × P(X2). Then the functional F

defined by
F (µ) := E(µ) +H(µ1) +H(µ2),

admits a unique Wasserstein gradient flow starting from µ0, i.e. there exists a unique absolutely
continuous curve µt = (µt

1, µ
t
2) ∈ P(X1)× P(X2) for W2, satisfying











∂tµ1 = ∇ · (µ1∇S1(µ)) + ∆µ1

∂tµ2 = ∇ · (µ2∇S2(µ)) + ∆µ2

µ|t=0
= µ0

with no-flux boundary conditions. If in addition H(µ0
1), H(µ0

2) < +∞, then µt converges at an
exponential rate to the unique equilibrium µ∗ (see Eq. (27)), in the sense that there exists κ > 0
independent of µ0 such that

F (µt)− F (µ∗) ≤ e−κt(F (µ0)− F (µ∗)).

Let us mention that the system of PDEs in the previous corollary may naturally appear as an
evolution model for cities: µ1 represents the distribution of agents, µ2 the distribution of firms, S2

the wage paid by firms to agents and the fact that S1 and S2 are given by (2) captures an equilibrium
condition on the labour market. For more details about such models, we refer to [28] (for a gradient
flow approach without entropic regularization) and to [2] (in the different context of mean-field games).
For extensions to more than two species and more general functionals (typically F + G where G is
displacement convex), see Section 4.

More applications of Thm. 1.1 are developed in companion papers that study optimization dy-
namics for trajectory inference [10] and regularized Wasserstein barycenters [8], also involving the
functional E.

1.3 Discussion of prior work

Several works have studied the stability of the unregularized optimal transport problem [14, 3, 23].
In particular, it is known that with the square-distance cost, the Kantorovich potential from µ1 to µ2

(i.e. the counterpart of the Schrödinger potential φ1 in unregularized optimal transport) is a 1
2 -Hölder

function of µ2 from W2 to Ḣ1(µ1) under suitable assumptions on the fixed reference measure µ1, and
that this is the strongest regularity that one can hope for in general [23].

In [5], it is proved by inverse function arguments that S is Lipschitz continuous and smooth as
a map from L∞

++ → L∞, given some fixed reference measures on the ambient space. Our results
will use a similar strategy but in contrast to [5] and other follow-up works such as [24, Thm. 3],
we do not consider stability under additive perturbations of the marginals, but under displacement
perturbations by changing the parametrization of the problem. This leads to the stronger conclusion
that E is smooth in Wasserstein distance which, as we shall see, is particularly useful in the context of
gradient flows of energies involving E. Let us also mention that much less is known about stability in
the non-compact case, see e.g. [18] that shows Lipschitz continuity of E, [35] where the continuity of
the Schrödinger map for the topology of convergence in probability in a certain non-compact setting,
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see also [22] for further stability results for the primal variable. Our results are finer, but rely in an
essential way on the compact setting.

Note that a result equivalent to Thm. 1.1 for k = 0 was already proved in [15]. Their elegant
approach consists in showing that the Sinkhorn’s iteration is stable under W1 perturbations (or,
equivalently in the compact setting, W2 perturbations) of the marginals which, combined with the
fact that this iteration is a contraction for the so-called Hilbert metric, leads to the conclusion. The
strength of their analysis is that it applies to k = 0 (i.e. merely Lipschitz continuous costs); and from
the result with k = 0, it is not difficult to prove the k ≥ 1 case under regularity assumptions on the
cost. However, their proof technique would likely not extend to the multi-marginal case (a well-know
limitation of the Hilbert metric approach). Here, we propose an independent proof technique for all
k ≥ 1 (for displacement smoothness, we need the case k = 1) and our analysis also gives additional
information on higher degrees of smoothness of the Schrödinger map and of E.

The rest of the paper is organized as follows. In Section 2, we introduce the multi-marginal
setting and state the full version of our regularity results for the Schrödinger map. The proofs of
those statements can be found in Section 3. Finally, in Section 4 we study the regularity of the
functional E and apply our results to the analysis of certain Wasserstein gradient flows involving E.

2 The multi-marginal case

Notation and assumptions on the domain Let N ≥ 2 be the number of marginals, let
Xi ⊂ R

d be convex and compact, for i ∈ [N ] := {1, . . . , N}, and let X :=
∏N

i=1 Xi. Given i ∈ [N ], we
denote X−i =

∏

j 6=i Xj and identify X to Xi × X−i, i.e. we denote x = (x1, . . . , xN ) as x = (xi, x−i).

For k ≥ 0, let Ck(Xi) be the space of k-times continuously differentiable functions over Xi (that
is, functions defined on Xi that admit a Ck extension on R

d) endowed with the usual supremum norm.
Using the multi-index notation, this norm is defined as ‖f‖Ck := inf f̃ sup|α|≤k ‖f̃

(α)‖∞ where the

infimum is over functions f̃ that are extensions of f defined on R
d. Endowed with this norm, Ck(Xi)

is a Banach space, see [38, Chap. 8, II] for details.
We denote by P(Xi) the space of Borel probability measures on Xi, which we endow with the weak

topology, characterized by its convergent sequences as µn ⇀ µ⇔
∫

φdµn →
∫

φdµ for all φ ∈ C0(Xi).

Given (µ1, . . . , µN) ∈
∏N

i=1 P(Xi), we denote by µ the N -tuple (µ1, . . . , µN ) and by µ the product

measure ⊗N
i=1µi ∈ P(X). For µ = ⊗N

i=1µi ∈ P(X) we let µ−i := ⊗j 6=iµj and
∏N

i=1 P(Xi) is endowed

with the product WassersteinW2 metric, given, for µ = (µ1, . . . , µN), ν = (ν1, . . . , νN ) ∈
∏N

i=1 P(Xi),
by

W2(µ,ν) :=

(

N
∑

i=1

W2(µi, νi)
2

)

1
2

.

In the following, k ∈ N
∗ is arbitrary and always denotes the regularity of the output space C̃

k of
the Schrödinger map S, while the regularity we require for the cost function c varies across statements.

In the proofs, we use C,C′, . . . to denote positive constants that may change from line to line
and only depend on general characteristics of the problem such as N and other quantities that are
specified when needed.

2.1 Multi-marginal Schrödinger System

The multi-marginal Schrödinger system arises as the optimality conditions for the multi-marginal
entropic optimal transport problem, defined for µ ∈

∏N
i=1 P(Xi) by

E(µ) := min
γ∈Π(µ)

∫

X

c(x)dγ(x) +H(γ|µ). (3)

where Π(µ) is the set of probability measures on X having marginals (µ1, . . . , µN ). This convex
problem admits a concave dual formulation in terms of the Lagrange multipliers for the marginal
constraints
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E(µ) = max
φ∈

∏
N
i=1 C0(Xi)

N
∑

i=1

∫

Xi

φi(xi)dµi(xi) + 1−

∫

X

e
∑N

i=1 φi(xi)−c(x)dµ(x). (4)

Notice that these problems are multi-marginal generalizations of those presented in Section 1.
The primal-dual optimality conditions read

γ(dx) = e
∑N

i=1 φi(xi)−c(x)µ(dx). (5)

We refer to [30, 34] for the basic theory of entropic optimal transport and [5, 16] for the multi-
marginal theory. The optimality conditions for Eq. (4) coincide with the condition that γ ∈ Π(µ) in
Eq. (5), and lead to the Schrödinger system.

