
Yggdrasil: Secure State Sharding of Transactions and Smart
Contracts that Self-adapts to Transaction Load ∗

Aimen Djari

Université Paris-Saclay, CEA, List

Palaiseau, France

Yackolley Amoussou-Guenou

Université Paris-Saclay, CEA, List

Palaiseau, France

Emmanuelle Anceaume

CNRS / IRISA

France

Sara Tucci-Piergiovanni

Université Paris-Saclay, CEA, List

Palaiseau, France

Antonella Del Pozzo

Université Paris-Saclay, CEA, List

Palaiseau, France

ABSTRACT
This paper presents Yggdrasil a sharding solution for permissionless

blockchains that supports both payment transactions and general

Ethereum-like smart contracts. Yggdrasil allows to split and merge

shard dynamically leveraging decentralized mechanisms to assign

nodes to shards in a secure way. A new 2PC protocol allows to guar-

antee the execution of smart contracts distributed across different

shards even when shards dynamically re-organise. An experimental

study confirms the capability of Yggdrasil to scale and to adapt to

transaction load.

PVLDB Reference Format:
Aimen Djari, Yackolley Amoussou-Guenou, Emmanuelle Anceaume, Sara

Tucci-Piergiovanni, and Antonella Del Pozzo. Yggdrasil: Secure State

Sharding of Transactions and Smart Contracts that Self-adapts to

Transaction Load
1
. PVLDB, 14(1): XXX-XXX, 2020.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://anonymous.4open.science/r/Yggdrasil-11E5.

1 INTRODUCTION
Blockchains are peer-to-peer systems where users can exchange

digital values without a central validation authority. Operationally,

a distributed set of validators uses a consensus mechanism to vali-

date transactions among users. More recently, with the advent of

smart contracts, blockchains have become programmable: condi-

tions ruling exchanges among two or more users can be encoded

and executed in the blockchain. Thanks to smart contracts new

decentralized applications beyond cryptocurrency (e.g. decentral-

ized finance, traceability and audit of supply chains, decentralized

digital identity, etc.) can be built in untrusted environments. Smart

contracts can be implemented in different ways, but the most pop-

ular implementation is the one proposed by Ethereum, where a

smart contract is a replicated service running in the blockchain,

exposing methods that can be called by submitting transactions.

1
Yggdrasil has no relationship with the Yggdrasil sharding protocol project by

THORChain.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

A submitted transaction contains the remote method call and fees

transferred to validators that execute the smart contract.

It is well-known that one of the main problems of blockchains is

their lack of scalability [1]. Since all the validators must validate

all the transactions, this can cause a huge computational and com-

munication cost to validate and synchronize to a single consistent

state, which degrades system performances. Recent academic works

have addressed this issue by adopting sharding techniques [2–8]. In

blockchains, sharding means partitioning transactions in disjoint

sets, so that validators handle only a fraction of all transactions

in parallel. Initially sharding solutions provided only transaction

sharding (e.g. [4, 9]), where transactions where sharded in different

sets, but validators contained the whole blockchain’s state to verify

those transactions. More recently, state-sharding solutions emerged

(e.g. [3, 5, 8]), where not only the set of transactions is partitioned

in different sets but the state of the blockchain is also chunked so

that different validators maintain only a partial view of the system.

In these systems a decentralized mechanism assigns validators and

transactions to shards, and to adapt to varying transaction load,

shards might need to be re-organized at run-time.

When devising a state-sharding solution there exists a trade-off

among security and efficiency. Security is particularly important

when we target permissionless blockchains, where users and val-

idators can join the system at will. Indeed, dynamic re-organization

of shards must ensure to leave in the shards enough validators

to verify transactions and to shuffle them over time to protect

them against adaptive adversaries. Efficiency, on the other hand, is

mainly related to the ability of properly splitting the global state

to maximize parallelization, and this over time. Since transactions

may have dependencies among them, multiple shards might be

involved in their verification. In that case shards need to coordinate

through complex atomic protocols that may provoke a performance

loss[3]. Up to now, sharding solutions in permissionless settings

have mainly focused on cryptocurrencies or special classes of smart

contracts managing payment transactions [3, 5, 6, 10]. Payment

transactions need a weak form of atomicity called eventual atomic-

ity [10]. Eventual atomicity ensures that if a payment is validated

in the buyer’s shard, then it will be also validated in the seller’s

shard. Intuition behind eventual atomicity is that if we assume

that liquidity of the buyer is correctly verified in the first shard,

then the second shard will also accept the transaction. However,

to manage general smart contracts that call other smart contracts

eventual atomicity is no more sufficient. In Ethereum invocations

among smart contracts are managed in an atomic way: either all

https://doi.org/XX.XX/XXX.XX
https://anonymous.4open.science/r/Yggdrasil-11E5
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

the smart contracts execute or all abort. To make an example con-

sider a smart contract 𝑆𝐶0 that calls two other smart contracts 𝑆𝐶1

and 𝑆𝐶2 in sequence, where both of them realize a transfer of 1

coin. Let’s suppose the second transfer will fail (there are many

reasons for that, for instance insufficient fees for the execution of

the second transfer). In this case the first transfer must be cancelled.

In a sharded system for performance reasons 𝑆𝐶1 and 𝑆𝐶2 may be

assigned in different shards but in this case coordination through

atomic-commit protocols can provoke a performance loss. In this

paper we propose Yggdrasil, a new sharding system that securely

ensures dynamic reconfiguration of shards to adapt to transaction

load in a permissionless setting while ensuring consistency of the

distributed smart contracts execution through a new two-phase

commit (2PC) algorithm among shards. The 2PC algorithm is a type

of 2PC working on the call graph generated by smart contracts calls,

where shards do not fail but can be re-arranged dynamically during

the algorithm execution. The algorithm is based on locking and

query-commit transactions routed among shards through a master-

chain, a minimal state blockchain globally maintained. Importantly,

we have two levels of atomicity to maintain: eventual atomicity for

transaction confirmation and atomicity of smart contracts, where

2PC is only used for smart contract atomicity. The adaptivity of

the system is based on verifiable conditions on blocks and allows

reactivity: as soon as conditions are met the system re-organizes.

This allows to be more efficient compared to current solutions and

to dynamically find a sweet spot among efficiency of general smart

contract sharding and security.

The paper is organized as follows: Section 2 presents basic con-

cepts and definitions, Section 3 the main building blocks and as-

sumptions Yggdrasil relies on, while Section 4 presents Yggdrasil

and Section 5 its implementation details. Sections 6 and 7 present an

extensive performance analysis and evaluation respectively. Section

8 presents an analysis of the state of the art and Section 9 concludes

the paper.

2 BACKGROUND AND BASIC DEFINITIONS
2.1 Blockchains
A blockchain constitutes a history that contains all the trades made

between its users since its creation. This history is secure and dis-

tributed: it is shared by its various users, without intermediaries,

which allows each one to verify the validity of the chain. Perma-

nently updated and distributed, the maintenance of the blockchain

is based on cryptographic primitives that make any modification

almost impossible, which increases its security. Transactions be-

tween users are thus immutable. Essentially, when a user broadcasts

a transaction, it is received by all the other users of the network

and stored in their mempools, a memory space where transactions

awaiting validation are stored. Block creators will group these trans-

actions into blocks. Once a block has been created, it is broadcast

to the network and appended to the blockchain.

Permissionless Blockchains and Verifiable Elections. Permissionless

blockchains are public blockchains where participants do not rely

on a centralised registration system to take part to the blockchain

construction. Indeed, every node can read the blockchain and take

the rights to append a block in a decentralized way. Permissioned

blockchains differ from permissionless ones in that they rely on

predefined nodes to append blocks to the blockchain. The absence

of such a predefined group of nodes in permissionless blockchains

makes the election an essential element of their design. Election is

usually pseudo-random and verifiable, i.e., it allows elected nodes to
prove they have the rights to append a block (PoW [11], VRF [12],

PVSS [13], Randao [14, 15]). Two main approaches exist: leader-
based and committee-based. In leader-based approaches, a verifiable

election aims at electing a single node, which can then append a

block and prove that it has the right to do so. In committee-based
approaches a large enough committee of nodes must be elected,

and a block can be appended only if a quorum of the committee

signs the block. A verifiable election grants rights to a committee of

nodes, providing them with means to prove quorum’s legitimacy.

Finalization and Transaction Confirmation. Consensus protocols
are meant to provide a clear and unambiguous ordering of valid
blocks within the blockchain. Each block is valid if it has been

created by respecting the rules of the blockchain construction (e.g.,

valid signatures for blocks) and contains only valid transactions,

where valid is application dependent (e.g., no double spending, pos-

itive balances in case of cryptocurrencies). About consistency as

perceived by users, leader-based permissionless blockchains usually

guarantee probabilistic finality [16]. That is the very last appended

blocks of the blockchain may be revoked, i.e., pruned from the

blockchain, in presence of conflicting blocks (e.g. a fork due to two

concurrent appends) but the probability that a block is pruned de-

creases as it gets deeper into the blockchain. The term of Nakamoto
style consensus is often used to refer to the properties of these

blockchains, and solving Nakamoto style consensus may rely either

on Proof-of-Work (PoW) or Proof-of-Stake (PoS) (e.g., [11, 13, 17])

for the election mechanism. Committee-based permissionless PoS

blockchains are generally grounded on variants of BFT Consen-

sus [12, 14, 18, 19] offering deterministic finality. In systems like

Cosmos and Tezos [18, 19] a verifiable election mechanism chooses

a committee that, once elected, runs the Byzantine consensus pro-

tocol (i.e., Tendermint [20] and Tenderbake [21] respectively) to

append a unique block to the blockchain. These blockchains are

said to have deterministic finality, because conditions to determine

if a block is finalized are deterministic, verifiable and once a block is

finalized it can never be revoked. .No matter the model used, when

a block is finalized (finalized with high probability in probabilistic

models) all the contained transactions are said to be confirmed. Yg-
gdrassil will adopt a PoS-based system that guarantees immediate

deterministic finality, similar to [18, 19], where a block is finalised

as soon as it is appended to the blockchain.

UTXO vs Account-based Models. Bitcoin introduced the first type

of spending model in crypto-currencies, called UTXO (Unspent

Transaction Output). An unspent transaction output is the result

of transactions that a user has received and is able to spend in

the future. An UTXO can be spent at most once, i.e., it must be

debited in a single transaction. At that point, the UTXO is no longer

unspent, meaning that it cannot be used again in the future. Thus,

through a transaction a receiver gathers money in new UTXOs. A

user can have numerous UTXOs at a time, which can be combined

to reach a given amount of money to spend. In the account-based

model each user has one account on which it can receive and spend

money within the limits of the available funds. This model is akin to

each individual wallet having a ledger of its own. Yggdrasil uses the

2

account-based model since a transaction with an arbitrary amount

of money can be performed with one sending account and one

receiving account (instead of multiple UTXOs on both sides), which

simplifies sharding. This model is also the one adopted by Ethereum

for supporting smart contracts [17].

2.2 The Many Faces of Sharding
Sharding, first used in databases, is a method of distributing data

across multiple machines with a scaling objective. In blockchains,

sharding means partitioning transactions, so that processes handle

only a fraction of all transactions in parallel. As long as there is a

sufficient number of nodes verifying each transaction for the system

to maintain high reliability and security, dividing a blockchain into

shards will greatly improve the throughput and efficiency of the

system. In the ecosystem, sharding exists along three dimensions:

network, transaction and state sharding [22].

Network sharding manages the way processes are grouped

into shards. This technique is used to optimize communication by

letting nodes in the same shard communicate directly with each

other rather than having them communicating with the entire

network. In this way, nodes only work with the messages sent to

their shard(s), saving communication and computational resources.

Shard 1

Shard 2

Shard 3

Network
1

2

3

4

5

6

7

8

9

1

3

6

8

9

35

7

9

1

3

4

7

Figure 1: An example of network sharding where each node
belongs to a different shard even though they communicate
with the same peer-to-peer network: node 9 belongs to shards
1 and 2, node 7 belongs to shards 2 and 3; and node 3 belongs
to all shards.

Transaction sharding manages the way transactions are as-

signed to the shards aiming at achieving parallel confirmation of

transactions in multiple shards. It guarantees that a transaction

belongs to a unique shard. In fact, transactions need to be confirmed

only by nodes in the corresponding shard and not by all the nodes

in the system. Moreover, they do not need data from the other

shards to compute the validity of any transaction. Therefore, con-

firmation time can be faster, hence the improvement in throughput

and latency.

Figure 2: An example of transaction sharding. The colors of
the bars in each block illustrate the transaction partition.
This provides an intuitive way to see how transactions are
partitioned over a DAG is Sycomore [23]: When the DAG is
made of a single chain, each block contains transactions of
all partitions, which explains the multitude of colors of the
blocks. When the DAG becomes larger, the new appended
blocks partition the transactions into multiple sets. This
explains the partitioning of block colors in the chains.

State sharding aims at splitting the blockchain data structure

in different shards. Operationally this implies that each node only

maintains a portion of the blockchain data, saving storage and com-

putational resources. This is the most challenging form of sharding,

because of the presence of so-called cross-shard transactions, occur-

ring when the transaction recipient does not share the same shard

as the transaction sender. This is an issue specific to state sharding,

and may require to find a trade-off between the number of shards

and cross-chain transactions. Additionally, because shards have

only partial views of the system, care must be taken to prevent

inconsistencies such as double spending.

Figure 3: An example of state sharding where each shard
keeps its own state and confirms its own transactions. How-
ever, when transactions involve more than one shard, cross-
shard communication is necessary.

3

2.3 Smart Contracts
Popularized by Ethereum, many blockchains today (e.g., [19], [24])

provide smart contracts as a genericmechanism tomake blockchains

programmable. Smart contracts are sequential programs, composed

of a set of methods and variables, that execute in the blockchain.

Operationally, a smart contract is deployed in the blockchain by

its creator, which submits to the blockchain a uniquely identified

transaction containing the smart contract code. As soon as the

submitted transaction is confirmed we say that the contract is de-

ployed. Once deployed, the set of variables of the smart-contract

assigned with initial values is defined as the initial state of the

contract. In the general case, the execution of one of the smart

contract methods results in a new state of the smart-contract, that

is a new valuation of its variables. Users can interact with a smart

contract by submitting transactions that are requests to execute one

of the methods of the smart contract. These transactions are sent to

the smart contract’s address, which is deterministically generated

using the creator’s address and how many transactions he has sent

[25]. For each transaction invoking a smart contract method, the

issuer has to pay some fees just like normal payment transactions.

The smart contract executes in the blockchain network, i.e. each

node of the network locally executes the called methods. Since

smart contracts are deterministic, participants can unequivocally

determine the state of the smart contract by simply executing all

transactions submitted to it. Transactions are totally ordered by the

blockchain via the underlying consensus mechanism. Thus any two

nodes executing the smart contract will compute the same state.

That is, for any confirmed transaction in the blockchain, either

the transaction is successfully executed or not. In the former case

we say that the transaction is committed. In the latter case it is

aborted: the execution failed and the state of the smart contract is

not changed. An execution can fail for usual reasons like run-time

errors or if the amount of fees sent by the caller does not cover the

costs of executing the method call with the given input parameters.

As a smart contract can call other smart contracts to complete a

method execution, the whole computation originated by a single

user invocation is represented as a call graph of smart contract

invocations. Since semantics must be guaranteed to be sequential

for smart contracts, then either the whole call graph is committed

or aborted. In a given call graph, we denote with the term front-end
smart contract, the unique smart contract invoked by the user.

2.4 Sharded smart-contracts and atomicity
In state sharding systems, each smart contract’ address resides in a

single shard. However, when a user invokes a smart contract, this

smart contract may belong to another shard. The system must have

a mechanism to route user’s call to the smart contract. Routing calls

to smart contracts residing in different shards must be done in a

careful way to guarantee that if a balance is updated in the issuer’s

shard, the corresponding transaction will be eventually confirmed

in the destination shard, no matter if the result is an abort or a

commit. Differently from the general atomic commit problem [26],

which must deal with the situation in which two different shards

might not willing to both confirm or reject the transaction, for each

cross-shard transaction, if the issuer’s shard confirms, then the

other shard will never reject the transaction. This is true only if the

verification of transaction validity is a deterministic process and

shards do not fail. Sharding systems usually make these hypotheses

to rely on this weak form of atomicity [10]. More formally, eventual
atomicity of confirmation guarantees that for each transaction be-

tween a user and a front-end smart contract, if one shard confirms

the transaction then other shards will eventually confirm it.

Besides users, smart contracts themselves can call other smart

contracts. The case of a smart contract calling smart contracts

belonging to the same shard can be treated as in a non-sharded

system, or, if the user invoking the smart contract is in another

shard, by employing mechanisms to guarantee eventual atomicity

as explained above. On the other hand, invocations crossing shards

cannot be treated as internal invocations, like in the non-sharded

case, but must be represented as cross-shard transactions. Then, we

need to guarantee the atomic commit of the distributed execution
of the front-end smart contract across shards, i.e., either cross-

chain transactions in the call graph originated from a given user

invocation are all committed or they are all aborted
2
[27]. Let us

stress that this form of atomicityworks on a commit and abort status

of confirmed transactions because only confirmed transactions are

part of the call graph. Since these confirmed transactions are cross-

chain, eventual atomicity must be assured, as in the case of user to

the front-end smart contract (which is the call graph root).

