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Abstract
Since neural Text-To-Speech models have achieved such high
standards in terms of naturalness, the main focus of the field
has gradually shifted to gaining more control over the expres-
siveness of the synthetic voices. One of these leverages is the
control of the speaking rate that has become harder for a human
operator to control since the introduction of neural attention
networks to model speech dynamics. While numerous mod-
els have reintroduced an explicit duration control (ex: Fast-
Speech2), these models generally rely on additional tasks to
complete during their training. In this paper, we show how an
acoustic analysis of the internal embeddings delivered by the
encoder of an unsupervised end-to-end TTS Tacotron2 model is
enough to identify and control some acoustic parameters of in-
terest. Specifically, we compare this speaking rate control with
the duration control offered by a supervised FastSpeech2 model.
Experimental results show that the control provided by embed-
dings reproduces a behaviour closer to natural speech data.
Index Terms: speech synthesis, embeddings analysis, natural
control, duration control

1. Introduction
Deep neural Text-To-Speech systems such as Tacotron [1,
2] or FastSpeech [3], combined with neural vocoders like
WaveNet [4], WaveRNN [5] or WaveGlow [6] produce more
realistic voices than ever. As a result, numerous studies now fo-
cus on the rendition of the expressiveness [7, 8], whose control
remains a ongoing challenge. In particular, prosody is known to
convey co-verbal information that is desirable to make the in-
teraction with a synthetic voice as natural as possible [9]. The
accurate manipulation of prosodic parameters of interest such
as pitch, energy or speaking rate is therefore a requirement for
an interactive TTS system.

One approach to enable the control of these parameters at
inference time consists in adding layers to the model in order to
learn how to explicitly retrieve this information from the input
sequence [3, 10]. Doing so, this information can be modified
before being reintroduced into the decoding layer, resulting in a
finer control of the output prosody. While this method enables
an independent control of these parameters, it requires various
preprocessing to extract alignments and acoustic parameters be-
forehand. Additionally, the proposed independent control may
not correspond to the natural behaviour of the voice.

An alternative is to use implicit representation to bias the
model toward the desired prosody [7, 11]. Via a so-called
prosodic or reference encoder of the target speech signals, style
and speaker embeddings model residual loss not yet explained
by text input. During inference, a target prosodic example can
then be used to complement the input text. While control of
style may capture subtle natural co-variations, the semantics of
control parameters is often given a posteriori.

In this paper, we introduce a new control for end-to-end
TTS models: Embedding Bias. By analysing the phonetic em-
beddings at the encoder’s output, we identify acoustic and par-
alinguistic parameters that are encoded in these latent repre-
sentations, as well as their co-variations with other phonetic
dimensions, learnt from the training data. We show how this
information can be used to bias phonetic embeddings in order
to control the speaking rate of the model, without the need for
any additional data during the training phase. We implement
and investigate this duration control on the embedding spaces
of both Tacotron2 and FastSpeech2 models, whose biased em-
beddings are then fed to their attention mechanism and duration
predictor, respectively. We compare this control to the explicit
duration control provided by FastSpeech2.

2. Related Work
The explicit prediction of low-level prosodic parameters such as
F0, duration and energy from the embedding space of encoder-
decoder TTS models has led to excellent performance in dis-
entangling these parameters [3, 10] at the expense of preserv-
ing the natural co-variations between them. Moreover, duration
control usually applies a uniform gain to all phones, whereas
variations of phone duration with speaking rate depends on its
phonemic class and position in the sentence [12]. Whether the
loss of both supra-segmental acoustic co-variations and non-
linear duration variations at a segmental level degrades natural-
ness is still an open question and is investigated here. The op-
posite direction that consists in biasing the encoder output with
an implicit representation of an audio sample learnt by a refer-
ence encoder (Global Style Tokens [7, 11, 13], Variational Auto
Encoders [14, 15] or speaker encoders [16]) supposedly better
preserves the co-variations of prosodic parameters. However,
if most implementations allow to successfully identify dimen-
sions in the obtained latent space to control low-level prosodic
parameters, few quantitative studies had statistically analysed
variations and co-variations of prosodic parameters introduced
by an implicit control both at segmental and supra-segmental
levels. Also, methods for systematic analyses of latent spaces
are rarely given, with exceptions such as [17] who performed
an a posteriori analysis using a crowd-sourced subjective eval-
uation of synthesis.

