
HAL Id: hal-03793291
https://hal.science/hal-03793291v1

Preprint submitted on 30 Sep 2022 (v1), last revised 6 Oct 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Yggdrasil: Secure State Sharding of Transactions and
Smart Contracts that Self-adapts to Transaction Load
Aimen Djari, Yackolley Amoussou-Guenou, Emmanuelle Anceaume, Sara

Tucci Piergiovanni, Antonella Del Pozzo

To cite this version:
Aimen Djari, Yackolley Amoussou-Guenou, Emmanuelle Anceaume, Sara Tucci Piergiovanni, An-
tonella Del Pozzo. Yggdrasil: Secure State Sharding of Transactions and Smart Contracts that Self-
adapts to Transaction Load. 2022. �hal-03793291v1�

https://hal.science/hal-03793291v1
https://hal.archives-ouvertes.fr

Yggdrasil: Secure State Sharding of Transactions and Smart
Contracts that Self-adapts to Transaction Load

Aimen Djari

Université Paris-Saclay, CEA, List

Palaiseau, France

Yackolley Amoussou-Guenou

Université Paris-Saclay, CEA, List

Palaiseau, France

Emmanuelle Anceaume

CNRS / IRISA

France

Sara Tucci-Piergiovanni

Université Paris-Saclay, CEA, List

Palaiseau, France

Antonella Del Pozzo

Université Paris-Saclay, CEA, List

Palaiseau, France

ABSTRACT
Praesent imperdiet, lacus nec varius placerat, est ex eleifend justo,

a vulputate leo massa consectetur nunc. Donec posuere in mi ut

tempus. Pellentesque sem odio, faucibus nonmi in, laoreet maximus

arcu. In hac habitasse platea dictumst. Nunc euismod neque eu urna

accumsan, vitae vehicula metus tincidunt. Maecenas congue tortor

nec varius pellentesque. Pellentesque bibendum libero ac dignissim

euismod. Aliquam justo ante, pretium vel mollis sed, consectetur

accumsan nibh. Nulla sit amet sollicitudin est. Etiam ullamcorper

diam a sapien lacinia faucibus.

PVLDB Reference Format:
Aimen Djari, Yackolley Amoussou-Guenou, Emmanuelle Anceaume, Sara

Tucci-Piergiovanni, and Antonella Del Pozzo. Yggdrasil: Secure State

Sharding of Transactions and Smart Contracts that Self-adapts to

Transaction Load. PVLDB, 14(1): XXX-XXX, 2020.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://anonymous.4open.science/r/Yggdrasil-11E5.

1 INTRODUCTION
Praesent imperdiet, lacus nec varius placerat, est ex eleifend justo,

a vulputate leo massa consectetur nunc. Donec posuere in mi ut

tempus. Pellentesque sem odio, faucibus non mi in, laoreet max-

imus arcu. In hac habitasse platea dictumst. Nunc euismod neque eu

urna accumsan, vitae vehicula metus tincidunt. Maecenas congue

tortor nec varius pellentesque. Praesent imperdiet, lacus nec varius

placerat, est ex eleifend justo, a vulputate leo massa consectetur

nunc. Donec posuere in mi ut tempus. Pellentesque sem odio, fau-

cibus non mi in, laoreet maximus arcu. In hac habitasse platea

dictumst. Nunc euismod neque eu urna accumsan, vitae vehicula

metus tincidunt. Maecenas congue tortor nec varius pellentesque.

Pellentesque bibendum libero ac dignissim euismod. Aliquam justo

ante, pretium vel mollis sed, consectetur accumsan nibh. Nulla

sit amet sollicitudin est. Etiam ullamcorper diam a sapien lacinia

faucibus.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

Praesent imperdiet, lacus nec varius placerat, est ex eleifend justo,

a vulputate leo massa consectetur nunc. Donec posuere in mi ut

tempus. Pellentesque sem odio, faucibus nonmi in, laoreet maximus

arcu. In hac habitasse platea dictumst. Nunc euismod neque eu urna

accumsan, vitae vehicula metus tincidunt. Maecenas congue tortor

nec varius pellentesque. Pellentesque bibendum libero ac dignissim

euismod. Aliquam justo ante, pretium vel mollis sed, consectetur

accumsan nibh. Nulla sit amet sollicitudin est. Etiam ullamcorper

diam a sapien lacinia faucibus.

Praesent imperdiet, lacus nec varius placerat, est ex eleifend justo,

a vulputate leo massa consectetur nunc. Donec posuere in mi ut

tempus. Pellentesque sem odio, faucibus nonmi in, laoreet maximus

arcu. In hac habitasse platea dictumst. Nunc euismod neque eu urna

accumsan, vitae vehicula metus tincidunt. Maecenas congue tortor

nec varius pellentesque. Pellentesque bibendum libero ac dignissim

euismod. Aliquam justo ante, pretium vel mollis sed, consectetur

accumsan nibh. Nulla sit amet sollicitudin est. Etiam ullamcorper

diam a sapien lacinia faucibus.

Praesent imperdiet, lacus nec varius placerat, est ex eleifend justo,

a vulputate leo massa consectetur nunc. Donec posuere in mi ut

tempus. Pellentesque sem odio, faucibus nonmi in, laoreet maximus

arcu. In hac habitasse platea dictumst. Nunc euismod neque eu urna

accumsan, vitae vehicula metus tincidunt. Maecenas congue tortor

nec varius pellentesque. Pellentesque bibendum libero ac dignissim

euismod. Aliquam justo ante, pretium vel mollis sed, consectetur

accumsan nibh. Nulla sit amet sollicitudin est. Etiam ullamcorper

diam a sapien lacinia faucibus.

Praesent imperdiet, lacus nec varius placerat, est ex eleifend justo,

a vulputate leo massa consectetur nunc. Donec posuere in mi ut

tempus. Pellentesque sem odio, faucibus nonmi in, laoreet maximus

arcu. In hac habitasse platea dictumst. Nunc euismod neque eu urna

accumsan, vitae vehicula metus tincidunt. Maecenas congue tortor

nec varius pellentesque. Pellentesque bibendum libero ac dignissim

euismod. Aliquam justo ante, pretium vel mollis sed, consectetur

accumsan nibh. Nulla sit amet sollicitudin est. Etiam ullamcorper

diam a sapien lacinia faucibus.

2 BACKGROUND AND BASIC DEFINITIONS
2.1 Blockchains
A blockchain constitutes a history that contains all the trades made

between its users since its creation. This history is secure and dis-

tributed: it is shared by its various users, without intermediaries,

https://doi.org/XX.XX/XXX.XX
https://anonymous.4open.science/r/Yggdrasil-11E5
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

which allows each one to verify the validity of the chain. Perma-

nently updated and distributed, the maintenance of the blockchain

is based on cryptographic primitives that make any modification

almost impossible, which increases its security. Transactions be-

tween users are thus immutable. Essentially, when a user broadcasts

a transaction, it is received by all the other users of the network

and stored in their mempools, a memory space where transactions

awaiting validation are stored. Block creators will group these trans-

actions into blocks. Once a block has been created, it is broadcast

to the network and appended to the blockchain.

Permissionless Blockchains and Verifiable Elections. Permissionless

blockchains are public blockchains where participants do not rely

on a centralised registration system to take part to the blockchain

construction. Indeed, every node can read the blockchain and take

the rights to append a block in a decentralized way. Permissioned

blockchains differ from permissionless ones in that they rely on

predefined nodes to append blocks to the blockchain. The absence

of such a predefined group of nodes in permissionless blockchains

makes the election an essential element of their design. Election is

usually pseudo-random and verifiable, i.e., it allows elected nodes

to prove they have the rights to append a block (PoW [1], VRF

[2], PVSS [3], Randao [4, 5]). Two main approaches exist: leader-
based and committee-based. In leader-based approaches, a verifiable

election aims at electing a single node, which can then append a

block and prove that it has the right to do so. In committee-based
approaches a large enough committee of nodes must be elected,

and a block can be appended only if a quorum of the committee

signs the block. A verifiable election grants rights to a committee of

nodes, providing them with means to prove quorum’s legitimacy.

Finalization and Transaction Confirmation. An abstraction called

consensus ensures a clear and unambiguous ordering of valid blocks

within the blockchain. Each block is valid if it has been created by

respecting the rules of the blockchain construction (e.g., valid signa-

tures for blocks) and contains only valid transactions, where valid

is application dependent (e.g., no double spending, positive bal-

ances in case of cryptocurrencies). Consensus also guarantees the

integrity and the consistency of the blockchain between any correct

user. Leader-based permissionless blockchains guarantee weaker

properties than the consensus abstraction by offering probabilistic

finality [6]. That is the very last appended blocks of the blockchain

may be revoked, i.e., pruned from the blockchain, in presence of

conflicting blocks (e.g. a fork due to two concurrent appends) but

the probability that a block is pruned decreases as it gets deeper

into the blockchain. The term of Nakamoto style consensus is often
used to refer to the properties of these blockchains, and solving

Nakamoto style consensus may rely either on Proof-of-Work (PoW)

or Proof-of-Stake (PoS) (e.g., [1, 3, 7]) for the election mechanism.

Committee-based permissionless PoS blockchains are generally

grounded on variants of BFT Consensus [2, 4, 8, 9]. In systems like

Cosmos and Tezos [8, 9] a verifiable election mechanism chooses

a committee that, once elected, runs the Byzantine consensus pro-

tocol (i.e., Tendermint [10] and Tenderbake [11] respectively) to

append a unique block to the blockchain. These blockchains are

said to have deterministic finality, because conditions to determine

if a block is finalized are deterministic and verifiable (e.g. in [8], as

soon as a block is appended; in [9] as soon as an appended block

is followed by another one). Finalization is certain, and a finalized

block can never be revoked. Ethereum PoS also uses a committee

to finalize blocks [12] generated by an underlying Nakamoto-style

protocol. When a block is finalized (finalized with high probabil-

ity in probabilistic models) all the contained transactions are said

to be confirmed. Yggdrassil will adopt a PoS-based system that

guarantees immediate deterministic finality, similar to [8, 9].

UTXO vs Account-based Models. Bitcoin introduced the first type

of spending model in crypto-currencies, called UTXO (Unspent

Transaction Output). An unspent transaction output is the result

of transactions that a user has received and is able to spend in

the future. An UTXO can be spent at most once, i.e., it must be

debited in a single transaction. At that point, the UTXO is no longer

unspent, meaning that it cannot be used again in the future. Thus,

through a transaction a receiver gathers money in new UTXOs. A

user can have numerous UTXOs at a time, which can be combined

to reach a given amount of money to spend.

In the account-based model each user has one account on which

it can receive and spend money within the limits of the available

funds. This model is akin to each individual wallet having a ledger

of its own. After every transaction, the new balance is computed

using basic arithmetics. Yggdrasil uses the account-based model

due to its simplicity since a transaction with an arbitrary amount

of money can be performed with one sending account and one

receiving account (instead of multiple UTXOs on both sides). This

model is used by Ethereum and it is thought to be better suited

than UTXO for supporting smart contracts [7].

2.2 Smart Contracts
Popularized by Ethereum, many blockchains today (e.g., [9], [13])

provide smart contracts as a genericmechanism tomake blockchains

programmable. Smart contracts are sequential programs, composed

of a set of methods and variables, that execute in the blockchain.

Operationally, a smart contract is deployed in the blockchain by

its creator, which submits to the blockchain a uniquely identified

transaction containing the smart contract code. As soon as the

submitted transaction is confirmed we say that the contract is de-

ployed. Once deployed, the set of variables of the smart-contract

assigned with initial values is defined as the initial state of the

contract. In the general case, the execution of one of the smart

contract methods results in a new state of the smart-contract, that

is a new valuation of its variables. Users can interact with a smart

contract by submitting transactions that are requests to execute one

of the methods of the smart contract. These transactions are sent to

the smart contract’s address, which is deterministically generated

using the creator’s address and how many transactions he has sent

[14]. For each transaction invoking a smart contract method, the

issuer has to pay some fees just like normal payment transactions.

