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In this paper, the energy efficiency of a two-user downlink NOMA system aided by several ambient backscatter devices is investigated. We analyze both the tradeoff and the ratio between achievable rates versus power consumption, assuming that the backscatter devices are in fully cooperative mode. In the case of two backscatter devices, we derive a closedform solution in terms of the optimal reflection coefficients and power allocation policy by exploiting the properties of the energy-efficiency objective and the Pareto boundary of the feasible set. For more than two backscatter devices, the problem becomes difficult and our methodology cannot be extended easily. Nevertheless, we evaluate the performance of NOMA aided by several (up to four) backscatter devices via numerical simulations. Our numerical results show that the energy efficiency of the twouser NOMA system increases with the number of cooperative backscatter devices. Moreover, in the high noise regime, the relative efficiency gain increases with the number of backscatter devices reaching up to 370 % compared to conventional NOMA.

I. INTRODUCTION

In the past decade, the number of connected devices has increased tremendously, and it is predicted that there will be more than 75 billion connected devices by 2025 [START_REF] Horwitz | The future of IoT miniguide: The burgeoning IoT market continues[END_REF]. This will lead to the sixth generation (6G) as a key technology for enabling massive internet of things (IoT) connectivity [START_REF] Verma | Toward green communication in 6G-Enabled Massive Internet of Things[END_REF], [START_REF] Giordani | Toward 6G networks: Use cases and technologies[END_REF]. To ensure an efficient massive connectivity, power-domain non-orthogonal multiple access (NOMA) has emerged [START_REF] Mahmood | Six key features of machine type communication in 6G[END_REF]. By combining superposition coding and successive interference cancellation (SIC) existing techniques, NOMA can enhance spectrum and energy efficiency by multiplexing several users on the same radio resource (i.e., frequency, time) by cleverly tuning the power allocation policy.

Moreover, since most connected IoT devices are lowpowered, new green approaches need to be adopted in 6G networks to efficiently power devices and improve their battery lifetime. Hence, energy harvesting (EH) techniques have been considered a major technology to enhance the energy efficiency in IoT networks. A promising EH techniques in IoT networks is ambient backscatter communication (AmBC) [START_REF] Liu | Ambient backscatter: Wireless communication out of thin air[END_REF]- [START_REF] Jameel | Wireless-Powered Backscatter Communications for Internet of Things[END_REF]. Unlike relaying, which is composed of active components This work has been supported by the ELIOT ANR-18-CE40-0030 and FAPESP 2018/12579-7 project and IRCICA, CNRS USR 3380, Lille, France. requiring a dedicated power source, and unlike reflective intelligent surfaces (RIS), whose main purpose is to enhance the signal quality and assist the transmission of the existing system, an ambient backscattering device (tag) uses the existing radio frequency (RF) signals generated by a source to send information by backscattering a portion of the signal while the remainder is harvested by mismatching the antenna input impedance without requiring any radio frequency (RF) components [START_REF] Wang | Ambient backscatter communication systems: Detection and performance analysis[END_REF], [START_REF] Boyer | Backscatter communication and RFID: Coding, energy, and MIMO analysis[END_REF].

Recently, a lot of attention has been dedicated to the study of both power-domain NOMA and ambient backscattering [START_REF] Chen | Backscatter cooperation in NOMA communications systems[END_REF]- [START_REF] Xu | Energy efficiency maximization in NOMA enabled backscatter communications with QoS guarantee[END_REF]. In [START_REF] Chen | Backscatter cooperation in NOMA communications systems[END_REF], a backscatter cooperation (BC) NOMA scheme was proposed in which the surplus power of the downlink signals received at a user is backscattered to enhance the reception of the user who cannot recover its information. The outage performance and the expected rate were analyzed. The authors in [START_REF] Nazar | BER analysis of a NOMA enhanced backscatter communication system[END_REF] evaluated the performance of a two-user NOMA-backscatter network in terms of bit error rate (BER). In [START_REF] Chen | Ambient backscatter communications over NOMA downlink channels[END_REF], the authors have investigated the ergodic capacity of a downlink NOMA-AmBC network composed of a backscatter device (BD), a base station (BS) and a cellular user. In [START_REF] Khan | Backscatter-enabled NOMA for future 6G systems: A new optimization framework under imperfect SIC[END_REF], the authors have proposed a sum-rate optimization framework for a two-user downlink NOMA aided by a backscatter device, under imperfect SIC, in which the reflection coefficient and the transmit power were jointly optimized. Similarly, authors in [START_REF] Xu | Energy efficiency maximization in NOMA enabled backscatter communications with QoS guarantee[END_REF] proposed an iteration algorithm for the optimal joint reflection coefficient and power allocation to enhance the energy efficiency assuming perfect SIC.