The difference between concatenation or addition of the
style and text encoders outputs is not well described in the liter-
ature, yet the addition intuitively corresponds with a translation
in the embedding space. Therefore, can we derive the appro-
priate translation for a given prosodic parameter modification
from an analysis of the embedding space, without the need to
train a reference encoder? Previous work on embedding space
analysis showed promising results in terms of phonetic [18] and
acoustic [19] structuring of the embedding space, but no control
were yet identified from these analyses.



3. Proposed Method
We aim at performing an acoustic analysis of the latent space
outputted by the encoder of an end-to-end TTS model, and use
this analysis to exhibit an embedding bias that can monitor the
speaking rate of the model. This method could be applied to
any encoder-decoder architecture which uses an attention mech-
anism or a duration predictor. Both cases are implemented, tak-
ing Tacotron2 [2] and FastSpeech2 [3] as examples.

3.1. Encoder-decoder TTS models

Our implementation of Tacotron2 (TC) builds on the one
shared by NVIDIA [20]. Following [21], TC uses a Gate
Loss correction and is trained on both orthographic and pho-
netic transcripts, which are known to benefit to both types
of inputs [22]. Additionally, the decoder generates two mel-
spectrogram frames per step. Empirical analysis showed that
generating 2 frames at a time did not degrade the overall quality
of the synthetic speech, while speeding the inference process.
FastSpeech2 (FS) strictly follows an early implementation [23]:
the pitch predictor is trained on F0 values instead of continuous
wavelet transform in later versions. A Tacotron2-type post-net
is added after the decoder. Also, pitch and energy values are
averaged per phone instead of per frames, and normalised.

Both TC and FS are trained on a subset of the new seg-
mentation of the French M-AILABS dataset provided by [24].
This subset includes 29557 utterances (more than 25h) of audio-
book recordings from four novels uttered by Nadine Eckert-
Boulet (NEB). 5% of this corpus (1477 utterances) was ran-
domly picked as the test set. This dataset provides both ortho-
graphic and phonetic transcripts for every utterance. Only the
phonetic transcripts (together with spaces and punctuation when
associated with pauses) were used for FS, which was also pro-
vided a hand-checked phonetic alignment to train its duration
predictor. Both models were trained until convergence, which
took about 100 epochs. The post-net is bypassed during the first
10 epochs, while the learning rate is fixed at 10−3. After this
startup, the learning rate decreases exponentially until reaching
10−5 after 90 epochs. The batch size is set to 32 for both mod-
els. The vocoder used is WaveGlow [6].

3.2. Identification of Acoustic Parameters in Embeddings

After training, the entire test set was synthesised with both mod-
els, using the phonetic input. Together with the usual audio out-
put, embeddings computed by the encoder of both models are
saved for acoustic analysis, as well as the attention map from
TC and the duration predictions from FS.

3.2.1. Automatic Segmentation of the Synthesised Audio Signal

In TC, durations of input phones are computed using the dura-
tions of their respective activations in the attention map [25].
The duration of output phones predicted with this method were
compared to Ground-Truth phones duration. Syntheses were
produced using teacher-forcing to ensure the same dynamic as
the Ground-Truth. We measured a correlation of 0.88 on phones
(durations of silences from punctuation marks are excluded),
which made us consider this method for large scale acoustic
analysis. Segmentation in FS is straightforward, the duration
predictor providing the number of frames for each phone. An
acoustic analysis of each phone is performed with Praat [26].
Several acoustic parameters are considered: phone duration,
fundamental frequency (F0), first three formants (F1, F2, and
F3), and energy (Sound Pressure Level).

Table 1: Correlation coefficients between acoustic features
predicted from MDS coordinates and measured on synthesis.
log(d) = logarithm of the duration ; E = Energy.