The smart contract executes in the blockchain network, i.e. each

node of the network locally executes the called methods. Since

smart contracts are deterministic, participants can unequivocally

determine the state of the smart contract by simply executing all

transactions submitted to it. Transactions are totally ordered by the

blockchain via the underlying consensus mechanism. Thus any two

nodes executing the smart contract will compute the same state.

That is, for any confirmed transaction in the blockchain, either

the transaction is successfully executed or not. In the former case

2

we say that the transaction is committed. In the latter case it is

aborted: the execution failed and the state of the smart contract is

not changed. An execution can fail for usual reasons like run-time

errors or if the amount of fees sent by the caller does not cover the

costs of executing the method call with the given input parameters.

As a smart contract can call other smart contracts to complete a

method execution, the whole computation originated by a single

user invocation is represented as a call graph of smart contract

invocations. Since semantics must be guaranteed to be sequential

for smart contracts, then either the whole call graph is committed

or aborted. In a given call graph, we denote with the term front-end
smart contract, the unique smart contract invoked by the user.

2.3 Sharded smart-contracts and atomicity
In state sharding systems, each smart contract’ address resides in a

single shard. However, when a user invokes a smart contract, this

smart contract may belong to another shard. The system must have

a mechanism to route user’s call to the smart contract. Routing calls

to smart contracts residing in different shards must be done in a

careful way to guarantee that if a balance is updated in the issuer’s

shard, the corresponding transaction will be eventually confirmed

in the destination shard, no matter if the result is an abort or a

commit. Differently from the general atomic commit problem [15],

which must deal with the situation in which two different shards

might not willing to both confirm or reject the transaction, for each

cross-shard transaction, if the issuer’s shard confirms, then the

other shard will never reject the transaction. This is true only if the

verification of transaction validity is a deterministic process and

shards do not fail. Sharding systems usually make these hypotheses

to rely on this weak form of atomicity [16]. More formally, eventual
atomicity of confirmation guarantees that for each transaction be-

tween a user and a front-end smart contract, if one shard confirms

the transaction then other shards will eventually confirm it.

Besides users, smart contracts themselves can call other smart

contracts. The case of a smart contract calling smart contracts

belonging to the same shard can be treated as in a non-sharded

system, or, if the user invoking the smart contract is in another

shard, by employing mechanisms to guarantee eventual atomicity

as explained above. On the other hand, invocations crossing shards

cannot be treated as internal invocations, like in the non-sharded

case, but must be represented as cross-shard transactions. Then, we

need to guarantee the atomic commit of the distributed execution of

the front-end smart contract across shards, i.e., either cross-chain

transactions in the call graph originated from a given user invo-

cation are all committed or they are all aborted
1
. We also need

isolation so that smart contract execution looks sequential [17]. Let

us stress that this form of atomicity works on a commit and abort

status of confirmed transactions because only confirmed transac-

tions are part of the call graph as mentioned in the previous section.

Since these confirmed transactions are cross-chain, eventual atom-

icity must be assured, as in the case of user to the front-end smart

contract (which is the call graph root).

As will be detailed in the following, our solution, Yggdrasil, com-

bines a 2PC protocol with a cross-chain confirmation mechanism

1
For sake of simplicity we consider that internal invocations in the same shard are

collapsed in the call graph to a single vertex.

to assure atomic commit of the distributed execution of smart con-

tracts and eventual atomicity of confirmation.Moreover, adaptivity

of Yggdrassil allows us to dynamically adapt shards to reduce the

overload generated by these protocols.

3 SYSTEM MODEL
Nodes, processes, users and validators. Yggdrasil is composed of an

unbounded set of nodes 𝑁 = {𝑛1, . . . , 𝑛𝑖 , . . .}. Each node controls

several processes. Each process 𝑝𝑖 has a unique identifier 𝑖𝑑𝑖 , and

owns exactly one account of coins. The total sum of available coins

in the system is limited and its current value is known by all. Each

process has a well-defined role, that of user or validator. When

a node joins the network, it creates a process with the role of

user, and the identifier of that user is the public key of the node.

Subsequently, a node can create other processes with the role of

user whose identifiers are derived from the node’s public key. To

participate in themaintenance of Yggdrasil, a node creates processes

with the role of validator, and stakes coins
2
. For sake of simplicity

and without loss of generality we assume that we have as many

validators as coins staked in the system. The set of processes is

denoted by 𝑃 , the set of validators is denoted by 𝑉 and the set of

users is denoted by𝑈 . We have 𝑃 = 𝑈 ⊔𝑉 , where ⊔ is the symbol

of disjoint union.

Adversarial model. We suppose that at any time some processes

can fail in any arbitrary manner. These processes are indifferently

called faulty or Byzantine processes. Byzantine processes can “pol-

lute” the computation (e.g., by sending messages with different

contents, when they should have sent messages with the same

content if they were not faulty). Processes that always follow the

protocol are called honest. We model the behavior of faulty pro-

cesses as a weakly adaptive adversary. We characterize the power of

the adversary as follows [18]. The adversary has a bounded amount

of stake, i.e., at any time, Byzantine validators possess less than a

fraction 𝜏 ∈ [0, 1) of the total stake 𝜎 currently available in the sys-

tem. Note that this does not guarantee that in each shard Byzantine

validators possess less than a fraction 𝜏 of the shard stake. Indeed,

the adversary may try to manipulate more than one third of valida-

tors in a specific shard. Yggdrasil provides a shuffling mechanism

and a random uniform election mechanism guaranteeing that in

any shard, no more than 𝜏 = 1/3 of the stake (i.e., validators) are
owned by the adversary (see Section 4.7).

The second assumption is related to the adversary’s level of

adaptability. The adversary can decide to corrupt more processes

in a particular shard, but once a process is corrupted the adversary

cannot change his mind before 𝑘 units of times occurred. A time

unit represents the maximal amount of time needed to build a block.

Users can also be corrupted by the adversary, but the only action

corrupted users could carry out would be to create transactions

and therefore incur costs (transaction fees). First, these costs imply

that such an attack cannot be done infinitely often, and moreover,

these costs would disincentives the adversary to attempt distributed

denies of service (DDoS) attacks.

2
Coin staking can be done through a special smart contract, as done in Eth2.0. We

abstract those implementation details, and just assume that coins can be put in escrow

for the whole validator lifetime.

3

Byzantine fault-tolerant consensus and selection of committees.
Yggdrasil maintains in parallel several blockchains. Each blockchain

is built thanks to a variant of Byzantine Fault Tolerant (BFT) Con-

sensus [19] that provides deterministic finality [6]. Specifically, we

assume that each blockchain is grounded on Tendermint [10], that

provides immediate finality: a block is finalized as soon as it is

appended to the blockchain. Any transaction is then confirmed as

soon as it appears in the blockchain. As Yggdrasil is permissionless

(see Section 2.1) we also need a verifiable election to elect the com-

mittee that once in place run the chosen BFT consensus protocol to

build and sign the block to be appended to the blockchain. Among

the different existing solutions ([2, 4, 8, 11]), we aim at those that

elect a committee of fixed size to determine the quorum of two-third

signatures needed to finalize a block, such as the ones provided

in [8, 9] or Ethereum PoS [4]. Specifically, (i) a new validator joins a

validator set through a confirmed stake transaction, (ii) the maximal

size of the validator set is fixed at design time, (iii) the committee for

each block is then chosen uniformly at random within the validator

set by a shuffling function that makes a pseudo-random permuta-

tion of the validator members list at each election and returns the

first 𝑛 validators, where 𝑛 is the size of the committee. The shuffling

function takes as parameter the validator list and a random seed by

reading the blockchain. The random seed is generated by applying

the xor operation on the hashes of all finalized blocks. These opera-

tions being deterministic, this ensures that exactly one committee is

elected. Note that a recent improvement to this mechanism makes

shuffling secret and unpredictable [20]. In the following, for any

blockchain 𝑏 maintained by Yggdrasil, we assume the existence

of a committee of validators 𝑄𝑏 elected among the current set of

validators 𝑉𝑏 thanks to the assumed election mechanism, where

𝑄𝑏 ⊆ 𝑉𝑏 ⊆ 𝑉 . Byzantine validators in the committee are main-

tained under 1/3 threshold by the shard shuffling mechanism and

the random uniform election. We say that a shard is honest if less

than a fraction 𝜏 of the committee of validators is Byzantine.

Communication primitives. Processes communicate by sending

and receiving messages via a best effort broadcast primitive, which

means that when a honest process broadcasts a value, eventually

all the honest processes deliver it [21], i.e., messages sent by honest

processes cannot be lost. Note that messages sent by Byzantine

processes are not guaranteed to be delivered to all honest pro-

cesses. Such a primitive can be implemented through a peer-to-peer

gossip-based diffusion mechanism, as usually done in blockchains.

Messages contain a digital signature and we assume that digital

signatures cannot be forged. When a process 𝑝𝑖 receives a message

from 𝑝 𝑗 , it is certain that 𝑝 𝑗 sent that message. We assume a par-

tially synchronous environment where the maximum transmission

delay is bounded but unknown by the processes [22]. Finally, com-

munication among shards is as follows. When we say that a shard

sends a message, we assume that the committee of validators inside

the shard broadcasts the message to the system. Any receiving

process will accept the message only if it is signed by a quorum of

the corresponding committee. Because each shard is maintained

under the 1/3 Byzantine threshold by Yggdrasil, messages sent by

a shard are never lost and are received by all honest processes.

4 YGGDRASIL PROTOCOL
The main feature of Yggdrasil lies in its self-adaption to transaction

load, so that the number of shards continually adapts to provide fast

transaction confirmation in average. Yggrdrasil allows shards to

re-organise under high load by splitting into new shards, and later

re-merge if transaction load reduces. Notably, Yggdrasil provides a

way to assign processes and smart contracts to shards seamlessly

with respect to shard dynamics. Smart contracts and processes are

automatically re-assigned to a newly created shard (if needed) in a

transparent and verifiable way. When a parent shard splits in two

new shards, the parent extinguishes itself while a summary of its

state is transferred to the newborn shards.

While the local consistency of each shard relies on a local PoS

committee-based BFT blockchain (Section 3), Yggdrasil provides

global consistency of the system. Yggdrasil ensures that each user

is assigned at any time to only one shard, i.e., a user cannot submit

transactions to two different shards, or if he does so, the transaction

is rejected by one of the shards, because user-to-shard assignment

is verifiable. In the same way a smart contract is assigned at any

time to only one shard. As for user transactions crossing shards,

Yggdrasil safely ensures eventual atomic confirmation (Section

2.2) and atomic-commmit of smart contracts distributed execution

— whose execution spans different shards – through a two-phase

commit protocol based on locking and eventual confirmation among

shards. Yggdrasil ensures eventual atomic confirmation during re-

organisations of the system (split or merge operations). This is

achieved by shards labeling mechanism, guaranteing that there

always exists only one shard at time 𝑡 that is the closest to any

transaction, thus responsible of the transaction processing.

Yggdrasil is tolerant to an adaptive adversary: By relying on

random shuffling, validators are regularly assigned to randomly

chosen shards to defend against a weakly adaptive adversary. Fur-

thermore, by using a secret and verifiable random draw, validators’

assignment is unpredictable.

Last but not least, Yggdrasil allows nodes to incarnate themselves

in multiple shards with uniquely identified accounts, to reduce

the number of their cross-shard transactions. Indeed nodes can

be interested in some particular smart contracts or to trade with

specific users, so to incarnate themselves only in the shard where

they trade more and benefit for fast transaction confirmation time.

Figure 1: A simple overview of Yggdrasil.

