N
N

N

HAL

open science

Entropy Regularized Reinforcement Learning with
Cascading Networks
Riccardo Della Vecchia, Alena Shilova, Philippe Preux, Riad Akrour

» To cite this version:

Riccardo Della Vecchia, Alena Shilova, Philippe Preux, Riad Akrour.
forcement Learning with Cascading Networks.

Laboratoire CRIStAL - Université de Lille. 2022, pp.16. hal-03793130

HAL Id: hal-03793130
https://hal.science/hal-03793130

Submitted on 30 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Entropy Regularized Rein-
[Research Report| 7003, Inria Lille Nord Europe -


https://hal.science/hal-03793130
https://hal.archives-ouvertes.fr

Entropy Regularized
Reinforcement Learning

with Cascading Networks

Riccardo Della Vecchia, Alena Shilova, Philippe Preux, Riad Akrour

RESEARCH
REPORT

N° 7003

September 2022

ISSN 0249-6399 ISRN INRIA/RR--7003--FR+ENG

Project-Team Scool







lrezia—

Entropy Regularized Reinforcement Learning
with Cascading Networks

Riccardo Della Vecchig[| Alena Shilova*, Philippe Preux, Riad
Akrour*

Project-Team Scool

Research Report n° 7003 — September 2022 — [16]| pages

Abstract: Deep Reinforcement Learning (Deep RL) has had incredible achievements on high
dimensional problems, yet its learning process remains unstable even on the simplest tasks. Deep
RL uses neural networks as function approximators. These neural models are largely inspired by
developments in the (un)supervised machine learning community. Compared to these learning
frameworks, one of the major difficulties of RL is the absence of i.i.d. data. One way to cope with
this difficulty is to control the rate of change of the policy at every iteration. In this work, we
challenge the common practices of the (un)supervised learning community of using a fixed neural
architecture, by having a neural model that grows in size at each policy update. This allows a
closed form entropy regularized policy update, which leads to a better control of the rate of change
of the policy at each iteration and help cope with the non i.i.d. nature of RL. Initial experiments
on classical RL benchmarks show promising results with remarkable convergence on some RL tasks
when compared to other deep RL baselines, while exhibiting limitations on others.

Key-words: Policy iteration, Entropy regularization, Cascade neural networks, Mirror descent

* Equal contribution

RESEARCH CENTRE
LILLE - NORD EUROPE

Parc scientifique de la Haute-Borne
40 avenue Halley - Bat A - Park Plaza
59650 Villeneuve d’Ascq



Réseaux de neurones en cascade pour ’apprentissage par
renforcement avec régularisation entropique

Résumé : Ce travail étudie I'utilisation de réseaux de neurones en cascade qui permettent une
mise & jour en forme close des politiques, dans le cadre d’algorithmes d’itération de politique
avec régularisation entropique.

Mots-clés : itération de politique, régularisation entropique, réseaux de neurones en cascade,
mirror descent



Entropy Regularized Reinforcement Learning with Cascading Networks 3

1 Introduction

Reinforcement learning (RL) formulates a general machine learning problem in which an agent
has to take a sequence of decisions to maximize a supervision signal [Sutton and Barto| 2018,
[Szepesvari, [2010]. RL as a learning framework, especially when combined with neural function
approximators, has made large practical breakthroughs over the last years on complex, high
dimensional problems [Silver et al., 2016| [Mnih et al.| [2013], and its range of application continues
to grow to new domains such as drug discovery |Bengio et al.l 2021]. Surprisingly however, even
simple RL tasks can exhibit one of the main disadvantages of current deep RL algorithms: their
training is unstable and does not exhibit convergence to an optimal policy. Rather, deep RL
discovers good policies along the way with often large performance oscillations in-between.