As observed in [28], specific classes of smart contracts, like ERC-

20 contracts, can be divided into smaller ones as their states can be

fragmented into non-interfering states, which may increase even

more the parallel execution of the smart contract. However, inde-

pendently from this optimisation, one needs to handle numerous

interactions between smart contracts that do not execute in the

same shard, or their invocation from users that do not belong to

the shard of the smart contract. As detailed in the following, Yg-

gdrasil combines a 2PC protocol with a cross-chain confirmation

mechanism to assure atomic commit of the distributed execution

of smart contracts and eventual atomicity of confirmation. More-

over, adaptivity of Yggdrassil allows to dynamically adapt shards

to reduce the overload generated by these protocols.

3 SYSTEM MODEL
Nodes, processes, users and validators. Yggdrasil is composed of an

unbounded set of nodes 𝑁 = {𝑛1, . . . , 𝑛𝑖 , . . .}. Each node controls

several processes. Each process 𝑝𝑖 has a unique identifier 𝑖𝑑𝑖 , and

owns exactly one account of coins. The total sum of available coins

in the system is limited and its current value is known by all. Each

process has a well-defined role, that of user or validator. When

a node joins the network, it creates a process with the role of

user, and the identifier of that user is the public key of the node.

Subsequently, a node can create other processes with the role of

user whose identifiers are derived from the node’s public key. To

participate in themaintenance of Yggdrasil, a node creates processes

with the role of validator, and stakes coins
3
. For sake of simplicity

and without loss of generality we assume that we have as many

validators as coins staked in the system. The set of processes is

2
For sake of simplicity we consider that internal invocations in the same shard are

collapsed in the call graph to a single vertex.

3
Coin staking can be done through a special smart contract, as done in Eth2.0. We

abstract those implementation details, and just assume that coins can be put in escrow

for the whole validator lifetime.

4

denoted by 𝑃 , the set of validators is denoted by 𝑉 and the set of

users is denoted by𝑈 . We have 𝑃 = 𝑈 ⊔𝑉 , where ⊔ is the symbol

of disjoint union.

Adversarial model. We suppose that at any time some processes

can fail in any arbitrary manner. These processes are indifferently

called faulty or Byzantine processes. Byzantine processes can “pol-

lute” the computation (e.g., by sending messages with different

contents, when they should have sent messages with the same

content if they were not faulty). Processes that always follow the

protocol are called honest. We model the behavior of faulty pro-

cesses as a weakly adaptive adversary. We characterize the power of

the adversary as follows [29]. The adversary has a bounded amount

of stake, i.e., at any time, Byzantine validators possess less than a

fraction 𝜏 ∈ [0, 1) of the total stake 𝜎 currently available in the sys-

tem. Note that this does not guarantee that in each shard Byzantine

validators possess less than a fraction 𝜏 of the shard stake. Indeed,

the adversary may try to manipulate more than one third of valida-

tors in a specific shard. Yggdrasil provides a shuffling mechanism

and a random uniform election mechanism guaranteeing that in

any shard, no more than 𝜏 = 1/3 of the stake (i.e., validators) are
owned by the adversary (see Section 4.8).

The second assumption is related to the adversary’s level of

adaptability. The adversary can decide to corrupt more processes

in a particular shard, but once a process is corrupted the adversary

cannot change his mind before 𝑘 units of times occurred. A time

unit represents the maximal amount of time needed to build a block.

Users can also be corrupted by the adversary, but the only action

corrupted users could carry out would be to create transactions

and therefore incur costs (transaction fees). First, these costs imply

that such an attack cannot be done infinitely often, and moreover,

these costs would disincentives the adversary to attempt distributed

denies of service (DDoS) attacks.

Byzantine fault-tolerant consensus and selection of committees.
Yggdrasil maintains in parallel several blockchains. Each blockchain

is built thanks to a variant of Byzantine Fault Tolerant (BFT) Con-

sensus [30] that provides deterministic finality [16]. Specifically,

we assume that each blockchain is grounded on Tendermint [20],

that provides immediate finality: a block is finalized as soon as it is

appended to the blockchain. Any transaction is then confirmed as

soon as it appears in the blockchain. As Yggdrasil is permissionless

(see Section 2.1) we also need a verifiable election to elect the com-

mittee that once in place run the chosen BFT consensus protocol to

build and sign the block to be appended to the blockchain. Among

the different existing solutions ([12, 14, 18, 21]), we aim at those

that elect a committee of fixed size to determine the quorum of

two-third signatures needed to finalize a block, such as the ones

provided in [18, 19] or Ethereum PoS [14]. Specifically, (i) a new

validator joins a validator set through a confirmed stake transac-

tion, (ii) the maximal size of the validator set is fixed at design

time, (iii) the committee for each block is then chosen uniformly at

random within the validator set by a shuffling function that makes

a pseudo-random permutation of the validator members list at each

election and returns the first 𝑛 validators, where 𝑛 is the size of the

committee. The shuffling function takes as parameter the validator

list and a random seed by reading the blockchain. The random seed

is generated by applying the xor operation on the hashes of all final-

ized blocks. These operations being deterministic, this ensures that

exactly one committee is elected. Note that a recent improvement

to this mechanism makes shuffling secret and unpredictable [31].

In the following, for any blockchain 𝑏 maintained by Yggdrasil,

we assume the existence of a committee of validators 𝑄𝑏 elected

among the current set of validators 𝑉𝑏 thanks to the assumed elec-

tion mechanism, where 𝑄𝑏 ⊆ 𝑉𝑏 ⊆ 𝑉 . Byzantine validators in

the committee are maintained under 1/3 threshold by the shard

shuffling mechanism and the random uniform election. We say

that a shard is honest if less than a fraction 𝜏 of the committee of

validators is Byzantine.

Communication primitives. Processes communicate by sending

and receiving messages via a best effort broadcast primitive, which

means that when a honest process broadcasts a value, eventually

all the honest processes deliver it [32], i.e., messages sent by honest

processes cannot be lost. Note that messages sent by Byzantine

processes are not guaranteed to be delivered to all honest pro-

cesses. Such a primitive can be implemented through a peer-to-peer

gossip-based diffusion mechanism, as usually done in blockchains.

Messages contain a digital signature and we assume that digital

signatures cannot be forged. When a process 𝑝𝑖 receives a message

from 𝑝 𝑗 , it is certain that 𝑝 𝑗 sent that message. We assume a par-

tially synchronous environment where the maximum transmission

delay is bounded but unknown by the processes [33]. Finally, com-

munication among shards is as follows. When we say that a shard

sends a message, we assume that the committee of validators inside

the shard broadcasts the message to the system. Any receiving

process will accept the message only if it is signed by a quorum of

the corresponding committee. Because each shard is maintained

under the 1/3 Byzantine threshold by Yggdrasil, messages sent by

a shard are never lost and are received by all honest processes.

4 YGGDRASIL PROTOCOL
The main feature of Yggdrasil lies in its self-adaption to transaction

load, so that the number of shards continually adapts to provide fast

transaction confirmation in average. Yggrdrasil allows shards to

re-organise under high load by splitting into new shards, and later

re-merge if transaction load reduces. Notably, Yggdrasil provides a

way to assign processes and smart contracts to shards seamlessly

with respect to shard dynamics. Smart contracts and processes are

automatically re-assigned to a newly created shard (if needed) in a

transparent and verifiable way. When a parent shard splits in two

new shards, the parent extinguishes itself while a summary of its

state is transferred to the newborn shards.

While the local consistency of each shard relies on a local PoS

committee-based BFT blockchain (Section 3), Yggdrasil provides

global consistency of the system. Yggdrasil ensures that each user

is assigned at any time to only one shard, i.e., a user cannot submit

transactions to two different shards, or if he does so, the transaction

is rejected by one of the shards, because user-to-shard assignment

is verifiable. In the same way a smart contract is assigned at any

time to only one shard. As for user transactions crossing shards,

Yggdrasil safely ensures eventual atomic confirmation (Section 2.3)

and atomic-commmit of smart contract distributed execution — exe-

cution that spans different shards – through a 2PC algorithm based

on locking and eventual confirmation among shards. Yggdrasil en-

sures eventual atomic confirmation during re-organisations of the

5

Figure 4: A simple overview of Yggdrasil.

system (split or merge operations). This is achieved by shards label-

ing mechanism, guaranteing that there always exists only one shard

at time 𝑡 that is the closest to any transaction, thus responsible of

the transaction processing.

Yggdrasil is tolerant to an adaptive adversary: by relying on

random shuffling, validators are regularly assigned to randomly

chosen shards to defend against a weakly adaptive adversary. Fur-

thermore, by using a secret and verifiable random draw, validators’

assignment is unpredictable.

Last but not least, Yggdrasil allows nodes to incarnate themselves

in multiple shards with uniquely identified accounts, to reduce

the number of their cross-shard transactions. Indeed nodes can

be interested in some particular smart contract or to trade with

specific users, so to incarnate themselves only in the shard where

they trade more and benefit for fast transaction confirmation time.

4.1 Transaction Life-Cycle through Sharding
An Yggdrasil’s process with the role of user can transfer coins to

another user, deploy smart-contracts, invoke smart contract meth-

ods, or deposit coins to become a validator as realized in common

PoS-based blockchains. For each of these actions different user trans-

actions are submitted to Yggdrasil, i.e., payment transactions, smart
contract deployment transactions, smart contract method invocation
call transactions, and stake transactions4, respectively. Yggdrasil
manages all these transactions in a unified way as described below.

Transactions and state sharding. As will be detailed in Section 4.4,

Yggdrasil assigns each process to exactly one shard in a verifiable

way, where a process can be either a user (submitting transactions)

or a validator (validating transactions). Since the assignment is

unique at any point of time, transaction sharding is realised by

assigning all the transactions of a user to this user’s shard. This

also implies that any smart contract is assigned to the shard of

the user that deploys the smart contract, through the smart con-

tract deployment transaction. To realise state sharding, Yggdrasil

maintains a blockchain for each shard, called shardchain. Since a
trusted third party is needed to achieve synchronization between

two or more blockchains [34], Yggdrasil also maintains a synchro-

nization blockchain, called masterchain. Each shard locally builds a

4
When a user submits a stake transaction 𝑡𝑥 , the user’s node creates a new process

with the role of validator identified by 𝑡𝑥 .

shardchain to validate its own transactions. When needed, shards

coordinate to handle the creation of new shards or the merging of

some of them, and cross-shard transactions. To coordinate them-

selves, shards submit to the masterchain special transactions called

shard update transactions. The masterchain validates shard update

transactions submitted by shards and serves as a gateway for pro-

cesses that want to stake coins to become validators. To build a

blockchain (i.e., a shardchain or the masterchain), a committee (quo-

rum) of validators is elected after each block through modalities

described in Section 3. Each process in Yggdrasil locally manages,

i.e., stores, reads and updates, the masterchain. On the other hand,

shardchains are managed solely by the processes assigned to them.

Each process has access to the state of both the masterchain and

its shard, where the state is defined as follows:

Definition 1 (State of a blockchain). The state of a blockchain
is the current value of accounts and smart contracts that can be
computed by reading the blockchain.

Transaction processing. A user submits transactions within its

shard (see Figure 4). Transactions are collected by the shard’s val-

idators
5
, and locally stored in their memory pool (a.k.a mempool).

To create a block, validators being part of the current committee

invoke the Byzantine fault-tolerant consensus protocol with a set

of transactions from their mempool. Transactions are validated and

embedded in the next block of the shard’s shardchain. Once a block

is appended to the shardchain, validators send a summary of the

block to the masterchain via the shard update transaction (denoted

by SU in Figure 4, and whose content is detailed later). Validators

of the masterchain verify that each shard update transaction has

been created and sent by the issuer shard.

Implementation details and pseudo-codes of blockchain creation

in each shard and verification of the shard update transaction by

the masterchain can be found in Section 5.3.

Transaction confirmation and atomicity of cross-shard transactions.
Yggdrasil introduces its own notion of transaction confirmation

to guarantee the global consistency of the system. Specifically, all

the transactions processed by the masterchain, i.e. shard update
transactions and stake transactions, are immediately confirmed once

5
Users can also store blocks and transactions if they want to but since they are not

responsible of building blocks, this is not mandatory.

6

Figure 5: The different steps involved to confirma cross-shard
transaction.

they appear in a block appended to the masterchain. These two

types of transactions are confirmed in the masterchain because

they have a system-wide scope: they need to be seen from any

shard to correctly manage shards membership, shard dynamics and

cross-shard transactions. The level of confirmation of the other

user transactions depends on whether or not they are intra-shard

or cross-shards. In the case of intra-shard transactions, both the

issuer and the recipient entities of the transaction (i.e., users or

smart contracts) are assigned to the same shard. Any intra-shard

transaction is confirmed as soon as it appears in a block of the

shardchain and the corresponding shard update transaction sent

by the shard to the masterchain, notifying its confirmation in the

shardchain, is confirmed in the masterchain.

In the case of cross-shard transactions, the issuer and the recipi-

ent entities of the transaction are assigned to two different shards
6
.

As mentioned in Section 2.3, to avoid inconsistent situations or

double spending, it is sufficient to guarantee the eventual atomicity

of cross-shard transactions confirmation. This is because (i) the

check of the issuer balance, which is done in the issuer’s shard, is

the only condition to confirm or reject a transaction and (ii) shard’s

behavior, as a whole, is honest. Yggrdrasil ensures that if the issuer

is honest then her transaction is eventually confirmed. For both

payment and smart contract invocations, cross-shard transactions

are managed by relying on the masterchain. The different steps

involved to confirm a cross-shard transaction 𝑡𝑥1 from shard 𝑠1 to

shard 𝑠2 are illustrated by Figure 5 and explained in the following.

First, validators of 𝑠1 create block 𝑏1, containing 𝑡𝑥1, and broadcast

a ShardUpdateTx 𝑆𝑈1 (containing uniquely the Merkle roots of the

transactions of the block containing 𝑡𝑥1); 𝑆𝑈1 is then added in a

masterchain block. When validators of 𝑠2 see 𝑆𝑈1, they ask for 𝑏1.

After receiving it, they extract 𝑡𝑥1, add it in a block 𝑏2, append

𝑏2 to their shardchain, and broadcast a ShardUpdateTx 𝑆𝑈2. 𝑆𝑈2

is then added in a masterchain block. In case 𝑡𝑥1 is the call of a

smart contract deployed in 𝑠2, validators of 𝑠2 create a new trans-

action 𝑡𝑥2 containing the results of the call and send it to 𝑠1 in the

same ShardUpdateTx as 𝑡𝑥1 (𝑆𝑈2). After receiving it, 𝑠1 asks for 𝑏2,

extracts 𝑡𝑥2 and puts it in its shardchain (e.g. in block 𝑏3). Imple-

mentation details of the confirmation of cross-shard transactions

can be found in Section 5.4.

6
For a payment transaction, the two involved entities are user’s accounts. For smart

contracts invocations, the two entities are a user account and a smart contract account.

Of course, smart contracts can call in their turn smart contracts in another shards.

Nested calls generate cross-shard transactions that are managed by the 2PC protocol

presented in Section 4.2

In the following the definitions of the confirmation conditions

for the different types of transactions.

Definition 2 (Masterchain transactions confirmation).

Any stake and shard update transactions is confirmed when it appears
in a block of the masterchain.

Definition 3 (Intra-shard transactions confirmation). An
intra-shard transaction 𝑡𝑥 assigned to shard 𝑠 is confirmed when
𝑡𝑥 is embedded in a block of 𝑠’s shardchain and the shard update
transaction notifying 𝑡𝑥 is confirmed.

Definition 4 (Cross-shard transactions confirmation). A
cross-shard transaction is confirmed if and only if it is confirmed as
intra-shard transaction by both involved shards.

4.2 2PC for distributed smart-contracts
This section provides a 2PC algorithm to guarantee atomic-commit

of the distributed execution when smart contracts involved live in

different shards. Let us make an explanatory scenario to illustrate

the algorithm. Let us suppose to have a user that calls, through

a transaction 𝑡𝑥0 a smart contract 𝑠𝑐0, which calls, in the body

of the called method, two other smart contracts 𝑠𝑐1 and 𝑠𝑐2 in

sequence. If 𝑠𝑐1 and 𝑠𝑐2 live in two different shards, then Yggdrasil

generates a cross-shard transaction for each call, let us say 𝑡𝑥1
and 𝑡𝑥2. Note that, eventual confirmation guarantees that the two

transactions are added to the call graph, however, if their execution

is left independent we could have the situation in which 𝑡𝑥1 is

committed and 𝑡𝑥2 is aborted. To be atomic, since 𝑡𝑥2 failed, 𝑡𝑥0
as a whole should be aborted and 𝑡𝑥1 ’s effects reverted. The 2PC

algorithm we propose prevents 𝑡𝑥1 to commit in this scenario.