4.1 Transaction Life-Cycle through Sharding
An Yggdrasil’s process with the role of user can transfer coins to

another user, deploy smart-contracts, invoke smart contract meth-

ods, or deposit coins to become a validator as realized in common

PoS-based blockchains. For each of these actions different user trans-

actions are submitted to Yggdrasil, i.e., payment transactions, smart
4

contract deployment transactions, smart contract method invocation
call transactions, and stake transactions3, respectively. Yggdrasil
manages all these transactions in a unified way as described below.

Transactions and state sharding. As will be detailed in Section 4.3,

Yggdrasil assigns each process to exactly one shard in a verifiable

way, where a process can be either a user (submitting transactions)

or a validator (validating transactions). Since the assignment is

unique at any point of time, transaction sharding is realised by

assigning all the transactions of a user to this user’s shard. This

also implies that any smart contract is assigned to the shard of

the user that deploys the smart contract, through the smart con-

tract deployment transaction. To realise state sharding, Yggdrasil

maintains a blockchain for each shard, called shardchain. Since a
trusted third party is needed to achieve synchronization between

two or more blockchains [23], Yggdrasil also maintains a synchro-

nization blockchain, called masterchain. Each shard locally builds a

shardchain to validate its own transactions. When needed, shards

coordinate to handle the creation of new shards or the merging of

some of them, and cross-shard transactions. To coordinate them-

selves, shards submit to the masterchain special transactions called

shard update transactions. The masterchain validates shard update

transactions submitted by shards and serves as a gateway for pro-

cesses that want to stake coins to become validators. To build a

blockchain (i.e., a shardchain or the masterchain), a committee (quo-

rum) of validators is elected after each block through modalities

described in Section 3. Each process in Yggdrasil locally manages,

i.e., stores, reads and updates, the masterchain. On the other hand,

shardchains are managed solely by the processes assigned to them.

Each process has access to the state of both the masterchain and

its shard, where the state is defined as follows:

Definition 1 (State of a blockchain). The state of a blockchain
is the current value of accounts and smart contracts that can be
computed by reading the blockchain.

Transaction processing. A user submits transactions within its

shard (see Figure 1). Transactions are collected by the shard’s val-

idators
4
, and locally stored in their memory pool (a.k.a mempool).

To create a block, validators being part of the current committee

invoke the Byzantine fault-tolerant consensus protocol with a set

of transactions from their mempool. Transactions are validated and

embedded in the next block of the shard’s shardchain. Once a block

is appended to the shardchain, validators send a summary of the

block to the masterchain via the shard update transaction (denoted

by SU in Figure 1, and whose content is detailed later). Validators

of the masterchain verify that each shard update transaction has

been created and sent by the issuer shard.

For space reasons implementation details and pseudo-codes of

blockchain creation in each shard and verification of the shard

update transaction by the masterchain can be found in the full

version of the paper [?].

Transaction confirmation and atomicity of cross-shard transactions.
Yggdrasil introduces its own notion of transaction confirmation

3
When a user submits a stake transaction 𝑡𝑥 , the user’s node creates a new process

with the role of validator identified by 𝑡𝑥 .
4
Users can also store blocks and transactions if they want to but since they are not

responsible of building blocks, this is not mandatory.

to guarantee the global consistency of the system. Specifically, all

the transactions processed by the masterchain, i.e. shard update
transactions and stake transactions, are immediately confirmed once

they appear in a block appended to the masterchain. These two

types of transactions are confirmed in the masterchain because

they have a system-wide scope: they need to be seen from any

shard to correctly manage shards membership, shard dynamics and

cross-shard transactions. The level of confirmation of the other

user transactions depends on whether or not they are intra-shard

or cross-shards. In the case of intra-shard transactions, both the

issuer and the recipient entities of the transaction (i.e., users or

smart contracts) are assigned to the same shard. Any intra-shard

transaction is confirmed as soon as it appears in a block of the

shardchain and the corresponding shard update transaction sent

by the shard to the masterchain, notifying its confirmation in the

shardchain, is confirmed in the masterchain.

In the case of cross-shard transactions, the issuer and the recipi-

ent entities of the transaction are assigned to two different shards
5
.

As mentioned in Section 2.2, to avoid inconsistent situations or

double spending, it is sufficient to guarantee the eventual atomicity

of cross-shard transactions confirmation. This is because (i) the

check of the issuer balance, which is done in the issuer’s shard, is

the only condition to confirm or reject a transaction and (ii) shard’s

behavior, as a whole, is honest. Yggrdrasil ensures that if the issuer

is honest then her transaction is eventually confirmed. For both

payment and smart contract invocations, cross-shard transactions

are managed by relying on the masterchain. The different steps

involved to confirm a cross-shard transaction 𝑡𝑥1 from shard 𝑠1
to shard 𝑠2 are explained in the following. First, validators of 𝑠1
create block 𝑏1, containing 𝑡𝑥1, and broadcast a ShardUpdateTx 𝑆𝑈1

(containing uniquely the Merkle roots of the transactions of the

block containing 𝑡𝑥1); 𝑆𝑈1 is then added in a masterchain block.

When validators of 𝑠2 see 𝑆𝑈1, they ask for 𝑏1. After receiving it,

they extract 𝑡𝑥1, add it in a block 𝑏2, append 𝑏2 to their shardchain,

and broadcast a ShardUpdateTx 𝑆𝑈2. 𝑆𝑈2 is then added in a master-

chain block. In case 𝑡𝑥1 is the call of a smart contract deployed in 𝑠2,

validators of 𝑠2 create a new transaction 𝑡𝑥2 containing the results

of the call and send it to 𝑠1 in the same ShardUpdateTx as 𝑡𝑥1 (𝑆𝑈2).

After receiving it, 𝑠1 asks for 𝑏2, extracts 𝑡𝑥2 and puts it in its shard-

chain (e.g. in block 𝑏3). Due to lack of space, implementation details

of the confirmation of cross-shard transactions is deferred to the

full version of the paper [?]. The following definitions summarize

the confirmation conditions for the different types of transactions

in Yggdrasil.

Definition 2 (Masterchain transactions confirmation).

Any stake and shard update transactions is confirmed when it appears
in a block of the masterchain.

Definition 3 (Intra-shard transactions confirmation). An
intra-shard transaction 𝑡𝑥 assigned to shard 𝑠 is confirmed when
𝑡𝑥 is embedded in a block of 𝑠’s shardchain and the shard update
transaction notifying 𝑡𝑥 is confirmed.

5
For a payment transaction, the two involved entities are user’s accounts. For smart

contracts invocations, the two entities are a user account and a smart contract account.

Of course, smart contracts can call in their turn smart contracts in another shards.

Nested calls generate cross-shard transactions that are managed by the 2PC protocol

presented in Section 4.2

5

Definition 4 (Cross-shard transactions confirmation). A
cross-shard transaction is confirmed if and only if it is confirmed as
intra-shard transaction by both involved shards.

4.2 2PC for distributed smart-contracts
This section provides a 2PC algorithm to guarantee atomic-commit

of distributed execution when insmart contracts involved live in

different shards. To illustrate the algorithm, let us to make an ex-

planatory scenario. Let us suppose to have a user that calls, trough a

transaction 𝑡𝑥0 a smart contract 𝑠𝑐0, which calls, in the body of the

called method, two other smart contracts 𝑠𝑐1 and 𝑠𝑐2 in sequence.

If 𝑠𝑐1 and 𝑠𝑐2 live in two different shards, then Yggdrasil generates

a cross-shard transaction for each call, let us say 𝑡𝑥1 and 𝑡𝑥2. Note

that eventual confirmation guarantees that the two transactions

are added to the call graph, however, if their execution is left in-

dependent we could have the situation in which 𝑡𝑥1 is committed

and 𝑡𝑥2 is aborted. To be atomic, since 𝑡𝑥2 failed, the 𝑡𝑥0 as a whole

should be aborted and 𝑡𝑥1 ’s effects reverted. The 2PC algorithm

we propose prevents 𝑡𝑥1 to commit in this scenario.

In the algorithm the shard, where the front-end smart contract

lives, coordinates commit and abort of other shards following an ap-

proach where shards committees emit special transactions through-

out the process. More specifically, inside committees, validators

propose blocks inserting specific transactions. Validators verify the

block being sure the the algorithm has been followed before accept-

ing it. Once accepted (signed by a quorum), any other validator in

subsequent committees can resume the algorithm if the previous

committee did not complete it, just by looking at blocks in shard-

chains and masterchain. In other terms, the state of the algorithm

is fully recorded in the shardchains and the masterchain, which

allows to have dynamic committees that rely on the total order of

all transactions (intra and cross) to determine the state of the algo-

rithm. The pseudo-code is depicted in Algorithm 1. Each proposer

that selects a transaction in the MemPool (line 40) verifies, before

inserting it in a block, if it is an invocation to a front-end smart

contract 𝑠𝑐0 spanning different shards. If the smart contract is not

already locked, the proposer prepares and inserts in the proposed

block a intra-shard transaction of type lock 𝑡𝑥𝑙𝑜𝑐𝑘
0

and a cross-shard

transaction 𝑡𝑥
𝑞𝑢𝑒𝑟𝑦

0,𝑖
of type QUERY for each outgoing call crossing

the coordinator shard reaching shard 𝑠𝑖 . The query transaction

contains transactions to call the recipient smart contract and the

calling one.

When the block is confirmed by the committee of the 𝑠𝑐0 (coor-

dinator shard), then the lock becomes effective. Each validator in

the coordinator shard sees that the smart contract has been locked

by reading the blockchain, and stops to consider other transactions

directed to the locked smart contract 𝑠𝑐0 for inclusion in successive

proposals. As soon as 𝑡𝑥
𝑞𝑢𝑒𝑟𝑦

0,𝑖
are confirmed, validators in the recipi-

ents shards 𝑠𝑖 , read these query transactions (line 3). Note that when

these shards receive the query transaction, the lock of 𝑠𝑐0 is already

effective. If the execution of the incoming transactions do no involve

other smart contracts in other shards, then proposers pre-execute

the called transaction (if the smart contract is not already locked).

More specifically, the block proposer pre-executes the result against

the state of the blockchain till the previous finalized block. Result of

this pre-execution can be abort or prepare-to-commit. In both cases

the proposer prepares and insert in the proposal a cross-shard vote

transaction towards the coordinator shard. Cross-shard transaction

towards the coordinator shard are denoted as 𝑡𝑥𝑣𝑜𝑡𝑒
𝑖,0

. As soon as

those transactions are confirmed, the coordinator shard compares

results to decide if roll-back or commit (line 16). In case of no abort

in the votes received, the proposer of the coordinator shard executes

the transaction 𝑡𝑥0 (line 21), then compute the decision (lines 23

and 29) and then unlock. The unlock is an intra-shard transaction

𝑡𝑥𝑢𝑛𝑙𝑜𝑐𝑘
0

, while the decision is a cross-shard transaction 𝑡𝑥𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑖,0

for each shard 𝑠𝑖 . At receiver side, all the shards commit or roll-back

accordingly with the decision. Roll-back is implicit, the validator

does nothing in this case. In case of commit, the computation must

be redone by the new proposer (the proposer might have changed

since the last pre-execution). Since the state of the smart contract

did not change from the last prepare-to-commit because of the lock,

the result is the same as in the pre-execution phase (let us remind

you that smart contracts are deterministic). After the execution,

an unlock intra-shard transaction is inserted in the block 𝑡𝑥𝑢𝑛𝑙𝑜𝑐𝑘
𝑖

.

Note that the whole process is recursive to explore the whole call

graph. In case of loops in the call graph, to avoid deadlocks a locked

smart contract can accept incoming calls when originating by the

same root of the call graph that caused the smart contract to be

locked (line 5). Let us stress that the call graph is distributed among

shards. To cope with that call paths, which are added at each out-

going invocation in the call graph, allow to trace back the path till

the root and find if there is a common root.

As mentioned, locking a smart-contract consists in ignoring

future transactions that could modify the state of this contract

(until this smart contract is unlocked), however for stateless smart-

contracts (i.e., smart-contracts that do not have a state to maintain),

it is useless to lock the contract.