Definition 2.1 (Schrödinger system/potentials/map). Consider the map T :
∏N

i=1 C(Xi)×
∏N

i=1 P(Xi) →
∏N

i=1 C(Xi) defined for i ∈ [N ] and xi ∈ Xi as

Ti(φ,µ)(xi) := log
(

∫

X−i

e
∑

N
j=1 φj(xj)−c(xi,x−i)dµ−i(x−i)

)

. (6)

A function φ = (φ1, . . . , φN ) is called a Schrödinger potential associated to µ if it solves the Schrödinger
system

T (φ,µ) = 0. (7)

The Schrödinger map is the function S that maps µ to its Schrödinger potential φ, i.e. that satisfies
T (S(µ),µ) = 0 (Prop. 2.2 states that this map is well-defined in a suitable sense).

Let us stress that we require Eq. (7) to hold in the space of continuous functions, that is for every
x ∈ X, rather than only µ-a.e. which is the optimality condition of Eq. (4).

Clearly, if φ = (φ1, . . . , φN ) solves (7) for some fixed µ, then so does every family of potentials of

the form (φ1 +κ1, . . . , φN +κN) where the κ ∈ R
N satisfies

∑N
i=1 κi = 0. This defines an equivalence

relation ∼ and we define the quotient space

C̃
k :=

(

N
∏

i=1

C
k(Xi)

)

/ ∼ .

Endowed with the quotient norm (the infimum of the norm over all representatives in the equivalence
class), C̃k is a Banach space.

2.2 Existence and weak continuity of the Schrödinger map

Let us state some preliminary results about the Schrödinger map.

Proposition 2.2. If c ∈ Ck(X) for k ∈ N
∗ then for any µ ∈

∏N
i=1 P(Xi), there exists a unique

φ = φµ ∈ C̃k such that T (φ,µ) = 0, i.e. the Schrödinger map S : µ 7→ φµ is well-defined. Moreover,

(i) for i ∈ [N ], φµi is Li-Lipschitz continuous, where Li = supx∈X ‖∇xi
c(x)‖2,

(ii) the Schrödinger map S :
∏N

i=1 P(Xi) → C̃k is weakly continuous and is bounded.

The continuity claim (ii) is not needed in the sequel – and is weaker than Thm. 2.3 – but it is
instructive to recall this known result that can be obtained by elementary means, before delving into
more technical proofs.

Proof. The existence of a unique solution to Eq. (7) in
∏N

i=1 L
∞(µi)/ ∼, i.e. in the µ-almost-

everywhere sense, is proved in [5], see also [16]. In order to prove the same in C̃0, i.e. in the everywhere
sense, let us observe that T can be expressed as T = Id + T̄ with

T̄i(φ,µ)(xi) = log
(

∫

X−i

e
∑

j 6=i
φj(xj)−c(xi,x−i)dµ−i(x−i)

)

(8)
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by factorizing eφi(xi) out in the definition of Ti. Thus, given a representer of the L∞ solution

φL∞

∈
∏N

i=1 L
∞(Xi), one can define a solution φC

k

∈
∏N

i=1 C
k(Xi) in the “everywhere sense” by

setting

φC
k

i (xi) := − log
(

∫

X−i

e
∑

j 6=i
φL∞

j (xj)−c(xi,x−i)dµ−i(x−i)
)

= −T̄i(φ
L∞

,µ)(xi). (9)

Observe that φC
k

inherits the Ck regularity of c. Moreover, by uniqueness in L∞, any “everywhere”
solution must coincide µ-a.e. with an “almost everywhere” solution and is thus of the form given
by Eq. (9). Noticing that T̄ (φ+κ,µ) = T̄ (φ,µ) − κ for any family of constants κ ∈ R

N such that
∑N

i=1 κi = 0 and quotienting by ∼, it follows that there exists a unique solution of the Schrödinger

system (7) in C̃k.
The Lipschitz continuity constant of xi 7→ φµi (xi) can be bounded by observing that differentiating

φµ = −T̄ (φµ,µ) in xi gives

∇φµi (xi) =

∫

X−i

∇xi
c(xi, x−i)dQ−i(x−i|xi)

where Q−i(·|xi) ∈ P(X−i) is a probability measure whose expression is given later in Eq. (13).
Finally, to prove weak continuity of S, it is enough to prove that if µn is a sequence weakly

converging to µ, then φµn

converges to φµ. By the previous point, {φµn

}n is uniformly Lipschitz
continuous and one can choose a uniformly bounded sequence of representatives so by Ascoli-Arzelà
Theorem we can extract a subsequence φmn which converges in C̃0 to some φ∞. Since the map T is
jointly continuous, it follows that T (φ∞,µ) = limm T (φµmn

,µmn) = 0, hence φ∞ = φµ. But this

limit is unique, so the full sequence (φµn

)n converges to φµ which proves the weak continuity in C̃0.

Since one also has φµn

= −T̄ (φµn

,µn) for all n and T̄ is continuous as a function C̃
0×
∏N

i=1 P(Xi) →

C̃k, we have in fact that φµn

converges to φµ in C̃k. Boundedness of S finally follows from the fact
that it is weakly continuous on a weakly compact set.

2.3 Main result : regularity of the Schrödinger map

In order to study regularity beyond the zero-th order, we bypass the lack of differentiable structure
of P(X) by considering parametrized paths generated by transport plans.

Consider µ0 = (µ0
i )

N
i=1 and µ1 = (µ1

i )
N
i=1 two families of probability measures in

∏N
i=1 P(Xi), and

a family of transport plans1 γ = (γi)
N
i=1 such that γi ∈ P(Xi × Xi) has marginals µ0

i and µ1
i . These

transport plans define interpolations between µ0
i and µ1

i , defined for t ∈ [0, 1] as

µt
i = ((1 − t)π1 + tπ2)#γi (10)

where π1 (resp. π2) is the projection on the first (resp. second) factor of Xi × Xi. In other terms, µt
i

is characterized by

∫

Xi

ϕi(xi)dµ
t
i(xi) =

∫

Xi×Xi

ϕi((1 − t)xi + tyi)dγi(xi, yi), ∀ϕi ∈ C(Xi).

Our main result is as follows.

Theorem 2.3. For p, k ∈ N
∗, p ≤ k, if c ∈ Ck+p(X) then the parametrized Schrödinger map t 7→

φt := S(µt) belongs to Cp([0, 1]; C̃k). Moreover, there exists C > 0 that only depends on ‖c‖Ck+1 and
N such that

‖φt −φs ‖
C̃k ≤ C|t− s|

√

cost(γ)

where cost(γ) :=
∑N

i=1

∫

Xi×Xi
‖yi − xi‖

2dγi(xi, yi) is the L2-transport cost associated with γ.

The detailed proof is postponed to the next section, the basic ingredient being the application of
the Implicit Function Theorem to the map G(φ, t) := T (φ,µt). We can make the following comments:

1To be clear, we do not assume that γi is an optimal transport plan.
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• Tracking the constants in the proof, it can be seen that C depends exponentially on the oscil-
lation of the cost supx c(x)− infx c(x) and polynomially on ‖c‖Ck+1.

• From the primal-dual relation Eq. (5), one could easily deduce stability results for the primal
variable γ from this theorem.

• The fact that the map t 7→ S(µt) belongs to C
p([0, 1]; C̃k), also holds if (µt)t∈[0,1], instead of

being of the form (10), is of the form µt
i = ξi(·, t)#µ

0
i for i ∈ [N ], for some µ0

i ∈ P(Xi) and a
measurable ξi(xi, ·) ∈ Cp([0, 1];Xi) with a Cp norm uniformly bounded in xi. This can be seen
by suitably adapting the proof of Lem 3.4.

Applying Thm. 2.3 by choosing γi as the optimal transport plan between µi and νi immediately
leads to the following Lipschitz continuity result for the Schrödinger map.