In the algorithm, front-end smart contract’s shard coordinates

commit and abort of other shards following an approach where

shards committees emit special transactions throughout the process.

Specifically, inside committees, validators propose blocks inserting

specific transactions. Validators verify the block being sure that

the algorithm has been followed before accepting it. Once accepted

(signed by a quorum), any other validator in subsequent commit-

tees can resume the algorithm if the previous committee did not

complete it, by looking at blocks in shardchains and masterchain.

In other terms, the state of the algorithm is fully recorded in the

shardchains and the masterchain, which allows us to have dynamic

committees that rely on the total order of all transactions (intra and

cross) to determine the state of the algorithm. The pseudo-code is

depicted in Algorithm 1. Each proposer that selects a transaction in

the MemPool (line 41) verifies, before inserting it in a block, if it is

an invocation to a front-end smart contract 𝑠𝑐0 spanning different

shards. If the smart contract is not already locked, the proposer

prepares and inserts in the proposed block a intra-shard transac-

tion of type lock 𝑡𝑥𝑙𝑜𝑐𝑘
0

and a cross-shard transaction 𝑡𝑥
𝑞𝑢𝑒𝑟𝑦

0,𝑖
of

type QUERY for each outgoing call crossing the coordinator shard

reaching a shard 𝑠𝑖 . The query transaction contains transactions to

call the recipient smart contract and the calling one.

When the block is confirmed by the committee of the 𝑠𝑐0 (coor-

dinator shard), then the lock becomes effective. Each validator in

the coordinator shard sees that the smart contract has been locked

by reading the blockchain, and stops to consider other transactions

directed to 𝑠𝑐0 for inclusion in successive proposals. As soon as

7

𝑡𝑥
𝑞𝑢𝑒𝑟𝑦

0,𝑖
are confirmed, validators in the recipients shards 𝑠𝑖 , read

these query transactions (line 3). Note that, at that moment, the

lock of 𝑠𝑐0 is already effective. If the execution of the incoming

transactions do no involve other smart contracts in other shards,

then proposers pre-execute the called transaction (if the smart con-

tract is not already locked). More specifically, the block proposer

pre-executes the result against the state of the blockchain till the

previous finalized block. Result of this pre-execution can be abort or

prepare-to-commit. In both cases the proposer prepares and insert

in the proposal a cross-shard vote transaction towards the coordi-

nator shard. Cross-shard transaction towards the coordinator shard

are denoted as 𝑡𝑥𝑣𝑜𝑡𝑒
𝑖,0

. As soon as those transactions are confirmed,

the coordinator shard compares results to decide either roll-back

or commit (line 16). In case of no abort in the votes received, the

proposer of the coordinator shard executes the transaction 𝑡𝑥0 (line

21), then compute the decision (lines 23 and 29) and then unlock.

The unlock is an intra-shard transaction 𝑡𝑥𝑢𝑛𝑙𝑜𝑐𝑘
0

, while the deci-

sion is a cross-shard transaction 𝑡𝑥𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑖,0

for each shard 𝑠𝑖 . At

receiver side, all the shards commit or roll-back accordingly with

the decision. Roll-back is implicit, the validator does nothing in

this case. In case of commit, the computation must be redone by

the new proposer (the proposer might have changed since the last

pre-execution). Since the state of the smart contract did not change

from the last prepare-to-commit because of the lock, the result is

the same as in the pre-execution phase (smart contracts are deter-

ministic). After the execution, an unlock intra-shard transaction

is inserted in the block 𝑡𝑥𝑢𝑛𝑙𝑜𝑐𝑘
𝑖

. Note that the whole process is

recursive to explore the whole call graph. In case of loops in the

call graph, to avoid deadlocks a locked smart contract can accept

incoming calls when originating by the same root of the call graph

that caused the smart contract to be locked (line 5). Let us stress

that the call graph is distributed among shards. To cope with that,

call paths, which are added at each outgoing invocation in the call

graph, allow to trace back the path till the root and find if there is a

common root.

As mentioned above, locking a smart-contract consists in ignor-

ing future transactions that could modify the state of this contract

(until this smart contract is unlocked), however for stateless smart-

contracts (i.e. smart-contracts that do not have a state to maintain),

it is useless to lock the contract.

Addressing the intersection of multiple call graphs. Let us define
an active call graph G as a call graph involved in a 2PC protocol

that has not terminated yet, i.e. in the marsterchain we have the

first QUERY cross-shard transaction issued by the front end smart

contract for G but not yet the DECISION one. In Yggdrasil users

can issue transactions that generate intersecting active call graphs,

which, if not managed, might induce deadlocks. In our system, the

marsterchain is in charge to prevent (when possible) and manage

them. Let us remember that the marsterchain does not have the

view of the whole active call graphs in advance. However, cross-

sharding transactions, come with partial information about their

relative call graph G, e.g. the QUERY transactions from a 𝑠𝑐𝑖 to

𝑠𝑐 𝑗 , 𝑠𝑐𝑧 , . . . are batched together in the same block, which gives

partial information about G. Leveraging on those information, the

marsterchain might detect if a cross-shard transaction 𝑡𝑥 related to

some active call graph G′ ≠ G is targeting some smart contracts

already involved in G. In that case, the marsterchain keeps 𝑡𝑥 pend-

ing. 𝑡𝑥 is processed after that G is not active anymore. Notice that,

even if another cross-shard transaction 𝑡𝑥 ′ arrives, starvation is

not possible because 𝑡𝑥 appears in a corresponding shardUpdateTx

𝑆𝑈 in the marsterchain, which gives a total order among them.

If the masterchain cannot prevent a deadlock, leveraging on the

information in the masterchain, it can detect it. In that case, the

masterchain applies a deterministic order among the active call

graphs involved in the deadlock and make the necessary smart

contracts revert (without aborting the whole call graph) to let the

prioritized active call graph terminate, before resuming the 2PC

protocol execution for the remaining active call graphs.

In such a way, the prioritized active call graph terminates before

resuming the 2PC protocol execution for the remaining active call

graphs.

Addressing the dynamicity of the call graph. In Yggdrasil we can

have merges and splits during the 2PC protocol, e.g. two smart

contracts that are on the same shard at the beginning of the protocol

can live on two different shards at the end of it, splitting at some

arbitrary moment. To make the dynamic sharding seamless to the

protocol, wemodify the protocol as follows. Firstly, in the call graph,

we treat all the calls between smart contracts as cross-shard smart

contract transactions, i.e., the call graph has at its vertices all the

involved smart contracts, independently whether two adjacent ones

are on the same shard or not. Secondly, when a validator inserts in a

block a cross-shard transaction that targets another smart contract

on the same shard, then he immediately processes it. In this way,

we avoid to add latency in the processing of an invocation between

two smart contracts living in the same shard.

4.3 2PC Correctness proofs
In the following we abstract away the complexity given by the cross-

sharding communications. For conciseness, we abuse our notation

to say that a “smart contract issues a transaction”, meaning that the

shard in which the smart contract lives sends that transaction (after

being written in the shardchain and confirmed). In the same spirit,

we say that a “smart contracts” delivers a transaction meaning that,

the shard in which the smart contract lives received that transaction

from the memPool and the state of Yggdrasil chains.

Lemma 5. Given a call graph G, let 𝑠𝑐𝑖 , 𝑠𝑐 𝑗 ∈ G take a decision
respectively 𝑑𝑒𝑐𝑖 and 𝑑𝑒𝑐 𝑗 belonging to the set {𝐶𝑂𝑀𝑀𝐼𝑇, 𝑅𝑂𝐿𝐿 −
𝐵𝐴𝐶𝐾}. Then 𝑑𝑒𝑐𝑖 = 𝑑𝑒𝑐 𝑗 .

Proof. We proceed by construction. Let us first consider that

a smart contract 𝑠𝑐𝑖 takes a decision in two cases: (i) 𝑠𝑐𝑖 is the

front end smart contract 𝑠𝑐0 and delivered all the required votes

to take a decision 𝑑𝑒𝑐0 and inserts it in a transaction DECISION

𝑡𝑥𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
0,𝑖

; (ii) 𝑠𝑐𝑖 ≠ 𝑠𝑐0 and delivered a transaction DECISION

𝑡𝑥𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑗,𝑖

carrying the decision 𝑑𝑒𝑐𝑖 . We need to prove that for all

𝑠𝑐𝑖 ≠ 𝑠𝑐0, we have 𝑑𝑒𝑐𝑖 = 𝑑𝑒𝑐0. Since shards are correct, the 2PC

protocol is correctly executed, hence 𝑠𝑐0 issues the same 𝑡𝑥𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
0,𝑖

toward all its smart contracts children. Each smart contract child

recursively does the same toward its smart contracts children until

the while call graph G is covered. This concludes the proof. □

8

Algorithm 1 Distributed-Graph 2PC for any shard block proposer

1: upon block proposal fetch MemPool and state of Yggdrassil chains

2: fetch all 𝑡𝑥 from 𝑐𝑜𝑛𝑓 𝑖𝑟𝑚𝑒𝑑𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡 in 𝑠𝑡𝑎𝑡𝑒

/* confirmed transactions till the previous block in the shardchain */

3: for each 𝑡𝑥 such that(𝑡𝑥 .𝑡𝑦𝑝𝑒 =𝑄𝑈𝐸𝑅𝑌) then
4: 𝑡𝑡𝑥 ← 𝑡𝑥 .𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥

/* query received, target transaction 𝑡𝑡𝑥 extracted */

5: if(!𝑖𝑠𝐿𝑜𝑐𝑘𝑒𝑑 (𝑡𝑡𝑥 .𝑠𝑐) ∨ (𝑖𝑠𝐹𝑟𝑜𝑚𝑆𝑎𝑚𝑒𝐶𝑎𝑙𝑙𝐺𝑟𝑎𝑝ℎ (𝑡𝑥)) then
/* isFromSameCallGraph() returns true if the query comes from the same

call graph as the query transaction that provoked the lock of 𝑡𝑡𝑥 .𝑠𝑐 . This

means that the call path at the lock time is a prefix of the call path of

𝑡𝑡𝑥 . False otherwise. */

6: if(ℎ𝑎𝑠𝐶𝑟𝑜𝑠𝑠𝑆ℎ𝑎𝑟𝑑𝐶𝑎𝑙𝑙𝑠 (𝑡𝑡𝑥)) then
/* call graph goes one level deeper */

7: 𝑏𝑙𝑜𝑐𝑘_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝐿𝑜𝑐𝑘𝑇𝑥 (𝑡𝑡𝑥 .𝑠𝑐)
8: 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠 ← 𝑔𝑒𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠 (𝑡𝑡𝑥)
9: 𝑏𝑙𝑜𝑐𝑘_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝑄𝑢𝑒𝑟𝑦𝑇𝑥𝑠(𝑡𝑡𝑥, 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠, 𝑡𝑥)

10: else
/* call graph reaches a leaf */

11: 𝑟𝑒𝑠 ← exec(𝑡𝑡𝑥, 𝑠𝑡𝑎𝑡𝑒)
12: if(𝑟𝑒𝑠! = 𝑛𝑢𝑙𝑙) then
13: 𝑏𝑙𝑜𝑐𝑘_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝐿𝑜𝑐𝑘𝑇𝑥 (𝑡𝑡𝑥 .𝑠𝑐)
14: 𝑏𝑙𝑜𝑐𝑘_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝑉𝑜𝑡𝑒𝑇𝑥 (PREPARE, 𝑟𝑒𝑠, 𝑡𝑥, 𝑡𝑥𝑣0)

/* 𝑡𝑥𝑣0 is a root vote transaction with all values to empty */

15: else 𝑏𝑙𝑜𝑐𝑘_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝑉𝑜𝑡𝑒𝑇𝑥 (ABORT, 𝑛𝑢𝑙𝑙, 𝑡𝑥, 𝑡𝑥𝑣0)
16: for each 𝑡𝑥 such that (𝑡𝑥 .𝑡𝑦𝑝𝑒 = 𝑉𝑂𝑇𝐸)
17: 𝑑𝑡𝑥 ← 𝑡𝑥 .𝑑𝑒𝑠𝑡𝑇𝑥 ;

/* vote received, dest transaction 𝑑𝑡𝑥 extracted from 𝑡𝑥 */

18: if(𝑖𝑠𝑅𝑒𝑎𝑑𝑦𝑇𝑜𝐶𝑜𝑚𝑝𝑢𝑡𝑒 (𝑑𝑡𝑥) ∧ 𝑖𝑠𝐿𝑜𝑐𝑘𝑒𝑑 (𝑑𝑡𝑥 .𝑠𝑐) then
/* isReadyToCompute() checks if, in this shard (the 𝑑𝑡𝑥 .𝑠𝑐’s shard) all

the votes, for which the query 𝑡𝑥 .𝑞𝑢𝑒𝑟𝑦𝑇𝑥 has been issued, have been

gathered */

19: 𝑣𝑜𝑡𝑒𝑠 ← 𝑔𝑒𝑡𝑉𝑜𝑡𝑒𝑠 (𝑔𝑒𝑡𝐴𝑙𝑙𝑉𝑜𝑡𝑒𝑇𝑥𝑠 (𝑡𝑥))
20: if(𝑛𝑜𝐴𝑏𝑜𝑟𝑡 (𝑣𝑜𝑡𝑒𝑠))
21: 𝑟𝑒𝑠 ← exec(𝑑𝑡𝑥,𝑔𝑒𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠 (𝑔𝑒𝑡𝐴𝑙𝑙𝑉𝑜𝑡𝑒𝑇𝑥𝑠 (𝑡𝑥)))
22: case 1 (𝑟𝑒𝑠! = 𝑛𝑢𝑙𝑙 ∧ 𝑖𝑠𝐿𝑜𝑐𝑘𝑂𝑛𝐼𝑛𝑣𝑜𝑘𝑒 () ∧ 𝑛𝑜𝐴𝑏𝑜𝑟𝑡 (𝑣𝑜𝑡𝑒𝑠))

/* the 𝑑𝑡𝑥 is the root, a decision is sent */

23: 𝑖𝑛𝑠𝑒𝑟𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑥𝑠 (𝐶𝑂𝑀𝑀𝐼𝑇,𝑔𝑒𝑡𝐴𝑙𝑙𝑉𝑜𝑡𝑒𝑠𝑇𝑥𝑠 (𝑡𝑥))
24: 𝑖𝑛𝑠𝑒𝑟𝑡𝑈𝑛𝑙𝑜𝑐𝑘𝑇𝑥 (𝑑𝑡𝑥 .𝑠𝑐)
25: case 2 (𝑟𝑒𝑠! = 𝑛𝑢𝑙𝑙∧!𝑖𝑠𝐿𝑜𝑐𝑘𝑂𝑛𝐼𝑛𝑣𝑜𝑘𝑒 () ∧ 𝑛𝑜𝐴𝑏𝑜𝑟𝑡 (𝑣𝑜𝑡𝑒𝑠))

/* the 𝑑𝑡𝑥 is not root, a vote must be sent to the parent */

26: 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦 ← 𝑡𝑥 .𝑞𝑢𝑒𝑟𝑦𝑇𝑥.𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑄.𝑙𝑎𝑠𝑡 ()
27: 𝑖𝑛𝑠𝑒𝑟𝑡𝑉𝑜𝑡𝑒𝑇𝑥 (𝑃𝑅𝐸𝑃𝐴𝑅𝐸, 𝑟𝑒𝑠, 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦, 𝑡𝑥)
28: case 3 ((𝑟𝑒𝑠 = 𝑛𝑢𝑙𝑙 ∨!𝑛𝑜𝐴𝑏𝑜𝑟𝑡 (𝑣𝑜𝑡𝑒𝑠) ∧𝑖𝑠𝐿𝑜𝑐𝑘𝑂𝑛𝐼𝑛𝑣𝑜𝑘𝑒 ())

/* the 𝑑𝑡𝑥 is the root, a decision is sent */

29: 𝑖𝑛𝑠𝑒𝑟𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑥𝑠 (𝑅𝑂𝐿𝐿𝐵𝐴𝐶𝐾,𝑔𝑒𝑡𝐴𝑙𝑙𝑉𝑜𝑡𝑒𝑇𝑥𝑠 (𝑡𝑥))
30: 𝑖𝑛𝑠𝑒𝑟𝑡𝑈𝑛𝑙𝑜𝑐𝑘𝑇𝑥𝑠 (𝑑𝑡𝑥 .𝑠𝑐)
31: case 4 (𝑟𝑒𝑠 = 𝑛𝑢𝑙𝑙∨!𝑛𝑜𝐴𝑏𝑜𝑟𝑡 (𝑣𝑜𝑡𝑒𝑠))∧!𝑖𝑠𝐿𝑜𝑐𝑘𝑂𝑛𝐼𝑛𝑣𝑜𝑘𝑒 ())