Addressing the dynamicity of the call graph. Notice that, we can
have merges and splits during the 2PC protocol, e.g., two smart

contracts that are on the same shard at the beginning of the protocol

can live on two different shards at the end of it, splitting at some

arbitrary moment. To make the dynamic sharding seamless to the

protocol, we can modify the protocol as follows. Firstly, in the call

graph, we treat all smart contract transactions as cross-shard smart

contract transactions, i.e., the call graph has at its vertices all the

involved smart contracts, independently whether two adjacent ones

are on the same shard or not. Secondly, when a validator inserts in a

block a cross-shard transaction that targets another smart contract

on the same shard, then it immediately process it. In this way, we

avoid to add latency in the processing of an invocation between

two smart contracts on the same shard.

4.3 Process-to-shard assignment
Shards are uniquely identified by their label 𝑙 (the computation of

shards’ label is described in Section 4.4). At any time, any process is

assigned to the (unique) shard whose label minimizes the distance

with the process’s identifier.

Definition 5 (Distance function). [24] Let 𝑎 = 𝑎0 . . . 𝑎𝑑−1
and 𝑏 = 𝑏0 . . . 𝑏𝑑′−1, for any 𝑑, 𝑑 ≥ 1, be any two bit strings, and
𝑠 = 𝑚𝑎𝑥 (𝑑, 𝑑 ′). Note that the bit numbering starts at zero for the
most significant bit. The distance between 𝑎 and 𝑏, denoted by 𝐷 (𝑎, 𝑏)

6

Algorithm 1 Distributed-Graph 2PC for any shard block proposer

1: upon block proposal fetch MemPool and state of Yggdrassil chains

2: fetch all 𝑡𝑥 from 𝑐𝑜𝑛𝑓 𝑖𝑟𝑚𝑒𝑑𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡 in 𝑠𝑡𝑎𝑡𝑒

/* confirmed transactions till the previous block in the shardchain */

3: for each 𝑡𝑥 such that(𝑡𝑥 .𝑡𝑦𝑝𝑒 =𝑄𝑈𝐸𝑅𝑌) then
4: 𝑡𝑡𝑥 ← 𝑡𝑥 .𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥

/* query received, target transaction 𝑡𝑡𝑥 extracted */

5: if(!𝑖𝑠𝐿𝑜𝑐𝑘𝑒𝑑 (𝑡𝑡𝑥 .𝑠𝑐) ∨ (𝑖𝑠𝐹𝑟𝑜𝑚𝑆𝑎𝑚𝑒𝐶𝑎𝑙𝑙𝐺𝑟𝑎𝑝ℎ (𝑡𝑥)) then
/* isFromSameCallGraph() returns true if the query comes from the same call graph as the query

transaction that provoked the lock of 𝑡𝑡𝑥 .𝑠𝑐 . This means that the call path at the lock time is a

prefix of the call path of 𝑡𝑡𝑥 . False otherwise. */

6: if(ℎ𝑎𝑠𝐶𝑟𝑜𝑠𝑠𝑆ℎ𝑎𝑟𝑑𝐶𝑎𝑙𝑙𝑠 (𝑡𝑡𝑥)) then
/* call graph goes one level deeper */

7: 𝑏𝑙𝑜𝑐𝑘_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝐿𝑜𝑐𝑘𝑇𝑥 (𝑡𝑡𝑥 .𝑠𝑐)
8: 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠 ← 𝑔𝑒𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠 (𝑡𝑡𝑥)
9: 𝑏𝑙𝑜𝑐𝑘_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝑄𝑢𝑒𝑟𝑦𝑇𝑥𝑠(𝑡𝑡𝑥, 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠, 𝑡𝑥)

10: else
/* call graph reaches a leaf */

11: 𝑟𝑒𝑠 ← exec(𝑡𝑡𝑥, 𝑠𝑡𝑎𝑡𝑒)
12: if(𝑟𝑒𝑠! = 𝑛𝑢𝑙𝑙) then
13: 𝑏𝑙𝑜𝑐𝑘_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝐿𝑜𝑐𝑘𝑇𝑥 (𝑡𝑡𝑥 .𝑠𝑐)
14: 𝑏𝑙𝑜𝑐𝑘_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝑉𝑜𝑡𝑒𝑇𝑥 (PREPARE, 𝑟𝑒𝑠, 𝑡𝑥, 𝑡𝑥𝑣0)

/* 𝑡𝑥𝑣0 is a root vote transaction with all values to empty */

15: else𝑏𝑙𝑜𝑐𝑘_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝑉𝑜𝑡𝑒𝑇𝑥 (ABORT, 𝑛𝑢𝑙𝑙, 𝑡𝑥, 𝑡𝑥𝑣0)
16: for each 𝑡𝑥 such that (𝑡𝑥 .𝑡𝑦𝑝𝑒 =𝑉𝑂𝑇𝐸)
17: 𝑑𝑡𝑥 ← 𝑡𝑥 .𝑑𝑒𝑠𝑡𝑇𝑥 ;

/* vote received, dest transaction𝑑𝑡𝑥 extracted from 𝑡𝑥 */

18: if(𝑖𝑠𝑅𝑒𝑎𝑑𝑦𝑇𝑜𝐶𝑜𝑚𝑝𝑢𝑡𝑒 (𝑑𝑡𝑥) ∧ 𝑖𝑠𝐿𝑜𝑐𝑘𝑒𝑑 (𝑑𝑡𝑥 .𝑠𝑐) then
/* isReadyToCompute() checks if, in this shard (the𝑑𝑡𝑥 .𝑠𝑐 ’s shard) all the votes, for which the query

𝑡𝑥 .𝑞𝑢𝑒𝑟𝑦𝑇𝑥 has been issued, have been gathered */

19: 𝑣𝑜𝑡𝑒𝑠 ← 𝑔𝑒𝑡𝑉𝑜𝑡𝑒𝑠 (𝑔𝑒𝑡𝐴𝑙𝑙𝑉𝑜𝑡𝑒𝑇𝑥𝑠 (𝑡𝑥))
20: if(𝑛𝑜𝐴𝑏𝑜𝑟𝑡 (𝑣𝑜𝑡𝑒𝑠))
21: 𝑟𝑒𝑠 ← exec(𝑑𝑡𝑥,𝑔𝑒𝑡𝑅𝑒𝑠𝑢𝑙𝑡𝑠 (𝑔𝑒𝑡𝐴𝑙𝑙𝑉𝑜𝑡𝑒𝑇𝑥𝑠 (𝑡𝑥)))
22: case 1 (𝑟𝑒𝑠! = 𝑛𝑢𝑙𝑙 ∧ 𝑖𝑠𝐿𝑜𝑐𝑘𝑂𝑛𝐼𝑛𝑣𝑜𝑘𝑒 () ∧𝑛𝑜𝐴𝑏𝑜𝑟𝑡 (𝑣𝑜𝑡𝑒𝑠))

/* the𝑑𝑡𝑥 is the root, a decision is sent */

23: 𝑖𝑛𝑠𝑒𝑟𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑥𝑠 (𝐶𝑂𝑀𝑀𝐼𝑇 ,𝑔𝑒𝑡𝐴𝑙𝑙𝑉𝑜𝑡𝑒𝑠𝑇𝑥𝑠 (𝑡𝑥))
24: 𝑖𝑛𝑠𝑒𝑟𝑡𝑈𝑛𝑙𝑜𝑐𝑘𝑇𝑥 (𝑑𝑡𝑥 .𝑠𝑐)
25: case 2 (𝑟𝑒𝑠! = 𝑛𝑢𝑙𝑙∧!𝑖𝑠𝐿𝑜𝑐𝑘𝑂𝑛𝐼𝑛𝑣𝑜𝑘𝑒 () ∧𝑛𝑜𝐴𝑏𝑜𝑟𝑡 (𝑣𝑜𝑡𝑒𝑠))

/* the𝑑𝑡𝑥 is not root, a vote must be sent to the parent */

26: 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦 ← 𝑡𝑥 .𝑞𝑢𝑒𝑟𝑦𝑇𝑥.𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑄.𝑙𝑎𝑠𝑡 ()
27: 𝑖𝑛𝑠𝑒𝑟𝑡𝑉𝑜𝑡𝑒𝑇𝑥 (𝑃𝑅𝐸𝑃𝐴𝑅𝐸, 𝑟𝑒𝑠, 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦, 𝑡𝑥)
28: case 3 ((𝑟𝑒𝑠 = 𝑛𝑢𝑙𝑙 ∨!𝑛𝑜𝐴𝑏𝑜𝑟𝑡 (𝑣𝑜𝑡𝑒𝑠) ∧𝑖𝑠𝐿𝑜𝑐𝑘𝑂𝑛𝐼𝑛𝑣𝑜𝑘𝑒 ())

/* the𝑑𝑡𝑥 is the root, a decision is sent */

29: 𝑖𝑛𝑠𝑒𝑟𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑥𝑠 (𝑅𝑂𝐿𝐿𝐵𝐴𝐶𝐾,𝑔𝑒𝑡𝐴𝑙𝑙𝑉𝑜𝑡𝑒𝑇𝑥𝑠 (𝑡𝑥))
30: 𝑖𝑛𝑠𝑒𝑟𝑡𝑈𝑛𝑙𝑜𝑐𝑘𝑇𝑥𝑠 (𝑑𝑡𝑥 .𝑠𝑐)
31: case 4 (𝑟𝑒𝑠 = 𝑛𝑢𝑙𝑙∨!𝑛𝑜𝐴𝑏𝑜𝑟𝑡 (𝑣𝑜𝑡𝑒𝑠))∧!𝑖𝑠𝐿𝑜𝑐𝑘𝑂𝑛𝐼𝑛𝑣𝑜𝑘𝑒 ())

/* the𝑑𝑡𝑥 is not the root, a vote must be sent to the parent */

32: 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦 ← 𝑡𝑥 .𝑞𝑢𝑒𝑟𝑦𝑇𝑥.𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑄.𝑙𝑎𝑠𝑡 ()
33: 𝑖𝑛𝑠𝑒𝑟𝑡𝑉𝑜𝑡𝑒𝑇𝑥 (𝐴𝐵𝑂𝑅𝑇,𝑟𝑒𝑠, 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦, 𝑡𝑥)
34: for each 𝑡𝑥 such that (𝑡𝑥 .𝑡𝑦𝑝𝑒 = 𝐷𝐸𝐶𝐼𝑆𝐼𝑂𝑁) then
35: 𝑑𝑡𝑥 ← 𝑡𝑥 .𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥 ;

/* decision received, dest transaction𝑑𝑡𝑥 extracted from 𝑡𝑥 */

36: if(𝑖𝑠𝐿𝑜𝑐𝑘𝑒𝑑 (𝑑𝑡𝑥 .𝑠𝑐)) then
37: if(𝑖𝑠𝐶𝑜𝑚𝑚𝑖𝑡 (𝑡𝑥)) then exec(𝑑𝑡𝑥)
38: if(𝑡𝑥 .𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥 ! = 𝑡𝑥𝑣0) then

/* dtx is not a sink transaction in the call graph */

39: 𝑖𝑛𝑠𝑒𝑟𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑥𝑠 (𝑡𝑥 .𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛,𝑔𝑒𝑡𝐴𝑙𝑙𝑉𝑜𝑡𝑒𝑠𝑇𝑥𝑠 (𝑡𝑥))
40: 𝑖𝑛𝑠𝑒𝑟𝑡𝑈𝑛𝑙𝑜𝑐𝑘𝑇𝑥 (𝑡𝑥 .𝑠𝑐)
41: for each 𝑡𝑥 such that(𝑡𝑥 .𝑡𝑦𝑝𝑒 = 𝐼𝑁𝑉𝑂𝐾𝐸 from user) then
42: if(!𝑖𝑠𝐿𝑜𝑐𝑘𝑒𝑑 (𝑡𝑥 .𝑠𝑐) ∧ℎ𝑎𝑠𝐶𝑟𝑜𝑠𝑠𝑆ℎ𝑎𝑟𝑑𝐶𝑎𝑙𝑙𝑠 (𝑡𝑥)) then
43: 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝐿𝑜𝑐𝑘𝑇𝑥 (𝑡𝑥 .𝑠𝑐)
44: 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠 ← 𝑔𝑒𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠 (𝑡𝑥)
45: 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝑄𝑢𝑒𝑟𝑦𝑇𝑥𝑠(𝑡𝑥, 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠, 𝑡𝑥𝑞0)