Corollary 2.4. For k ∈ N
∗, assume that c ∈ Ck+1(X). The Schrödinger map S :

∏N
i=1 P(Xi) → C̃k is

Lipschitz continuous, i.e. there exists C > 0 such that, for all µ,ν ∈
∏N

i=1 P(Xi), letting (φµ,φν) =
(S(µ), S(ν)),

‖φµ −φ
ν ‖

C̃k ≤ CW2(µ,ν).

Our approach will also enable us to deduce a control of the Schrödinger potentials and their
derivatives in terms of negative Sobolev distances between the marginals (see paragraph 3.4 for
detailed definitions):

Proposition 2.5. Assume that c ∈ Ck+p(X) with p > d/2 and p ∈ N
∗. The Schrödinger map

S :
∏N

i=1 P(Xi) → C̃k is Lipschitz continuous in the negative Sobolev norm H−p, i.e. there exists

C > 0 such that, for all µ,ν ∈
∏N

i=1 P(Xi), letting (φµ,φν) = (S(µ), S(ν)),

‖φµ−φν ‖
C̃k ≤ C‖µ− ν ‖H−p .

Note that when p > d/2 + 1, by Morrey’s Theorem (see Section 3.4) and our compactness
assumption, there exists C > 0 that only depends on X such that ‖µ− ν ‖H−p ≤ C · W1(µ,ν) ≤
C ·W2(µ,ν). Thus, the conclusion of Prop. 2.5 is generally stronger than that of Cor. 2.4, but this
is at the expense of requiring more regularity on the cost function.

For illustration purposes, let us explain how this inequality leads to nonasymptotic estimation
guarantees for the Schrödinger potentials given random samples. In the two marginal case, this is
essentially a known result, obtained via different means in [13, 39]. Specifically, suppose that µ̂ is an
empirical measure built by drawing n independent samples from each of the measures µi, i ∈ N . Then,
since Hp is a Reproducible Kernel Hilbert Space with a bounded kernel for p > d/2 (by Morrey’s
Theorem again), Hoeffding’s inequality shows that ‖µ̂ − µ ‖H−p is bounded by C · n−1/2

√

log(1/δ)
with probability 1− δ where here C depends only on X. By Prop. 2.5, this directly translates into a
high-probability bound on ‖φµ −φµ̂ ‖

C̃k . It might also be worth mentioning that Proposition 2.5 is
obtained by linearly interpolating the marginals, as such, it is a slight departure from the rest of the
paper which essentially focuses on displacement interpolation.

3 Proofs

The main tool to prove Thm. 2.3 is the Implicit Function Theorem. We will apply it to the function
G : C̃k × [0, 1] → Ck defined as

G(φ, t) := T (φ,µt) (11)

whose expression2 is, using the convention yi := xi,

Gi(φ, t)(xi) = φi(xi) + log
(

∫

X−i×X−i

e
∑

j 6=i
φj((1−t)xj+tyj)−c((1−t)x+ty)dγ−i(x−i, y−i)

)

.

For this purpose, in the next sections, we study the properties of the maps T and G.

2the maps G and T take values in C
k but it will sometimes be convenient to compose them from the left

with the canonical projection C
k
→ C̃

k, slightly abusing notations, we will still denote by G and T these maps
with values in C̃

k.
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3.1 Invertibility of the differential of T

Let us fix µ = (µ1, . . . , µN ) ∈
∏N

i=1 P(Xi) and µ = ⊗N
i=1µi ∈ P(X) and study the map φ 7→ T (φ,µ),

which is a self-map of C̃k. Note that T is of class C∞ in the first variable and its differential is given,
for h ∈ C̃k, by

DφTi(φ,µ)(h)(xi) = hi(xi) +

∫

X−i

(

∑

j 6=i

hj(xj)
)

q−i(x−i|xi)dµ−i(x−i).

where we have introduced the function q−i defined, with the convention x′i = xi, by

q−i(x−i|xi) :=
e
∑

j 6=i
φj(xj)−c(x)

∫

X−i
e
∑

j 6=i
φj(x′

j
)−c(x′)dµ−i(x′−i)

.

Note that q−i depends on φ and µ although this is not explicit in the notation. Similarly, let

q(x) :=
e
∑

j
φj(xj)−c(x)

∫

X
e
∑

j φj(x′
j
)−c(x′)dµ(x′)

, qi(xi) :=

∫

X−i
e
∑

j
φj(xj)−c(x)dµ−i(x−i)

∫

X
e
∑

j φj(x′
j
)−c(x′)dµ(x′)

. (12)

Observe that if φ and c are of class Ck then the functions q, qi, q−i are of class Ck as well. These
functions are densities of probability densities in the sense that it holds

Q := qµ ∈ P(X), Qi := qiµi ∈ P(Xi), Q−i(·|xi) := q−i(·|xi)µ−i ∈ P(X−i), ∀xi ∈ Xi. (13)

By construction, for each i, Qi is the i-th marginal of Q on Xi and Q−i is the disintegration of Q
with respect to this marginal, i.e.:

dQ(xi, x−i) = dQ−i(x−i|xi)dQi(xi). (14)

In the next lemma, we remark that these densities are uniformly bounded from above and below by
positive quantities, a fact which we will often use in the following.

Lemma 3.1. Let q be defined by (12). Then, for all x ∈ X,

e−2(N‖φ ‖
C̃0+‖c‖

C0) ≤ q(x) ≤ e2(N‖φ ‖
C̃0+‖c‖

C0).

Moreover qi and q−i satisfy the same bounds.

Proof. From the definition of q, for all x ∈ X,

q(x) =
e
∑

j
φj(xj)−c(x)

∫

X
e
∑

j φj(x′
j
)−c(x′)dµ(x′)

≤
e
∑

j
‖φj‖∞+‖c‖

C0

e−
∑

j ‖φj‖∞−‖c‖
C0

≤ e2(N‖φ ‖
C0+‖c‖

C0),

since µ ∈ P(X). In addition, from the definition of q, we remark that q does not depend of the
representative of φ in C̃0 which gives the upper bound on q. We obtain the lower bound, as well as
the result for qi and q−i with the same arguments.

Let us also remark that in the previous bounds, the norm ‖c‖C0 can be replaced by infκ∈R ‖c +
κ‖C0 = (sup c − inf c)/2, i.e. half the oscillation of c (in fact, the Schrödinger map is invariant if
c changes by an additive constant). The following lemma is central in our development and is an
adaptation of [5, Prop. 3.1] (with different functional spaces). The first claim of invertibility appeared
in a similar form in [25, Lem. 5] where it is key to prove a central limit theorem for EOT, but our
proof (Step 1) is different as (i) in our context there is no natural way to get rid of the non-uniqueness
of Schrödinger potentials so we work directly in the quotient space C̃k and (ii) our approach leads to
control on the norm on the inverse (the second part of the claim).

Lemma 3.2. Let k ∈ N
∗ and assume that φ ∈ C̃0 and c ∈ Ck(X).

Then DφT (φ,µ) is an invertible linear self-map of C̃k. Moreover, there exists C > 0 that only
depends on N , ‖c‖Ck and ‖φ ‖

C̃0 such that

‖[DφT (φ,µ)]
−1‖

C̃k→C̃k ≤ C.
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Proof. We have DφT (φ,µ) = Id + L with

Li(h)(xi) =

∫

X−i

(

∑

j 6=i

hj(xj)
)

q−i(x−i|xi)dµ−i(x−i).