In this paper, we study the energy efficiency of a twouser downlink NOMA system aided by several backscatter devices, extending our previous work [START_REF] Hassani | Energyefficient cooperative backscattering closed-form solution for NOMA[END_REF], in which only a single backscatter device was considered. To the best of our knowledge, this is the first work to investigate the energy efficiency of a two-user downlink NOMA system aided by several backscatter devices.

Our main contributions: can be summarized as follows: first, in the case of two backscatter devices, we provide analytical closed-form expressions of the optimal reflection coefficients and the optimal power allocation policy that maximizes the energy efficiency measured as the tradeoff sum rate vs. power consumption; then, we show that the Dinkelbach method maximizing the ratio between sum rate and power consumption is reduced to a line search as a result of our closed-form solution; at last, via numerical results we analyze the energy efficiency of our NOMA system aided by several (up to four) backscatter devices. Compared with conventional NOMA (without backscattering), we show that the energy-efficiency gain increases with the number of backscatter devices, reaching up to 370% (for four backscatter devices) in the high noise regime.

Compared to our previous work in [START_REF] Hassani | Energyefficient cooperative backscattering closed-form solution for NOMA[END_REF], the novel contributions are two-fold. First, when moving from one to two backscatter devices, although the methodology is similar, finding the closed-form expressions of the optimal reflection coefficients is not trivial. Indeed, the additional control variable (i.e., the second backcatter device's reflection coefficient) significantly changes the structure of the feasible set and of its Pareto boundary. Moreover, we conjecture that for an arbitrary number of backscatter devices, such an analytical solution is very difficult if not impossible to find. Second, via numerical simulations, we investigate the energy efficiency in the cases of three and four backscatter devices, which allows us to draw conclusions in the general case.

II. SYSTEM MODEL

For simplicity and clarity of presentation, we focus on the case of two backscatter devices case, unless specified otherwise. 1 The downlink NOMA system under study is composed of one RF source (e.g., BS, access point, etc.) and two users U i , i ∈ {1, 2}, where the transmission is assisted by two backscatter devices BD i , i ∈ {1, 2}, as depicted in Fig. 1. Both users are served in a non-orthogonal manner by the source: the messages X i ∼ N (0, 1) intended for each of the users U i are superposed to form the signal X = √ P 1 X 1 + √ P 2 X 2 that is broadcast to both users, where P i denotes the power allocated to user X i , i ∈ {1, 2}. Both backscatter devices are assumed to be fully cooperative and always reflect the incoming signals [START_REF] Liu | Ambient backscatter: Wireless communication out of thin air[END_REF], [START_REF] Zhou | Ergodic rate analysis of cooperative ambient backscatter communication[END_REF].

We denote by h i , g i and g ij the channel gains between the source and user U i , between the source and backscatter device BD i and between backscatter device BD i and user U j , respectively. We also denote by Z i ∼ N (0, σ 2 i ) the additive white Gaussian noise at each user U i which is independent from X i . At last, we assume that the decoding order at the users' side is decided based on the ordering of the channel gains between the source and the users. Without loss of generality, we assume that

|h1| 2 σ 2 1 ≥ |h2| 2 σ 2 2
, such that user U 1 carries out SIC and user U 2 suffers the interfering message intended for user U 1 .

The received signal at user U i writes as

Y i = (h i + √ ρ 1 g 1 g 1i + √ ρ 2 g 2 g 2i ) X + Z i , ∀i ∈ {1, 2} (1) 
where ρ 1 and ρ 2 denote the reflection coefficients of the backscatter devices. 