/* the 𝑑𝑡𝑥 is not the root, a vote must be sent to the parent */

32: 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦 ← 𝑡𝑥 .𝑞𝑢𝑒𝑟𝑦𝑇𝑥.𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑄.𝑙𝑎𝑠𝑡 ()
33: 𝑖𝑛𝑠𝑒𝑟𝑡𝑉𝑜𝑡𝑒𝑇𝑥 (𝐴𝐵𝑂𝑅𝑇, 𝑟𝑒𝑠, 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦, 𝑡𝑥)
34: for each 𝑡𝑥 such that (𝑡𝑥 .𝑡𝑦𝑝𝑒 = 𝐷𝐸𝐶𝐼𝑆𝐼𝑂𝑁) then
35: 𝑑𝑡𝑥 ← 𝑡𝑥 .𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥 ;

/* decision received, dest transaction 𝑑𝑡𝑥 extracted from 𝑡𝑥 */

36: if(𝑖𝑠𝐿𝑜𝑐𝑘𝑒𝑑 (𝑑𝑡𝑥 .𝑠𝑐)) then
37: if(𝑖𝑠𝐶𝑜𝑚𝑚𝑖𝑡 (𝑡𝑥)) then exec(𝑑𝑡𝑥)
38: if(𝑡𝑥 .𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥 ! = 𝑡𝑥𝑣0)then

/* dtx is not a sink transaction in the call graph */

39: 𝑖𝑛𝑠𝑒𝑟𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑥𝑠 (𝑡𝑥 .𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛,𝑔𝑒𝑡𝐴𝑙𝑙𝑉𝑜𝑡𝑒𝑠𝑇𝑥𝑠 (𝑡𝑥))
40: 𝑖𝑛𝑠𝑒𝑟𝑡𝑈𝑛𝑙𝑜𝑐𝑘𝑇𝑥 (𝑡𝑥 .𝑠𝑐)
41: for each 𝑡𝑥 such that(𝑡𝑥 .𝑡𝑦𝑝𝑒 = 𝐼𝑁𝑉𝑂𝐾𝐸 from user) then
42: if(!𝑖𝑠𝐿𝑜𝑐𝑘𝑒𝑑 (𝑡𝑥 .𝑠𝑐) ∧ ℎ𝑎𝑠𝐶𝑟𝑜𝑠𝑠𝑆ℎ𝑎𝑟𝑑𝐶𝑎𝑙𝑙𝑠 (𝑡𝑥)) then
43: 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝐿𝑜𝑐𝑘𝑇𝑥 (𝑡𝑥 .𝑠𝑐)
44: 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠 ← 𝑔𝑒𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠 (𝑡𝑥)
45: 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝑄𝑢𝑒𝑟𝑦𝑇𝑥𝑠(𝑡𝑥, 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠, 𝑡𝑥𝑞0)

/* 𝑡𝑥𝑞0 is a root query transaction with all values to empty */

46: else 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝑀𝑒𝑚𝑃𝑜𝑜𝑙𝑇𝑥𝑠𝐼𝑛𝐵𝑙𝑜𝑐𝑘(𝑡𝑥)
/* insert all other invoke transactions from the MemPool in the block */

47: propose block

Algorithm 2 insertQueryTxs(sourceTx,targetTxs,prevQueryTx)
1: 𝑐𝑎𝑙𝑙𝑃𝑎𝑡ℎ ← 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦𝑇𝑥.𝑐𝑎𝑙𝑙𝑃𝑎𝑡ℎ.𝑎𝑑𝑑 (𝑠𝑜𝑢𝑟𝑐𝑒𝑇𝑥)
2: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑄 ← 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦𝑇𝑥.𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑄.𝑎𝑑𝑑 (𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦𝑇𝑥)
3: for each 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠
4: 𝑞𝑢𝑒𝑟𝑦𝑇𝑥 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑥 (𝑄𝑈𝐸𝑅𝑌, 𝑐𝑎𝑙𝑙𝑃𝑎𝑡ℎ, 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑄)
5: 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑎𝑑𝑑 (𝑞𝑢𝑒𝑟𝑦𝑇𝑥)

Algorithm 3 insertVoteTx(𝑣𝑜𝑡𝑒, 𝑟𝑒𝑠, 𝑞𝑢𝑒𝑟𝑦𝑇𝑥, 𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥)
1: 𝑑𝑒𝑠𝑡𝑇𝑥 ← 𝑞𝑢𝑒𝑟𝑦𝑇𝑥.𝑐𝑎𝑙𝑙_𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡

2: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉 ← 𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥.𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉 .𝑎𝑑𝑑 (𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥)
3: 𝑣𝑜𝑡𝑒𝑇𝑥 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑥 (𝑉𝑂𝑇𝐸, 𝑣𝑜𝑡𝑒, 𝑟𝑒𝑠,𝑑𝑒𝑠𝑡𝑇𝑥,𝑞𝑢𝑒𝑟𝑦𝑇𝑥, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉)
4: 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑎𝑑𝑑 (𝑣𝑜𝑡𝑒𝑇𝑥)

Algorithm 4 insertDecisionTxs(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑜𝑡𝑒𝑇𝑥𝑠)
1: for each 𝑣𝑜𝑡𝑒𝑇𝑥 ∈ 𝑣𝑜𝑡𝑒𝑠𝑇𝑥𝑠 then
2: 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥 ← 𝑣𝑜𝑡𝑒𝑇𝑥.𝑞𝑢𝑒𝑟𝑦𝑇𝑥.𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥

3: 𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥 ← 𝑣𝑜𝑡𝑒𝑇𝑥.𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉𝑜𝑡𝑒𝑠.𝑙𝑎𝑠𝑡 ()
4: 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑥 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑥 (𝐷𝐸𝐶𝐼𝑆𝐼𝑂𝑁,𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥, 𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥)

5: 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑎𝑑𝑑 (𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑥)

Lemma 6. Given a call graph G, let 𝑠𝑐0 ∈ G be the front end smart
contract of G and 𝑠𝑐𝑖 ∈ G be the other smart contracts. If all 𝑠𝑐𝑖 ≠ 𝑠𝑐0
vote for PREPARE, then 𝑠𝑐0 decides for COMMIT.

Proof. Let us proceed by construction. We need to show that,

if all 𝑠𝑐𝑖 ≠ 𝑠𝑐0 vote for PREPARE then, 𝑠𝑐0 collects all those votes

and decides accordingly. A smart contract 𝑠𝑐𝑖 votes for PREPARE

in two cases: upon delivery of a QUERY transaction 𝑡𝑥
𝑞𝑢𝑒𝑟𝑦

𝑗,𝑖
in

the case where 𝑠𝑐𝑖 is a leaf of G or after having collected VOTE

transactions (for PREPARE) from all its children in case 𝑠𝑐𝑖 is not

a leaf of G. In the former case, and by assumption of the proof

𝑠𝑐𝑖 votes for PREPARE and issues a transaction 𝑡𝑥𝑣𝑜𝑡𝑒
𝑖, 𝑗

toward its

parent 𝑠𝑐 𝑗 . In the later case, and by assumptions all its children vote

for PREPARE, i.e. 𝑠𝑐 𝑗 receives 𝑡𝑥
𝑣𝑜𝑡𝑒
𝑖, 𝑗

from all its children. Hence

𝑠𝑐𝑖 votes for PREPARE and issues the transaction 𝑡𝑥𝑣𝑜𝑡𝑒
𝑗,𝑧

toward its

parent 𝑠𝑐𝑧 . The procedure continues up to 𝑠𝑐0, which collects all

the votes from its children and decides for COMMIT. □

Lemma 7. Given a call graph G, let 𝑠𝑐0 ∈ G be the front end smart
contract of G and 𝑠𝑐𝑖 ∈ G the other smart contracts. If at least a 𝑠𝑐𝑖
votes for ABORT, then 𝑠𝑐0 decides for ROLL-BACK.

Proof. The proof follows the same spirit as the one of Lemma

6. Let us proceed by construction. Let 𝑠𝑐𝑖 be the smart contract

that votes ABORT. 𝑠𝑐𝑖 issues 𝑡𝑥
𝑣𝑜𝑡𝑒
𝑖, 𝑗

where 𝑗 is the parent smart

contract. 𝑠𝑐 𝑗 upon receipt of ABORT can stop waiting for other

votes from its children and issues a transaction 𝑡𝑥𝑣𝑜𝑡𝑒
𝑗,𝑧

toward its

parent 𝑠𝑐 𝑗 , where the vote is ABORT. The procedure continues up

to 𝑠𝑐0, which collects all the votes from its children and decides for

ROLL-BACK. □

Theorem 4.1. Given a call graph G, if there exist some 𝑠𝑐𝑖 that
votes for ABORT, then all 𝑠𝑐 𝑗 ∈ G decides for ROLL-BACK, otherwhise
all 𝑠𝑐 𝑗 ∈ G decides for COMMIT.

Proof. The proof follows from Lemmas 5, 6 and 7. □

9

Lemma 8. Given a call graph G, let 𝑠𝑐0 ∈ G be the front end smart
contract of G. If 𝑠𝑐0 issues a QUERY transaction relative to G then
each 𝑠𝑐𝑖 ∈ G delivers a QUERY transaction.

Proof. We proceed by construction. Upon receipt of an INVOKE

transaction from an user (Line 41 of Algorithm 1), 𝑠𝑐0 invokes

insertQueryTxs (Line 45 of Algorithm 1). This function prepares

and inserts in the proposed block all the transactions 𝑡𝑥
𝑞𝑢𝑒𝑟𝑦

0,𝑐ℎ𝑖𝑙𝑑
that

have to be delivered by the 𝑠𝑐0’s children 𝑠𝑐𝑐ℎ𝑖𝑙𝑑 in the call graph

G. When some 𝑠𝑐𝑐ℎ𝑖𝑙𝑑 delivers a QUERY transaction (Line 3 of

Algorithm 1), the algorithm first checks if the smart contract is

already locked. In the affirmative, the transaction is not treated at

that moment, except if that transaction results from the same call

graph G as the transaction that previously locked 𝑠𝑐𝑐ℎ𝑖𝑙𝑑 . In this

particular case, the algorithm checks if the target transaction 𝑡𝑡𝑥 on

𝑠𝑐𝑐ℎ𝑖𝑙𝑑 induces a call to another smart contract or not, i.e., if 𝑠𝑐𝑐ℎ𝑖𝑙𝑑
is a leaf of G or not. If the former case we are done. In the latter

case, 𝑠𝑐𝑐ℎ𝑖𝑙𝑑 executes the same steps as 𝑠𝑐0 does. 𝑠𝑐𝑐ℎ𝑖𝑙𝑑 invokes

insertQueryTxs (Line 6 of Algorithm 1). This function prepares and

inserts in the proposed block all the transactions 𝑡𝑥
𝑞𝑢𝑒𝑟𝑦

𝑐ℎ𝑖𝑙𝑑,𝑐ℎ𝑖𝑙𝑑 ′𝑠 𝑐ℎ𝑖𝑙𝑑
that have to be delivered by the 𝑠𝑐𝑐ℎ𝑖𝑙𝑑 ’s children 𝑠𝑐𝑐ℎ𝑖𝑙𝑑 ′𝑠 𝑐ℎ𝑖𝑙𝑑 in

the call graph G. The process continues recursively, and all the

vertices in the call graph deliver a QUERY transaction relative to

G. □

Lemma 9. Given a call graph G, let 𝑠𝑐0 ∈ G be the front end smart
contract of G. If 𝑠𝑐0 issues a decision transaction (either COMMIT or
ROLLBACK) relative to G then all 𝑠𝑐𝑖 ∈ G deliver it.

Proof. The proof follows the same spirit as the one of Lemma 5,

having that if 𝑠𝑐0 issues a decision, i.e. a transaction decision 𝑡𝑥
𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
0, 𝑗

,

then such a transaction is delivered by all smart contract 𝑠𝑐 𝑗 that are

children of 𝑠𝑐0, which recursively propagate a decision transaction

toward their children, covering the whole call graph G. □

Theorem 4.2. Given a active call graph G, then eventually G is
not active anymore, i.e. the 2PC protocol terminates.

Proof. Termination of the 2PC protocol is proved as follows.

Once the front end smart contract issues a QUERY transaction,

then eventually a QUERY transaction is propagated to all the smart

contracts inG (Lemma 8). Since all smart contracts receive a QUERY

transaction, then all of them eventually lock and vote. For the smart

contract leaf this is immediate. Other smart contracts need to wait

for their children votes. Since all leaf smart contracts deliver a

QUERY transaction then eventually all their parent will vote and

recursively up to the front end smart contract 𝑠𝑐0. Finally, since 𝑠𝑐0
collects all the votes, then it can issue a decision and unlock. By

Lemma 9 all the smart contracts in G deliver the decision, apply it

and unlock. This concludes the proof. □

4.4 Process-to-shard assignment
Shards are uniquely identified by their label 𝑙 (the computation of

shards’ label is described in Section 4.5). At any time, any process is

assigned to the (unique) shard whose label minimizes the distance

with the process’s identifier.

Definition 10 (Distance function). [23] Let 𝑎 = 𝑎0 . . . 𝑎𝑑−1
and 𝑏 = 𝑏0 . . . 𝑏𝑑 ′−1, for any 𝑑,𝑑 ≥ 1, be any two bit strings, and

𝑠 = 𝑚𝑎𝑥 (𝑑, 𝑑′). Note that the bit numbering starts at zero for the
most significant bit. The distance between 𝑎 and 𝑏, denoted by 𝐷 (𝑎, 𝑏)
is the numerical XOR between 𝑎 and 𝑏 and is computed as follows.

𝐷 (𝑎, 𝑏) = 𝐷 (𝑎0 . . . 𝑎𝑑−1 .0𝑠−𝑑 , 𝑏0 . . . 𝑏𝑑 ′−1 .0𝑠−𝑑
′
)

=

𝑠−1∑︁
𝑖=0

2
𝑠−1−𝑖

1𝑎𝑖≠𝑏𝑖

where notation 0
𝑠−𝑑 represents 𝑠 − 𝑑 digits set to 0, and 1𝐴 denotes

the indicator function, which is equal to 1 if condition 𝐴 is true and 0
otherwise.

Property 11 (Process Assignment). Let 𝑖𝑑𝑖 be the identifier of
process 𝑝𝑖 and S be the set of shards, then the shard 𝑆ℓ to which 𝑝𝑖 is
assigned satisfies relation 1.

𝑆ℓ = argmin

𝑆∈S
𝐷 (𝑖𝑑𝑖 , 𝑆) (1)

By construction of the shard labels mechanism (see Section 4.5)

shard 𝑆ℓ is unique with respect to 𝑖𝑑𝑖 , that is, for any shard 𝑆ℓ ′ ∈ S
with ℓ′ ≠ ℓ , then 𝐷 (𝑖𝑑𝑖 , 𝑆ℓ) < 𝐷 (𝑖𝑑𝑖 , 𝑆ℓ ′).

The pseudo-codes executed by a newly created process and its

assignment to a shard are moved to Section 5.2.

4.5 Dynamic management of shards
The number of shards in Yggdrasil self-adapts to the actual rate at

which transactions are submitted to Yggdrasil. This is achieved by

two operations, namely the split and the merge operations. Specifi-
cally, when the last blocks of a shardchain become overloaded (i.e.,

the average ratio between their number of bytes and the maximal

number of bytes contained in a block exceeds a given threshold),

then the committee of validators of the overloaded shard triggers a

split operation. Note that this assumes that the size of the commit-

tee is greater than twice the minimal size of a Byzantine tolerant

committee. In the negative the overloaded shard does not split into

two smaller shards. Now, when a shard is under-loaded (i.e., the

average ratio between their number of bytes and the maximal num-

ber of bytes contained in a block falls short of a given threshold),

or the size of its committee of validators is close to the minimal

size of a Byzantine tolerant committee, then the committee of val-

idators triggers a merge operation with the shard closest to theirs.

Operationally, each shard maintains an attribute called status that
can be set to Splittable, Mergeable, or Regular depending on the

conditions mentioned above. This attribute is also included in the

shard update transactions sent from shards to the masterchain to

globally share information about all the shards status.

We formally express the status of a shard as follows:

Definition 12 (Shard’s Status). We denote by 𝑉ℓ (𝑡) the set of
validators assigned to 𝑠ℓ at time 𝑡 . At time t, a shard is in one of the
following three status.

• Splittable: A shard is considered splittable at time t if |𝑉ℓ (𝑡) |
goes above a certain threshold Φ and block load goes above
another threshold Γ.

• Mergeable: A shard is considered mergeable a time t if |𝑉ℓ (𝑡) |
goes below a certain threshold 𝜙 or block load goes below
another threshold 𝛾 .

10

• Regular: A shard is considered regular if it is neither split-
table nor mergeable.

Note that at each split/merge operations, the label of the newly

created shard(s) is derived from its parent’s label. Initially, Yggdrasil

is made of a single shard labelled with the empty binary string ℓ = 𝜖 .

If Yggdrasil needs to replace a splittable shard 𝑠ℓ labelled with ℓ by

two new shards, they respectively inherit the label of the overloaded

shard suffixed with 0 and 1, i.e., 𝑠ℓ .0 and 𝑠ℓ .1. If two shards 𝑠ℓ .0 and

𝑠ℓ .1 are concomitantly Mergeable, they are replaced by a single

shard 𝑠ℓ whose label is equal to the maximum prefix shared by

the two Mergeable shards, i.e., ℓ . Processes are automatically re-

assigned to the newly created shards according to their identifiers.