Model log(d) F0 F1 F2 F3 E

Tacotron2 0.83 0.51 0.70 0.93 0.75 0.67
FastSpeech2 0.89 0.86 0.84 0.91 0.74 0.87

3.2.2. Acoustic Analysis of the Embedding Space

The synthesis of the entire test set provides a total of 51746
phone embeddings that encode contextual information intro-
duced by the encoder of each model. To consider the voiced-
dependent acoustic features (section 3.2.1), only the 22528
vowels of the test set are studied in this section. The relationship
between embeddings and acoustic features measured on the cor-
responding synthesised audio segments is derived as follows:
1) Dimensional reduction of the embedding space with Multi-
dimensional Scaling (MDS) [27]. A distance matrix between
embeddings is first calculated using cosine distance. 2) A pro-
jection matrix is derived to enable transitions between the initial
embedding space and the reduced MDS space. 3) All the acous-
tic features are individually approximated by least square multi-
linear regression from embeddings coordinates in the MDS.
This procedure is similar to [19], but is applied on phone em-
beddings instead of utterance-wise style embeddings.

The approximation of acoustic parameters from the MDS
coordinates is compared to the measured acoustic features on
the synthesised signals and correlation coefficients are shown in
table 1. Phone durations are computed in logarithmic scale, be-
cause this gave better correlations. Same goes for F0, F1, F2 and
F3 which are expressed in semitones for better approximations.
These correlations indicate that most of these acoustic features
are well encoded in the embeddings. Note that a lower corre-
lation does not mean that the model does not implement this
acoustic feature, but rather that this feature is not encoded in
the phone embeddings alone (note that duration, F0 and energy
encoders of FS further contextualise embeddings with CNNs)
or not correlated in a linear way. As a result, this feature is less
likely to be easily controllable by modifying the embeddings
before passing through the decoder. On the contrary, high cor-
relations emphasise the features that are encoded in this latent
space: phone duration is well encoded by every model, as well
as spectral clues such as formants. FS has better correlations of
prosodic measurements like F0 and energy, which are trained to
be predicted by the model from the very same embeddings.

3.3. Acoustic control

From the regressions described in section 3.2.2, the gradient
of each acoustic feature in the MDS is computed. This vec-
tor, called embedding bias, is the leverage used to control one
particular feature at a time: a translation along this vector is
added to all the embeddings of an utterance before passing
through the decoder. The regression is used to evaluate the
magnitude of translation needed to induce the desired modifi-
cation of the acoustic feature. This study specifically evaluates
the control given by the duration embedding bias, expressed in
log-duration. Hence the addition of a bias in the log domain is
equivalent to applying a multiplying factor on phone duration.
We empirically identified that a correcting factor k was needed
to achieve the desired modification of phone duration, resulting
in a corrected translation of k ∗ log(m) to multiply phone dura-
tion by m. k = 2.94 and k = 2.33 for TC and FS respectively.



In the case of FS, the embedding bias is applied before duration
prediction, and predicted duration from the biased embeddings
is used for decoding, without any external input. We showed in
a preliminary study that an embedding bias computed on vowel
embeddings alone is more efficient in inferring duration modifi-
cation in the synthesis signal, supported by the fact that vowels
duration show more variability than consonants [12]. In the fol-
lowing, the bias is derived from the vowel embeddings space
but applied on all input phone embeddings at inference.

4. Experiments and Results
4.1. Models and test set

In this section we will investigate and compare the efficiency
of the embedding bias control on TC and FS. In addition, two
baselines are added: FS with explicit duration control (with-
out embedding bias) and a simple linear time-interpolation of
the mel-spectrogram output of an unbiased TC (resp. FS) to
change the full duration of the signal before feeding it to the
neural vocoder. In both baselines, a similar modification of du-
ration is applied on all phones, but FS has the chance to make
some acoustic modifications through the decoding process. In
the following, TCB, FSB, FSC and stretching refer to TC with
embedding bias, FS with embedding bias, FS with explicit du-
ration control, and mel-spectrogram interpolation, respectively.

The test set described in section 3.1 is synthesised with
4 duration coefficients, chosen to be representative of the
phone rate distribution of the training dataset. These coef-
ficients mi = {0.77, 0.87, 1.18, 1.44} are chosen to reach
i = {+2,+1,−1,−2} standard deviation around the mean
phone rate, respectively.