A. Achievable rate region

User U 1 performs SIC, where he firstly decodes the message X 2 destined for user U 2 while treating his own message X 1 an interference. To ensure a successful decoding of X 2 it is required that

R 2 ≤ R 2→1 ≜ C P 2 Γ 1 (ρ 1 , ρ 2 ) P 1 Γ 1 (ρ 1 , ρ 2 ) + 1 , (2) 
with C(x) ≜ 1/2 log 2 (1 + x) denoting the Shannon capacity and the notations below

Γ 1 (ρ 1 , ρ 2 ) = (G 1 + √ ρ 1 G 11 + √ ρ 2 G 21 ) 2 ; G 1 = h 1 σ 1 ; G 11 = g 1 g 11 σ 1 ; G 21 = g 2 g 21 σ 1 .
After successfully decoding X 2 , user U 1 deletes the message X 2 from its observation and decodes its own message X 1 . In this case to successfully decode the message X 1 the achievable rate of user 1 is

R 1 = C(P 1 Γ 1 (ρ 1 , ρ 2 )) . (3) 
At user U 2 , the message intended for user U 1 is treated as an additional noise, hence perfect recovering of the message X 2 requires that

R 2 ≤ R 2→2 ≜ C P 2 Γ 2 (ρ 1 , ρ 2 ) P 1 Γ 1 (ρ 1 , ρ 2 )+1 , (4) 
with the notations

Γ 2 (ρ 1 , ρ 2 ) = (G 2 + √ ρ 1 G 12 + √ ρ 2 G 22 ) 2 ; G 2 = h 2 σ 2 ; G 12 = g 1 g 12 σ 2 ; G 22 = g 2 g 22 σ 2 .
To sum up, the achievable data rates are provided in the following proposition.

Proposition 1. The achievable rate region of two-user downlink NOMA system assisted by two backscatter devices writes as

R 1 = C(P 1 Γ 1 (ρ 1 , ρ 2 )) and R 2 = min{R 2→1 , R 2→2 },
where R 2→i defined above represent the achievable rate ensuring successful decoding of the message X 2 at user i.

B. Energy efficiency maximization

We focus on optimizing the tradeoff between achievable sum rate vs. total power consumption [START_REF] Zappone | Energy efficiency in wireless networks via fractional programming theory[END_REF], where the total power budget of the source is limited by P and each user U i , i ∈ {1, 2} has to meet a minimum rate level R i . Furthermore, to ensure a successful SIC operation, the following condition has to be met: R 2→2 ≤ R 2→1 [START_REF] Xu | Energy efficiency maximization in NOMA enabled backscatter communications with QoS guarantee[END_REF].

The resulting optimization problem can be written as follows

(EE1) max ρ1,ρ2,P1,P2 C(P 1 Γ 1 (ρ 1 , ρ 2 ))+C P 2 Γ 2 (ρ 1 , ρ 2 ) 1 +P 1 Γ 2 (ρ 1 , ρ 2 ) -α(P 1 + P 2 + P c ) s.t. (C1) 0 ≤ ρ 1 , ρ 2 ≤ 1 (C2) Γ 1 (ρ 1 , ρ 2 ) ≥ Γ 2 (ρ 1 , ρ 2 ), (C3) P 1 ≥ 2 2R1 -1 Γ 1 (ρ 2 , ρ 2 ) , (C4) P 2 ≥ 2 2R2 -1 P 1 + 1 Γ 2 (ρ 1 , ρ 2 ) , (C5) P 1 + P 2 ≤ P ,
where α is the parameter that trades-off between the sum rate and the total power consumption, the constraint (C1) is the range of the reflection coefficients, (C2) derives from the successful SIC condition R 2→2 ≤ R 2→1 ; (C3) and (C4) derive from the minimum achievable rate constraints 5) is the power budget constraint where P is the maximum power at the source and P c denotes the overall circuit power consumption.

C(P 1 Γ 1 (ρ 1 , ρ 2 )) ≥ R 1 and C P2Γ2(ρ1,ρ2) 1+P1Γ2(ρ1,ρ2) ≥ R 2 of user U 1 and U 2 respectively; C(

III. OPTIMAL CLOSED-FORM SOLUTION

The problem (EE1) is not convex due to the joint optimization of the reflection coefficients ρ 1 and ρ 2 and the allocated powers P 1 and P 2 . Nevertheless, we can exploit a similar approach as in [START_REF] Hassani | Energyefficient cooperative backscattering closed-form solution for NOMA[END_REF] and solve the problem by decoupling it into two sub-problems without loss of optimality such that we first optimize (ρ 1 , ρ 2 ) for an arbitrary power allocation and then optimize (P 1 , P 2 ) with the obtained optimal reflection coefficients ρ * 1 and ρ * 2 .