State transfer between shards. As the split and merge operations

lead to the creation of new shards, this gives rise to the creation of

new shardchains and the extinction of old ones. The state of a newly

created shardchain is initialized with a summary of its parent(s)’

state. This summary is the genesis block of the new shardchain.

Each split or merge operation automatically re-assigns validators

to their new shard. This assignment is verifiable in the masterchain.

The genesis block of each new shardchain is produced by commit-

tees pseudo-randomly selected upon the validators assigned to the

shard. The pseudo-random selection is based on public information

contained in the masterchain. Processes maintain the set of shards

S by reading the information contained in the masterchain’s blocks.

Specifically, upon receipt of a masterchain’s block, processes ap-

pend it to their local copy of the masterchain and update S using

the information contained in it.

4.6 Shards update transactions details
We are now able to detail shard update transactions. A shard up-

date transaction contains the latest information related to a shard,

namely, the hash of the last block created, the status of the shard,

and information about outgoing cross-shard transactions. When a

shard validates a cross-shard transaction in its shardchain, it must

notify the receiving shard 𝑠′. It includes in its shard update transac-

tion the Merkle Root𝑚′ of the cross-shard transactions that involve
the shard 𝑠′ (if any) associated to the label ℓ′ of 𝑠′. More formally,

a shard update transaction 𝑆𝑈 sent by shard 𝑠 is defined as follows.

𝑆𝑈 = (ℓ, ℎ(𝑏),T , \), (2)

where ℓ is the label of shard 𝑠 , ℎ(𝑏) is the cryptographic hash of

the latest block 𝑏 created in 𝑠 , T represents the set of cross-shard

transactions contained in 𝑏 that involves 𝑟 corresponding shards,

and \ represents the status of 𝑠 . Note that T is a key-value list

where the keys are the labels ℓ 𝑗 of involved shards 𝑠 𝑗 , by involved

shards, we mean the shards that have to confirm at least one of the

cross-shard transactions contained in 𝑏. The value associated to

each ℓ 𝑗 in T is the merkle root𝑚 𝑗
of the transactions (contained

in 𝑏) involving 𝑠 𝑗 as a recipient, it is defined as:

T =

{
(ℓ′,𝑚′), . . . , (ℓ 𝑗 ,𝑚 𝑗), . . . , (ℓ (𝑟) ,𝑚 (𝑟))

}
(3)

4.7 Reducing cross-shard transactions volume
Cross-shard transactions are very expensive in terms of latency (i.e.

since a cross-shard transaction needs to be processed by two shards,

users have to wait longer for it to be confirmed), therefore, it is

essential to limit their volume. We allow any node to create several

users (not necessarily when the node joins), one for each shard of

interest, to make transaction processing local to each shard. We call

this optimization incarnation. Each of these incarnations is a user

with one account. Any two incarnations have two different accounts.

Incarnations get identifiers allowing nodes to position themselves

in the targeted shard. Specifically, an incarnation is identified by

the label of the targeted shard concatenated to the public key of

the node. Concretely, suppose that when a node joins the networks

there exist 3 shards respectively labelled 0, 10, and 11 and the node’s

public key is 1001
7
. Based on its node’s public key, the default

user incarnation would be identified by 𝑖𝑑𝑛𝑜𝑑𝑒 = 1001, therefore,

would be assigned to shard 10. However, if the node intends to

repeatedly interact with another user or with a smart contract

located in shard 0, Yggdrasil enables it to incarnate in 𝑠0, with the

identifier 𝑖𝑑𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛 = 0.𝑖𝑑𝑛𝑜𝑑𝑒 = 01001. Operationally, to create

an incarnation, initial funds must be deposited into its account by

sending a cross-shard transaction 𝑡𝑥1: < 𝑖𝑑𝑛𝑜𝑑𝑒 , 𝑖𝑑𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛 , _>. If

the node wants to withdraw its funds from its incarnation it must

send a transaction 𝑡𝑥2: <𝑖𝑑𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛 , 𝑖𝑑𝑛𝑜𝑑𝑒 , _>.

4.8 Dealing with an adaptive adversary
So far, we considered a deterministic and static assignment for

all processes in a shard. However, to deal with an adaptive adver-

sary, validators must be moved to random shards from time to

time (quickly enough to prevent the adversary from poisoning the

shard by progressively compromising more than a fraction 𝜏 of

the validators committee). This mechanism is known as shuffling
8
.

Shuffling validators (committee members or not) introduces some

synchronization overhead, i.e., the time it takes for moved valida-

tors to download the latest state. To avoid downtime during the

synchronization procedure, it is imperative that for each shard,

each resynchronization involves a subset of the validators of the

shard, and to defend against a weakly adaptive adversary, the new

assignement must be random, and unpredictable.

Algorithm 5 describes our procedure to shuffle validators. The

reassignment function is parametrized by 𝑘 . 𝑘 is the number of

blocks that need to be created in a given shard before the adversary

is capable of corrupting a new validator in it. Operationally, our

reassignment function consists in computing a new identifier 𝑖𝑑ℎ𝑣
for each validator 𝑣 and each new heightℎ of the masterchain. Input

values of the reassignment function are: (1) the validator identifier
𝑖𝑑𝑣 and (2) the hash of the latest masterchain block ℎ𝑎𝑠ℎ(𝑏ℎ𝑚

𝑖
).

Note that, the adversary cannot guess ℎ𝑎𝑠ℎ(𝑏ℎ𝑚
𝑖
) prior this block

is created which limits its adversarial strategies. This results on an

output value 𝑖𝑑ℎ𝑣 , a binary string the validators use to (i) define if

they need to move and (ii) in which shard it should re-assign to. To

do that, the validators first calculate the distance (see Definition

10) between their identifier 𝑖𝑑𝑣 and 𝑖𝑑
ℎ
𝑣 𝐷 (𝑖𝑑ℎ𝑣 , 𝑖𝑑𝑣). The validator

is allowed to move if its 𝐷 (𝑖𝑑ℎ𝑣 , 𝑖𝑑𝑣) is below a threshold such that

the probability for the validator to be shuffled is equal to 1/𝑘 (line

7
Here, we reduce the size of the public key for simplicity of the example. In reality,

the public key is 256 bits long

8
Note that users do not need to be shuffled as they have no decision power, i.e., they

have no voting power.

11

3 of Algorithm 5). Then, the validators calculate 𝐷 (𝑖𝑑ℎ𝑣 ,S) and
assign the validator to the closest shard to 𝑖𝑑ℎ𝑣 (line 4 of Algorithm

5). Note that the distance function could return the same shard

the validator was in for the last height, thus, it would not move.

Hence, the probability of of having a different shard than the former

shard the validator was in would be 1 − 1

|S | . In this way, for each

masterchain block, we have a probability ≈ 1/𝑘 for a validator

to be re-assigned and each process in the system could compute

its assignment. Yggdrasil’s properties and proofs are presented in

Section 6.

Algorithm 5 Validators Reassignment

1: upon receive 𝑏𝑙𝑜𝑐𝑘 from𝐶𝑚 (ℎ𝑚𝑖 + 1)
/*𝐶𝑚 (ℎ) being the masterchain committee at height ℎ. */

2: 𝑖𝑑ℎ𝑣 ← 𝑓 (𝑖𝑑𝑣 , ℎ𝑎𝑠ℎ (𝑏𝑙𝑜𝑐𝑘)) .

3: if (𝐷 (𝑖𝑑ℎ𝑣 , 𝑖𝑑𝑣) <
𝐷 (𝑖𝑑ℎ𝑣 ,𝑖𝑑ℎ𝑣)

𝑘
)

/* where 𝑖𝑑ℎ𝑣 is the binary complement of 𝑖𝑑ℎ𝑣 */
4: 𝑣𝑖 .shard← getClosestShard(𝑖𝑑ℎ𝑣 , S)

/* getClosestShard() returns the closest shard between 𝑖𝑑𝑣 and the shard
labels in S using the distance function defined in Definition 10. */

5 IMPLEMENTATION DETAILS
5.1 User transaction types and structures
Any user transaction 𝑡𝑥 has a structure <sender, receiver, payload>
where sender and receiver are addresses, payload is a float or a

binary depending on the transaction type:

• Payment: A transaction of type payment corresponds to

a sending of tokens from one account to another. eg: <A,

B, 10> corresponds to sending 10 tokens from account A

to account B. This kind of transaction can be of two types:

UTXO and accounts.

• Stake: A transaction of type stake corresponds to the send-

ing of one token from one account A that wants to put

the token in stake to a global address known as STAKE-

HOLDER. i.e. : <A, STAKEHOLDER, 1> which means A

staking 1 token.

• Smart Contract Deployment: A transaction of type de-

ployment corresponds to the creation of the contract by

𝑝𝑖 . eg: <A, nil, data>, where data contains the information

about the deployed SC. Please note that smart-contracts

have their own identifier which derives from their creator’s

identifier. This is done in order to have the smart-contracts

deployed in the same shard as their creator.

• Smart Contract method invoke: A transaction of type

method invocation corresponds to the use of a Smart Con-
tract method by the process. ex: <A, SC, data>, where data

contains the information about the SC method invoked and

its parameters.

• ShardUpdateTx: A transaction of type ShardUpdateTx is

sent by a shard committee after each newly created block.

It contains the hash of the block, the status of the shard and

the merkle roots of all transactions contained in the block.

5.2 Joining the network
When a process 𝑝𝑖 connects to the network, it follows the general

routine as described in Algorithm 6. First, it enters the Yggdrasil

network by calling a join() function, which aims at synchronizing its

state with that of the other processes. During the execution of the

join() procedure, 𝑝𝑖 calculates its assignment to one of the existing

shards. Once the process is assigned to a shard, it can participate

in the shard by sending/receiving transactions if it has the role of a

user, or, if it is a validator, by maintaining the state of the shard with

blocks creation and management of split and merge mechanisms.

Algorithm 6 General Routine

1: ℎ𝑚
𝑖

:= 0

2: ℎℓ
𝑖
:= 0

3:
4: upon arrival in the network
5: join()

/* join() is the first action 𝑝𝑖 executes when it enters the system, it initializes
the main structures, connect to others and ask for synchronization. */

6: (ℎ𝑚
𝑖
, ℎℓ

𝑖
) := updateLocalVariables()

7:
8: upon receive 𝑏𝑙𝑜𝑐𝑘 from𝐶𝑚 (ℎ𝑚𝑖 + 1)

/*𝐶𝑚 (ℎ) being the masterchain committee at height ℎ. */
9: addBlockToMasterchain(ℎ𝑚

𝑖
+ 1)

10: ℎ𝑚
𝑖

++
11: setProcessAssignment()
12: getCrossShardTxs(𝑏𝑙𝑜𝑐𝑘)
13:

Algorithm 7 Process Assignment

1: Input : S
2: Output : /
3:
4: action setProcessAssignment()
5: if (shardOf(𝑝𝑖) = 𝑛𝑖𝑙) then

/* shardOf(𝑝𝑖) returns the label of the shard 𝑝𝑖 belongs to or 𝑛𝑖𝑙 if it does
not belong to any shard. */

6:
7: 𝑝𝑖 .shard← getClosestShard(𝑝𝑖 .𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟, S)

/* getClosestShard() returns the closest shard between 𝑝𝑖 label and the shard
labels in S using the distance function defined in Definition 10. */

5.3 Transaction sharding and processing
Let us recall that our system is composed of a dynamic set S of

shards 𝑠ℓ . Each shard maintains its own blockchain, called shard-

chain. A small dynamic (i.e. its composition changes during execu-

tion) set of processes (with validator role) constitutes the committee

responsible of maintaining the shardchain, it is denoted by Cℓ (ℎ).
As stated earlier, processes are assigned to a shard depending on

their identifier and the label of the shard. When a transaction (other

than stake) involving a process is broadcast, it is assigned to a given

shard 𝑠ℓ . In fact, since process assignment is computable by anyone,

any process can calculate the position (in which shard) of another

using its identifier (contained in the transaction). Being assigned to

𝑠ℓ , the transaction is then processed and confirmed in one of the

blocks of the shardchain maintained by 𝑠ℓ .

As soon as it appends a block to its shardchain, 𝑠ℓ must send

a ShardUpdateTx to the masterchain committee (Algorithm 8) in

order for it to be eventually added to the masterchain. As said

12

earlier, ShardUpdate transactions contain the latest updates about

the shard such as the the hash of the newly appended block, the

cross-shard transactions and its shard status.

At masterchain side, since shards work in parallel and indepen-

dently, we propose here a verification algorithm (Algorithm 9) to

check if the received updates are coherent with the current infor-

mation to maintain a consistent overall state and reject them if they

are not. This is done to avoid possible synchronization problems

between the shards and thus allow them to evolve correctly. As

an example, if a shard has split in the last update, it does not exist

anymore, so it can not send updates before its two child shards

merge. As shown by Algorithm 9, we consider an update valid iff

the label of the shard transmitter is included in the shards set S,
which is calculated using the previous blocks of the masterchain.

Algorithm 8 Shardchain Block creation

1: Input: ℎℓ
𝑖

S := {Y }
2:
3: if (𝑝𝑖 ∈ 𝐶ℓ (ℎℓ

𝑖
+ 1)) then

4: 𝑠ℎ𝑎𝑟𝑑𝐵𝑙𝑜𝑐𝑘 ← createShardchainBlock()
5: 𝐶 ← {}
6: for each (𝑠 ∈ S)
7: 𝑀𝑅 ← getMerkleRootOf(getCrossShardTxsWith(𝑠, 𝑠ℎ𝑎𝑟𝑑𝐵𝑙𝑜𝑐𝑘))

/* getCrossShardTxsWith(𝑠,𝑏𝑙𝑜𝑐𝑘) returns the list of cross-shard transac-
tions involving 𝑠 contained in 𝑠ℎ𝑎𝑟𝑑𝐵𝑙𝑜𝑐𝑘 .
getMerkleRootOf() returns the merkle root of a list of transactions. */

8: 𝐶 ← 𝐶 ∪ {[getClosestLabelTo(𝑠),MR] }
/* getClosestLabelTo(𝑠) returns the closest label to shard 𝑠 in S */

9: send <ShardUpdateTx, ℎ𝑎𝑠ℎ𝑐𝑜𝑑𝑒 (𝑏𝑙𝑜𝑐𝑘) , C, getStatus()> to all processes in
𝐶𝑚 (𝑡)

/* hashcode(𝑠ℎ𝑎𝑟𝑑𝐵𝑙𝑜𝑐𝑘) returns the hashcode of 𝑠ℎ𝑎𝑟𝑑𝐵𝑙𝑜𝑐𝑘 .
getStatus() returns the status of the shard (S/M/R).
𝐶𝑚 (𝑡) being the masterchain committee at time t. */

10:

Algorithm 9 Reception of ShardUpdateTx

1: Input: ℎ𝑚
𝑖
, S

2: upon receive 𝑆ℎ𝑎𝑟𝑑𝑈𝑝𝑑𝑎𝑡𝑒𝑇𝑥 from any shard
3:
4: if (𝑝𝑖 ∈ 𝐶𝑚 (ℎ𝑚𝑖 + 1) ∧ emittingShardOf(ShardUpdateTx) ∈ S) then
5: addTxToNextMasterchainBlock(ShardUpdateTx)
6:

5.4 Cross-shard transactions’ confirmation
In the following, we suppose that the shard where 𝑝𝑖 belongs is

called shard transmitter 𝑠𝑡 . The receiving shard, denoted by 𝑠𝑟 , is

then notified using a ShardUpdateTx confirmed in the masterchain.

More operationally, cross-shard transactions are divided in two.

First, the 𝑠𝑡 processes the transaction as an intra-shard payment

transaction and confirms the financial capabilities of the process

for the operation. Then, it sends to the masterchain a ShardUpdate

transaction 𝑆𝑈1 containing the cross-shard transaction. Upon re-

ceving 𝑆𝑈1, 𝑠
𝑟
asks for the block referenced in it. After its reception

and depending on the cross-shard transaction involving another

process or a smart-contract, 𝑠𝑟 puts different transactions in its

shardchain. In the case of a payment transaction, the only added

transaction is the original payment transaction. In the case of a

smart-contract method invoke, another transaction containing the

results of the invoke is put in the block in addition to the original

payment transaction. After the creation of the block containing

this/these transaction(s), 𝑠𝑟 sends a ShardUpdate transaction 𝑆𝑈2 to

the masterchain. After receiving it via a masterchain block, shard 𝑠𝑡

will also ask for the transactions contained in the 𝑆𝑈2 and in case

of a method invoke, put the resulting transaction in its shardchain

thus making available the result of the invocation. The cross-shard

transaction confirmation process is illustrated in Figure 6 and in

the Algorithm 10. Since confirming a cross-shard transaction is a

lengthy process, one or both shards may no longer exist at some

point in the confirmation process. To cope with this, all messages

are sent to the shard with the closest label (using the distance func-

tion defined in Definition 10) to the one of the sending/receiving

shard.

Algorithm 10 The actions of 𝑝𝑖 for confirming a received cross-

shard tx.