4.2. Non-linear duration modification

For each synthesised signal with a given duration coefficient,
the duration of each phone is measured (see section 3.2.1), and
divided by the mean duration of its phone class synthesised with
the same model without duration control, to provide an elonga-
tion coefficient. Fig. 1a displays the average elongation coef-
ficient per duration coefficient, model, and phone class. Final
vowels are vowels just preceding a silence in the audio signal.
For each phone class, the diagonal corresponds to the stretching
condition, where the elongation coefficient equals the duration
coefficient. The red, green and yellow curves correspond to
TCB, FSC, FSB, respectively. Moreover, average phone elonga-
tion coefficients were also calculated on the ground truth train
database (GT) and reported in dark blue. A Kruskal-Wallis
rank-sum test performed on the per-phone elongation coeffi-
cients showed a significant effect of both phone class and du-
ration control (p < 10−3). A post-hoc Wilcoxon rank-sum
test then assessed for each phone class and duration coefficient
whether each method significantly differs from the stretching
conditions. Significance (p < 10−3) is displayed by coloured
stars above each data point. Fig. 1b shows the ratio between the
number of pauses longer than 30 ms in the audio signal and the
number of phones in the text input for each duration coefficient
on TCB, FSC, FSB and GT (by nature, this ratio do not vary with
duration control for FSC, FSB and stretching).

Concerning elongation coefficients (Fig. 1a), FSC follows
the diagonal: as expected, frames are linearly duplicated
through duration control for any class of phonemes. On the con-
trary, GT data displays non-linear behaviours that are consistent
with [12] findings. These behaviours are partly followed by
the embedding bias-controlled model. Looking first at slower

* * * * * * * * * * * * *
* * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * *

(a) Elongation coefficient is the mean phone elongation compared to the
unbiased voice. * indicates a significant difference with stretching.

(b) Silences proportion is the ratio between the number of silences in
the audio signal and number of phones in the text input.

Figure 1: Impact of duration control for each model and GT.

speaking rates (mi > 1), GT displays a saturation for final
vowels and silences whose mean durations are large for average
speaking rate (125 ms and 213 ms, respectively) and weakly
lengthened as the speaking rate decreases. This behaviour has
been learnt by TCB and FSB. Regarding other vowels and all
consonants, GT shows a linear lengthening with duration con-
trol but to a lesser extent than stretching. This is compensated
by the introduction of pauses in the GT signals: Fig. 1b displays
three times more pauses in GT when the speaking rate is 1.44
times slower. Conversely, FSB is unable to add any pauses in
the signal, and the effect is negligible for TCB. Alternatively,
both models compensate by expanding the vowels longer than
the stretch (Fig 1a). On consonants, TCB seems to have learnt
GT behaviour, wile FSB follows the stretching trend. Looking
now at higher speaker rates (mi < 1), GT final vowels are
preserved while silences are dramatically shortened or deleted
(Fig. 1b). This behaviour was not replicated by any model. For
other vowels and consonants, GT and all models follow a linear
shortening of phones matching stretching.

Globally, GT duration modification is mainly performed
with pauses addition and deletion, that are hardly managed by
the embedding bias-controlled models. Regarding the observed
non-linearity per class of phonemes, TCB follows at best the GT
behaviours, even though it compensates for the lack of pause ad-
dition by vowel lengthening. Both TCB and FSB follows the sat-
uration of final vowels and pauses that are imposed by the data
distribution, but FSB mainly follows the stretching behaviour
otherwise, showing that TC better models non-linearities in du-
ration modification than FS, when using a similar embedding-
bias control policy.

4.3. Co-variations of acoustic parameters

To investigate the co-variations of acoustic parameters with du-
ration control, we first derived F1 and F2 values for all /a,i,u/



(a) Vocalic triangle area. (b) Fundamental frequency.

Figure 2: Acoustic parameter variations by model and by speed.

vowels present in the synthesised signals with the different
models and duration coefficients. We then derive the area be-
tween the three vowels on the F1-F2 plane. The ratios between
the area obtained for each duration coefficient and without du-
ration modification are reported in Fig. 2a for each model and
GT . For higher speaking rate, a similar linear compression of
the vocalic triangle is observed for all models and GT , typical
of an undershooting of the vowel targets. For lower speaking
rates, GT displays an expansion of the vocalic triangle, which
is successfully replicated by FSB and TCB, with a slight satura-
tion for the 1.44 coefficient. FSC shows a stronger saturation.

Fig. 2b shows mean utterance F0 values per model and du-
ration coefficient. GT data shows an increase in F0 median and
variability with highest speaking rates, which are well repli-
cated by TCB. Conversely, none of the FS models display any
co-variation of F0 with duration control. Overall, co-variations
of features learnt in an unsupervised way, like formants, are
well replicated by both models, while the the F0 and duration
prediction tasks implemented in FS lead the latter to ignore the
co-variations between those parameters.