So what makes the training process of a neural model by RL more brittle than say, the
training of the same model to regress a continuous signal or classify images? Certainly, one of
the major challenges of RL, and specifically online RLEI, is that the agent’s decisions influence
the data gathering process, violating the typical assumption of the aforementioned supervised
learning tasks that data is independent and identically distributed . To cope with
this challenge, several RL algorithms constrain the agent’s behavior to only slowly change. In
trajectory optimization and optimal control, a new policy is made close to the policy around
which the dynamics of the system have been approximated through mixing [Todorov and L.
12005, Tassa et al), 2014] or by a Kullback-Leibler (KL) constraint |[Levine and Abbeel, |2014].
In policy gradient, a key breakthrough was the use of natural gradient that follows the steepest
descent in policy space rather than parameter space |[Bagnell and Schneider| 2003, [Peters and|
[Schaall 2008, Bhatnagar et al., 2009], i.e. seeking maximal objective improvement with minimal
policy change.

Constraining successive policies to be close to each others in approximate policy iteration is
justified in the seminal work of [Kakade and Langford|[2002| by the mismatch between what the
policy update should optimize (advantage function in expectation of its own state distribution)
and what is optimized in practice (advantage function in expectation of the state distribution
of the data gathering policy). As in optimal control, closeness can be achieved by mixing poli-
cies [Kakade and Langford], 2002} [Pirotta et al.,[2013|, limiting deviation of their probability ratio
to one [Schulman et al.| or constraining their KL-divergence [Schulman et al., [2015} [Abdolmaleki|
et al., 2018, |Tangkaratt et al. 2018, |Akrour et al.l 2018]. In the latter case, when KL-divergence
is used to regularize the policy update, a recent line of research has drawn similarities between
these algorithms and the convex optimizer mirror descent [Neu et all 2017, |Geist et al. [2019]
|Abbasi-Yadkori et all |2019], which provides as a result convergence guaranties to an optimal
policy. Of course, practical implementations of these algorithms may still fail to find the optimal
policy due to two difficulties: i) learning the Q-function of the current policy from sample data
and ii) solving the entropy regularized policy update in the neural parameter space.

In this paper, we investigate the use of Cascade Neural Networks (Cascade-NN,
land Lebiere, [1989]) in the context of entropy regularized policy iteration to address ii. Unlike
typical neural models, Cascade-NNs can grow in size during learning. Importantly, when new
neurones are added, old ones are frozen which allows us to perform the policy update in closed
form and completely eliminate the second source of errors discussed above. In the remainder of
the paper, we will first describe in a preliminaries section Cascade-NNs and entropy regularized
RL (Section, before describing our approach in Section We discuss related work in Section

IWe note that offline, batch, RL also violates the independent and identically distributed assumption since
there is still a mismatch between the distribution of training data and the data generated by the learned policy,
which is inherent to the sequential nature of RL in general. However, this work will only focus on the online RL
setting.

RR n°® 7003



4 Della Vecchia € Shilova € Preux € Akrour

after comparing our algorithm in Section [] to deep RL baselines on classical RL benchmarks.

2 Preliminaries

In this section, we introduce our notations and briefly describe the framework of entropy regu-
larized RL. We then present the general architecture of Cascade-NNs as described in the seminal
paper of [Fahlman and Lebiere, [1989] before describing how it is used in our algorithm.

2.1 Notation

We consider Markov Decision Problems (MDPs) defined as a tuple (S, A, r, P,7) to model the
interactions of the agent with the environment. S is a finite set of states, A is a finite set of
actions, r is the unknown reward function r : S x A — R and P is the unknown probability
transition function P : S x A — Ag, where Ag is the set of distributions over S.
Let the policy 7 : S — A 4 be a mapping between a state to a distribution over actions. For
every such policy 7, one can compute the value function
So = ;| s

o0
> ytr(se,ar)
t=0

where the expectation is taken w.r.t. all states and actions following s. We also define the
state-action value function as

Ve(s) =E

Qﬂ'(sa a) = T(57 a) + ’YES’NP(S,U,)VTF (S/)