/* 𝑡𝑥𝑞0 is a root query transaction with all values to empty */

46: else𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡𝑀𝑒𝑚𝑃𝑜𝑜𝑙𝑇𝑥𝑠𝐼𝑛𝐵𝑙𝑜𝑐𝑘 (𝑡𝑥)
/* insert all other invoke transactions from the MemPool in the block */

47: propose block

Algorithm 2 insertQueryTxs(sourceTx,targetTxs,prevQueryTx)
1: 𝑐𝑎𝑙𝑙𝑃𝑎𝑡ℎ← 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦𝑇𝑥.𝑐𝑎𝑙𝑙𝑃𝑎𝑡ℎ.𝑎𝑑𝑑 (𝑠𝑜𝑢𝑟𝑐𝑒𝑇𝑥)
2: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑄 ← 𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦𝑇𝑥.𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑄.𝑎𝑑𝑑 (𝑝𝑟𝑒𝑣𝑄𝑢𝑒𝑟𝑦𝑇𝑥)
3: for each 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥𝑠
4: 𝑞𝑢𝑒𝑟𝑦𝑇𝑥 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑥 (𝑄𝑈𝐸𝑅𝑌,𝑐𝑎𝑙𝑙𝑃𝑎𝑡ℎ, 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑄)
5: 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑎𝑑𝑑 (𝑞𝑢𝑒𝑟𝑦𝑇𝑥)

Algorithm 3 insertVoteTx(𝑣𝑜𝑡𝑒, 𝑟𝑒𝑠, 𝑞𝑢𝑒𝑟𝑦𝑇𝑥, 𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥)
1: 𝑑𝑒𝑠𝑡𝑇𝑥 ← 𝑞𝑢𝑒𝑟𝑦𝑇𝑥.𝑐𝑎𝑙𝑙_𝑝𝑎𝑡ℎ.𝑙𝑎𝑠𝑡

2: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉 ← 𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥.𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉 .𝑎𝑑𝑑 (𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥)
3: 𝑣𝑜𝑡𝑒𝑇𝑥 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑥 (𝑉𝑂𝑇𝐸, 𝑣𝑜𝑡𝑒, 𝑟𝑒𝑠,𝑑𝑒𝑠𝑡𝑇𝑥,𝑞𝑢𝑒𝑟𝑦𝑇𝑥, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉)
4: 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑎𝑑𝑑 (𝑣𝑜𝑡𝑒𝑇𝑥)

Algorithm 4 insertDecisionTxs(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑣𝑜𝑡𝑒𝑇𝑥𝑠)
1: for each 𝑣𝑜𝑡𝑒𝑇𝑥 ∈ 𝑣𝑜𝑡𝑒𝑠𝑇𝑥𝑠 then
2: 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥 ← 𝑣𝑜𝑡𝑒𝑇𝑥.𝑞𝑢𝑒𝑟𝑦𝑇𝑥.𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥

3: 𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥 ← 𝑣𝑜𝑡𝑒𝑇𝑥.𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉𝑜𝑡𝑒𝑠.𝑙𝑎𝑠𝑡 ()
4: 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑥 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑥 (𝐷𝐸𝐶𝐼𝑆𝐼𝑂𝑁,𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑥, 𝑝𝑟𝑒𝑣𝑉𝑜𝑡𝑒𝑇𝑥)
5: 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← 𝑏𝑙𝑜𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 .𝑎𝑑𝑑 (𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑥)

is the numerical XOR between 𝑎 and 𝑏 and is computed as follows.

𝐷 (𝑎, 𝑏) = 𝐷 (𝑎0 . . . 𝑎𝑑−1 .0𝑠−𝑑 , 𝑏0 . . . 𝑏𝑑′−1 .0𝑠−𝑑
′
)

=

𝑠−1∑︁
𝑖=0

2
𝑠−1−𝑖

1𝑎𝑖≠𝑏𝑖

where notation 0
𝑠−𝑑 represents 𝑠 − 𝑑 digits set to 0, and 1𝐴 denotes

the indicator function, which is equal to 1 if condition 𝐴 is true and 0
otherwise.

Property 6 (Process Assignment). Let 𝑖𝑑𝑖 be the identifier of
process 𝑝𝑖 and S be the set of shards, then the shard 𝑆ℓ to which 𝑝𝑖 is
assigned satisfies relation 1.

𝑆ℓ = argmin

𝑆 ∈S
𝐷 (𝑖𝑑𝑖 , 𝑆) (1)

By construction of the shard labels mechanism (see Section 4.4)

shard 𝑆ℓ is unique with respect to 𝑖𝑑𝑖 , that is, for any shard 𝑆ℓ′ ∈ S
with ℓ ′ ≠ ℓ , then 𝐷 (𝑖𝑑𝑖 , 𝑆ℓ) < 𝐷 (𝑖𝑑𝑖 , 𝑆ℓ′).

Due to lack of space, the pseudo-codes executed by a newly

created process and its assignment to a shard are moved to the full

version of the paper [?].

4.4 Dynamic management of shards
The number of shards in Yggdrasil self-adapts to the actual rate at

which transactions are submitted to Yggdrasil. This is achieved by

two operations, namely the split and the merge operations. Specifi-
cally, when the last blocks of a shardchain become overloaded (i.e.,

the average ratio between their number of bytes and the maximal

number of bytes contained in a block exceeds a given threshold),

then the committee of validators of the overloaded shard triggers a

split operation. Note that this assumes that the size of the commit-

tee is greater than twice the minimal size of a Byzantine tolerant

committee. In the negative the overloaded shard does not split into

two smaller shards. Now, when a shard is under-loaded (i.e., the

average ratio between their number of bytes and the maximal num-

ber of bytes contained in a block falls short of a given threshold), or

the size of its committee of validators is close to the minimal size of

a Byzantine tolerant committee, then the committee of validators

triggers a merge operation with the shard closest to theirs.

Operationally, each shard maintains an attribute called status
that can be set to Splittable, Mergeable, or Regular depending on

the conditions mentioned above. This attribute is also included in

the shard update transactions sent from shards to the masterchain

to globally share information about all the shards status.

We formally express the status of a shard as follows:

Definition 7 (Shard’s Status). We denote by 𝑉ℓ (𝑡) the set of
validators assigned to 𝑠ℓ at time 𝑡 . At time t, a shard is in one of the
following three status.

• Splittable: A shard is considered splittable at time t if |𝑉ℓ (𝑡) |
goes above a certain threshold Φ and block load goes above
another threshold Γ.

7

• Mergeable: A shard is considered mergeable a time t if |𝑉ℓ (𝑡) |
goes below a certain threshold 𝜙 or block load goes below
another threshold 𝛾 .

• Regular: A shard is considered regular if it is neither split-
table nor mergeable.

Note that at each split/merge operations, the label of the newly

created shard(s) is derived from its parent’s label. Initially, Yggdrasil

is made of a single shard labelled with the empty binary string ℓ = 𝜖 .

If Yggdrasil needs to replace a splittable shard 𝑠ℓ labelled with ℓ by

two new shards, they respectively inherit the label of the overloaded

shard suffixed with 0 and 1, i.e., 𝑠ℓ .0 and 𝑠ℓ .1. If two shards 𝑠ℓ .0 and

𝑠ℓ .1 are concomitantly Mergeable, they are replaced by a single

shard 𝑠ℓ whose label is equal to the maximum prefix shared by

the two Mergeable shards, i.e., ℓ . Processes are automatically re-

assigned to the newly created shards according to their identifiers.

State transfer between shards. As the split and merge operations

lead to the creation of new shards, this gives rise to the creation of

new shardchains and the extinction of old ones. The state of a newly

created shardchain is initialized with a summary of its parent(s)’

state. This summary is the genesis block of the new shardchain.

Each split or merge operation automatically re-assigns validators

to their new shard. This assignment is verifiable in the masterchain.

The genesis block of each new shardchain is produced by commit-

tees pseudo-randomly selected upon the validators assigned to the

shard. The pseudo-random selection is based on public information

contained in the masterchain.

Processesmaintain the set of shardsS by reading the information

contained in the masterchain’s blocks. Specifically, upon receipt of

a masterchain’s block, processes append it to their local copy of the

masterchain and update S using the information contained in it.

4.5 Shards update transactions details
We are now able to detail shard update transactions. A shard up-

date transaction contains the latest information related to a shard,

namely, the hash of the last block created, the status of the shard,

and information about outgoing cross-shard transactions. When a

shard validates a cross-shard transaction in its shardchain, it must

notify the receiving shard 𝑠 ′. It includes in its shard update transac-

tion the Merkle Root𝑚′ of the cross-shard transactions that involve
the shard 𝑠 ′ (if any) associated to the label ℓ ′ of 𝑠 ′. More formally,

a shard update transaction 𝑆𝑈 sent by shard 𝑠 is defined as follows.

𝑆𝑈 = (ℓ, ℎ(𝑏),T , \), (2)

where ℓ is the label of shard 𝑠 , ℎ(𝑏) is the cryptographic hash of

the latest block 𝑏 created in 𝑠 , T represents the set of cross-shard

transactions contained in 𝑏 that involves 𝑟 corresponding shards,

and \ represents the status of 𝑠 . Note that T is a key-value list

where the keys are the labels ℓ 𝑗 of involved shards 𝑠 𝑗 , by involved

shards, we mean the shards that have to confirm at least one of the

cross-shard transactions contained in 𝑏. The value associated to

each ℓ 𝑗 in T is the merkle root𝑚 𝑗
of the transactions (contained

in 𝑏) involving 𝑠 𝑗 as a recipient, it is defined as:

T =

{
(ℓ ′,𝑚′), . . . , (ℓ 𝑗 ,𝑚 𝑗), . . . , (ℓ (𝑟) ,𝑚 (𝑟))

}
(3)

4.6 Reducing cross-shard transactions volume
Cross-shard transactions are very expensive in terms of latency

(i.e. since a cross-shard transaction needs to be processed by two

shards, users have to wait longer for it to be confirmed), therefore,

it is essential to limit the volume of these transactions. We propose

to allow any node to create several users (not necessarily when

the node joins), one for each shard of interest, to make transaction

processing local to each shard. We call this optimization incarnation.
Each of these incarnations is a user with one account. Any two

incarnations have two different accounts.

Incarnations get identifiers allowing nodes to position them-

selves in the targeted shard. Specifically, an incarnation is identified

by the label of the targeted shard concatenated to the public key of

the node. Concretely, suppose that when a node joins the networks

there exist 3 shards respectively labelled 0, 10, and 11 and the node’s

public key is 1001
6
. Based on its node’s public key, the default user

incarnation would be identified by 𝑖𝑑𝑛𝑜𝑑𝑒 = 1001, therefore, would

be assigned to shard 10. However, if the node intends to repeat-

edly interact with another user or with a smart contract located in

shard 0, Yggdrasil enables it to incarnate in 𝑠0, with the identifier

𝑖𝑑𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛 = 0.𝑖𝑑𝑛𝑜𝑑𝑒 = 01001. Operationally, to create an incar-

nation, initial funds must be deposited into its account by sending a

cross-shard transaction 𝑡𝑥1: < 𝑖𝑑𝑛𝑜𝑑𝑒 , 𝑖𝑑𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛 , _>. If the node

wants to withdraw its funds from its incarnation it must send a

transaction 𝑡𝑥2: <𝑖𝑑𝑖𝑛𝑐𝑎𝑟𝑛𝑎𝑡𝑖𝑜𝑛 , 𝑖𝑑𝑛𝑜𝑑𝑒 , _>.

