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Abstract—Reconstructing tissue elastic properties from dis-
placements measured in quasi-static ultrasound elastography is a
challenging task. Indeed, it requires to solve an ill-posed inverse
problem, with generally no available boundary information
and solely 2D estimated displacements, whereas the problem is
inherently three-dimensional. In this paper, a method based on
the virtual work principle is investigated to reconstruct Young’s
modulus maps from the knowledge of internal displacements and
the force applied. The media examined are assumed to be linear
elastic and isotropic. Moreover, for these first developments, the
plane stress problem is investigated to overcome the lack of 3D
data. The developed method is assessed with plane-stress and 3D
simulations, as well as with experimental data. For all the media
examined, regions of different stiffnesses are clearly revealed in
the reconstructed Young’s modulus maps. The stiffness contrast
between regions is accurately estimated for the plane stress
simulations but underestimated for the 3D simulations, which
could be expected as plane stress conditions are no longer satisfied
in this last case. Finally, similar comments can be made for
the phantom results, with an inclusion-to-background Young’s
modulus ratio of 2.4 lower than the reference ratio of around 3,
provided by the manufacturer.

Index Terms—Quasi-static ultrasound elastography, Young’s
modulus map reconstruction, Inverse problem, Virtual fields
method

I. INTRODUCTION

Elastography techniques have been developed in recent
decades with the aim of estimating the mechanical properties
of biological tissues. Indeed, local modifications in these
properties can be observed in a large number of pathologies,
which can be used for diagnostic purposes. This study
focuses on quasi-static ultrasound elastography, that
commonly produces strain images of biological media under
compression. Strain imaging has proved to be a valuable tool
for distinguishing regions with different stiffnesses within a
medium [2], [6], [19]. Nevertheless, it only partially reflects
the medium elastic properties, because of the heterogeneous
stress field. Reconstructing the tissue mechanical properties
in quasi-static ultrasound elastography is a challenging task,
first because of their high complexity. This makes necessary
to introduce some simplifying assumptions regarding tissues,
and in this work, linear elastic and isotropic media will be

considered. Moreover, difficulties to solve the inverse problem
result generally from the fact that only 2D (and not 3D)
displacements can be estimated, and from a lack of boundary
information, which explains for instance that methods for
stiffness contrast mapping have been developped.

Various approaches are therefore available in the literature to
reconstruct the (relative) elastic properties of a medium. A first
approach we can mention is direct inversion [5], [21], [24].
These methods are based on directly solving the equilibrium
equations, obtained when replacing the unknown stress terms
σij with their expression given by the material constitutive
law. However, additional information is needed to obtain
quantitative results (in kPa), e.g. a surface Young’s modulus
[21]. Moreover, determining the solution requires to compute
first and second order derivatives of the displacement, known
to raise the noise present within data, and which may highly
degrade the resulting reconstructed maps [1]. To overcome
this problem, other studies use the weak formulation of the
equilibrium equations, which allows to get rid of second order
derivatives [8], [17].

Another approach consists in reformulating the inverse
problem as an optimization problem, in which the parameters
of interest are iteratively varied until minimizing, for example,
an error between the displacements or strains determined
by solving the forward problem and those measured exper-
imentally [4], [11], [18]. Generally speaking, a theoretical
representation of the problem is made with a FEM (Finite
Element Method) model, using certain assumptions, notably
on the tissue properties with the choice of the constitutive law.
At the end of the iterative process, the mechanical parameters
of the model are expected to be close to the ones of the
concerned tissue. With this method, boundary conditions need
to be introduced, whereas these ones are generally unknown,
especially for clinical applications. Moreover, a forward prob-
lem has to be solved at each iteration, which can be time-
consuming.

Recently, artificial intelligence was used to reconstruct
the Young’s modulus distribution. The main advantage of
this approach, as described in [15], [16], is that no prior



assumption about the material constitutive law is required
because the neural network takes the place of the constitutive
matrix. Nonetheless, FEM modeling and a series of force-
displacement measurements are required.

A last approach to reconstruct the mechanical properties
within media from the knowledge of the internal displacements
and the force applied is the virtual fields method. This
approach has been originally developed for the solid
mechanics field, but a few articles can also be cited in MRE
[10], [20], [22]. Its interest lies in its flexibility, in particular
in the virtual fields used, which are determined to meet
certain chosen conditions, for instance, to minimize the effect
of noise [3].