4.4. Listening Experiment

To investigate the effect of segmental and supra-segmental vari-
ations and co-variations of prosodic parameters on percep-
tion, we conducted a listening experiment where each model
was evaluated against the stretching method. A CMOS pro-
tocol was followed [28], where participants were presented a
(model,stretching) pair and asked which of these voice speed
renderings felt the most natural. Each pair consisted of one
sentence synthesised with one of the three models (FSC, FSB,
TCB) and one of the four duration coefficients (0.77, 0.87, 1.18,
1.44) against its stretching counterpart. Order of presentation
was counterbalanced. In total, 3 models × 4 duration coeffi-
cients × 18 sentences × 2 order of presentation = 432 pairs
were evaluated. 42 participants recruited on Prolific [29] took
part in the experiment, and each evaluated 72 stimuli following
a Latin Square design so that every model, duration and sen-
tence was equally seen by each subject. Table 2 reports the av-
eraged CMOS obtained for each model and duration coefficient.
A positive value indicates that the model was preferred over
stretching, and conversely. A non-parametric Kruskal-Wallis
test showed a significant effect of both duration control and
models on the CMOS (p < 0.001). Post-hoc Wilcoxon tests

Table 2: CMOS of duration control methods against stretching
of unbiased synthesis from the same model.

Model 0.77 0.87 1.18 1.44

TCB -0.818* -0.544* 0.525* -0.004
FSC -0.079 0.048 0.171* 0.623*
FSB -0.075 -0.048 -0.175* -0.159

by pairs were applied and a star in the Table indicates that the
model shows a statistically different CMOS than the other two
models for this duration coefficient (p < 0.001).

Overall, FSB was considered as similar as stretching while
TCB shows more contrasting results, supporting that sub-
jects were sensitive to the segmental and supra-segmental co-
variations that are globally better modelled by TCB. For higher
speaking rates, TCB was significantly less preferred than stretch-
ing. The prosodic parameters analysis highlighted a difference
in F0 variability between models for higher speaking rate may
explain this failure. A further analysis of the training set showed
that highest speaking rates often correspond to the expressive
reading of dialogs between characters. Without any residual
encoder to segment this paralinguistic information apart from
text input, TC may have learnt an averaged representation of
these characters, resulting in an unnatural speech depreciated
by participants. By contrast, TCB is preferred to stretching with
the 1.18 duration coefficient. With this coefficient, the main
difference between models lays in the non-linearity of phone
duration (Fig. 1a), where TCB closely matches the behaviour of
GT . This is a case where the learning of co-variation is in favour
of naturalness. Reaching the 1.44 duration coefficient, both em-
bedding bias-controlled models are equally rated as stretching,
while FSC is preferred. We showed that at this speaking rate
the addition of pauses in the signal is essential to prevent the
over-lengthening of vowels sounds observed for TCB and FSB

that could have been perceived as unnatural. Conversely, even
though FSC cannot add supplementary pauses, it has the ability
to lengthen them to a greater extent. The preference of FSC over
stretching could also be due to a better conservation of phone
transitions, that is yet to be verified.

5. Conclusions and Discussion
We proposed a method for the analysis of the embedding space
of an encoder-decoder TTS model to derive an embedding bias
that is applied to control a given prosodic parameter. It aims at
1) explicitly targeting a specific prosodic parameter, in opposi-
tion to reference encoders; 2) preserve the segmental and supra-
segmental variations and co-variations in speech, contrary to
learnt prosodic control models. Evaluation was performed on
the control of speaking rate on both attention-based (TC) and
duration predictor based (FS) methods. Objective analyses
showed that while the prosodic parameters estimation imple-
mented in FS cleared its embedding space of most of their cor-
responding segmental and supra-segmental co-variations, TC
successfully modelled this information, and this was well per-
ceived in a listening test. The possibility to add or remove
pauses while modifying the speaking rate appears essential in
order to model the natural behaviour of speech. Models that use
explicit phonetic inputs (ex: FS) negate this phenomenon. Fu-
ture works should elaborate on how to give this degree of free-
dom to synthesis models. This multi-dimensional segmental
and supra-segmental prosodic parameter variations introduced
by the embedding bias control invites to propose more feature-
centred evaluations in the future, in conjunction with the control
of other prosodic parameters.
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