4.7 Dealing with an adaptive adversary
So far, we have considered a deterministic and static assignment

for all processes in a shard. However, to deal with an adaptive ad-

versary, validators must be moved to random shards from time to

time (quickly enough to prevent the adversary from poisoning the

shard by progressively compromising more than a fraction 𝜏 of

the validators committee). This mechanism is known as shuffling

7
. However, shuffling validators (committee members or not) in-

troduces some synchronization overhead, i.e., the time it takes for

moved validators to download the latest state. To avoid downtime

during the synchronization procedure, it is imperative that for each

shard, each resynchronization involves a subset of the validators of

the shard, and to defend against a weakly adaptive adversary, the

new assignement must be random, and unpredictable.

Our procedure to shuffle validators is presented in Algorithm 5.

The reassignment function is parametrized by 𝑘 , 𝑘 being the num-

ber of blocks that need to be created in a given shard before the

adversary is capable of corrupting a new validator in the shard.

Operationally, our reassignment function consists in computing a

new identifier 𝑖𝑑ℎ𝑣 for each validator 𝑣 and each new height ℎ of

the masterchain. Input values of the reassignement function are:

(1) the validator identifier 𝑖𝑑𝑣 and (2) the hash of the latest mas-

terchain block ℎ𝑎𝑠ℎ(𝑏ℎ𝑚
𝑖
). Note that the adversary cannot guess

ℎ𝑎𝑠ℎ(𝑏ℎ𝑚
𝑖
) prior this block is created which limits its adversarial

strategies. This results on an output value 𝑖𝑑ℎ𝑣 , a binary string the

validators use to (i) define if they need to move and (ii) in which

6
Here, we reduce the size of the public key for simplicity of the example. In reality,

the public key is 256 bits long

7
Note that users do not need to be shuffled as they have no decision power, i.e., they

have no voting power.

8

shard it should re-assign to. To do that, the validators first calculate

the distance (see Definition 5) between their identifier 𝑖𝑑𝑣 and 𝑖𝑑
ℎ
𝑣

𝐷 (𝑖𝑑ℎ𝑣 , 𝑖𝑑𝑣). The validator is allowed to move if its 𝐷 (𝑖𝑑ℎ𝑣 , 𝑖𝑑𝑣) is
below a threshold such that the probability for the validator to be

shuffled is equal to 1/𝑘 (line 3 of Algorithm 5). Then, the validators

calculate 𝐷 (𝑖𝑑ℎ𝑣 ,S) and assign the validator to the closest shard to

𝑖𝑑ℎ𝑣 (line 4 of Algorithm 5). Note that the distance function could

return the same shard the validator was in for the last height, thus,

it would not move. Hence, the probability of of having a different

shard than the former shard the validator was in would be 1 − 1

|S | .
In this way, for each masterchain block, we have a probability

≈ 1/𝑘 for a validator to be re-assigned and each process in the

system could compute its assignment.

Algorithm 5 Validators Reassignment

1: upon receive 𝑏𝑙𝑜𝑐𝑘 from𝐶𝑚 (ℎ𝑚𝑖 + 1)
/*𝐶𝑚 (ℎ) being the masterchain committee at height ℎ. */

2: 𝑖𝑑ℎ𝑣 ← 𝑓 (𝑖𝑑𝑣 , ℎ𝑎𝑠ℎ (𝑏𝑙𝑜𝑐𝑘)) .

3: if (𝐷 (𝑖𝑑ℎ𝑣 , 𝑖𝑑𝑣) <
𝐷 (𝑖𝑑ℎ𝑣 ,𝑖𝑑ℎ𝑣)

𝑘
)

/* where 𝑖𝑑ℎ𝑣 is the binary complement of 𝑖𝑑ℎ𝑣 */
4: 𝑣𝑖 .shard← getClosestShard(𝑖𝑑ℎ𝑣 , S)

/* getClosestShard() returns the closest shard between 𝑖𝑑𝑣 and the shard
labels in S using the distance function defined in Definition 5. */

5 SECURITY ANALYSIS
Due to space limitations, Yggdrasil’s properties and proofs are pre-

sented in the full version of the paper [?].

6 PERFORMANCE EVALUATION
The objective of this section is to evaluate the performances of Yg-

gdrasil against the following properties: (i) scalability, i.e., capacity

to scale during a peak of transaction load in terms of block/transaction
throughput and latency, (ii) reactivity in terms of number of shards
in the system, against a sudden and abrupt transaction fluctuation,

i.e., during and after a burst of transactions and (iii) the impact of

cross-shard transactions.

We evaluate Yggdrasil scalability using 500k historical Ethereum

transactions [25] contained in 10k blocks; between the 14, 700, 000𝑡ℎ

and the 14, 710, 000𝑡ℎ blocks created between 02/05/2022 at 20:54:24

and 04/05/2022 at 10:47:00.

For reactivity we consider realistic fluctuations (by scaling time

from real-time minutes to simulation seconds) and we compare

Yggdrasil to time-driven approaches.

For cross-shard transaction we use a synthetic scenario, to eval-

uate performance under ever increasing proportion of cross-shard

volume (from 0% to 100%).

The source codes of these protocols as well as all the scripts of

the experiments are publicly accessible [26].

6.1 Simulator and Experimental Environment
We have used an agent-based simulation framework dedicated to

blockchain systems, called Multi-Agent eXperimenter (MAX) [27]

based on the MaDKit framework [28]. MAX offers generic libraries

to easily develop distributed ledger protocols and a large range

of simulation scenarios. The simulator is a discrete event simu-

lator, where the unit of simulation time is referred to as a tick.

Message-passing libraries allow us to configure different types of

communication schemes and message delays. In this work, the

communication schema is configured as a reliable broadcast with

configurable delay to reflect assumptions on our reliable broadcast

(see section 3 for more details). Impact of message losses is left for

future works. All the experiments have been run on Grid’5000, a

large-scale and flexible test-bed for experiment-driven research [29].

Due to the computational complexity of simulation models and

experiments involving a representative number of agents, each

experiment presented in this paper takes in average 24 hours.

6.2 Simulation Model
6.2.1 Block creation model. Miners create blocks by following an

implementation [30] in the simulator of the Tendermint protocol[10],

a BFT-consensus protocol that allows the creation of immediate

finality blockchains.

6.2.2 Common parameters of the simulations. For all the experi-
ments presented in the paper we have fixed some common parame-

ters as follows:

- The block capacity, that is the maximal number of transactions

a block can embed, is set to 100 transactions (to avoid the simu-

lator overload). Note that while in general, the block capacity is

approximately equal to 4, 000 transactions [31], reducing the block

capacity does not affect the behaviour of the protocols.

- A transaction is confirmed when the block this transaction belongs

to is appended to a blockchain and referenced in the masterchain.

- 𝑐𝑚𝑖𝑛 is set to 1. Impact of 𝑐𝑚𝑖𝑛 on the structure of the system

(number of shards) and its performances is left for future works.

- For each experiment, we have run sufficiently many simulations

to get a confidence interval equal to 5 ± %.

6.3 Scalability
This section studies the capability of Yggdrasil to handle high trans-

action submission rates. Specifically, we evaluate the transaction

confirmation rate, the number of unconfirmed transactions and

the transaction latency, i.e., the average time elapsed between the

submission of a transaction in the network and the time at which

the transaction is confirmed. We compare the performance of Yg-

gdrasil to solutions with static sharding such as Monoxide[16] with

a number of shards 𝑛 throughout the simulation.

6.3.1 Experiment setting. The overload threshold Γ which con-

ditions a shard splitting is fixed to 90% for Yggdrasil. Note that

when Γ = 100%, splits never occur and thus Yggdrasil reduces to

Tendermint (𝑛=1). The submission rate of transactions 𝑓t, which

represents the number of transactions submitted per tick of sim-

ulation, is set at the beginning of each experiment. 𝑓t varies from

1 to 1280 txs/tick. Let us remark that we get in expectation one

block created every 10 ticks. This means that in Tendermint 𝑓t = 10

txs/tick already exhausts the system transaction treatment capacity,

as the system creates one block every 10 ticks in expectation and

one block contains 100 transactions. From this observation, we

might expect that for 𝑓t > 10 txs/tick, pending transactions will

accumulate over time in, at least, Tendermint ledger. Note that to

9

(a) Transaction confirmation rate as a
function of the transaction submission rate.

(b) Transaction average latency as a
function of their submission rate.

(c) Number of unconfirmed transactions as a
function of their submission rate.

(d) Transaction average latency as a function
of cross-shard transaction probability.

Solution Yggdrasil rp=10 rp=20 rp=50 rp=100 rp=500 rp=1000 rp=1440

Rate (txs/tick) 375 253,5 189 120 60 15 15 15

Latency (tick) 35,8 71,4 85,5 114,5 123,9 132 132 132

(e) Maximum rate and average latency of Yggdrasil
and time-driven solutions in presence of a peak
of load. Note that 1440 ticks corresponds to a day,
which is the reconfiguration period used by Elrond
[32] and Omniledger [33].

(f) Transaction average latency with 2-phase
commit algorithm.

Figure 2: Performance evaluation of Yggdrasil.

avoid the overload of the simulator we were limited to 𝑓t = 1280

txs/tick. Anyway, setting 𝑓t up to 1280 txs/tick allows us to severely

stress Tendermint and Yggdrasil. Similarly to Bitcoin Core client,

validators give priority to old transactions in our implementations

of Tendermint and Yggdrasil.

6.3.2 Experiment results. The main results of our experiments ap-

pear in Figures 2a, 2b and 2c. Note that in all the graphs, points are

linked together with lines. This is only for readability reasons.

Figure 2a shows the confirmation rate of transactions as a func-

tion of their submission rate 𝑓𝑡 . The main observation regarding

static sharding solutions is that whatever the number of shards 𝑛

is, they show a limited transaction confirmation rate (e.g. approxi-

mately 200 txs/tick for 𝑛 = 32 shards). On the contrary, this rate is

auto-adaptive for Yggdrasil which reaches more than 1.200 txs/tick

while Tendermint (𝑛 = 1) reaches only 15 txs/tick (85 times less

powerful) which confirms the interest of dynamic sharding when

it comes to scalability. The implemented static-sharding solution

does not allow to reach such good performances even with 𝑛 = 32

shards. In order to better understand our simulation results, let us

give a correspondence between our simulated system and what

would give us a real system. According to [34], Tendermint has a

transaction confirmation capacity of approximately 500 txs/s. Pro-

portionally and taking the same basic parameters such as block size

and inter-block delay, Yggdrasil would be able to confirm about

42.000 txs/s. Note that the ability of Yggdrasil to match its transac-

tion confirmation capacity to the arrival rate of these transactions

already allows us to glimpse its scalability potential. Figure 2b illus-

trates the average transaction latency as a function of 𝑓𝑡 . In contrast

to all the other experiments, transaction latency has been measured

as follows: transactions are submitted at 𝑓𝑡 for a while, then 𝑓𝑡 is set

to 0, and simulations stop once all the submitted transactions have

been confirmed. For static sharding solutions, latency is increasing

in average but reaches lower values as the number of shards 𝑛

increases (450 tick/tx for 𝑛 = 1 and 50 tick/tx for 𝑛 = 32). On the

other hand, Yggdrasil with its dynamic sharding shows a stable and

lower latency (16 tick/tx). Figure 2c shows the average number of

transactions that accumulate at the end of the simulation before

being embedded in blocks. The number of unconfirmed transac-

tions confirms our hypothesis about the rate. Yggdrasil has a better

confirmation capacity than systems with a static number of shards.

It is shown by a least number of pending transactions at the end

of the simulation. Note that the number of pending transactions

is close to 0 but not null for the simulated scenarios of Yggdrasil

because simulations are interrupted while transactions are still

arriving, thus not confirmed yet by newly created blocks.

6.4 Reactivity
This section aims at assessing the capacity of Yggdrasil to react

to sudden and abrupt fluctuations in the creation transaction rate.