2.2 Entropy regularized policy iteration

RL considers the problem of finding the optimal policy in the MDP’s unknown environment.
One way of doing so is to use policy iteration methods that successively perform i) a policy
evaluation step to compute Q. and ii) a policy improvement step, yielding a new policy =’
that picks at every state s an action in argmax, @ (s,a). Repeatedly performing these two
steps will converge in finite time to an optimal policy, irrespective of the choice of the initial
policy [Sutton and Barto], [2018]. However, we notice that at any iteration, the policy n’ obtained
after a policy improvement step does not explore actions that do not maximize the previous
Q-function Qr(s,.), for every state s. Hence, to correctly estimate Q(s,.) for such actions in
practice, one would need to introduce another data gathering policy that is more explorative
than 7’. An alternative is to regularize the policy update step to maintain the stochasticity of
7’. This is usually performed by adding a KL-divergence term between 7 and 7/, ensuring that
exploration does not vanish too quickly.

In contrast to these algorithms, in this paper, we investigate solving the soft policy update
exactly for every state, using an incrementally increasing neural architecture. Given Q,ri, the
approximation of the Q-function of 7; at iteration i of the algorithm, our policy update at every
state s is similar to that of MPO [Abdolmaleki et al., 2018] and POLITEX [Abbasi-Yadkori et al.,
2019| and is given by the following optimization problem:

A 1
Ti+1(s) = arg max o |5 @ri (5, @) = T KL (s)][mi(s)),

X exp (nQﬂi(S, )) mi(.|8),

Inria



Entropy Regularized Reinforcement Learning with Cascading Networks 5

(a) No hidden layers (b) 1 hidden layer (¢) 2 hidden layers

Figure 1: Incremental growth in Cascade-NN architecture and freezing of weights. Dashed lines
show learnable parameters after each addition, while solid lines represent frozen weights. In a
Cascade-NN, when new hidden nodes are added, all inputs to older nodes are frozen so as to
freeze older features.

where KL(w(s)||m;(s)) is the KL-divergence between the distributions over A that are m(s) and
m;(s) at state s. By recursion and assuming that 7o is the uniform distribution over A, we get

mit1(8) o exp <nz Qm(s, )> ) (2)

k=0

We thus see that the entropy regularized policy update can be solved in closed form, and policies
have a very simple form provided we can keep track of all previously estimated Q-functions.
Of course, this might appear too cumbersome in practice if we consider that each Q-function
is a separate neural network. For this reason, other papers approximated the update, e.g. in
MPO |Abdolmaleki et al., [2018], by fitting a Gaussian neural policy minimizing the divergence

to exp (an (s, )) 7;i(.]s). Alternatively, in [Lazic et all [2021], authors have considered keeping

only the last few Q-functions or keeping a large replay memory of past MDP transitions, and
fitting a single network to the sum of Q-functions. In contrast, our policy will take the exact form
of Eq. . However, we will not train independent neural networks for each Qﬂk, but leverage
the Cascade-NN architecture and only add a few neurons at every iteration. The rationale is
that since the policy will not change drastically between iterations neither will their Q-function
and one might need only a few more neurons to learn §; = Qﬂk — ka_l.

2.3 Cascade-NN

Cascade Neural Network (Cascade-NN) or also called Cascade-Correlation Networks [Fahlman
and Lebiere, [1989] is a special type of neural network architecture that is growing at each epoch
by n (typically n = 1) new neurons that are connected to the input of the NN and all previously
created hidden neurons. At first, it has no hidden layer (Figure , and gradually more and
more neurons get added to its structure (Figures and . Historically, these newly added
neurons were trained following a three phase process. Firstly, a batch of neurons larger then
n is added and the output of each of those new neurons is trained to maximize the correlation
with the current residual error of the model. Secondly, the neurons are ranked according to
their correlation and only the n-top neurons are kept for the final phase. Thirdly, new neurons
are connected to the output layer and the weights of the output layer are updated in order to
minimize the residual error. Importantly, throughout all phases older neurons are frozen, which
means that one can easily compute the sum of all past outputs ), o by simply summing all
past weights of the (linear) output layer. An illustration of the freezing procedure is given in
Figure |I|, showing all re-trainable parameters at every iteration. Here i; and i correspond to