A. Optimal reflection coefficients

We fix an arbitrary power allocation policy (P 1 , P 2 ) and solve (EE1) w.r.t. the reflection coefficients only. Note that the objective function in (EE1) is increasing w.r.t ρ 1 and ρ 2 unilaterally, which means that the optimal values ρ * 1 and ρ * 2 lie on the Pareto boundary of the feasible set.

Theorem 1. For any feasible power allocation policy (P 1 , P 2 ), the optimal values of the reflection coefficients ρ * 1 and ρ * 2 of (EE1) can be found in closed form as follows. Let

ρ 1 = G 1 -G 2 G 12 -G 11 2 , ρ 1 = G 1 -G 2 -(G 22 -G 21 ) G 12 -G 11 2 ρ 2 = G 1 -G 2 G 22 -G 21 2 , ρ 2 = G 1 -G 2 -(G 12 -G 11 ) G 22 -G 21 2 . [H1] If (G 12 -G 11 ) ≤ 0 and (G 22 -G 21 ) ≤ 0, then ρ * 1 = ρ * 2 = 1. [H2] If (G 12 -G 11 ) ≤ 0 and (G 22 -G 21 ) > 0, then ρ * 1 = 1; ρ * 2 = min{1, ρ 2 }. [H3] If (G 12 -G 11 ) > 0 and (G 22 -G 21 ) ≤ 0, then ρ * 1 = min{1, ρ 1 }; ρ * 2 = 1. [H4] If (G 12 -G 11 ) > 0 and (G 22 -G 21 ) > 0, then i) If G 22 G 11 -G 12 G 21 ≥ 0: ρ * 1 = min{1, ρ 1 }; ρ * 2 = min{1, max{0, ρ 2 }}; ii) If G 22 G 11 -G 12 G 21 < 0: ρ * 1 = min{1, max{0, ρ 1 }}; ρ * 2 = min{1, ρ 2 }.
The detailed proof is provided in the Appendix.

B. Optimal power allocation

Now, since the expressions of the optimal reflection coefficients above are independent from the power allocation policy, and given that the larger the reflection coefficients are, the smaller the minimum power required to fulfill each QoS constraint in (C3) and (C4) is. Thus, choosing (ρ * 1 , ρ * 2 ) as in Theorem 1 does not incur an optimality loss.

Moreover, for (ρ * 1 , ρ * 2 ) in Theorem 1, we have the channel order

Γ 1 (ρ * 1 , ρ * 2 ) ≥ Γ 2 (ρ * 1 , ρ * 2 )
, and hence our optimization problem reduces to (EE2) max

P1,P2 C(P 1 Γ 1 (ρ * 1 , ρ * 2 ))+C P 2 Γ 2 (ρ * 1 , ρ * 2 ) 1 +P 1 Γ 2 (ρ * 1 , ρ * 2 ) -α(P 1 + P 2 + P c ) s.t. (C1 ′ ) P 1 ≥ 2 2R1 -1 Γ 1 (ρ * 1 , ρ * 2 ) (5) 
(C2 ′ ) P 2 ≥ 2 2R2 -1 P 1 + 1 Γ 2 (ρ * 1 , ρ * 2 ) (C3 ′ ) P 1 + P 2 ≤ P ,
which is a convex problem and can be solved in closed form following our previous work in [START_REF] Hassani | A closed-form solution for energy-efficiency optimization in multi-user downlink NOMA[END_REF]. For the sake of completeness we provide below the optimal power allocation policy (P * 1 , P * 2 ). Proposition 2. The sufficient and necessary condition on the optimization problem (5) feasibility is given by

P ≥ P min = 2 2R2 -1 Γ 2 (ρ * 1 , ρ * 2 ) + (2 2R1 -1)2 2R2 Γ 1 (ρ * 1 , ρ * 2 ) , (6) 
and the optimal power allocation of both users is provided as

P * 1 = min    max 2 2R1-1 Γ 1 (ρ * 1 , ρ * 2 ) , P 1 , P -2 2R 2 -1 Γ2(ρ * 1 ,ρ * 2 ) 2 2R2    (7) 
P * 2 = 2 2R2 -1 P * 1 + 1 Γ 2 (ρ * 1 , ρ * 2 ) , (8) 
with