In this paper, a reconstruction method based on the virtual
work principle for Young’s modulus mapping in quasi-static
ultrasound elastography is introduced. A description of the
developed method is given in section II, and the simulations
and experimental data used for its assessment in section III.
Results are detailed and discussed in section IV. The last
section presents the conclusions of the study.

II. METHOD

The virtual work principle relates the internal, external and
acceleration virtual work, the latter being null in the static
case. For these first developments, and to overcome the lack
of 3D data in quasi-static ultrasound elastography, the plane
stress conditions are considered. Under these assumptions, the
principle of the virtual work leads to:∫

S

σ : ε∗ds =

∫
L

T .u∗dl (1)

with σ the stress tensor, T the force per unit area, and u∗ and
ε∗ the virtual displacement and strain tensor, respectively. The
virtual displacement u∗, that we can also call ”test function”,
is designed to compute the desired parameters under chosen
conditions. One constraint on this field is that it has to satisfy
the kinematic admissibility condition.

To introduce the mechanical parameters of interest in (1),
the stress tensor σ is rewritten using a chosen material
constitutive law. Here, linear, elastic and isotropic materials
are considered (2).

σ =
E

1 + ν

(
ε+

ν

1− 2ν
Tr(ε)I

)
(2)

Moreover, in this study, the Poisson’s ratio ν is assumed
to be known and equal to 0.49 over the whole medium.
Consequently, only the spatial distribution of the Young’s
modulus E has to be reconstructed. For this, the medium is
meshed and a value of E is estimated for each element of
the mesh.

Let us consider a given element k. To estimate the Young’s
modulus Ek, specific virtual fields are, in this work, defined
piecewisely over the whole medium [23], [25]. The virtual
fields over an element, u∗

e and ε∗e , are written using the nodal

virtual displacements of this element ũ∗
e and the matrix N

containing the shape functions Ni, such as:

u∗
e =Nũ∗

e (3)

Here, rectangular elements with 4 nodes are used, and N is
written as follows :

N =

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
(4)

Considering that the four nodes are locally denoted n1, n2,
n3 and n4, each shape function Ni is determined such that
it is equal to 1 at ni and cancels at the three other nodes nj
with j 6= i. The virtual strain ε∗e is obtained by computing the
derivatives of u∗

e:

ε∗e = Lũ∗
e (5)

where L is a matrix containing the derivatives of the shape
functions.

The basic idea is to determine the virtual displacement
such that the left-hand side of (1) is equal to the Young’s
modulus Ek to be determined. And the value of Ek is then
directly equal to the external virtual work (right-hand side
of (1)), computed with this specific virtual displacement.
In other words, estimating Ek amounts to finding a virtual
displacement, which selects the contribution of the element
k and cancels the contributions from all the other elements.
More complex choices can of course be made, for instance
by taking into account a contribution of the neighboring
elements. To obtain such a field, the problem is rewritten as a
linear system, where the virtual nodal displacements are this
time the unknowns to be determined. It must be pointed out
that the nodal virtual displacements over the whole medium
are taking into account for the estimation of Ek.

More specifically, the virtual displacement is computed as
the solution of an optimization problem, which allows to de-
termine the Young’s modulus value Ek for a specific element
k with a weighted contribution of the neighborhood. Two
constraints are introduced: 1) the virtual displacement vanishes
at the domain boundary except where the force is applied, and
2) the lateral component of the virtual displacement is equal
to 0 as the force is mainly applied vertically. The optimization
problem is solved using CVX [13], [14]. Finally, to reconstruct
a Young’s modulus map, the method is repeated for each
element of the medium.

III. MATERIALS AND DATA ACQUISITION

In this study, a first assessment of the method was carried
out using numerical simulations. Two kinds of simulations
were performed, considering media under plane stress
conditions and 3D simulations (size : 60× 40× 40−mm3).
All media consist of two regions, a 12 − mm in diameter
inclusion embedded in a background, the different regions
being made of a linear, elastic and isotropic material. In
all cases, the Young’s modulus of the background is 10



kPa, whereas the one of the inclusion is 5, 20 or 30 kPa,
depending on the case. The Poisson’s ratio is ν = 0.49.
Simulation of medium compression was performed using
Comsol Multiphysics® [9]. A force was applied on the top
surface, vertically and downwards, while at the bottom surface
vertical displacements were forbidden. Vertical surfaces were
let free to move. For 3D simulations, only the fields of the
median plane were retained, since the developed method is 2D.