RR n° 7003



6 Della Vecchia € Shilova € Preux € Akrour

Algorithm 1 Pseudo code of the MiCARL Algortihm

Set Qr, to the zero function
for Iteration i in {1,...,NB_ITER} do
Collect NB_ SAMP transitions of type (s, a,r,s’,a’) from the environment following policy
mi(s) o< exp (1242 @ (5, 7))
Add n neurons to the current Cascade-NN
Set 6° to the zero function
for Epoch ein {1,...,E} do
Compute target r +7(Qﬂk71 +6°7 (s a") — Qﬂ'k—l (s,a) for every transition (s,a,r,s’,a’)

Obtain ¢ by fitting the target using stochastic gradient descent
end for
Set Q‘ﬂ'k = Qﬂ'k,1 +5E
end for

data inputs, hy and hy to two hidden neurons and o to the output. Solid edges show the frozen
connections, while dashed edges are for trainable parameters.

In |[Fahlman and Lebiere, [1989], the authors emphasize the following advantages of Cascade-
NN with respect to classical MLP neural networks:

e Non-parametric training, there might be less hyper-parameters to tune such as the
depth, width and connectivity of NN; its training (and growth) is stopped automatically
as soon as a stopping criterion is satisfied;

e Fast learning, freezing all the layers except the last one helps to optimize the parameters
without doing back-propagation, in this way all neurons have their independent goal and
they can "settle into distinct useful roles";

e Incremental learning, especially useful when the model constantly receives some new
information (data) in a stream manner, in this case old features are preserved, while new
features enrich the feature extraction for the newly obtained data.

Prior work already explored the use of Cascade-NN in RL. Notably, |Girgin and Preux|
2008| combined features trained to maximize correlation with the Bellman residual before using
LSPI |Lagoudakis and Parr}, 2003] to find an optimal policy given the current set of features.
However, |Girgin and Preux, [2008] did not leverage the properties of Cascade-NN to perform
entropy regularized policy update in closed form and investigate the stability of this approach
in a deep RL context, which is the main contribution of this paper. Regarding the learning of
the Q-function, we do not use LSTDQ |Lagoudakis and Parr}, 2003|. Instead, we implemented a
more streamlined training procedure using a (neural) fitted Q-iteration scheme, similar to DQN
[Mnih et al. 2015]—although using the Bellman operator of the current policy instead of the
Bellman optimality operator in DQN—for simultaneously training the features and learning the
Q-function of the current policy. However, we discuss how Cascade-NN techniques presented
here can be used in the context of our work at the end of Section [l

3 The MicARL algorithm

In this section, we introduce our algorithm MICARL. MICARL is a deep RL algorithm that
follows the policy iteration scheme. To approximate @r,, we use the adapted Cascade-NN

Inria



Entropy Regularized Reinforcement Learning with Cascading Networks 7

Q@9

>
N

“~
\

~ N

~-a-"<__--%,

~
NP —‘,\
N - -
~ S
< - -
~
~

~o -

Figure 2: Our Q-function and policy network. The Cascade-NN has two heads, one storing the
last Q-function—used to compute the targets of the neural fitted Q step in Alg. [, while the
output ¢ accumulates all past weight matrices of node ¢, and is used by the softmax policy.
Note that all nodes in the figure can be multi-dimensional, including hidden nodes/layers. See
the implementation details for more information.