P 1 = 1 (2 ln 2)α 1 2 2R2 - 1 Γ 1 (ρ * 1 , ρ * 2 ) . (9) 
C. Multi-user multi-backscatter device case

In the case of K > 2 users and two backscater devices, since the successful SIC constraint becomes Γ (k-1) (ρ 1 , ρ 2 ) ≥ Γ k (ρ 1 , ρ 2 ), ∀k ∈ {1, . . . , K}, the optimization problem (EE1) becomes hard to solve w.r.t the reflection coefficients pair (ρ 1 , ρ 2 ). In this case, according to Theorem 1, six cases need to be discussed for each pair Γ k-1 (ρ 1 , ρ 2 ) ≥ Γ k (ρ 1 , ρ 2 ). Since the obtained ρ * 1 and ρ * 2 are coupled, one has to find the feasibility region defined by the set of all (K -1) successful SIC constraints, which is obtained through a nested six cases loop. Thus, generalizing our solution to the multi-user case is not trivial.

In the case of multi-backscatter devices, the graphical method by which we have obtained Pareto boundary of the feasible reflection coefficients is very limited, since no physical image of the feasible set is possible beyond two helping devices. The constraint (C2) becomes a multi-variable inequality, and, hence it is necessary to exploit a more general (algorithmic) method to solve the problem. Moreover, the number of cases discussed in Theorem (1) will grow exponentially with the number of backscatter devices, which further complicates the extension of our closed-form solution.

D. Sum rate vs. power consumption ratio

A different popular metric named the global energy efficiency (GEE) [START_REF] Zappone | Energy efficiency in wireless networks via fractional programming theory[END_REF] is defined as the ratio between the achievable sum rate and the total power consumption:

GEE(ρ 1 , ρ 2 , P 1 , P 2 ) = C(P 1 Γ 1 (ρ 1 , ρ 2 ))+C P2Γ2(ρ1,ρ2)
1+P1Γ2(ρ1,ρ2) P 1 + P 2 + P c .

(10) We can show that GEE can be maximized using Dinkelbach's method [START_REF] Zappone | Energy efficiency in wireless networks via fractional programming theory[END_REF] and that our closed-form solution reduces the inner loop of the algorithm to a simple line search, similarly to [START_REF] Hassani | Energyefficient cooperative backscattering closed-form solution for NOMA[END_REF]

. Let R * sum = C(P * 1 Γ 1 (ρ * 1 , ρ * 2 ))+C P * 2 Γ2(ρ * 1 ,ρ * 2 ) 1+P * 1 Γ2(ρ * 1 ,ρ * 2 )
and P * tot = P * 1 + P * 2 + P c , the Dinkelbach's algorithm is given as follows Algorithm 1 GEE maximization with Dinkelbach ϵ > 0, α = 0 Compute (ρ * 1 , ρ * 2 ) via Theorem (1) while F (α) ≤ ϵ do Compute P * 1 , P * 2 via eq. ( 7) and ( 8) resp. Update

F (α) = R * sum -αP * tot Update α ← GEE(ρ * 1 , ρ * 2 , P * 1 , P * 2 ) end while

IV. NUMERICAL SIMULATIONS

In this section, we present simulations results for a two-user downlink NOMA system assisted by two ambient backscatter devices where we evaluate the GEE using algorithm [START_REF] Horwitz | The future of IoT miniguide: The burgeoning IoT market continues[END_REF]. The channels are assumed to follow a path loss model: d -η , where d is distance between different nodes and η is the path loss exponent. The results are averaged over 10 3 independent random draws of the nodes positions. The two users are randomly located within a cell of radius 15 m. The maximum distance between the two backscatter devices and the base station is 3 m. The pathloss exponent is η = 2.5. The system parameters are P = 40 dBm, P c = 30 dBm, σ 2 i = σ 2 = -20 dBm and

R i = R, i ∈ {1, 2}.
We compare our proposed solution with three benchmarks: OMA with two backscatter devices, NOMA with one backscatter device as well as conventional NOMA (without backscattering). More importantly, we also analyze here the more general case of three and four backscatter-aided NOMA schemes, whose solutions are obtained via exhaustive search, and investigate the energy efficiency as a function of the number of cooperative backscatter devices.