Additionally, we compare Yggdrasil, which is event-driven, to the

time-driven adaptability some solutions of our related-work provide

(e.g, Elrond [32], Omniledger [33]). We thus study the reactivity of

solutions that adapt the number of shards at specific reconfiguration

periods rp.

6.4.1 Experiments setting. As briefly presented in Section 4.4, when
𝑓t shrinks, the system reacts by progressively decreasing the un-

der loaded sibling shards, and thus the number of created blocks.

Thus each merge divides by almost two the number of blocks subse-

quently created. By the randomness of transaction identifiers, if one

shardchain becomes under loaded, then soon after, all the shard-

chains become under loaded too, and thus merges occur in cascade.

Initially, 𝑓t = 500 txs/tick during 10 ticks to mimic a transaction

10

peak load, and then at tick 𝑡 = 12, 𝑓𝑡 = 0 txs/tick. Split parameters

Γ and 𝑇 are set respectively to 90% and 5, while merge parameters

𝛾 and 𝜏 are set respectively to 10% and 2. As for the time-driven

parameters, rp is set to 10, 20, 50, 100, 500, 1000 and 1440 ticks. The

latter matching the reconfiguration period of Omniledger [33] and

Elrond [32] (a day).

6.4.2 Experiments results. Figure 2e shows the reactivity of Yg-

gdrasil in presence of a load peak (constant function from 𝑡 = 1

to 𝑡 = 11 ticks at 𝑓t = 500txs/tick). Yggdrasil initially undergoes

a series of splits, it reaches a maximum transaction confirmation

rate of 375 txs/tick in order to lower latency to 35 ticks. Then, it

progressively moves on to a series of merge up to converging to a

single shard.

The time-driven solution, on the other hand, performs less well

since it does not adapt its number of shards automatically. Indeed,

at low values of rp such as 10 or 20 ticks, the system still manages

to increase the confirmation rate (190-250 txs/tick) to absorb the

increase in throughput thus lower latency (70-85 ticks). At medium

values such as 50 or 100 ticks, the system reacts late and many

transactions are already passed at a lower confirmation rate (60-120

txs/tick) and therefore with a higher latency (115-125 ticks). For

our highest values rp > 100𝑡𝑖𝑐𝑘𝑠 , the system does not even realize

that there has been an increase in the incoming transaction rate

and does not react, therefore, all transactions are confirmed in one

shard, with a low rate (15 txs/tick), thus a high latency (132 ticks)

unlike Yggdrasil which shows optimal performance with a reactive

confirmation rate, thus a lower latency.

6.5 Cross-shard volume
This section studies the impact of various cross-shard transactions

volumes on the performances of Yggdrasil. The volume of cross-

shard transactions is defined as the ratio of the number of cross-

shard transactions to the total number of transactions at a given

time. We vary this ratio to observe its impact on the scalability

performances of the system.

6.5.1 Experiment setting. Additionally to the experiments settings

defined in section 6.3.1, we vary the cross-shard transaction prob-

ability 𝑝𝑐 from 0 to 1 to observe the impact of cross-shard trans-

actions. Note that 𝑝𝑐 represents the probability that each time a

transaction is created, it involves two users from two different

shards. Transaction creation rate is set to 𝑓𝑡 = 640 txs/tick.

6.5.2 Experiment results. The main results of our experiments ap-

pear in the graphs of Figure 2d. Note that in all the graphs, points

are linked together with lines. This is only for readability reasons.

Figure 2d shows the average transaction latency as a function of the

cross-shard transaction probability 𝑝𝑐 . The main observation is that

with dynamic or static sharding solutions whatever the number of

shards 𝑛 is, latency increases as 𝑝𝑐 increases. It also decreases as 𝑛

increases and is extremely low for Yggdrasil (as shown in Section

6.3) since the number of shards in this specific scenario depends on

the transaction arrival rate.

6.6 2PC algorithm
This section studies the performance impact of our newly presented

2PC algorithm for distributed smart-contracts (see Section 4.1). This

algorithm allows to lock a smart-contract while exchanging with

other shards during one of its methods’ execution. We study the

impact of this lock on transaction latency under different scenarios.

6.6.1 Experiment setting. Additionally to the experiments settings

defined in section 6.3.1, we study transaction latency (i.e. time spent

between creation and confirmation of a transaction) of Yggdrasil

while using our 2PC algorithm under three different configura-

tions: (i) no-sharding (ii) static sharding and (iii) dynamic sharding.

Transaction creation rate is set to 𝑓𝑡 = 160 txs/tick. Transactions

are all sent to 𝑆𝐶1 which calls 𝑆𝐶2. The addresses of 𝑆𝐶1 and 𝑆𝐶2

have been created so that these two smart-contracts can not be

assigned to the same shard (if there is more than one). In this way,

in a sharded configuration (at least 2 shards), any call between 𝑆𝐶1

and 𝑆𝐶2 would inevitably trigger our 2PC algorithm.

6.6.2 Experiment results. The main results of our experiments ap-

pear in the graph of Figure 2f. It shows the average transaction

latency for the three different configurations presented above. The

main observation is that in no-sharding solutions (Ethereum for

instance), latency is the lowest (50 ticks). When the ledger is state-

sharded, the smart-contract needs to be locked for each invoke,

which makes transactions wait longer, thus a higher latency. Please

note that as said before, only cross-shard calls involve the use of

our algorithm, thus smart-contract lock and higher latencies (as can

be seen in the static sharding configuration, i.e. 800 ticks). Finally,

dynamic sharding solutions such as Yggdrasil allow to have a stable

and low latency (110 ticks) despite smart-contract locking. This is

a side-effect of our split-merge mechanism. When our system is

sharded, only one transaction can be put in a block because this

transaction locks the contract which would have to wait for a return

from the other smart-contract located in another shard. This under-

fills leads to shards merging. On the other hand, when our system is

not sharded, blocks can be fulfilled because no transaction requires

smart-contract locking. This overfill leads to shards splitting. In

other words, our system alternates splitting and merging. By doing

so, it can confirm transactions in less time than in static sharding

solutions but in more time than solutions with no sharding in this

particular scenario. Note that in this experiment, there are no finan-

cial transaction that could fill blocks, which could hinder a merge.

In this case, Yggdrasil would have the same transaction latency as

static sharding solutions.

7 RELATEDWORK
In this section we compare main sharding solutions against Yg-

gdrasil along six criteria as shown in Table 1.

State sharding support. Most recent solutions in PoS settings

aim at implementing state sharding [16, 32, 33, 36, 38, 39], as Yg-

gdrasil does. All these solutions must provide support to cross-shard

transactions. Omniledger relies on a two-phase atomic commit pro-

tocol driven by the client, where shards do not communicate to

each other. Note that the need of a two-phase commit stems from

the fact that Ominledger transactions follow a UTXO model where

each financial transaction must be verified retrieving all the parent

transactions, possibly distributed in different shards. Other solu-

tions relies on inter-shard communication to confirm cross-shard

transactions, like Rapidchain [36], Monoxide [16] and Brokerchain

11

Elastico [35] Omniledger [33] Rapidchain [36] StakeCube [37] TON [38] Elrond [32] Monoxide [16] BrokerChain [39] Yggdrasil

State-sharding

Support No Yes Yes No Yes Yes Yes Yes Yes

Smart-Contract

Support No No No No Yes Yes No No Yes

Atomic-Commit / / / / No No / / Yes

Node-to-Shard Assignment

Model PoW PoW/PoX Offline PoW UTXO Ownership PoS PoS PoW PoS PoS

Predictability No No No No No No Yes Yes No

Adaptability Time-driven Time-driven Time-driven Event-driven Event-driven Time-driven Static Time-driven Event-driven

Type of Protocols

Intra BFT BFT BA BA BFT SPoS PoW PBFT BFT

Inter / BFT / / BFT SPoS PoW PBFT BFT

Security Asumptions

Network Partially synchronous Synchronous Synchronous As required for the BA
8

Synchronous Synchronous Partially synchronous Synchronous Partially synchronous

Failure

Adaptive Weakly Weakly Weakly Weakly N/A Weakly N/A N/A Weakly

Threshold 25% 25% 33% 33% 33% 33% 50% 33% 33%

Cross-shard transaction reduction No No No No No No Discussed Yes Yes

Table 1: Comparison table of blockchain sharding solutions.

[39], which use special users which exist in multiple shards and act

as relays between shards. Other approaches [32, 38] use a globally-

shared blockchain named masterchain (or metachain) to maintain

synchronization between shards and thus confirm cross-shard trans-

actions. Yggdrasil uses a masterchain-based solution to confirm

cross-shard financial transactions. As for general smart contracts,

atomicity is guaranteed via a two-phase commit protocol among

shards. Note that a two-phase commit protocol is not needed for

financial transactions in Yggdrasil because of the account-based

nature of transactions. As for smart contract support, only [32, 38]

manage smart contracts. The support however is only related to

the management of smart contract-to-shard assignment but there is

no support for atomicity of smart contracts in the general case. To

the best of our knowledge, Yggdrasil is the sole academic proposal

managing smart contracts in a sharded environment offering a 2PC

protocol to assure their atomicity.

Node-to-Shard Assignment. In permissionless settings, node-

to-shard assignment must be unpredictable. To this end, the se-

lection and assignment of processes can be based on PoW [16, 33,

35, 36], PoS [32, 38], often coupled with decentralized partitioning

(identifier-based, DHT, etc.). Some solutions propose to re-assign

regularly nodes to cope with an adaptive adversary [37, 38]. Yg-

gdrasil embraces the same approach. Note that Brokerchain uses a

public globally known predictable heuristic to re-assign nodes.

Adaptability (Time/Event-driven). Adaptability refers to the

adaptation of the number of shards to a given parameter specified

in the protocol, e.g. computational power of the system [35]. We

categorize how solutions manage the number of shards according

to whether their adaptability is (i) static, i.e., the number of shards

is fixed [16, 40], (ii) time-driven, i.e. the set of shards changes at

specific instants of time [32, 33, 35, 36, 39], or (iii) event-driven,
the set of shards changes automatically when appropriate condi-

tions are met [37, 38]. Yggdrasil falls in the event-driven category,

proposing for the first time in the realm of state-sharding solu-

tions a split/merge method to adapt to transaction load without

jeopardising the security of shards.

Type of protocols. Intra-shard protocols are typically consensus
protocols used to create blocks and elect block creators in each

shard. Mostly used consensus protocols in permissionless settings

are BFT Consensus [10, 11], Byzantine Agreements (BA) [2] and

Nakamoto-style consensus [1, 3, 7]. These protocols are typically

used with no or small adaptations in sharded blockchains (see Table

1). Election mechanisms, always in place to establish the nodes that

have rights to append blocks, are either based on PoW [16, 35, 36] or

on PoS [32, 37, 38]. Yggdrasil relies on the partially synchronous BFT

consensus of Tendermint for block creation (which gives immediate

block finality and transaction confirmation), while committees are

elected with a PoS-based method.

For state-sharding solutions, inter-shard protocols can require a

BFT protocol [33], an asynchronous communication protocol (e.g.

[16]), or synchronous protocols (e.g. BFT synchronous [38], stake-

based Nakamoto-style [32]). Yggdrasil uses asynchronous protocols

for cross-chain transaction confirmation, using masterchain-based

communication among shards.

Security Assumptions. The security of the each solution lies

in the robustness to an adversary that can take control of both net-

work and nodes resources. Because of the need of Consensus, which

requires partially synchronous networks to function properly, the

best possible protection that blockchains can offer is tolerance to

an adversarial network affected by temporary network partitions.

Note that synchronous solutions [32, 33, 36, 38] are not robust to an

adversarial network. As for processes corruptions, the best possible

threshold that partially synchronous solutions based on BFT Con-

sensus can tolerate is the 33% threshold. Security in permissionless

blockchains is ensured by solutions coping with an adaptive adver-

sary [32, 33, 35–37]. Yggrdrasil relies on a partially synchronous

network, tolerates 33% threshold of corrupted validators in each

shard and provides security against an adaptive adversary, being

the sole (to the best of your knowledge) state-sharding PoS solution

providing the proper level of security in a permissionless setting.