model depicted in Fig. This neural model has two heads giving the last Q-function and
the sum of the last Q-functions. Alg. [1| shows the pseudo-code for MiCARL. Starting with a
zero function Qm, at every iteration ¢ > 0 we collect a dataset D™ of transition samples of type
(s,a,r,s',a’), where actions are sampled from the current policy m; o exp(n 22;10 ka) following
the entropy regularized policy update of Eq. , and the next state s’ and rewards are given
by the environment. Using the transition dataset D™, we learn the Q-function approximation
ch following a standard (neural) fitted Q-iteration learning scheme. In our implementation, we
learn §; = Qr, — Qr,_,, instead of Q,. Starting with a zero function &Y, at each epoch e, we
compute the targets T (s, a) for every (s,a,r,s’,a’) € D™,

Tf(s,a) =7+ 5(Qn,y + 678, 0') = Qnii (s, 0). (3)

We then update the learnable weights ¢and Wéi) (see implementation details below) of the
Cascade-NN for one epoch on the dataset D™ by minimizing the loss

min ) Z (61’6(3’ a’) - Tie(87 a))2 ’ (4)
g(i)’WrS(l) (s,a,r,s’,a’)~D™i
using stochastic gradient descent. Finally, the process of computing targets and fitting 6 is
repeated until reaching a given number of epochs FE.

As for the policy update, we simply add the new Q-function Q,, = Q,,_, + 6F to the head
of the Cascade-NN accumulating all past Q-functions, completing the definition of m;;11. Our
implementation of MICARL, including all experimental results, are obtained using an on-policy
setting. We note however that the extension of our algorithm to the off-policy setting is trivial
(one simply needs to replace ¢’ in a transition sample to match the current policy), but its
investigation is left for future work.

Implementation details. Our Cascade-NN at any iteration i is taking state s € S as an
input and outputs either a vector 22;10 Qx, (s,-) or a vector Qr,_,(s,-). For a given Cascade-
NN, we start with zero hidden neuron and we grow the architecture at each iteration i €
{1,...,NB_ITER}. In particular, at the beginning of iteration ¢ we have (i — 1)n hidden
neurons and during the iteration we grow it by n to reach a total of in neurons at the end
of i-th iteration. Those hidden neurons are used to extract features. Further, what we con-
sider as features is the direct inputs of output layers. At the beginning of the first iteration,
the input is connected directly to the output layers, thus the input acts as the feature before
the training. At any iteration, the input stays connected to the output layers and thus is a
part of feature vectors. At the beginning of iteration i, its (¢ — 1)n old hidden neurons plus

RR n°® 7003



8 Della Vecchia € Shilova € Preux € Akrour

the input vector represent the feature vector function ¢=1 : § — RU-Dn+dimS that for any
state s € S returns its corresponding feature vector ¢(*~Y(s) from iteration i — 1. Further,
those neurons are frozen and not trained. Moreover, we have access to the two output layers
described above. The weight matrix W¢—1 ¢ RIAX((i=1)n+dimS) corresponds to the sum of
Q-values so that the matrix-vector product W=1¢(=1)(s) gives the vector ZZ_:IO Qr, (s,-) of
size | A| (for simplicity, we omit bias term). Therefore, this output layer can be used to compute

values necessary for policy m; from Eq. (2). The weight matrix Wg_l) € RIMAX((i-1)n+dim )

corresponds to the approximation Q-value of policy m;_1, that is mel(s, = Wé;fl)&i_l)(s).
During iteration i, n new neurons are generated in a cascade manner as described in Section 2:3]
They are responsible for computing a new component of the features, in particular they cor-

respond to a vector function (Z)él()l) : Rr=D+dimS 7 that takes features from the previ-

ous iteration ¢(*~Y(s) as an input and outputs g?)éi%((;ﬁ(i’l)(s)), which is further concatenate
with ¢~V (s) to constitute ¢(*)(s) = caT (d)(i*l)(s),égz) (¢(i*1)(s))) € Rri+dimS - Moreover,
the new output layer is initialized with a weight matrix Wé(i) € RMAXMiH+dinS) that should
represent 0;(s,-) = Qn,(s,-) — Qn,_,(5,) = Wé(i)qb(i)(s). Parameters ¢() and Wéi) are opti-
mized to minimize the loss defined in Eq. . At the end of iteration i, once £ and Wts(i)
are optimized, Q,, can be evaluated with Q, ,(s,-) + (s, ) = Wé;_l)qﬁ(i’l)(s) + Wé”(i)(i)(s),

therefore by setting Wg) = CAT(WS_U, Oy 1 W(;(i), where OA1*™ is a zero matrix of di-

mension |A| x n, the approximation Qy,(s,-) is naturally obtained from Wg )d)(i)(s). Similarly,
Yo Qi (5,) = WD6O (5) where W = car(W =D, 0l 4 w5,