Fig. 2 depicts the GEE as a function of R. We see that NOMA with two backscatter devices outperforms NOMA with a single backscatter device, which outperforms OMA with two backscatter devices. For larger minimum QoS levels, the GEE decreases since more power is consumed to meet the users' QoS constraints. At last, we see that GEE increases with the number of cooperative backscatter devices. Fig. 3 depicts the GEE as a function of P . We see that our proposed scheme outperforms all other benchmarks irrespective from P . Furthermore, GEE increases with the number of cooperative backscatter devices and with P until it reaches a flat level, beyond which increasing the power has no longer effect on the GEE.

At last, in Fig. 4 we plot the relative gain of the different schemes compared to conventional NOMA, defined as GEE scheme -GEE NOMA /GEE NOMA , as a function of the noise variance σ 2 . We see that the relative gain increases with σ 2 to reach up to 220%, 170% and 110% for NOMA with two backscatters, OMA with two backscatters and NOMA with a single backscatter, respectively. Moreover, the more the number of cooperative backscatter devices, the larger the gain performance achieved by NOMA: reaching up to 370% for four backscatter devices in the high noise regime.

The incremental gap between the successive curves for backscatter-aided NOMA in Fig. 3, Fig. 2, and Fig. 4 seems to be closing when increasing the number of backscatter devices, leading us to the open question of finding the number of optimal backscatter devices. In the high noise regime, the larger the number of backscatter devices, the larger the gain compared to conventional NOMA.

V. CONCLUSION

In this paper, we investigated the energy-efficiency maximization of a two-user downlink NOMA system assisted by several ambient backscatter devices. For the case of two backscatter devices, we provided the optimal solution, i.e., optimal reflection coefficients and power allocation policy, in analytical closed-form. Our numerical results show that NOMA with two ambient backscatter devices outperforms the benchmark schemes. Moreover, our simulations show that the energy efficiency increases with the number of cooperative backscatter devices. In the high noise regime, the relative gain compared to conventional NOMA increases with the number of backscatter devices, reaching up to 370 %. However, the incremental gap seems to be closing, leading to the question of finding the optimal number of such helping devices, which is left open for future investigation. VI. APPENDIX: PROOF OF THE MAIN THEOREM Since the objective function of (EE1) is increasing w.r.t ρ 1 for fixed P 1 , P 2 and ρ 2 ; and, is also increasing w.r.t. ρ 2 for fixed P 1 , P 2 and ρ 1 ; the optimal reflection coefficients lie on the Pareto boundary (i.e., all feasible points such that none of their coordinates can be increased while remaining feasible) of the feasible set defined by the constraints (C1) -(C2). Note that after some mathematical derivations, the constraint (C2) can be rewritten as

√ ρ 1 (G 12 -G 11 ) + √ ρ 2 (G 22 -G 21 ) ≤ G 1 -G 2 .
We now provide the optimal values of (ρ 1 , ρ 2 ) by analyzing geometrically the feasible set and its Pareto optimal boundary in the four possible cases given in Theorem 1.

A. Case [H1

]: (G 12 -G 11 ) ≤ 0 and (G 22 -G 21 ) ≤ 0
In this case, since (G 1 -G 2 ) ≥ 0 by assumption, the constraints are always fulfilled for all values of ρ 1 , ρ 2 ∈ [0, 1]. Hence, the optimal solution is unique ρ

* 1 = ρ * 2 = 1. B. Case [H2]: (G 12 -G 11 ) ≤ 0 and (G 22 -G 21 ) > 0 Under [H2]
, one can show that ρ 1 < 0; ρ 2 ≥ 0 and ρ 2 > ρ 2 . Several cases can arise depending on the value of ρ 2 as depicted in Fig. 5.

[H21] If ρ 2 > 1, which leads to ρ 1 < 0 and ρ 2 > 1, the optimal solution is unique:

ρ * 1 = ρ * 2 = 1. Otherwise ρ 2 ≤ 1 leads to ρ 1 ≥ 0 and ρ 2 > ρ 2 ≥ 0. Two sub-cases arise: either [H221] if ρ 2 > 1, then ρ * 1 = ρ * 2 = 1; or [H222] if ρ 2 ≤ 1,
then the Pareto optimal boundary also reduces to a unique point ρ * 1 = 1, ρ * 2 = ρ 2 . Hence to summarize, the optimal values of the reflection coefficients are given as ρ We can prove the following: The optimal solution lies on the Pareto boundary of the feasible set depicted in red in Fig. 6. Note that except for the sub-case [H41], the Pareto boundary of the feasible set is not unique but a continuous segment (in blue) of the line between ρ 1 and ρ 2 . This set can be characterized in a parametric manner as ρ 1 = βρ 1 , ρ 2 = (1-β)ρ 2 , where β ranges over the interval specified in each subcases of Fig. 6. Note that except for subcase [H41], Γ 1 (ρ 1 , ρ 2 ) = Γ 2 (ρ 1 , ρ 2 ).