Cross-shard transaction reduction. Cross-shard transactions

are inevitable when state sharding is used. A simple way to reduce

the burden of cross-shard transactions is to let users choose the

shards they are interested in, i.e., the ones containing accounts of

their sellers and preferred smart contracts. This way transactions

do not have to cross different shards. This approach has been men-

tioned in [16] but without providing any method to implement it.

Yggdrasil offers a complete specification of the method. Broker-

chain [39] uses a different approach: it proposes a shard formation

heuristic to maximize the probability that users interactions take

place inside a single shard. The heuristic, however, is fully public,

which does not guarantee unpredictability and the required security

level in a permissionless setting.

8 CONCLUSION
Incitations des validateurs (ajout txs cross-shards en priorite ?)

Assignation basee sur le comportement (SCs préférés) Praesent

imperdiet, lacus nec varius placerat, est ex eleifend justo, a vulpu-

tate leo massa consectetur nunc. Donec posuere in mi ut tempus.

Pellentesque sem odio, faucibus non mi in, laoreet maximus arcu.

In hac habitasse platea dictumst. Nunc euismod neque eu urna

accumsan, vitae vehicula metus tincidunt. Maecenas congue tortor

nec varius pellentesque. Pellentesque bibendum libero ac dignissim

euismod. Aliquam justo ante, pretium vel mollis sed, consectetur

accumsan nibh. Nulla sit amet sollicitudin est. Etiam ullamcorper

diam a sapien lacinia faucibus.

12

REFERENCES
[1] S. Nakamoto, “Bitcoin : A peer-to-peer electronic cash system,” 2009.

[2] J. Chen and S. Micali, “Algorand: A secure and efficient distributed ledger,” Theor.
Comput. Sci., vol. 777, pp. 155–183, 2019.

[3] B. M. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos: An adaptively-

secure, semi-synchronous proof-of-stake blockchain,” in EUROCRYPT, 2018.
[4] “Ethereum proof-of-stake consensus specifications.” [On-

line]. Available: https://github.com/ethereum/consensus-specs/tree/

52a741f7c6d3bec98e04df3441bc8e7681480877/specs/altair

[5] V. T. Hoang, B. Morris, and P. Rogaway, “An enciphering scheme based on a

card shuffle,” in Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, ser. Lecture
Notes in Computer Science, vol. 7417. Springer, 2012, pp. 1–13.

[6] E. Anceaume, A. D. Pozzo, T. Rieutord, and S. Tucci Piergiovanni, “On

finality in blockchains,” CoRR, vol. abs/2012.10172, 2020. [Online]. Available:
https://arxiv.org/abs/2012.10172

[7] V. Buterin, “Ethereum white paper: A next generation smart contract

& decentralized application platform,” 2013. [Online]. Available: https:

//github.com/ethereum/wiki/wiki/White-Paper

[8] “Cosmos: The internet of blockchains.” [Online]. Available: https://github.com/

cosmos/cosmos

[9] M. Bourgoin, “An overview of the tezos blockchain.”

[10] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on BFT

consensus,” CoRR, vol. abs/1807.04938, 2018. [Online]. Available: http:

//arxiv.org/abs/1807.04938

[11] L. Astefanoaei, P. Chambart, A. D. Pozzo, T. Rieutord, S. Tucci-Piergiovanni,

and E. Zalinescu, “Tenderbake - A solution to dynamic repeated consensus for

blockchains,” in 4th International Symposium on Foundations and Applications of
Blockchain 2021, FAB 2021, May 7, 2021, University of California, Davis, California,
USA (Virtual Conference), ser. OASIcs, V. Gramoli and M. Sadoghi, Eds., vol. 92.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 1:1–1:23.

[12] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” CoRR, vol.
abs/1710.09437, 2017. [Online]. Available: http://arxiv.org/abs/1710.09437

[13] “Cardano.” [Online]. Available: https://github.com/input-output-hk/cardano-

node

[14] “Pyethereum.” [Online]. Available: https://github.com/ethereum/pyethereum/

blob/782842758e219e40739531a5e56fff6e63ca567b/ethereum/utils.py

[15] D. Skeen, “Nonblocking commit protocols,” in In Proceedings of the 1981 ACM
SIGMOD international Conference on Management of Data (SIGMOD), 1981, pp.
133–142.

[16] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asynchronous

consensus zones,” in 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). Boston, MA: USENIX Association, Feb. 2019,

pp. 95–112. [Online]. Available: https://www.usenix.org/conference/nsdi19/

presentation/wang-jiaping

[17] P. Robinson and R. Ramesh, “General purpose atomic crosschain transactions,” in

2021 3rd Conference on Blockchain Research & Applications for Innovative Networks
and Services (BRAINS). IEEE, 2021, pp. 61–68.

[18] I. Abraham and D. Malkhi, “The blockchain consensus layer and BFT,” Bulletin
of the EATCS, vol. 3, no. 123, pp. 1–23, 2017.

[19] L. Lamport, R. Shostak, and M. Pease, The Byzantine Generals Problem. New

York, NY, USA: Association for Computing Machinery, 2019, p. 203–226.

[Online]. Available: https://doi.org/10.1145/3335772.3335936

[20] “Whisk: A practical shuffle-based ssle protocol for ethereum.” [Online].

Available: https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-

for-ethereum/11763

[21] L. A. Rodrigues, J. Cohen, L. Arantes, and E. P. D. Jr., “A robust permission-based

hierarchical distributed k-mutual exclusion algorithm,” in IEEE 12th International
Symposium on Parallel and Distributed Computing, ISPDC 2013, Bucharest, Roma-
nia, June 27-30, 2013, N. Tapus, D. Grigoras, R. Potolea, and F. Pop, Eds. IEEE,

2013, pp. 151–158.

[22] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial

synchrony,” J. ACM, vol. 35, no. 2, p. 288–323, apr 1988. [Online]. Available:

https://doi.org/10.1145/42282.42283

[23] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-Sanchez,

A. Kiayias, and W. J. Knottenbelt, “Sok: Communication across distributed

ledgers,” in Financial Cryptography and Data Security, N. Borisov and C. Diaz,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021, pp. 3–36.

[24] E. Anceaume, A. Guellier, R. Ludinard, and B. Sericola, “Sycomore: A permission-

less distributed ledger that self-adapts to transactions demand,” in Proceedings of
the IEEE 17th International Symposium on Network Computing and Applications
(NCA), 2018.

[25] E. API, 2022. [Online]. Available: https://docs.etherscan.io/api-endpoints/

accounts

[26] Yggdrasil, “Source code,” https://anonymous.4open.science/r/Yggdrasil-11E5.

[27] MAX, “Source code,” https://gitlab.com/cea-licia/max/.

[28] O. Gutknecht and J. Ferber, “Themadkit agent platform architecture,” inWorkshop
on Infrastructure for Multi-Agent Systems, 2000.

[29] D. Balouek et al., “Adding virtualization capabilities to the Grid’5000 testbed,” in

Cloud Computing and Services Science (CLOSER), 2013.
[30] MAX, “Source code,” https://gitlab.com/cea-licia/max/models/ledgers/max.

model.ledger.tendermint_v2.

[31] J. Göbel and A. Krzesinski, “Increased block size and bitcoin blockchain dynam-

ics,” in 2017 27th International Telecommunication Networks and Applications
Conference (ITNAC), 2017, pp. 1–6.

[32] T. E. Team, “Elrond - A Highly Scalable Public Blockchain via Adaptive State

Sharding and Secure Proof of Stake,” Tech. Rep., 06 2019.

[33] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford, “Om-

niledger: A secure, scale-out, decentralized ledger via sharding,” Cryptology

ePrint Archive, Report 2017/406, 2017, https://ia.cr/2017/406.

[34] D. Cason, E. Fynn, N. Milosevic, Z. Milosevic, E. Buchman, and F. Pedone, “The

design, architecture and performance of the tendermint blockchain network,” in

2021 40th International Symposium on Reliable Distributed Systems (SRDS), 2021,
pp. 23–33.

[35] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, “A secure

sharding protocol for open blockchains,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16. Association

for Computing Machinery, 2016, p. 17–30.

[36] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling blockchain via

full sharding,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. Association for Computing Machinery,

2018, p. 931–948.

[37] A. Durand, E. Anceaume, and R. Ludinard, “Stakecube: Combining sharding

and proof-of-stake to build fork-free secure permissionless distributed ledgers,”

in Networked Systems: 7th International Conference, NETYS 2019, Marrakech,
Morocco, June 19–21, 2019, Revised Selected Papers. Berlin, Heidelberg: Springer-

Verlag, 2019, p. 148–165. [Online]. Available: https://doi.org/10.1007/978-3-030-

31277-0_10

[38] N. Durov, “Telegram Open Network,” Tech. Rep., 03 2019.

[39] H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin, Z. Zheng, and S. Guo, “Brokerchain:

A cross-shard blockchain protocol for account/balance-based state sharding,” in

IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, 2022.
[40] H. Tian, P. Luo, and Y. Su, “A centralized digital currency system with rich

functions,” in Provable Security: 13th International Conference, ProvSec 2019, Cairns,
QLD, Australia, October 1–4, 2019, Proceedings. Berlin, Heidelberg: Springer-

Verlag, 2019, p. 288–302. [Online]. Available: https://doi.org/10.1007/978-3-030-

31919-9_17

13

https://github.com/ethereum/consensus-specs/tree/52a741f7c6d3bec98e04df3441bc8e7681480877/specs/altair
https://github.com/ethereum/consensus-specs/tree/52a741f7c6d3bec98e04df3441bc8e7681480877/specs/altair
https://arxiv.org/abs/2012.10172
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/cosmos/cosmos
https://github.com/cosmos/cosmos
http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1710.09437
https://github.com/input-output-hk/cardano-node
https://github.com/input-output-hk/cardano-node
https://github.com/ethereum/pyethereum/blob/782842758e219e40739531a5e56fff6e63ca567b/ethereum/utils.py
https://github.com/ethereum/pyethereum/blob/782842758e219e40739531a5e56fff6e63ca567b/ethereum/utils.py
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping
https://doi.org/10.1145/3335772.3335936
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763
https://ethresear.ch/t/whisk-a-practical-shuffle-based-ssle-protocol-for-ethereum/11763
https://doi.org/10.1145/42282.42283
https://docs.etherscan.io/api-endpoints/accounts
https://docs.etherscan.io/api-endpoints/accounts
https://anonymous.4open.science/r/Yggdrasil-11E5
https://gitlab.com/cea-licia/max/
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.tendermint_v2
https://gitlab.com/cea-licia/max/models/ledgers/max.model.ledger.tendermint_v2
https://ia.cr/2017/406
https://doi.org/10.1007/978-3-030-31277-0_10
https://doi.org/10.1007/978-3-030-31277-0_10
https://doi.org/10.1007/978-3-030-31919-9_17
https://doi.org/10.1007/978-3-030-31919-9_17

	Abstract
	1 Introduction
	2 Background and Basic Definitions
	2.1 Blockchains
	2.2 Smart Contracts
	2.3 Sharded smart-contracts and atomicity

	3 System Model
	4 Yggdrasil Protocol
	4.1 Transaction Life-Cycle through Sharding
	4.2 2PC for distributed smart-contracts
	4.3 Process-to-shard assignment
	4.4 Dynamic management of shards
	4.5 Shards update transactions details
	4.6 Reducing cross-shard transactions volume
	4.7 Dealing with an adaptive adversary

	5 Security Analysis
	6 Performance Evaluation
	6.1 Simulator and Experimental Environment
	6.2 Simulation Model
	6.3 Scalability
	6.4 Reactivity
	6.5 Cross-shard volume
	6.6 2PC algorithm

	7 Related Work
	8 Conclusion
	References