In our implementation, the total number of weights grows as O(i?) since new neurons connect
to all previous neurons. This might be too prohibitive in practice, and we will experiment in
future work with variants where new neurons only connect to a fixed number of past neurons. For
example, following the correlation ideas of the original Cascade-NN (see Section 7 one might
select the most promising past neurons according to the correlation between their activation and
the current Bellman residual.

4 Experiments

We evaluate MICARL on four different gym environments: CartPole-vl, Acrobot-vl, a discrete
action-space version of Pendulum-vl and MountainCar-v0 and we compare it with A2C and
DQN agents as implemented in rlberry Domingues et al.| [2021]. In our experiments we use the
default implementations of the agents: for the value function and the policy network in A2C,
and for the Q-value function network of DQN, we take multilayer percecptrons with two hidden
layers and 64 hidden units each. Our experiments show that MICARL is in general more stable
than both A2C and DQN and is achieving performances superior or comparable to DQN on
three out of four environments, as it is evident from Figures [3] and [d] We plot curves averaged
over five different seeds, using the default seeding handler from |[Domingues et al., [2021], and the
shaded area indicates one standard deviation. Figure [3]is a zoom of the reward curves near the
asymptotic values reached by the best performing algorithms. For this reason, for Pendulum-
vl we do not see the curve corresponding to A2C, since its performance is quite poor on this
environment. In Figure [d] we plot a more detailed study in which we do not just show rewards

2We use cAT to denote concatenation with respect to the last mode of a tensor, so in case of matrices A € R?*k,
B € R"*™  then C = car(A, B) € R"*(k+™M) js the matrix with first k& columns from A and last m columns from
B.

Inria



Entropy Regularized Reinforcement Learning with Cascading Networks 9

— MiCaRL _s0 — MiCaRL

T — %
- T 1 T T

300
— MiCaRL -120
250 — Do

200

Figure 3: Zoom of the reward curves around their asymptotic values on CartPole-vl (left),
Acrobot-v1 (center), and Pendulum-v1 (right).

but also losses during training, average normalized entropy (across visited states) and the KL-
divergence between two consecutive policies for A2C and MICARL (not for DQN since it is not
a policy iteration algorithm). Note that the way the loss is computed differs from one algorithm
to another: MICARL and DQN compute Bellman residuals of different Bellman operators, while
A2C tries to minimize the difference between critic output and Monte Carlo estimate of the value
function based on the dataset. This explains different levels of loss values in loss plots.

We note that the number of neurons n to add at every iteration is important. For small n,
we typically lose the good properties of over-parameterization when learning §. Especially, since
in our implementation we do not use the Cascade-NN idea discussed in Section 2.3 of training
a number of candidate neurons > n before picking the n most promising ones. As a result, we
found that using small n, e.g. n = 1, would often lead to dead neurons and more generally, to
attraction to poor local optima. We address this issue by using a larger than usual n, typically
n € {10,20,50}. We try also combinations of the other hyper-parameters: the strength parameter
of the KL-regularizer in Eq. ism € {0.01,0.1,0.5,1,5} and the number of epochs per iteration
E € {64,128}. Hyper-parameter search is done in grid search manner with the help of Ray Tune
software [Liaw et al.| [2018|. Results are quite similar for different choices of epochs, therefore
we further keep it fixed £ = 64. In contrast, our algorithm is more sensitive to the choice of
n and slightly less to the choice of n. Further, we report separately for each environment the
best choice of n and 7. In addition, each trial is conducted with a number of iterations equal to
NB_ITER = 100, batch-size = 64 and in each iteration we take NB_SAMP = 10000 steps in
the environment. Therefore, the total number of steps in the environment is equal to 1000000
for each experiment, which is the quantity on the x-axis in Figures[d and[3] The final architecture
of MICARL contains NB_ITER x n hidden neurons.