Observe that since c ∈ Ck(X), Li(h) ∈ Ck(Xi) with its derivatives up to order k equi-continuous
when h runs through a bounded set of C̃0. It follows, by Arzelà-Ascoli Theorem, that L : C̃0 → C̃k is
compact, and a fortiori L : C̃k → C̃k is compact too.

Step 1. Let us show that id + L is invertible. Let h ∈
∏

C(Xi) be such that h+L(h) = 0 in C̃0,
i.e.

hi(.) +

∫

X−i

(

∑

j 6=i

hj(xj)
)

dQ−i(x−i|.) = λi, i = 1, . . . , N,
N
∑

j=1

λj = 0. (15)

Integrating (15) with respect to Qi, we deduce from (14), that

N
∑

k=1

∫

Xk

hkdQk = λi, i = 1, . . . , N

so that all the λi’s are equal to 0; hence h+L(h) = 0 in C0 (and not only in the quotient C̃0). Then,
taking the dot product of h with h+L(h) in

∏

L2(Qi) and using (14), it follows, reasoning as in [5],

0 =

N
∑

i=1

∫

Xi

hi(xi)
(

hi(xi) +

∫

X−i

(

∑

j 6=i

hj(xj)
)

dQ−i(x−i|xi)
)

dQi(xi)

=
∑

i

∫

Xi

hi(xi)
2dQi(xi) +

∑

i6=j

∫

X

hi(xi)hj(xj)dQ(x)

=

∫

X

(

∑

i

hi(xi)
)2

dQ(x).

We deduce that x 7→
∑

hi(xi) is equal to 0 as a function in L2(Q) and hence in L2(µ).

Now consider the space L̃2
µ :=

∏N
i=1 L

2(µi)/ ∼ which, endowed with the quotient space structure,

is also a Hilbert space. By Lem. 3.3 (proved hereafter), it follows that h ∼ 0 in L̃2
µ, i.e. there exists

κ ∈ R
n such that

∑

κi = 0 and hi(xi) = κi for µi-a.e. xi. It only remains to show that this equality
holds in fact everywhere. Using h = −L(h) and q−iµ−i ∈ P(X−i), it holds for xi ∈ Xi

hi(xi) = −

∫

X−i

(

∑

j 6=i

hj(xj)
)

q−i(x−i|xi)dµ−i(x−i) = −
∑

j 6=i

κj = κi

Thus h = 0 in C̃k. Conversely, any h = 0 in C̃k also clearly belongs to ker(DφT (φ,µ)). Hence

ker(DφT (φ,µ)) is precisely the equivalence class of 0 i.e. DφT (φ,µ) is injective on C̃
k. Since L is

a compact operator of C̃k, it follows from the Fredholm Alternative Theorem [4, Chap. 6] that the
range of Id + L is C̃k. Hence DφT (φ,µ) is onto and therefore an invertible linear self-map of C̃k.

Step 2. Now let us estimate the operator norm of DφT (φ,µ)
−1 as a self-map of C̃k. Let h ∈

C̃k, g ∈ C̃k be such that h+L(h) = g. Let us choose the representative of g that satisfies

∫

X1

g1(x1)dQ1(x1) = · · · =

∫

XN

gN (xN )dQN (xN ). (16)

Reasoning as above, it holds

N
∑

i=1

∫

Xi

gi(xi)hi(xi)dQi(xi) =
∑

i

∫

Xi

hi(xi)
2dQi(xi) +

∑

i,j, i6=j

∫

X

hi(xi)hj(xj)dQ(x)

=

∫

X

(

∑

i

hi(xi)
)2

dQ(x)
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where the first integral is unambiguously defined because, thanks to our choice of representative for
g, it does not depend on the representative chosen for h. Let us choose the optimal representative
for h in L̃2

µ appearing in Lem. 3.3. We have, for some C > 0 that may change from a line to another
but only depends on N , ‖c‖C0 and ‖φ ‖

C̃0
:

‖h ‖2∏L2(µi)

(i)

≤ N
∥

∥⊕N
i=1hi

∥

∥

2

L2(µ)

(ii)

≤ C
∥

∥⊕N
i=1hi

∥

∥

2

L2(Q)

(iii)

≤ C‖ g ‖∏L2(Qi)‖h ‖∏L2(Qi)

(iv)

≤ C‖ g ‖∏L2(Qi)‖h ‖∏L2(µi)

where we have used (i) Lem. 3.3 (where the notation ⊕ is defined) , (ii)&(iv) Lem. 3.1, and (iii) the
previous computation and Cauchy-Schwarz inequality in

∏

L2(Qi). It follows, invoking once again
Lem. 3.3 and Lem. 3.1, that

‖h ‖L̃2
µ

= ‖h ‖∏L2(µi) ≤ C‖ g ‖∏L2(Qi) = C‖ g ‖L̃2
Q
≤ C‖ g ‖

C̃0 .

For the last equality, we have used the fact that the L̃2
Q norm is precisely the

∏

L2(Qi) norm of

the representative that satisfies Eq. (16), by Lem. 3.3 (here L̃2
Q is defined similarly as L̃2

µ from the
marginals Qi of Q).

Step 3. We now improve the L̃2
µ control into a C̃k control. Restarting from h+L(h) = g, it holds

hi(xi) = gi(xi)−

∫

X−i

(

∑

j 6=i

hj(xj)
)

q−i(x−i|xi)dµ−i(x−i). (17)

Thanks to our control on ‖h ‖∏L2(µi) by ‖ g ‖
C̃0 , given constants κi, it follows from (17) that

‖hi + κi‖C̃0(Xi)
≤ ‖gi + κi‖C̃0(Xi)

+ C‖ g ‖
C̃0

summing over i and minimizing with respect to the κi’s summing to 0, we get

‖h ‖
C̃0 ≤ C‖ g ‖

C̃0 .

In a similar way, using the fact that c ∈ Ck, successive differentiations of (17) yield

‖h ‖
C̃k = ‖[DφT (φ,µ)]

−1(g)‖
C̃k ≤ C‖ g ‖

C̃k

for a constant C that only depends on N , ‖c‖Ck and ‖φ ‖
C̃0 .

To end this section, we prove Lem. 3.3 used in the previous proof.

Lemma 3.3. For h ∈
∏N

i=1 L
2(µi), denoting ⊕N

i=1hi : x 7→
∑N

i=1 hi(xi) it holds

‖h ‖2
L̃2

µ

≤
∥

∥⊕N
i=1hi

∥

∥

2

L2(µ)
≤ N‖h ‖2

L̃2
µ

.

Moreover, the quotient norm is achieved by the unique representative ĥ ∼ h that satisfies
∫

X1
ĥ1dµ1 =

· · · =
∫

XN
ĥNdµN , i.e. it holds ‖h‖2

L̃2
µ

=
∑N

i=1 ‖ĥi‖
2
L2(µi)

.