* 1 = 1; ρ * 2 = min{1, ρ 2 }. ρ 1 ρ 2 1 1 ρ 1 ρ 2 ρ * 1 = ρ * 2 = 1 [H21] ρ 1 ρ 2 1 1 ρ 1 ρ 2 ρ 1 ρ * 1 = ρ * 2 = 1 [H221] ρ 1 ρ 2 1 1 ρ 1 ρ 2 ρ 2 ρ * 1 = 1, ρ * 2 = ρ 2 [H222]
ρ i ≥ 0 and ρ i ≤ ρ i , ∀i ∈ {1, 2}; If ρ i > 1, then ρ j > 0, ∀i, j ∈ {1, 2} s.t. j ̸ = i; If ρ i < 1, then ρ j < 0, ∀i, j ∈ {1, 2} s.t. j ̸ = i; If ρ i > 1, then ρ j > 1, ∀i, j ∈ {1, 2} s.t. j ̸ = i; If ρ i < 1, then ρ j < 1, ∀i, j ∈ {1, 2} s.t. j ̸ = i. ρ 1 ρ 2 1 1 ρ 1 ρ 2 ρ * 1 = ρ * 2 = 1 [H41] ρ 1 ρ 2 1 1 ρ 1 ρ 2 ρ 1 ρ 2 β ∈ [1 -1/ρ 2 , 1/ρ 1 ] [H42] ρ 1 ρ 2 1 1 ρ 1 ρ 2 ρ 2 β ∈ [0, 1/ρ 1 ] [H43] ρ 1 ρ 2 1 1 ρ 1 ρ 2 ρ 1 β ∈ [1 -1/ρ 2 , 1] [H44]
In [H41], both ρ i and ρ i , i ∈ {1, 2}, are larger than 1, hence the optimal solution is ρ * 1 = ρ * 2 = 1. In the other four cases, we need to find the reflection coefficients on the Pareto boundary: ρ 1 = βρ 1 , ρ 2 = (1-β)ρ 2 , which maximize the objective function. Hence, the problem is reduced to a variable optimization over β, whose objective is Hence, the objective function is either decreasing or increasing w.r.t. β depending on the sign of (G 22 G 11 -G 12 G 21 ).

f (β) =
• If (G 22 G 11 -G 12 G 21 ) ≥ 0, the objective function is increasing in β, hence its optimal value is the upperbound of its feasible interval, specified in each sub-case. • If (G 22 G 11 -G 12 G 21 ) < 0, the objective function is decreasing in β, hence its optimal value is the lowerbound of its feasible interval, specified in each sub-case.
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 1 Fig. 1. Illustration of two-backscatter two-user downlink NOMA-AmBC system
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 2 Fig. 2. Energy efficiency (GEE) as a function of R. Two backscatter-aided NOMA outperforms the benchmark schemes. The gain increases with the number of backscatter devices.
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 34 Fig. 3. Energy efficiency as a function of P where R = 1 bit/s. Two backscatters-aided NOMA always outperforms other benchmark schemes and the energy efficiency increases with the number of backscatter devices regardless of P .
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 5 Fig. 5. The three cases that can arise under [H2]: the feasible set is depicted in red. The Pareto boundary reduces to a unique solution.C. Case [H3]:(G 12 -G 11 ) > 0 and (G 22 -G 21 ) ≤ 0This case is similar to the previous case [H2], hence the detailed proof is omitted.
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 6 Fig. 6. The five cases that can arise under [H4]: the feasible set is depicted in red. The Pareto boundary in cases [H42]-[H44] is the blue segment given by ρ 1 = βρ 1 ; ρ 2 = (1 -β)ρ 2 .
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All the derivations in this section carry over to the case of an arbitrary number of backscatter devices, which will be investigated via numerical results in Sec. IV.