The strong stability of MICARL is probably due to the second term in Eq. that acts
as a regularizer. Nonetheless, MICARL achieves impressive and surprising performances. For
example on CartPole-vl, MICARL is able to find a much better approximation of the Q-value
function with respect to our baselines and the reward remains stable at its maximum value after
a brief training phase. On Acrobot-vl and Pendulum-vl, MicARL is performing as good, or
better, than DQN, and significantly better than A2C. MountainCar-v0 is instead known to be a
difficult environment and MICARL is not able to learn anything, the same for A2C. In contrast,
DQN has a good performance on this environment as well.

CartPole-vl We test the performance of MICARL against the baselines of A2C and DQN on
CartPole-v1 in Figure [dl The best performance of MICARL is observed for n = 10 and 7 = 0.1.
The training loss of MICARL is getting closer to zero than the losses of the two other algorithms,
showing that MICARL succeeds in better approximating Q-value functions. Furthermore, A2C
and DQN loss curves are plateauing and oscillating, proving them to be unstable. The curves

RR n°® 7003



10 Della Vecchia & Shilova € Preux € Akrour

Reward KL Reward
; | , 10
400 ,ﬁ‘ W' I ,\ “100
300
|
200 10
—a00
100

00 02 04 065 o8 10
Loss Entropy <

10°
095
107

0.90
0.85

o b

0 vl |

— MicaRL
— oan
A2c
10 \ 075
100
102 070
10 | 065 107

0.60 00

S [A——.

00 02 04 06 08 10
Entropy

02 04 06 08
Loss

g5

100 109 |

|

°
°

85

=

Reward KL Reward KL
10°
107t 10
—400 -120
-600 107 10
Tl
~1400 v 107° 1077

~1600

00 02 04 06 08 10 02 04 06 08
1e6

Loss Entropy e Loss

g5

00 02 04 06 08 10
Entropy e

s 5 3
Z9z
820

°

02 04 06 08 10 00 02 04 06 08 10
o6

Figure 4: MICARL and baselines on CartPole-v1 (top-left corner), Acrobot-v1 (top-right corner),
Pendulum-v1 (bottom-left corner) and MountainCar-v0 (bottom-right corner).

of the rewards for A2C and DQN also exhibit an oscillating behaviour. Sometimes they manage
to reach the optimum value, which is 500 for this environment, but on average they do not
manage to maintain this performance in all episodes. The stability of MICARL is also confirmed
by the KL-divergence plot where at the end of the training the difference between successive
policies becomes increasingly negligible, meaning that the algorithm is converging to a policy.
Interestingly, the normalized entropy (having value between 0 for a deterministic policy and 1 for
the uniform policy) of the policy is staying quite high, around 0.65, for MiCARL. This reflects
the fact that under a near optimal policy that balances the pole correctly, there are a lot of states
where both actions are viable, meaning that our algorithm not only finds an optimal policy, but
several optimal ones. A2C exhibits an even higher entropy, but since its reward is still oscillating,
one cannot draw the same conclusions. Overall, MICARL achieves the best results, while being
more stable than other baselines.

Acrobot-vl and Pendulum-v1 In the case of Acrobot-vl, MICARL performs the best with
n = 50, n = 1, while in case of Pendulum-v1 with n = 50 and 7 = 0.1. Results on Acrobot-v1
and a discrete version of Pendulum-v1 are almost identical to DQN in terms of the rewards and
both significantly outperform A2C. We note that due to the intrinsic stability of MicARL, it

Inria



Entropy Regularized Reinforcement Learning with Cascading Networks 11

shows even less oscillating behaviour. The loss curves of MICARL and DQN are very similar for
Acrobot-v1, while, we note that for Pendulum-vl MicARL is fitting much better than DQN the
loss function.