Proof. By definition,

‖h ‖2
L̃2

µ

= min
κ∈R

N
∑

i
κi=0

N
∑

i=1

∫

Xi

(hi(xi)− κi)
2dµi(xi). (18)

A vector κ ∈ R
N solves this problem iff

∑

i κi = 0 and there exists a Lagrange multiplier ν ∈ R such
that for i ∈ [N ],

0 =

∫

Xi

(hi(xi)− κi)dµi(xi)− ν = Eµi
[hi]− κi − ν.
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with the shorthandEµ[h] :=
∫

hdµ and Varµ(h) := Eµ[(h−Eµ[h])
2]. It follows that ν = 1

N

∑N
i=1 Eµi

[hi]
and as a consequence

‖h ‖2
L̃2

µ

=

N
∑

i=1

∫

Xi

(hi(xi)−Eµi
[hi] + ν)2dµi(xi)

=
N
∑

i=1

[

∫

Xi

(hi(xi)−Eµi
[hi])

2dµi(xi) + ν2
]

=

N
∑

i=1

Varµi
(hi) +

1

N

(

N
∑

i=1

∫

hidµi

)2

where the second equality follows by expanding the square and observing that the cross-terms vanish.
On the other hand, using the fact that

∑

i κi = 0, it holds

∥

∥⊕N
i=1hi

∥

∥

2

L2(µ)
=

∫

X

(

N
∑

i=1

(hi(xi)− κi)
)2
dµ(x)

=
∑

i,j,i6=j

∫

Xi×Xj

(hi(xi)−Eµi
[hi] + ν)(hj(xj)−Eµj

[hj] + ν)dµi(xi)dµj(xj)

+
∑

i

∫

Xi

(hi(xi)−Eµi
[hi]) + ν)2dµi(xi)

= N(N − 1)ν2 + ‖h ‖2
L̃2

µ

=

N
∑

i=1

Varµi
(hi) +

(

N
∑

i=1

∫

Xi

hidµi

)2

The first claim follows. For the second claim, observe that this representative ĥ satisfies the optimality
condition of Eq. (18).

3.2 Differentiability of G

Let us first establish the regularity of the map G.

Lemma 3.4. For p, k ∈ N
∗, p ≤ k, if c ∈ Ck+p(X), then the map G : Ck × [0, 1] → Ck is of class Cp.

Proof. The i-th component of G can be expressed as

Gi(φ, t)(xi) = φi(xi) + log
(

∫

X−i×X−i

e
∑

j 6=i
φj((1−t)xj+tyj)−c(xi,(1−t)x−i+ty−i)dγ−i(x−i, y−i)

)

Fixing i and (x−i, y−i) ∈ X−i × X−i, let us observe that when c ∈ Ck+p(X), the curve t ∈ [0, 1] 7→
c(., (1 − t)x−i + ty−i) ∈ Ck(Xi) is of class Cp and that its derivatives up to order p can be bounded
independently of (x−i, y−i). Now, for j 6= i (and fixed xj and yj in Xj), consider the real-valued map
Lj : (φj , t) ∈ C

k(Xj) × [0, 1] 7→ φj(xj + t(yj − xj)). For k = 1, this map admits partial derivatives
with respect to t and φj which are given respectively by ∇φj(xj + t(yj − xj))

⊤(yj − xj) and Lj(., t),
both being continuous (for the C1 norm for φj) so that Lj ∈ C1(C1(Xj)× [0, 1],R) note also that the
first-order partial derivatives of Lj can be bounded by a constant depending on the C1 norm of φj
but not on xj , yj.

For k ≥ 2, we can argue inductively. Indeed, by the previous argument, showing k times contin-
uous differentiability of Lj amounts to showing k− 1 times continuous differentiability of Lj applied
to ∇φj(.)

⊤(yj − xj) and t. This shows that Lj ∈ Ck(Ck(Xj) × [0, 1],R), with bounds on derivatives
up to order k controlled by the C

k norm of φj independently of (xj , yj) ∈ Xj ×Xj . By the chain rule
and differentiating under the integral sign by dominated convergence, we can readily conclude that
G is of class Cmin{k,p} = Cp from Ck(X)× [0, 1] to Ck(X).

We now give a quantitative regularity estimate for the partial derivative of G in its real variable
t.
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Lemma 3.5. Let k ∈ N
∗ and assume that c ∈ Ck+1(X). Given φ ∈ C̃1, the partial differential of G

in t satisfies
‖DtG(φ, t)‖C̃k ≤ C

√

cost(γ)

where C > 0 only depends on ‖φ ‖
C̃1 and ‖c‖Ck+1 and cost(γ) is the transport cost associated with γ

as in Thm. 2.3.

Proof. By Lem. 3.4, G is differentiable in t. Using the shorthand xt := (1 − t)x + ty and again the
convention yi = xi, it holds

d

dt
Gi(φ, t)(xi) =

∫

X−i×X−i

(

∑

j 6=i

(yj − xj)
⊤(∇φj(x

t
j)−∇jc(x

t))
)

dQt
−i(x−i, y−i|xi) (19)

with Qt
−i := qt−iγ−i ∈

∏

j 6=i P(Xj × Xj) and, posing (x′)ti = xti,

qt−i(x−i, y−i|xi) :=
e
∑

j 6=i
φj(x

t
j)−c(xt)

∫

X−i×X−i
e
∑

j 6=i φj((x′)t
j
)−c((x′)t)dγ−i(x′−i, y

′
−i)

.

Reasoning as in Lem. 3.1, this function qt−i admits positive upper and lower bounds only depending
on ‖φ ‖

C̃0
and ‖c‖C0. Let us now control Eq. (19), starting with a control in uniform norm. First, by

Cauchy-Schwarz in L2(Qt
−i(·, ·|xi)), for i ∈ [N ] and xi ∈ Xi,

∣

∣

∣

d

dt
Gi(φ, t)(xi)

∣

∣

∣

2

≤

(

∫

X−i×X−i

‖y − x‖2dQt
−i(x−i, y−i|xi)

)(

∫

X−i×X−i

‖(∇φ−∇c)(xt)‖2dQt
−i(x−i, y−i|xi)

)

(20)

where ∇φ := (∇φ1, . . . ,∇φN ). Observe that the second factor is uniformly bounded for xi ∈ Xi

because Qt
−i(·, ·|xi) is a probability measure and both φ and c are continuously differentiable on a

compact set. It follows,

∥

∥

∥

d

dt
Gi(φ, t)

∥

∥

∥

C0
≤ C sup

xi∈Xi

(

∫

X−i×X−i

‖y − x‖2dQt
−i(x−i, y−i|xi)

)1/2

≤ C′

(

∫

X−i×X−i

‖y − x‖2dγ−i(x−i, y−i)

)1/2

≤ C′
√

cost(γ)

where C,C′ depend on ‖c‖C1 and ‖φ ‖
C̃1 only. Moreover, one can further differentiate Eq. (19) in xi

and obtain analogous bounds because this variable only appears in the term ∇jc which is of regularity
C
k and in the factor qt−i which is of regularity C

k+1. With this reasoning, it follows

∥

∥

∥

d

dt
Gi(φ, t)

∥

∥

∥

C̃k
≤ Ck

√

cost(γ).

where Ck depends on ‖c‖
C̃k+1 and ‖φ ‖

C̃1 only.

3.3 Proof of Thm. 2.3

Proof. Let us first observe that c can be extended in a C
k+p way to a convex open set containing X.

One can therefore extend by extrapolation the definition of µt to an open time interval (−ε, 1 + ε),
for some ε > 0 containing [0, 1]. We shall then apply the Implicit Function Theorem (IFT) to
G : C̃k × [0, 1] → C̃k defined in (11).

The existence and continuity on [0, 1] of the Schrödinger map t 7→ φt is guaranteed by Prop. 2.2.
In Lem. 3.4, we have shown that G is of class Cp and in Lem. 3.2, we have shown thatDφG(φ

t, t) =

DφT (φ
t,µt) is an invertible linear self-map of C̃k. Thus all the hypotheses are gathered to apply the
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Implicit Function Theorem, see e.g. [17, Thm. 10.2.1]: the map t 7→ φt is of class Cp on [0, 1] and its
derivative is given by

Dt φ
t = −[DφT (φ

t,µt)]−1 ◦DtG(φ
t, t).