1: Initialization : S := {Y }
2:
3: action getCrossShardTxs()
4: upon receive 𝑏𝑙𝑜𝑐𝑘 containing < CrossTx, _, shardOf(𝑝𝑖) > from𝐶𝑚 (𝑡)

/*𝐶𝑚 (𝑡) being the masterchain committee at time t */
5: for each (𝐶𝑟𝑜𝑠𝑠𝑇𝑥 ∈ 𝑏𝑙𝑜𝑐𝑘)
6: if (𝐶𝑟𝑜𝑠𝑠𝑇𝑥.𝑙𝑎𝑏𝑒𝑙 == 𝑝𝑖 .𝑙𝑎𝑏𝑒𝑙) then
7: send <GETBLOCK, CrossTx.label, 𝑔𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝐻𝑎𝑠ℎ𝑂𝑓 (𝐶𝑟𝑜𝑠𝑠𝑇𝑥)> to all pro-

cesses belonging to the shard with the closest label to CrossTx.label
/* 𝑔𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝐻𝑎𝑠ℎ𝑂𝑓 (𝐶𝑟𝑜𝑠𝑠𝑇𝑥) returns the hashcode of the shardchain
block containing the cross-shard transaction referenced in the masterchain
block. */

8:
9: action confirmCrossShardTxs()
10: upon receive 𝑠ℎ𝑎𝑟𝑑𝐵𝑙𝑜𝑐𝑘 as reply to <GETBLOCK, _, _>
11: for each (𝐶𝑟𝑜𝑠𝑠𝑇𝑥 ∈ 𝑔𝑒𝑡𝑀𝑦𝐶𝑟𝑜𝑠𝑠𝑆ℎ𝑎𝑟𝑑𝑇𝑥𝑠 (𝑠ℎ𝑎𝑟𝑑𝐵𝑙𝑜𝑐𝑘))

/* 𝑔𝑒𝑡𝑀𝑦𝐶𝑟𝑜𝑠𝑠𝑆ℎ𝑎𝑟𝑑𝑇𝑥𝑠 () returns the list of cross-shard transactions
in 𝑠ℎ𝑎𝑟𝑑𝐵𝑙𝑜𝑐𝑘 that involve 𝑝𝑖 shard. */

12: if (isValid(𝐶𝑟𝑜𝑠𝑠𝑇𝑥)) then
13: addTxToMempool(𝐶𝑟𝑜𝑠𝑠𝑇𝑥)

/* 𝑎𝑑𝑑𝑇𝑥𝑇𝑜𝑀𝑒𝑚𝑝𝑜𝑜𝑙 (𝐶𝑟𝑜𝑠𝑠𝑇𝑥) puts𝐶𝑟𝑜𝑠𝑠𝑇𝑥 in its mempool in or-
der to propose it for future shard blocks. */

14:

13

Figure 6: Handling cross-shard transactions: Yggdrasil relies on the masterchain to handle the confirmation of cross-shard
transactions. When the cross-shard transaction tx1 is broadcast, (i) tx1 is confirmed by the sending shard’s committee, (ii) a
ShardUpdateTx containing the merkle root of tx1 is sent to the masterchain by the shard committee and (iii) it is confirmed by
the receiving shard. If tx1 involves a Smart-Contract, the Smart-Contract’s response must be contained in a different transaction
tx2 and sent to the masterchain as a ShardUpdateTx.

6 YGGDRASIL ANALYSIS
6.1 State-sharding
Before analyzing main properties of Yggdrasil, we show that Yg-
gdrasil implements state sharding. It means that in Yggdrasil, at any

time, when there are a least two shards, two processes in different

shards do not maintain the same state. Moreover, the union of the

states of the different shards is the state of the whole system. Yg-

gdrasil ensures that if a node is in a shard, it keeps only track of its

shardchain, and of the masterchain.

To prove that Yggdrasil implements state-sharding, we need to

have a formal definition of what the state sharding is. First, let

us define the notion of state. The current state of a blockchain

system corresponds to the current value of accounts and smart

contracts in the system. It can be obtained by the sequential modifi-

cations/updates (confirmed transactions) applied to its initial state

(genesis block).

As in Definition 1, recall that the state of a shard is the cur-

rent value of the variables and accounts (smart contracts, users’

balance) in this shard. The current state of a shard is the result

of the successive modifications of the initial state of this shard.

These modifications are the application of the blocks added to the

shardchain.

Let us assume that the current shardchain 𝑠 consists of the chain

𝑏𝑠
0
, . . . , 𝑏𝑠

𝑘
. The initial state of 𝑠 is the valuation of the variables and

account set in 𝑏𝑠
0
. The current state state of 𝑠 is the current valua-

tions of the variables and accounts after applying blocks 𝑏𝑠
1
, . . . , 𝑏𝑠

𝑘
to its initial state. By abuse of language, we say that state′ is the

14

prefix of the state state of shard 𝑠 , and we denote it state′ ⊑ state, if
either state′ is the initial state of 𝑠 , or state′ is obtained after apply-
ing blocks 𝑏𝑠

1
, . . . , 𝑏𝑠

𝑘 ′
to the initial state of 𝑠 , with 𝑘′ ∈ {1, . . . , 𝑘}.

Definition 13 (State-sharding).

• The state of a node is a prefix of the state of the shard he is
member of:
∀𝑝𝑖 ∈ 𝑠𝑙 , state𝑖 ⊑ state𝑠𝑙 , where state𝑠𝑙 is the state of the
shard 𝑠𝑙 .

• When two nodes are members of the same shard, one’s state
is necessarily the prefix of the other’s state:
if 𝑝1, 𝑝2 ∈ 𝑠𝑙 , then state1 ⊑ state2 or state2 ⊑ state1.

• When two nodes are not the in the same shard, then their
state are not prefix of one another. Moreover, the intersection
of their states is a prefix of the state all nodes should share.
If there is no such state to be shared by all nodes, then the
intersection should be empty:
If 𝑝1 ∈ 𝑠1 and 𝑝2 ∈ 𝑠2 such that 𝑠1 ≠ 𝑠2, then state1 ∩
state2 ⊑ state

SharedKnowledge
. When there is no structured

shared information between shards, state
SharedKnowledge

is
always empty.

Lemma 14. Yggdrasil implements state-sharding.

Proof. Before trying to prove that Yggdrasil implements state-

sharding, let us recall that in blockchain with state sharding, the

state corresponds to the current value of accounts and smart con-

tracts in the system. It can be obtained by the sequential modifi-

cations/updates (confirmed transactions contained in confirmed

blocks) applied to its initial state (genesis block). One can think that

nodes in different shards do not share any information but nodes

from different shards can share some information represented in

our work with the masterchain (see section 2.2 for more details).

To prove that Yggdrasil implements state-sharding, we prove

here each point of definition 13:

• Let 𝑝1 be a process assigned to 𝑠1. 𝑝1 maintains its own copy

of 𝑠1’s shardchain, which corresponds to its state 𝑠𝑡𝑎𝑡𝑒1. 𝑝1
receives the blocks of 𝑠1 after a transmission delay 𝛿 . It is

therefore 𝛿 seconds behind the most advanced state of 𝑠1,

𝑠𝑡𝑎𝑡𝑒𝑠1 . 𝑝1’s state 𝑠𝑡𝑎𝑡𝑒1 is therefore prefix of 𝑠𝑡𝑎𝑡𝑒𝑠1 .

• Let 𝑝1 and 𝑝2 be processes assigned to 𝑠1. 𝑝1 and 𝑝2 both

maintain their own copy of 𝑠1’s shardchain. One of them,

let’s say 𝑝1 necessarily receives the blocks and therefore

updates its state 𝛿 seconds before 𝑝2. 𝑝1’s state 𝑠𝑡𝑎𝑡𝑒1 is

therefore prefix of 𝑝2’s state 𝑠𝑡𝑎𝑡𝑒2.

• Let 𝑝1 and 𝑝2 be processes respectively assigned to 𝑠1 and

𝑠2. 𝑝1 and 𝑝2 do not maintain copies of the same shard-

chain, however, they both maintain copies of the master-

chain. Therefore, their states 𝑠𝑡𝑎𝑡𝑒1 and 𝑠𝑡𝑎𝑡𝑒2 have nothing

in common except the masterchain which represents the

shared knowledge.

□

6.2 Safety of the assignment
The safety of Yggdrasil ensures that transactions and processes

are well assigned and that the assignments are verifiable by any

process. More in detail, we have that (i) Each intra-shard transaction

is assigned to a unique shard, (ii) Process assignment is verifiable by
any other process, and (iii) At any time, each process is assigned to
exactly one shard. Thanks to these properties, no inconsistency can

happen due to the assignments. Each process knows which shard it

is in and can compute the shard of any other process. Additionally,

each transaction is assigned to the shard of its emitter. It means

that conflicting transactions will be managed by the same shard,

hence preventing the risk of inconsistencies.

Lemma 15. Each intra-shard transaction is assigned to a unique
shard.

Proof. Let 𝑡𝑥 be a non-cross-shard transaction that has one

sender and at most one receiver (in the case of a smart-contract

deploy, there is no receiver). 𝑡𝑥 is assigned in the shard(s) of the

sender and receiver if any. Since at time t, each user is assigned

to a single shard and tx is not a cross-shard, then both nodes are

necessarily in the same shard 𝑠 so the transaction is only assigned

to a unique shard 𝑠 . □

Lemma 16. Process assignment is verifiable by any other process.

Proof. Let 𝑝𝑖 be a process. First, let us consider that 𝑝𝑖 is a

user, its assignment is static and computed using the ID of the

user and the set of shards at a given masterchain height ℎ𝑚
𝑖
(line

11 of Algorithm 6 then line 7 of Algorithm 7). The ID of a user

is public information, and the set of shards is computable using

the masterchain state (public information). All parameters used to

compute 𝑝𝑖 ’s assignment are public, therefore user assignment is

verifiable by any process in the system.

Now, let us consider the case of 𝑝𝑖 as a validator, its assignment

is done using a VRF. As explained in section 4.8, VRFs allow us

to verify its output using the public key of the validator (public

information), the stake transaction that identifies the validator

process (public information) and the unforgeable proof (generated

by the VRF) the validator has to send with all its messages. All

parameters used to compute 𝑝𝑖 ’s assignment are either public or

provided by the process itself, therefore validator assignment is

verifiable by any process in the system.

Since a process can either be a user or a validator and its as-

signment is verifiable in both cases, then process assignment is

verifiable. □

Lemma 17. At any time, each process is assigned to exactly one
shard.

Proof. Let 𝑝 be a process and 𝑖𝑑 its identifier. Its assignment is

computed using the getClosestShard() function (see line 7 of Algo.

7) as specified in definition 11. It uses the distance function (see

Definition 10) with 𝑖𝑑 and the set of all shards (computed deter-

ministically at a height ℎ of the masterchain) as input parameters.

The result of the distance function is a single shard 𝑠ℓ among those

given as input.

Note that the assignment shard 𝑠ℓ is unique because:

• Shards labels satisfy the non-inclusion property [35], which

means that a shard cannot be part of another shard.

• The XOR function has the property that for any point a,

there exists one and only one point b such that b is at a

certain distance 𝑑 from a.

15

□

6.3 Eventual confirmation
The liveness property of interest for Yggdrasil is that all valid trans-
actions are eventually confirmed. Any intra-shard transaction is

assigned to one shard that manages it. If it is valid, it will be con-

firmed by the shard. On the other hand, cross-shard transactions

are managed by two shards. However, if such a transaction is con-

firmed in the first shard, there is no conflict, and the transaction is

correct. Since the transaction is valid, therefore, it will be confirmed

by the target shard too.

Lemma 18. Valid intra-shard transactions are eventually put in a
block of the corresponding shard.

Proof. Let us assume that property P3 is satisfied (see section

7.3). We say that the system is scalable, which means that the aver-

age transaction confirmation rate is roughly equal to the average

transaction submission rate. If we assume that transactions are pro-

cessed in order of arrival, then no transaction is processed before

an older transaction.

Since property P3 is satisfied and transactions are processed in

order of arrival, therefore, all transactions are eventually processed.

More precisely, at time 𝑡 , a shard processes all its intra-shard

transactions submitted at time 𝑡 ′ ≤ 𝑡 − 𝛿 (where 𝛿 finite is the time

of transfer and require to process a transaction), and if they are

valid, the shard puts them in its shardchain. □

Lemma 19. Valid cross-shard transactions are eventually confirmed.

Proof. A cross-shard transaction is confirmed by the system, if

it is confirmed in both shards involved (Definition 4).

Let 𝑡𝑥0 be a valid cross-shard transaction involving shards 𝑠1 and

𝑠2. We prove here that 𝑡𝑥0 is necessarily confirmed in the system. Let

𝑡𝑥1 and 𝑡𝑥2 be the two components of 𝑡𝑥0 concerning respectively

shards 𝑠1 and 𝑠2. Since 𝑡𝑥0 is valid, then 𝑡𝑥1 and 𝑡𝑥2 are both valid.

To prove that the cross-shard transaction 𝑡𝑥0 involving 𝑠1 and 𝑠2 is

confirmed, we prove in the following that 𝑡𝑥1 is confirmed by 𝑠1,

and 𝑡𝑥2 is confirmed by 𝑠2.

By lemma 18, if 𝑡𝑥1 is valid, it is eventually put in a block, say 𝑏1
in the shardchain of 𝑠1. Once 𝑏1 is appended to the shardchain of

𝑠1, a ShardUpdateTx 𝑆𝑈1 containing 𝑡𝑥1 is sent to the masterchain

(cf. line 9 of Algo. 8). Since 𝑆𝑈1 is necessarily valid, by Lemma 18, it

will be put in the masterchain, which confirms 𝑏1, and by extension

𝑡𝑥1. As defined in equation 2, 𝑆𝑈1 contains the label of the shard 𝑠1,

the hash of 𝑏1, the status of the shard 𝑠1 and the set of cross-shard

transactions contained in 𝑏1).

Thanks to the presence of 𝑆𝑈1 in the masterchain, 𝑠2 is notified

of the presence of a cross-shard transaction in block 𝑏1 (line 4 of

algorithm 10). 𝑠2 then asks to receive 𝑏1 and thus 𝑡𝑥1 (line 7 of

algorithm 10) then inserts 𝑡𝑥2 in a newly created block 𝑏2 appended

to its shardchain. In the same way as 𝑏1, 𝑏2 is then referenced in

the masterchain using a ShardUpdateTx 𝑆𝑈2, which confirms 𝑡𝑥2.

We have that 𝑡𝑥1 is confirmed by 𝑠1 and 𝑡𝑥2 is confirmed by 𝑠2.

Therefore, 𝑡𝑥0 is confirmed in the system (Definition 4).

□

6.4 Security
The security properties concern the guarantee Yggdrasil provide

against adversaries. Concretely, we have that in Yggdrasil, (i) Val-
idators (re-)assignment is unpredictable in advance (before a new
block is appended to the masterchain), (ii) Validators are dynamically
re-assigned, (iii) No validator has control on how it is (re-)assigned.
More importantly, in Yggdrasil, with high probability, at any time,
no shard is corrupted. Thanks to these properties, the adversary

cannot predict in which shard a validator would be. Therefore, it

will be complicated to target a given shard to compromise it. These

properties hold thank to the impredictability of the seed used for

the (re-assignement), since validator can predict it in advance.

7 PERFORMANCE EVALUATION
We evaluated the performances of Yggdrasil against the following

properties: (i) scalability, i.e. capacity to scale during a peak of trans-

action load in terms of block/transaction throughput and latency,
(ii) reactivity in terms of number of shards in the system, against a

sudden and abrupt transaction fluctuation, i.e. during and after a

burst of transactions and (iii) the impact of cross-shard transactions.

We evaluate Yggdrasil scalability using 500k historical Ethereum

transactions [36] contained in 10k blocks; between the 14, 700, 000𝑡ℎ

and the 14, 710, 000𝑡ℎ blocks created between 02/05/2022 at 20:54:24

and 04/05/2022 at 10:47:00. For reactivity we consider realistic fluc-

tuations (by scaling time from real-time minutes to simulation

seconds) and we compare Yggdrasil to time-driven approaches. For

cross-shard transaction we use a synthetic scenario, to evaluate

performance under ever increasing proportion of cross-shard vol-

ume (from 0% to 100%). The source codes of these protocols as well

as all the scripts of the experiments are publicly accessible [37].

7.1 Simulator and experimental environment
Weused an agent-based simulation framework dedicated to blockchain

systems, called Multi-Agent eXperimenter (MAX) [38] based on

the MaDKit framework [39]. MAX offers generic libraries to easily

develop distributed ledger protocols and a large range of simulation

scenarios. The simulator is a discrete event simulator, where the unit

of simulation time is referred to as a tick. Message-passing libraries

allow us to configure different types of communication schemes

and message delays. In this work, the communication schema is

configured as a reliable broadcast with configurable delay to re-

flect assumptions on our reliable broadcast (see Section 3 for more

details). Impact of message losses is left for future works. All the

experiments have been run on Grid’5000, a large-scale and flexible

test-bed for experiment-driven research [40]. Due to the computa-

tional complexity of simulation models and experiments involving

a representative number of agents, each experiment presented in

this paper takes in average 24 hours.