The method was also assessed with experimental data,
acquired on a CIRS (Computerized Imaging Reference
Systems, Norfolk, VA, USA) phantom model 059, which
mimics a woman breast in supine position. This phantom
contains several spherical inclusions with an inclusion-to-
background Young’s modulus ratio R close to 3 (R = Ei

Eb
,

manufacturer information). The transducer was positioned
so as to scan an area with one inclusion, and a typical
quasi-static elastography experiment was performed, i.e. the
medium was cautiously and continuously compressed and
decompressed by the operator using the ultrasound probe
while the RF images were acquired. Data were collected
with an Ultrasonix ultrasound scanner equipped with an
L14-5W/60 transducer. The sampling frequency was 40 MHz.
The axial and lateral displacement fields were then estimated
using the motion-tracking technique and the regularization
method we previously developed for 2D strain tensor imaging
purposes [7], [12]. In this experiment, the applied force was
not available. Thus, it was set to an arbitrarily value, and only
a relative Young’s modulus map can therefore be estimated.

For all cases examined, the mean Young’s modulus within
the inclusion (Ei) and the background (Eb) were computed
from two circular ROIs of identical size and positioned at
the same depth. For the phantom experiment, the inclusion-
to-background modulus ratio R was also determined.

IV. RESULTS AND DISCUSSION

Fig.1 displays the reconstructed Young’s modulus maps for
the numerical simulations. In all cases, the inclusion is clearly
revealed, and both the inclusion and the background appear
relatively homogeneous. The results are very accurate for the
plane stress simulations (Tab.I). However, a decrease in the
stiffness contrast can be observed for the 3D simulations, with
for instance, a mean Young’s modulus of the inclusion (22 kPa)
lower than the actual value (30 kPa), while the background
modulus (10 kPa) is well-preserved (Tab.I). This deviation
from the theoretical Young’s modulus map can be expected,
as plane stress conditions are no more satisfied in the 3D
simulated cases.

For the phantom case, the reconstructed relative Young’s
modulus map is displayed in Fig. 2d. The components of the
2D strain tensor are also shown in Fig. 2a-c, and one can note
that, like the axial strain, the lateral and shear strains provide
mechanical information about the region scanned and appear
therefore usable for the reconstruction method. Concerning the
reconstructed map, the spherical inclusion is clearly revealed

TABLE I
SIMULATION RESULTS - RECONSTRUCTED YOUNG’S MODULUS IN kPa.

Actual Reconstruction from simulations
values plane stress 3D

Background 10 10 10
Inclusion 5 5 7

Background 10 10 10
Inclusion 20 20 16

Background 10 10 10
Inclusion 30 29 22

Fig. 1. Reconstructed Young’s modulus maps from plane stress simulations
(first column) and 3D simulations (second column). Simulated media consist
of a homogeneous background of 10 kPa containing an inclusion of 5 kPa
(a), 20 kPa (b) or 30 kPa (c).

and appears stiffer than the background. Both the inclusion
and the background are quite homogeneous even though a ”red
area” can be observed at the top of the image. Nonetheless, this
area is of small size and does not affect the interpretation of the
result. Finally, the ratio is estimated at R = 2.4, which is a bit
lower than the value provided by the manufacturer (around 3).
Once again, this result was expected since these experimental
data cannot perfectly satisfy the plane stress conditions.

For these first developments, a plane stress approach was
developed to overcome the lack of 3D data, but a plane
strain approach could also be investigated. However, it has
to be kept in mind that neither plane stress nor plane strain
enable to perfectly model the medium/tissue behavior, and will
inevitably lead to errors in the reconstructed maps. One way
to overcome this limit is to extend the proposed method to
the third dimension, making necessary to acquire ultrasound
data not restricted to images. This will be the subject of future
research work.



Fig. 2. Experimental results obtained with the CIRS phantom, model 059 :
axial strain (a), lateral strain (b), shear strain (c) and reconstructed relative
Young’s modulus map (d). The 2D strain tensor is obtained after applying a
previously developed regularization method to the estimated displacements.

V. CONCLUSIONS

In this paper, reconstruction of the elastic modulus in quasi-
static ultrasound elastography was investigated using a virtual
fields based-method. Results show reconstructed maps where
the inclusions of various stiffnesses are clearly visible. Future
work will focus on going on developing this method, with
in particular a deep analysis of the 2D vs 3D problem.
Moreover, a system to capture the force applied in parallel
to the ultrasound data, will also be designed to make possible
quantitative results with experimental data.
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