Moreover, we have by respectively Lem. 3.2 and Lem. 3.5 that there exists C > 0 only depending on
N , ‖c‖Ck+1 and ‖φt ‖

C̃1 such that

‖[DφT (φ
t,µt)]−1‖op ≤ C and ‖DtG(φ

t, t)‖op ≤ C
√

cost(γ).

Since we know by Prop. 2.2 that ‖φt ‖
C̃1 is a priori bounded by ‖c‖C1, it follows that ‖Dt φ

t ‖ ≤

C′
√

cost(γ) for some C′
k > 0 that only depends on ‖c‖Ck+1. The Lipschitz estimate in Thm. 2.3

follows by the mean-value inequality.

3.4 Proof of Proposition 2.5

Recall that the Sobolev space Hp(Xi) consists of all functions fi ∈ L2(Xi) whose partial derivatives
up to order p belong to L2(Xi) which is a Hilbert space for the norm

‖fi‖
2
Hp(Xi)

:=
∑

α : |α|≤p

∫

Xi

|∂αfi|
2.

If p > d/2, by Morrey’s Theorem (see [4]), Hp(Xi) embeds continuously into the space of continuous
functions, hence, by duality, measures belong to the dual space H−p(Xi). We can therefore define

‖µ− ν ‖H−p :=
N
∑

i=1

‖µi − νi‖H−p

where

‖µi − νi‖H−p := sup
{

∫

Xi

fid(µi − νi) : ‖fi‖Hp(Xi) ≤ 1
}

.

To obtain the bound announced in Prop. 2.5, we simply consider the linear interpolation between
µ and ν, µt := µ+t(ν−µ) for t ∈ [0, 1] and G(φ, t) := T (φ,µt) as well as φt := S(µt) ∈ C̃k i.e.
G(φt, t) = 0. Recall that φt is bounded in Ck by a constant that only depends on c. The same
holds for the operator norm of [DφT (φ

t,µt)]−1 in Ck as well. To conclude as before by the implicit
function theorem, we have to differentiate G with respect to t and bound the Ck norm of DtG(φ

t, t)
by a constant depending on c times ‖µ− ν ‖H−p . To simplify notations, let us set

ξi(φ, t)(xi) :=
1

∫

X−i
e−c(xi,x−i)+

∑
j 6=i

φj(xj)dµt
−i(x−i)

and observe that ξi(φ
t, t)(.) has uniformly bounded derivatives up to order k (with bounds that

depend on ‖c‖Ck only). If N = 2, we simply have

DtG1(φ, t)(x1) = ξ1(φ, t)(x1)

∫

X2

e−c(x1,x2)+φ2(x2)d(ν2 − µ2)(x2).

By Leibniz formula to bound the k first derivatives of DtG1(φ
t, t)(x1), we then just have to bound

the k first derivatives of x1 ∈ X1 7→
∫

X2
e−c(x1,x2)+φt

2(x2)d(ν2−µ2)(x2) which are obviously controlled

by ‖ν2 − µ2‖H−p times the Ck+p norm of (x1, x2) 7→ e−c(x1,x2)+φt
2(x2) which can in turn be bounded

by a constant only depending on ‖c‖Ck+p . Proceeding in the same way for x2 7→ DtG2(φ
t, t)(x2)

gives the desired result. The case N ≥ 3 is slightly more tedious to write, for a fixed pair of indices
i 6= j, we denote by X−(i,j) the cartesian product of all the Xl but i and j, and write x ∈ X as
x = (xi, xj , x−(i,j)) ∈ Xi×Xj ×X−(i,j), likewise we write µ

t
−(i,j) for the tensor product of µ

t
l for l 6= i,

l 6= j. Doing so, we have

DtGi(φ, t)(xi) = ξi(φ, t)(xi)
∑

j 6=i

∫

Xj

hij(φ, t)(xi, xj)d(νj − µj)(xj)
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where

hij(φ, t)(xi, xj) :=

∫

X−(i,j)

e−c(xi,xj,x−(i,j))+φj(xj)+
∑

l 6=i,l 6=j
φl(xl)dµt

−(i,j)(x−(i,j))

so that by the same arguments as before, if α ∈ N
d with |α| ≤ k, we have for a constant C only

depending on N and the Ck+p norm of c, possibly varying from one line to another:

|∂αDtGi(φ
t, t)(xi)| ≤ C

∑

j 6=i

‖µj − νj‖H−p(Xj)‖∂
α
xi
hij(φ

t, t)(xi, .)‖Hp(Xj) ≤ C‖µ− ν ‖H−p .

This enables us to conclude exactly as in the end of paragraph 3.3.

4 Smoothness of entropic optimal transport and Wasserstein

gradient flows

In this section, we apply our main stability results to the analysis of Wasserstein gradient flows of
functionals involving the entropic optimal transport functional E.

4.1 Displacement smoothness and gradient flows

Let µ0,µ1, γ,µt and φt be as in the beginning of paragraph 2.3. A consequence of Thm. 2.3 is that
the functional E is as nice as one could hope for in the Wasserstein space.

Theorem 4.1. If c ∈ C2k−1(X) for some k ≥ 1, then the function t 7→ E(µt) is of class Ck. Moreover,
if c ∈ C2(X) then its derivative is C cost(γ)-Lipschitz, for some C > 0 that only depends on N and
‖c‖C2 . In particular both E and −E are (−C)-displacement convex.

Proof. It follows from the dual formulation (4) that µ 7→ E(µ) is a convex function of ⊗iµi (even-

thoughE is not convex) by optimality ofφt in this dual formulationE, setting Vt(x) := e−c(x)+
∑

N
i=1 φt

i(xi)

it holds that for every t and s in [0, 1], one has

∑

i

∫

Xi

φti(µ
s
i −µ

t
i)−

∫

X

Vt(⊗iµ
s
i −⊗iµ

t
i) ≤ E(µs)−E(µt) ≤

∑

i

∫

Xi

φsi (µ
s
i −µ

t
i)−

∫

X

Vs(⊗iµ
s
i −⊗iµ

t
i)

(21)
Using the notation xti = (1− t)xi + tyi as before, remark that

∫

Xi

φtid(µ
s
i − µt

i) =

∫

X2
i

(

φti(x
s
i )− φti(x

t
i)
)

dγi(xi, yi)

= (s− t)

∫

X2
i

(yi − xi)
⊤∇φti(x

t
i)dγi(xi, yi) + o(|s− t|).

We now claim that the second term in the left hand side of (21) is o(|s− t|). To prove this, we shall
for notational simplicity restrict ourselves to the case N = 2 (the general case is similar but more
tedious),
∫

X

Vt(µ
s
1 ⊗ µs

2 − µt
1 ⊗ µt

2) =

∫

X

Vt(µ
t
1 ⊗ (µs

2 − µt
2) + (µs

1 − µt
1)⊗ µt

2) +

∫

X

Vt(µ
s
1 − µt

1)⊗ (µs
2 − µt

2)

the first term in the right-hand side is 0 because the integral of Vt(., x2) (respectively Vt(x1, .) with
respect to µt

1 (respectively µt
2) is constant equal to 1 and µs

2 and µt
2 (respectively µs

1 and µt
1) have the

same total mass. We are therefore left to show that the second term is o(|t−s|). Defining for x1 ∈ X1,
ξs,t(x1) :=

∫

X2
Vt(x1, .)(µ

s
2 −µt

2) and observing that since the 1-Wasserstein distance between µs
2 and

µt
2 is bounded byM |t−s| where M is the diameter of X2, it follows from the Kantorovich-Rubinstein

inequality that

|

∫

X

Vt(µ
s
1 − µt

1)⊗ (µs
2 − µt

2)| ≤M |t− s| ‖∇ξs,t‖C0(X1).