7.2 Simulation model
The Yggdrasil protocol has been implemented in the simulator

on top of an implementation [41] of the Tendermint protocol[20],

used for each shard. As for the generated workload we used for the

scalability study a set of historical ethereum transactions containing

records of the past 2 years, namely from 13/03/2020 to 14/03/2022

16

[36]. For reactivity and the impact of 2PC algorithm, synthetic

workloads have been generated.

For all the experiments presented in the paper the block capacity,

that is the maximal number of transactions a block can embed, is

set to 100 transactions (to avoid the simulator overload). Note that

while in general, the block capacity is approximately equal to 4, 000

transactions [42], reducing the block capacity does not affect the

behaviour of the protocols.

For each experiment, we have run sufficiently many simulations

to get a confidence interval equal to 5 ± %. For each experiment,

7.3 Scalability
This section studies the capability of Yggdrasil to handle high trans-

action submission rates. Specifically, we evaluate the transaction

confirmation rate, the number of unconfirmed transactions and

the transaction latency, i.e., the average time elapsed between the

submission of a transaction in the network and the time at which

the transaction is confirmed. We compare the performance of Yg-

gdrasil to solutions with static sharding such as Monoxide[10] with

a number of shards 𝑛 throughout the simulation.

7.3.1 Experiment setting. The overload threshold Γ is fixed to 90%

for Yggdrasil. Note that when Γ = 100%, splits never occur and

thus Yggdrasil reduces to Tendermint (𝑛=1). The submission rate

of transactions 𝑓t, which represents the number of transactions

submitted per tick of simulation, is set at the beginning of each

experiment. 𝑓t varies from 1 to 1280 txs/tick. Let us remark that we

get in expectation one block created every 10 ticks. This means that

in Tendermint 𝑓t = 10 txs/tick already exhausts the system transac-

tion treatment capacity, as the system creates one block every 10

ticks in expectation and one block contains 100 transactions. From

this observation, we might expect that for 𝑓t > 10 txs/tick, pend-

ing transactions will accumulate over time in, at least, Tendermint

ledger. Note that to avoid the overload of the simulator we were

limited to 𝑓t = 1280 txs/tick. Anyway, setting 𝑓t up to 1280 txs/tick

allows us to severely stress Tendermint and Yggdrasil. Similarly to

Bitcoin Core client, validators give priority to old transactions in

our implementations of Tendermint and Yggdrasil.

7.3.2 Experiment results. The main results of our experiments ap-

pear in Figures 7a, 7b and 7c. Note that in all the graphs, points are

linked together with lines. This is only for readability reasons.

Figure 7a shows the confirmation rate of transactions as a func-

tion of their submission rate 𝑓𝑡 . The main observation regarding

static sharding solutions is that whatever the number of shards 𝑛

is, they show a limited transaction confirmation rate (e.g. approxi-

mately 200 txs/tick for 𝑛 = 32 shards). On the contrary, this rate is

auto-adaptive for Yggdrasil which reaches more than 1.200 txs/tick

while Tendermint (𝑛 = 1) reaches only 15 txs/tick (85 times less

powerful) which confirms the interest of dynamic sharding when

it comes to scalability. The implemented static-sharding solution

does not allow to reach such good performances even with 𝑛 = 32

shards. In order to better understand our simulation results, let us

give a correspondence between our simulated system and what

would give us a real system. According to [43], Tendermint has a

transaction confirmation capacity of approximately 500 txs/s. Pro-

portionally and taking the same basic parameters such as block size

and inter-block delay, Yggdrasil would be able to confirm about

42.000 txs/s. Note that the ability of Yggdrasil to match its transac-

tion confirmation capacity to the arrival rate of these transactions

already allows us to glimpse its scalability potential. Figure 7b illus-

trates the average transaction latency as a function of 𝑓𝑡 . In contrast

to all the other experiments, transaction latency has been measured

as follows: transactions are submitted at 𝑓𝑡 for a while, then 𝑓𝑡 is set

to 0, and simulations stop once all the submitted transactions have

been confirmed. For static sharding solutions, latency is increasing

in average but reaches lower values as the number of shards 𝑛

increases (450 tick/tx for 𝑛 = 1 and 50 tick/tx for 𝑛 = 32). On the

other hand, Yggdrasil with its dynamic sharding shows a stable and

lower latency (16 tick/tx). Figure 7c shows the average number of

transactions that accumulate at the end of the simulation before

being embedded in blocks. The number of unconfirmed transac-

tions shows that Yggdrasil has a better confirmation capacity than

systems with a static number of shards shown by a lower number

of pending transactions at the end of the simulation. Note that the

number of pending transactions is close to 0 but not null because

simulations are interrupted while transactions are still arriving,

thus not confirmed yet by newly created blocks.

7.4 Reactivity
This section assesses the capacity of Yggdrasil to react to sudden and

abrupt fluctuations in the creation transaction rate. Additionally,

we compare Yggdrasil, which is event-driven, to the time-driven

adaptability some solutions of our related-work provide (e.g, Elrond

[22], Omniledger [3]). We thus study the reactivity of solutions that

adapt the number of shards at specific reconfiguration periods rp.

7.4.1 Experiments setting. As briefly presented in Section 4.5, when
𝑓t shrinks, the system reacts by progressively decreasing the (under-

loaded) sibling shards, and thus the number of created blocks. Thus

each merge divides by almost two the number of blocks subse-

quently created. By the randomness of transaction identifiers, if

one shardchain becomes under-loaded, then soon after, all the shard-

chains become under-loaded too, and thus merges occur in cascade.

Initially, 𝑓t = 500 txs/tick during 10 ticks to mimic a transaction

peak load, and then at tick 𝑡 = 12, 𝑓𝑡 = 0 txs/tick. Split parameters

Γ and 𝑇 are set respectively to 90% and 5, while merge parameters

𝛾 and 𝜏 are set respectively to 10% and 2. As for the time-driven

parameters, rp is set to 10, 20, 50, 100, 500, 1000 and 1440 ticks. The

latter matching the reconfiguration period of Omniledger [3] and

Elrond [22] (a day).

7.4.2 Experiments results. Figure 7e shows the reactivity of Yg-

gdrasil in presence of a load peak (constant function from 𝑡 = 1

to 𝑡 = 11 ticks at 𝑓t = 500txs/tick). Yggdrasil initially undergoes

a series of splits, it reaches a maximum transaction confirmation

rate of 375 txs/tick in order to lower latency to 35 ticks. Then, it

progressively moves on to a series of merge up to converging to a

single shard. The time-driven solution, on the other hand, performs

less well since it does not adapt its number of shards automatically.

Indeed, at low values of rp such as 10 or 20 ticks, the system still

manages to increase the confirmation rate (190-250 txs/tick) to ab-

sorb the increase in throughput thus lower latency (70-85 ticks). At

medium values such as 50 or 100 ticks, the system reacts late and

17

(a) Transaction confirmation rate as a
function of the transaction submission rate.

(b) Transaction average latency as a
function of their submission rate.

(c) Number of unconfirmed transactions as a
function of their submission rate.

(d) Transaction average latency as a function
of cross-shard transaction probability.

Solution Yggdrasil rp=10 rp=20 rp=50 rp=100 rp=500 rp=1000 rp=1440

Rate (txs/tick) 375 253,5 189 120 60 15 15 15

Latency (tick) 35,8 71,4 85,5 114,5 123,9 132 132 132

(e) Maximum rate and average latency of Yggdrasil
and time-driven solutions in presence of a peak
of load. Note that 1440 ticks corresponds to a day,
which is the reconfiguration period used by Elrond
[22] and Omniledger [3].

(f) Transaction average latency with 2-phase
commit algorithm.

Figure 7: Performance evaluation of Yggdrasil.

many transactions are already passed at a lower confirmation rate

(60-120 txs/tick) and therefore with a higher latency (115-125 ticks).

For our highest values rp > 100𝑡𝑖𝑐𝑘𝑠 , the system does not even

realize that there has been an increase in the incoming transaction

rate and does not react, therefore, all transactions are confirmed

in one shard, with a low rate (15 txs/tick), thus a high latency (132

ticks) unlike Yggdrasil which shows optimal performance with a

reactive confirmation rate, thus a lower latency.

7.5 Cross-shard volume
This section studies the impact of various cross-shard transactions

volumes on the performances of Yggdrasil. The volume of cross-

shard transactions is defined as the ratio of the number of cross-

shard transactions to the total number of transactions at a given

time. We vary this ratio to observe its impact on system scalability.

7.5.1 Experiment setting. Additionally to the experiments settings

defined in section 7.3.1, we vary the cross-shard transaction prob-

ability 𝑝𝑐 from 0 to 1 to observe the impact of cross-shard trans-

actions. Note that 𝑝𝑐 represents the probability that each time a

transaction is created, it involves two users from two different

shards. Transaction creation rate is set to 𝑓𝑡 = 640 txs/tick.

7.5.2 Experiment results. The main results of our experiments ap-

pear in the graphs of Figure 7d. Note that in all the graphs, points

are linked together with lines. This is only for readability reasons.

Figure 7d shows the average transaction latency as a function of the

cross-shard transaction probability 𝑝𝑐 . The main observation is that

with dynamic or static sharding solutions whatever the number of

shards 𝑛 is, latency increases as 𝑝𝑐 increases. It also decreases as 𝑛

increases and is extremely low for Yggdrasil (as shown in Section

7.3) since the number of shards in this specific scenario depends on

the transaction arrival rate.

7.6 2PC algorithm
This section studies the performance impact of our newly presented

2PC algorithm for distributed smart-contracts (see Section 4.1). This

algorithm allows to lock a smart-contract while exchanging with

other shards during one of its methods’ execution. We study the

impact of 2PC on transaction latency.

7.6.1 Experiment setting. Additionally to the experiments settings

defined in section 7.3.1, we study transaction latency (i.e. time spent

between creation and confirmation of a transaction) of Yggdrasil

while using our 2PC algorithm under three different configura-

tions: (i) no-sharding (ii) static sharding and (iii) dynamic sharding.

Transaction creation rate is set to 𝑓𝑡 = 160 txs/tick. Transactions

are all sent to 𝑆𝐶1 which calls 𝑆𝐶2. The addresses of 𝑆𝐶1 and 𝑆𝐶2
have been created so that these two smart-contracts can not be

assigned to the same shard (if there is more than one). In this way,

in a sharded configuration (at least 2 shards), any call between 𝑆𝐶1
and 𝑆𝐶2 would inevitably trigger our 2PC algorithm.

7.6.2 Experiment results. The main results of our experiments ap-

pear in the graph of Figure 7f. It shows the average transaction

latency for the three different configurations presented above. The

main observation is that in no-sharding solutions (Ethereum for

instance), latency is the lowest (50 ticks). When the ledger is state-

sharded, the smart-contract needs to be locked for each invoke,

which makes transactions wait longer, thus a higher latency. Please

18

note that as said before, only cross-shard calls involve the use of

our algorithm, thus smart-contract lock and higher latencies (as can

be seen in the static sharding configuration, i.e. 800 ticks). Finally,

dynamic sharding solutions such as Yggdrasil allow to have a stable

and low latency (110 ticks) despite smart-contract locking. This is

a side-effect of our split-merge mechanism. When our system is

sharded, only one transaction can be put in a block because this

transaction locks the contract which would have to wait for a return

from the other smart-contract located in another shard. This under-

fills leads to shards merging. On the other hand, when our system is

not sharded, blocks can be fulfilled because no transaction requires

smart-contract locking. This overfill leads to shards splitting. In

other words, our system alternates splitting and merging. By doing

so, it can confirm transactions in less time than in static sharding

solutions but in more time than solutions with no sharding in this

particular scenario. Note that in this experiment, there are no finan-

cial transaction that could fill blocks, which could hinder a merge.

In this case, Yggdrasil would have the same transaction latency as

static sharding solutions.

8 RELATEDWORK
8.1 Evolution of sharding in blockchains
In the past few years many sharding solutions have been proposed

to improve blockchain performance.

RScoin [2] is one of the first protocols that implements transac-

tion sharding with the objective of controlling monetary supply: a

central bank maintains complete control over the monetary supply,

but relies on a distributed set of authorities, or mintettes, to col-

lect transactions and prevent double-spending using a two-phase

commit protocol. No consensus mechanism is used since mintettes

are known and trusted, which makes the protocol strongly permis-

sioned.

Elastico[4] was the first to provide a sharded solution in permis-

sionless settings. Elastico proposes a PoW-based sharded blockchain

that combines both network and transaction sharding to scale trans-

action rates almost linearly with available computational power.

PoW-based state sharding has been proposed by Omniledger[3]

and Rapidchain[8], showing optimized performances via parallel

transaction processing. More recently, Monoxide [10] proposed a

state-sharding solution proposing asynchronous synchronization

among shards. Each shard maintains its blockchain through a PoW

Nakamoto consensus. Authors aims at implementing eventual atom-
icity of cross-chain transactions, i.e. atomicity is guaranteed only if

neither the source nor the target shards’ blockchain fork.

In the realm of Proof-of-Stake (PoS) permissionless settings,

StakeCube[9] combines network and transaction sharding in such

a way that the number of shards scales sub-linearly with the total

number of active UTXOs. Shards validate transactions in parallel,

and a Byzantine agreement protocol, run among subsets of shards,

collects shard contributions (set of validated transactions) to create

blocks. The periodic re-assignment of UTXOs owners to the shards

relies on a randomized shuffling technique which allows StakeCube

to defend against an adaptive adversary. Shuffling is a form of re-

assignment that guarantees that the adversary cannot predict the

shards in which nodes will sit.

As for state sharding in PoS settings, some popular cryptocur-

rencies, such as TON[44] and Elrond[22], propose a state sharding

blockchain capable of adapting the number of shards at run-time.

Both solutions, however, rely on synchronous network assumptions

while security assumptions are unclear. Brokerchain [5] focuses on

cross transactions issues, proposing a cross-sharding blokchain pro-

tocol that aims at reducing the volume of cross-shard transactions

by clustering nodes on the basis of their past exchanges. To this aim

BrokerChain proposes a state-graph partitioning algorithm that is

executed by a main chain in charge of sharing out nodes among

shards.

Gramoli et. al. [45] present a blockchain-agnostic shard manage-

ment mechanism applicable to sharded blockchain solutions. For

their experimentation, they evaluate their solution on a blockchain

called CollaChain [46]. The solution presented a novel idea to recon-

figure sharding without disrupting the blockchain service through

dedicated smart contract invocations.

8.2 Comparison of existing solutions to
Yggdrasil

In this section we compare main sharding solutions against Yg-

gdrasil along six criteria as shown in Table 1.

State sharding support. Most recent solutions in PoS settings

aim at implementing state sharding [3, 5, 8, 10, 22, 44], as Yggdrasil

does. All these solutions must provide support to cross-shard trans-

actions. Omniledger relies on a two-phase atomic commit protocol

driven by the client, where shards do not communicate to each

other. Note that the need of a two-phase commit stems from the

fact that Ominledger transactions follow a UTXO model where

each financial transaction must be verified retrieving all the par-

ent transactions, possibly distributed in different shards. Other

solutions relies on inter-shard communication to confirm cross-

shard transactions, like Rapidchain [8], Monoxide [10] and Broker-

chain [5], which use special users which exist in multiple shards

and act as relays between shards. Other approaches [22, 44] use a

globally-shared blockchain named masterchain (or metachain) to

maintain synchronization between shards and thus confirm cross-

shard transactions. Yggdrasil uses a masterchain-based solution to

confirm cross-shard financial transactions. As for general smart

contracts, atomicity is guaranteed via a 2PC protocol among shards.

Note that a 2PC protocol is not needed for financial transactions in

Yggdrasil because of the account-based nature of transactions. As

for smart contract support, only [22, 44] manage smart contracts.

The support however is only related to the management of smart

contract-to-shard assignment but there is no support for atomicity

of smart contracts in the general case. To the best of our knowledge,

Yggdrasil is the sole academic proposal managing smart contracts

in a sharded environment offering a 2PC protocol to assure their

atomicity.