Writing ∇ξs,t(x1) as

∇ξs,t(x1) = ∇φt1(x1)ξt,s(x1)−

∫

X2

Vt(x1, .)∇x1c(x1, .)(µ
s
2 − µt

2)
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we deduce from the uniform continuity of ∇x1c and Vt and the weak ∗ continuity of s 7→ µs
2 that

∇ξs,t converges uniformly to 0 as s→ t, hence that

∫

X

Vt(µ
s
1 − µt

1)⊗ (µs
2 − µt

2) = o(|s− t|).

Thus dividing Eq. (21) by |s− t| and using that φs → φt in C̃1 as s tends to t, we get:

d

dt
E(µt) =

N
∑

i=1

∫

Xi×Xi

(yi − xi)
⊤∇φti(x

t
i)dγi(xi, yi). (22)

From Thm. 2.3, we know that t 7→ φt is in Ck−1([0, 1], C̃k) (note that the case k = 1 is instead a
consequence of Prop. 2.2) and hence t 7→ ((xi, yi) 7→ ∇φt

i(x
t
i)) is in Ck−1([0, 1],C0(Xi × Xi)).

It follows that h : t 7→ E(µt) ∈ C
k([0, 1]). Notice how this argument uses the two notions of

regularity of the Schrödinger map (indexed by p and k in Thm. 2.3).
For the Lipschitz regularity of h′, fixing s, t ∈ [0, 1], one has

|h′(t)− h′(s)| ≤

∣

∣

∣

∣

∣

N
∑

i=1

∫

Xi×Xi

(yi − xi)
⊤
(

∇φti(x
t
i)−∇φsi (x

s
i )
)

dγi(xi, yi)

∣

∣

∣

∣

∣

≤

N
∑

i=1

∫

Xi×Xi

‖yi − xi‖‖∇φ
t
i(x

t
i)−∇φti(x

s
i )‖dγi(xi, yi)

+
N
∑

i=1

∫

Xi×Xi

‖yi − xi‖‖∇φ
t
i(x

s
i )−∇φsi (x

s
i )‖dγi(xi, yi).

Now, if c ∈ C2(X), using the Lipschitz regularity of xi 7→ ∇φti(xi) and of t 7→ ∇φt, from Thm. 2.3, it
follows that

‖∇φti(x
t
i)−∇φti(x

s
i )‖ ≤ C|t− s|‖yi − xi‖ and ‖∇φti(x

s
i )−∇φsi (x

s
i )‖ ≤ C|t− s|

√

cost(γ),

for some C that only depends on N and ‖c‖C2 . Then, we obtain

|h′(t)− h′(s)| ≤ C|t− s|

N
∑

i=1

∫

Xi×Xi

‖yi − xi‖
2dγi(xi, yi)

+ C|t− s|
√

cost(γ)

N
∑

i=1

∫

Xi×Xi

‖yi − xi‖dγi(xi, yi)

≤ C|t− s| cost(γ).

In particular, this implies that t ∈ [0, 1] 7→ h(t) + C cost(γ)
2 t2 is convex hence

E(µt) ≤ (1− t)E(µ0) + tE(µ1) +
C cost(γ)t(1 − t)

2

and displacement semi-convexity follows by choosing γi to be an optimal transport plan between µ0
i

and µ1
i for each i ∈ [N ] (see [1] for a definition). Displacement semi-convexity of −E is obtained in

the same way, observing that t ∈ [0, 1] 7→ −h(t) + C cost(γ)
2 t2 is convex.

Proposition 4.2. If c ∈ C1(X), we have that S(µ) is the gradient of µ 7→ E(µ) and x 7→ ∇xS(µ)(x)

is its Wasserstein gradient, in the sense of [1] i.e. for µ0 and µ1 in
∏N

i=1 P(Xi) and for any γi
optimal plan between µ0

i , and µ
1
i , one has

E(µ1)− E(µ0) =
N
∑

i=1

∫

Xi×Xi

(yi − xi)
⊤∇φi(xi)dγi(xi, yi) + o(W2(µ

0,µ1))

where φ := S(µ0). If c ∈ C2(X) then the error o(W2(µ
0,µ1)) is in fact O(W2(µ

0,µ1)2).
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Proof. For the case c ∈ C1(X), this follows by integrating (22) in time and Proposition 2.2-(ii) which
guarantees that S is weakly continuous as a function in C̃1. For the case c ∈ C2(X), this follows
from (22) and Thm. 2.3.

Thm. 4.1 and the above identification of the Wasserstein gradient of E enable us to deduce
from [1, Thm. 11.2.1] that E admits a unique Wasserstein gradient flow, which shows well-posedness
of the Cauchy problem for the system of PDEs

{

∂tµi = ∇ · (µi∇Si(µ)), i ∈ {1, . . . , N}

µ |t=0 = µ0

This system, as all the PDEs below, is understood in the sense of distributions with no-flux boundary
conditions, i.e. for i ∈ {1, . . . , N}, for every ψ ∈ C∞

c ([0,+∞)× R
d) it holds

∫ ∞

0

∫

Xi

(

∂tψ(t, xi) +∇Si(µ)(xi)
⊤∇xi

ψ(t, xi)
)

dµt
i(xi)dt = −

∫

Xi

ψ(0, xi)dµ
0
i (xi).

We also have that the fact that the gradient flow map µ0 7→ µt satisfies

W2(µ
t,νt)2 ≤ eCt W2(µ

0,ν0)2.

Of course, adding to E a separable term of the form
∑N

i=1Ei(µi) where each Ei is displacement
semi-convex, we can deduce well-posedness for more general systems like

∂tµi − αi∆µi −∇ · (µi∇Si(µ)) = 0, i = 1, . . . , N, µ |t=0 = µ0

or
∂tµi − αi∆µ

mi

i −∇ · (µi∇Si(µ)) = 0, i = 1, . . . , N, µ |t=0 = µ0

with mi ≥ 1 and αi ≥ 0. For the sake of concreteness, we are going to detail three such examples
with interesting additional structure in the next paragraphs.

4.2 Wasserstein gradient flow of the Sinkhorn divergence

We consider the Sinkhorn divergence functional [20], the gradient flow of which has been previously
considered as a numerical method for density fitting. As a consequence of our analysis and of [1, Thm.
11.2.1] we have the following result.

Proposition 4.3. Let X ⊂ R
d be a compact convex set, c ∈ C2(X × X) and let µ0, ν ∈ P(X).

There exists a unique Wasserstein gradient flow starting from µ0 of the Sinkhorn divergence (from ν)
functional

µ 7→ E(µ, ν)−
1

2
E(µ, µ)−

1

2
E(ν, ν).

Here, a Wasserstein gradient flow is a curve (µt)t≥0 ∈ P(X) that is absolutely continuous for the
W2 metric and that satisfies

∂tµ
t = ∇ · (vtµt), vt = ∇S1(µ

t, ν)−
1

2
(∇S1(µ

t, µt) +∇S2(µ
t, µt)), µ|t=0 = µ0 (23)

where we recall that S is the Schrödinger map.
An interesting open question is whether this dynamics can be provably shown to converge to the

unique minimizer µ∗, which is µ∗ = ν for suitable choices of costs, e.g. for c(x, y) = ‖y − x‖2, as
proved in [20].

4.3 Convergence to equilibrium for the Schrödinger bridge energy

Let us continue with another simple example that shows that our theory is also natural to deal with
the Lebesgue measure as a reference in the definition of E Eq. (1), which is the original definition of
the Schrödinger bridge problem. This alternative definition is equivalent (see e.g. [16]) to considering
E + H where H(µ) :=

∫

log(µ)dµ if µ is absolutely continuous and +∞ otherwise is minus the
differential entropy.
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Proposition 4.4. Let X ⊂ R
d be a compact convex set, c ∈ C2(X × X) and let µ0, ν ∈ P(X). There

exists a unique Wasserstein gradient flow of

µ 7→ E(µ, ν) +H(µ)

starting from µ0. Moreover, if H(µ0) <∞ then this gradient flow converges at an exponential rate to
the unique global minimizer µ∗. Specifically, there exists κ > 0 independent of µ0, ν such that

F (µt)− F (µ∗) ≤ e−κt(F (µ0)− F (µ∗)).

In addition, there exists a constant C > 0, independent of µ0, ν such that

W2(µ
t, µ∗)2 ≤ Ce−κt(F (µ0)− F (µ∗)).

For this functional, the Wasserstein gradient flow (µt)t≥0 ∈ P(X) solves

∂tµ
t = ∇ · (vtµt) + ∆µt, vt = ∇S1(µ

t, ν). (24)

Proof. We have semi-convexity along Wasserstein geodesics, by Thm. 4.1 for the first component and
by a standard result due to Mc Cann [31] (see [40, Thm. 7.28]) for the H component. Thus the
general well-posedness results from [1, Thm. 11.2.1] applies. For the exponential convergence – in
function value and in distance – we apply the result from [7, Thm. 3.2], see also [33] where the same
argument was discovered independently (although stated on R

d, the argument goes through on a
compact domain).

The main assumptions to check are that (i) µ 7→ E(µ, ν) is convex, which is clear from the dual
formulation Eq. (4) which expresses this functional as a supremum of affine forms, (ii) that a global
minimizer µ∗ exists, which is not difficult here since P(X) is weakly compact, H is weakly lower-
semicontinuous and E is weakly continuous and finally we need to check that the probability measure
µ̂t ∝ e−S1(µ

t,ν) ∈ P(X) satisfies a log-Sobolev inequality, uniformly in t (Assumption 3 in [7]).
Since X is bounded, the normalized Lebesgue measure satisfies a log-Sobolev inequality [29, Thm.

7.3]. By the Holley-Stroock perturbation criterion [26] (see [29, Lem. 1.2]), µ̂t satisfies it as well; this
criterion applies here because supx S1(µ, ν)(x)− infx S1(µ, ν)(x) is bounded, uniformly in µ, ν ∈ P(X)
by Prop. 2.2. The convergence in Wasserstein distance is stated in [7, Cor. 3.3] and follows from the
fact that log-Sobolev inequalities imply Talagrand inequalities [36, Thm. 1].

4.4 Convergence to equilibrium in the multi-species case

We now consider Wasserstein gradient flow of3

F (µ) := E(µ) +

N
∑

i=1

H(µi), µ = (µ1, . . . , µN ) ∈

N
∏

i=1

P(Xi)

that is
∂tµi −∆µi −∇ · (µi∇Si(µ)) = 0, i = 1, . . . , N, µ |t=0 = µ0 . (25)

Up to adding a constant to c (which does not affect the dynamics (25)) we may assume that
∫

X

e−c(x)dx = 1. (26)

With this normalization, we have

inf
µ∈

∏
N
i=1 P(Xi)

F (µ) = inf
γ∈P(X)

H(γ|e−c) = 0

so that F admits µ∗, the marginals of γ∗ := e−c, as unique minimizer

µ∗
i (xi) =

∫

X−i

e−c(xi,x−i)dx−i (27)

3Note that F (µ) can also be written as the value of an entropic optimal transport problem but with the
Lebesgue measure as reference measure i.e. F (µ) = minγ∈Π(µ)

∫
X
c(x)dγ(x) +H(γ).
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for every i and xi ∈ Xi and F (µ
∗) = 0. In the next proposition, we extend Prop. 4.4 to the multi-

species case. In this case, the functional µ 7→ E(µ) is not convex anymore but we can overcome this
difficulty taking advantage of the form of F .

Proposition 4.5. Let µ0 ∈
∏N

i=1 P(Xi). Then there exists a unique Wasserstein gradient flow of F
starting from µ0, that we call µt. Assume that H(µ0

i ) < +∞ for every i, then µt converges at an
exponential rate to the equilibrium µ∗, defined in Eq. (27), i.e. there exists κ > 0 independent of µ0

such that
F (µt)− F (µ∗) ≤ e−κt(F (µ0)− F (µ∗)).

In addition, there exists a constant C > 0, independent of µ0, such that

W2(µ
t,µ∗)2 ≤ Ce−κt(F (µ0)− F (µ∗)).

Proof. The well-posedness of the Wasserstein gradient flow is proved as previously using the geodesic
semi-convexity of F that follows from Thm. 4.1. For the convergence, first note the identities

E(µ) =

N
∑

i=1

∫

Xi

Si(µ)dµi, F (µ) =

N
∑

i=1

H(µi|e
−Si(µ))

which hold for any µ ∈
∏N

i=1 P(Xi) and easily follow from (4) and (7). Let us then remark that,
denoting by γ(µ), the optimal entropic plan

dγ(µ)(x) := e−c(x)+
∑N

i=1 Si(µ)(xi)dµ1(x1) · · ·dµN (xN )

and recalling that γ∗ = e−c we can conveniently rewrite F as a relative entropy with respect to the
fixed probability measure γ∗ on X:

F (µ) = H(γ(µ)|γ∗).

Since H(µ0
i ) < +∞ for every i, and denoting by µt the Wasserstein gradient flow of F starting from

µ0, we have using the chain rule, (25) and an integration by parts:

d

dt
F (µt) =

N
∑

i=1

∫

Xi

(Si(µ
t) + log(µt

i))∂tµ
t
i = −

N
∑

i=1

∫

Xi

‖∇ logµt
i +∇Si(µ

t)‖2dµt
i

= −

N
∑

i=1

Ii(µ
t
i|e

−Si(µ
t))

where Ii(ρ|e
−V ), for ρ ∈ P(Xi), stands for the relative Fisher information

Ii(ρ|e
−V ) :=

∫

Xi

∥

∥

∥
∇ log

( ρ

e−V

)∥

∥

∥

2

dρ.

Defining γt := γ(µt), we have F (µt) = H(γt|γ∗) and

I(γt|γ∗) :=

∫

X

∥

∥

∥

∥

∇x log
( γt(x)

e−c(x)

)

∥

∥

∥

∥

2

dγt(x) =

∫

X

N
∑

i=1

∥

∥∇xi
(log(µt

i(xi)) + Si(µ
t)(xi))

∥

∥

2
dγt(x)

=

N
∑

i=1

Ii(µ
t
i|e

−Si(µ
t))

where we used the fact that γt ∈ Π(µt) in the last line. But since X is convex, it follows from
the Holley-Stroock perturbation criterion [26] (see [29, Lem. 1.2]), that γ∗ satisfies a log-Sobolev
inequality, hence

I(γt|γ∗) ≥ κH(γt|γ∗)

with κ > 0 depending only on X and c. We thus have

d

dt
F (µt) =

d

dt
H(γt|γ∗) = −I(γt|γ∗) ≤ −κH(γt|γ∗) = −κF (µt)

hence
F (µt) ≤ e−κtF (µ0).

Thanks to Talagrand’s inequality, which follows from the log-Sobolev inequality [36, Thm. 1], we get
an exponential decay of W2(γt, γ

∗) hence also an exponential decay in Wasserstein distance between
the marginals of γt and γ∗ i.e. of W2(µ

t,µ∗).
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