Node-to-Shard assignment. In permissionless settings, node-

to-shard assignment must be unpredictable. To this end, the se-

lection and assignment of processes can be based on PoW [3, 4,

8, 10], PoS [22, 44], often coupled with decentralized partitioning

(identifier-based, DHT, etc.). Some solutions propose to re-assign

19

Elastico [4] Omniledger [3] Rapidchain [8] StakeCube [9] TON [44] Elrond [22] Monoxide [10] BrokerChain [5] Yggdrasil

State-sharding

Support No Yes Yes No Yes Yes Yes Yes Yes

Smart-Contract

Support No No No No Yes Yes No No Yes

Atomic-Commit / / / / No No / / Yes

Node-to-Shard Assignment

Model PoW PoW/PoX Offline PoW UTXO Ownership PoS PoS PoW PoS PoS

Predictability No No No No No No Yes Yes No

Adaptability Time-driven Time-driven Time-driven Event-driven Event-driven Time-driven Static Time-driven Event-driven

Type of Protocols

Intra BFT BFT BA BA BFT SPoS PoW PBFT BFT

Inter / BFT / / BFT SPoS PoW PBFT BFT

Security Asumptions

Network Partially synchronous Synchronous Synchronous As required for the BA
9

Synchronous Synchronous Partially synchronous Synchronous Partially synchronous

Failure

Adaptive Weakly Weakly Weakly Weakly N/A Weakly N/A N/A Weakly

Threshold 25% 25% 33% 33% 33% 33% 50% 33% 33%

Cross-shard transaction reduction No No No No No No Discussed Yes Yes

Table 1: Comparison table of blockchain sharding solutions.

regularly nodes to cope with an adaptive adversary [9, 44]. Yg-

gdrasil embraces the same approach. Note that Brokerchain uses a

public globally known predictable heuristic to re-assign nodes.

Adaptability (time/event-driven). Adaptability refers to the

adaptation of the number of shards to a given parameter specified

in the protocol, e.g. computational power of the system [4]. We

categorize how solutions manage the number of shards according

to whether their adaptability is (i) static, i.e., the number of shards

is fixed [2, 10], (ii) time-driven, i.e. the set of shards changes at

specific instants of time [3–5, 8, 22], or (iii) event-driven, the set
of shards changes automatically when appropriate conditions are

met [9, 44]. Yggdrasil falls in the event-driven category, proposing

a split/merge method to adapt to transaction load without jeopar-

dising the security of shards.

Type of protocols. Intra-shard protocols are typically consensus
protocols used to create blocks and elect block creators in each

shard. Mostly used consensus protocols in permissionless settings

are BFT Consensus [20, 21], Byzantine Agreements (BA) [12] and

Nakamoto-style consensus [11, 13, 17]. These protocols are typically

used with no or small adaptations in sharded blockchains (see Table

1). Election mechanisms, always in place to establish the nodes that

have rights to append blocks, are either based on PoW [4, 8, 10] or

on PoS [9, 22, 44]. Yggdrasil relies on the partially synchronous BFT

consensus of Tendermint for block creation while committees are

electedwith a PoS-basedmethod. For state-sharding solutions, inter-
shard protocols can require a BFT protocol [3], an asynchronous

communication protocol (e.g. [10]), or synchronous protocols (e.g.

BFT synchronous [44], stake-based Nakamoto-style [22]). Yggdrasil

uses inter-shard asynchronous protocols among shards.

Security assumptions. The security of the each solution lies in

the robustness to an adversary that can take control of both net-

work and nodes resources. Because of the need of Consensus, which

requires partially synchronous networks to function properly, the

best possible protection that blockchains can offer is tolerance to

an adversarial network affected by temporary network partitions.

Note that synchronous solutions [3, 8, 22, 44] are not robust to an

adversarial network. As for processes corruptions, the best possible

threshold that partially synchronous solutions based on BFT Con-

sensus can tolerate is the 33% threshold. Security in permissionless

blockchains is ensured by solutions coping with an adaptive ad-

versary [3, 4, 8, 9, 22]. Yggrdrasil relies on a partially synchronous

network, tolerates 33% threshold of corrupted validators in each

shard, being robust against an adaptive adversary, both at network

and node level in a permissionless setting.

Cross-shard transaction reduction. A simple way to reduce

the burden of cross-shard transactions is to let users choose the

shards they are interested in, i.e., the ones containing accounts of

their sellers and preferred smart contracts. This approach has been

mentioned in [10] but without providing any method to implement

it. Yggdrasil offers a complete specification of the method. Broker-

chain [5] uses a different approach: it proposes a shard formation

heuristic to maximize the probability that users interactions take

place inside a single shard. The heuristic, however, is fully public,

which does not guarantee the required level of unpredictability.

9 CONCLUSION
In this paper we presented Yggdrasil, the first adaptive and secure

sharding solution for general smart contracts in a permissionless

setting. By combining verifiable decentralized techniques for dy-

namic sharding and a novel 2PC algorithm, we demonstrated the

feasibility of sharding in such a challenging system paving the way

to inter-blockchains distributed applications in the future. As fu-

ture work, it would be interesting to further optimize cross-shard

protocols and study how incentives and fees could be re-designed

in a system where transactions are routed over multiple shards.

REFERENCES
[1] D. Agrawal, A. El Abbadi, M. J. Amiri, S. Maiyya, and V. Zakhary, “Blockchains

and databases: Opportunities and challenges for the permissioned and the per-

missionless,” in European Conference on Advances in Databases and Information
Systems. Springer, 2020, pp. 3–7.

[2] H. Tian, P. Luo, and Y. Su, “A centralized digital currency system with rich

functions,” in Provable Security: 13th International Conference, ProvSec 2019, Cairns,
QLD, Australia, October 1–4, 2019, Proceedings. Berlin, Heidelberg: Springer-

Verlag, 2019, p. 288–302. [Online]. Available: https://doi.org/10.1007/978-3-030-

31919-9_17

[3] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford, “Om-

niledger: A secure, scale-out, decentralized ledger via sharding,” Cryptology

ePrint Archive, Report 2017/406, 2017, https://ia.cr/2017/406.

[4] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, “A secure

sharding protocol for open blockchains,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16. Association

for Computing Machinery, 2016, p. 17–30.

[5] H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin, Z. Zheng, and S. Guo, “Brokerchain:

A cross-shard blockchain protocol for account/balance-based state sharding,” in

IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, 2022.
[6] Y. Tao, B. Li, J. Jiang, H. C. Ng, C. Wang, and B. Li, “On sharding open blockchains

with smart contracts,” in 2020 IEEE 36th International Conference on Data Engi-
neering (ICDE), 2020, pp. 1357–1368.

[7] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Parblockchain: Leveraging transaction

parallelism in permissioned blockchain systems,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), 2019, pp. 1337–1347.

[8] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling blockchain via

full sharding,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. Association for Computing Machinery,

2018, p. 931–948.

[9] A. Durand, E. Anceaume, and R. Ludinard, “Stakecube: Combining sharding

and proof-of-stake to build fork-free secure permissionless distributed ledgers,”

in Networked Systems: 7th International Conference, NETYS 2019, Marrakech,
Morocco, June 19–21, 2019, Revised Selected Papers. Berlin, Heidelberg: Springer-

Verlag, 2019, p. 148–165. [Online]. Available: https://doi.org/10.1007/978-3-030-

31277-0_10

[10] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asynchronous

consensus zones,” in 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). Boston, MA: USENIX Association, Feb. 2019,

pp. 95–112. [Online]. Available: https://www.usenix.org/conference/nsdi19/

20

https://doi.org/10.1007/978-3-030-31919-9_17
https://doi.org/10.1007/978-3-030-31919-9_17
https://ia.cr/2017/406
https://doi.org/10.1007/978-3-030-31277-0_10
https://doi.org/10.1007/978-3-030-31277-0_10
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping

presentation/wang-jiaping

[11] S. Nakamoto, “Bitcoin : A peer-to-peer electronic cash system,” 2009.

[12] J. Chen and S. Micali, “Algorand: A secure and efficient distributed ledger,” Theor.
Comput. Sci., vol. 777, pp. 155–183, 2019.

[13] B. M. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos: An adaptively-

secure, semi-synchronous proof-of-stake blockchain,” in EUROCRYPT, 2018.
[14] “Ethereum proof-of-stake consensus specifications.” [On-

line]. Available: https://github.com/ethereum/consensus-specs/tree/

52a741f7c6d3bec98e04df3441bc8e7681480877/specs/altair

[15] V. T. Hoang, B. Morris, and P. Rogaway, “An enciphering scheme based on a

card shuffle,” in Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, ser. Lecture
Notes in Computer Science, vol. 7417. Springer, 2012, pp. 1–13.

[16] E. Anceaume, A. D. Pozzo, T. Rieutord, and S. Tucci Piergiovanni, “On

finality in blockchains,” CoRR, vol. abs/2012.10172, 2020. [Online]. Available:
https://arxiv.org/abs/2012.10172

[17] V. Buterin, “Ethereum white paper: A next generation smart contract

& decentralized application platform,” 2013. [Online]. Available: https:

//github.com/ethereum/wiki/wiki/White-Paper

[18] “Cosmos: The internet of blockchains.” [Online]. Available: https://github.com/

cosmos/cosmos

[19] M. Bourgoin, “An overview of the tezos blockchain.”

[20] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on BFT

consensus,” CoRR, vol. abs/1807.04938, 2018. [Online]. Available: http:

//arxiv.org/abs/1807.04938

[21] L. Astefanoaei, P. Chambart, A. D. Pozzo, T. Rieutord, S. Tucci-Piergiovanni,

and E. Zalinescu, “Tenderbake - A solution to dynamic repeated consensus for

blockchains,” in 4th International Symposium on Foundations and Applications of
Blockchain 2021, FAB 2021, May 7, 2021, University of California, Davis, California,
USA (Virtual Conference), ser. OASIcs, V. Gramoli and M. Sadoghi, Eds., vol. 92.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 1:1–1:23.

[22] T. E. Team, “Elrond - A Highly Scalable Public Blockchain via Adaptive State

Sharding and Secure Proof of Stake,” Tech. Rep., 06 2019.

[23] E. Anceaume, A. Guellier, R. Ludinard, and B. Sericola, “Sycomore: A permission-

less distributed ledger that self-adapts to transactions demand,” in Proceedings of
the IEEE 17th International Symposium on Network Computing and Applications
(NCA), 2018.

[24] “Cardano.” [Online]. Available: https://github.com/input-output-hk/cardano-

node

[25] “Pyethereum.” [Online]. Available: https://github.com/ethereum/pyethereum/

blob/782842758e219e40739531a5e56fff6e63ca567b/ethereum/utils.py

[26] D. Skeen, “Nonblocking commit protocols,” in In Proceedings of the 1981 ACM
SIGMOD international Conference on Management of Data (SIGMOD), 1981, pp.
133–142.

[27] P. Robinson and R. Ramesh, “General purpose atomic crosschain transactions,” in

2021 3rd Conference on Blockchain Research & Applications for Innovative Networks
and Services (BRAINS). IEEE, 2021, pp. 61–68.

[28] G. Pîrlea, A. Kumar, and I. Sergey, “Practical smart contract sharding with

ownership and commutativity analysis,” in Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
ser. PLDI 2021. New York, NY, USA: Association for Computing Machinery,

2021, p. 1327–1341. [Online]. Available: https://doi.org/10.1145/3453483.3454112

[29] I. Abraham and D. Malkhi, “The blockchain consensus layer and BFT,” Bulletin
of the EATCS, vol. 3, no. 123, pp. 1–23, 2017.

[30] L. Lamport, R. Shostak, and M. Pease, The Byzantine Generals Problem. New

York, NY, USA: Association for Computing Machinery, 2019, p. 203–226.

[Online]. Available: https://doi.org/10.1145/3335772.3335936

[31] “Whisk: A practical shuffle-based ssle protocol for ethereum.” [Online].

Available: https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-

for-ethereum/11763

[32] L. A. Rodrigues, J. Cohen, L. Arantes, and E. P. D. Jr., “A robust permission-based

hierarchical distributed k-mutual exclusion algorithm,” in IEEE 12th International
Symposium on Parallel and Distributed Computing, ISPDC 2013, Bucharest, Roma-
nia, June 27-30, 2013, N. Tapus, D. Grigoras, R. Potolea, and F. Pop, Eds. IEEE,

2013, pp. 151–158.

[33] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial

synchrony,” J. ACM, vol. 35, no. 2, p. 288–323, apr 1988. [Online]. Available:

https://doi.org/10.1145/42282.42283

[34] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-Sanchez,

A. Kiayias, and W. J. Knottenbelt, “Sok: Communication across distributed

ledgers,” in Financial Cryptography and Data Security, N. Borisov and C. Diaz,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021, pp. 3–36.

[35] E. Anceaume, R. Ludinard, A. Ravoaja, and F. V. Brasileiro, “Peercube: A

hypercube-based P2P overlay robust against collusion and churn,” in Second
IEEE International Conference on Self-Adaptive and Self-Organizing Systems,
SASO 2008, 20-24 October 2008, Venice, Italy, S. A. Brueckner, P. Robertson, and
U. Bellur, Eds. IEEE Computer Society, 2008, pp. 15–24. [Online]. Available:

https://doi.org/10.1109/SASO.2008.44

[36] E. API, 2022. [Online]. Available: https://docs.etherscan.io/api-endpoints/

accounts

[37] Yggdrasil, “Source code,” https://anonymous.4open.science/r/Yggdrasil-11E5.

[38] MAX, “Source code,” https://gitlab.com/cea-licia/max/.

[39] O. Gutknecht and J. Ferber, “Themadkit agent platform architecture,” inWorkshop
on Infrastructure for Multi-Agent Systems, 2000.

[40] D. Balouek et al., “Adding virtualization capabilities to the Grid’5000 testbed,” in

Cloud Computing and Services Science (CLOSER), 2013.
[41] MAX, “Source code,” https://gitlab.com/cea-licia/max/models/ledgers/max.

model.ledger.tendermint_v2.

[42] J. Göbel and A. Krzesinski, “Increased block size and bitcoin blockchain dynam-

ics,” in 2017 27th International Telecommunication Networks and Applications
Conference (ITNAC), 2017, pp. 1–6.

[43] D. Cason, E. Fynn, N. Milosevic, Z. Milosevic, E. Buchman, and F. Pedone, “The

design, architecture and performance of the tendermint blockchain network,” in

2021 40th International Symposium on Reliable Distributed Systems (SRDS), 2021,
pp. 23–33.

[44] N. Durov, “Telegram Open Network,” Tech. Rep., 03 2019.

[45] D. Tennakoon and V. Gramoli, “Dynamic Blockchain Sharding,” in 5th
International Symposium on Foundations and Applications of Blockchain 2022 (FAB
2022), ser. Open Access Series in Informatics (OASIcs), S. Tucci-Piergiovanni

and N. Crooks, Eds., vol. 101. Dagstuhl, Germany: Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, 2022, pp. 6:1–6:17. [Online]. Available:

https://drops.dagstuhl.de/opus/volltexte/2022/16273

[46] D. Tennakoon, Y. Hua, and V. Gramoli, “Collachain: A bft collaborative

middleware for decentralized applications,” 2022. [Online]. Available: https:

//arxiv.org/abs/2203.12323

21

https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping
https://github.com/ethereum/consensus-specs/tree/52a741f7c6d3bec98e04df3441bc8e7681480877/specs/altair
https://github.com/ethereum/consensus-specs/tree/52a741f7c6d3bec98e04df3441bc8e7681480877/specs/altair
https://arxiv.org/abs/2012.10172
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/cosmos/cosmos
https://github.com/cosmos/cosmos
http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1807.04938
https://github.com/input-output-hk/cardano-node
https://github.com/input-output-hk/cardano-node
https://github.com/ethereum/pyethereum/blob/782842758e219e40739531a5e56fff6e63ca567b/ethereum/utils.py
https://github.com/ethereum/pyethereum/blob/782842758e219e40739531a5e56fff6e63ca567b/ethereum/utils.py
https://doi.org/10.1145/3453483.3454112
https://doi.org/10.1145/3335772.3335936
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763
https://doi.org/10.1145/42282.42283
https://doi.org/10.1109/SASO.2008.44
https://docs.etherscan.io/api-endpoints/accounts
https://docs.etherscan.io/api-endpoints/accounts
https://anonymous.4open.science/r/Yggdrasil-11E5
https://gitlab.com/cea-licia/max/
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.tendermint_v2
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.tendermint_v2
https://drops.dagstuhl.de/opus/volltexte/2022/16273
https://arxiv.org/abs/2203.12323
https://arxiv.org/abs/2203.12323

	Abstract
	1 Introduction
	2 Background and Basic Definitions
	2.1 Blockchains
	2.2 The Many Faces of Sharding
	2.3 Smart Contracts
	2.4 Sharded smart-contracts and atomicity

	3 System Model
	4 Yggdrasil Protocol
	4.1 Transaction Life-Cycle through Sharding
	4.2 2PC for distributed smart-contracts
	4.3 2PC Correctness proofs
	4.4 Process-to-shard assignment
	4.5 Dynamic management of shards
	4.6 Shards update transactions details
	4.7 Reducing cross-shard transactions volume
	4.8 Dealing with an adaptive adversary

	5 Implementation Details
	5.1 User transaction types and structures
	5.2 Joining the network
	5.3 Transaction sharding and processing
	5.4 Cross-shard transactions' confirmation

	6 Yggdrasil Analysis
	6.1 State-sharding
	6.2 Safety of the assignment
	6.3 Eventual confirmation
	6.4 Security

	7 Performance Evaluation
	7.1 Simulator and experimental environment
	7.2 Simulation model
	7.3 Scalability
	7.4 Reactivity
	7.5 Cross-shard volume
	7.6 2PC algorithm

	8 Related Work
	8.1 Evolution of sharding in blockchains
	8.2 Comparison of existing solutions to Yggdrasil

	9 Conclusion
	References