MountainCar-v0 We show the performance of MICARL on MountainCar-v0 with n = 50
and 1 = 0.1, but the results for all the other hyperparameters are very similar. Due to its very
sparse reward, MountainCar-v0 is usually a very hard task for reinforcement learning agents.
In this case, the normalized entropy of the policy is very close to one. This indicates that the
policy is sampling actions from the uniform distribution, which seemingly prevents the discovery
of any postive reward. As all rewards that the agent observes are —1, the learned Q-function is a
completely flat function, which according to Eq. results in a uniform distribution, explaining
why the entropy stays close to one. All in all, while entropy regularization is a good heuristic for
maintaining high entropy and sustaining exploration, we can see that it does not fully address
the exploration problem in RL.

Summary of results. To summarize, we can categorize the results in three. In i) the best
case scenario, on CartPole-v1, we observed formidable convergence on all metrics: the cumulative
reward reaching and staying at its maximal value, the mean squared Bellman residual going to
1073, and the KL-divergence between successive policies reaching zero. In ii) the middle case on
Pendulum-v1 and Acrobot-v1, while results are on par with the state-of-the-art with perhaps an
ever so slightly higher stability of the cumulative rewards, there still remains a persistent Bellman
error despite the ever growing size of the Cascade-NN and an abundance of data on relatively
simple problems. This is somehow unsatisfying and indicates that research is still needed to
discover better policy evaluation algorithms. Finally, in iii) the failure case on MountainCar-v0,
where the policies at all iterations are close to uniform over the action space, suggesting that while
entropy regularization is a good exploration mechanism with theoretical convergence guarantees,
in practice, other exploration methods might still be necessary in some more challenging sparse
reward cases.

5 Related Work

Examples of deep RL algorithms implementing entropy regularization include TRPO |Schulman
et al., 2015, SAC [Haarnoja et al.l |2018] and MPO |Abdolmaleki et al., [2018], but the closest to
our work is POLITEX [Abbasi-Yadkori et al., 2019, [Lazic et al., 2021]. Similarly to MICARL, in
PoOLITEX, the new policy is defined as a Boltzmann distribution over the sum of all past state-
action value estimates, resulting from a KL-divergence regularization on the policy update, which
makes the learning process less noisy. For example, the experimental results of [Lazic et al,2021]
show good convergence results, outperforming other policy optimization algorithms. However,
to perform this policy update in closed form, |Abbasi-Yadkori et al.| [2019] considered learning
separate state-action value networks which is a computationally expensive process requiring to
store all past NNs corresponding to different Q-functions. The more recent implementation
of |[Lazic et al., 2021]| avoids keeping different NNs and instead relies on one NN and experience
replay buffer to approximate directly the average behaviour of all previous state-action value
functions.

The strategy of POLITEX requires the knowledge of all previously trained state-action value
functions. Implementing them with NNs is challenging as the candidate NN should be able to
approximate equally good all the old functions together with the new one. This particular prob-
lem known as catastrophic forgetting is studied in the field of Incremental Learning. Among the

RR n°® 7003



12 Della Vecchia € Shilova € Preux € Akrour

approaches of Incremental Learning, one could distinguish three main directions: architectural,
regularization and rehearsal strategies. Architectural strategies, as used in MiCARL, suggest
modifying (e.g. expanding) the NN structure in order to preserve the good performance on the
old tasks and achieve good precision on the new one |[Rusu et al., [2016} [Fahlman and Lebiere,
1989|. Regularization techniques may be divided in two groups. The first group is weight regu-
larization, which is typically done by introducing the additional component in the loss whose goal
is to penalize the change of the weights that are important for the old tasks (e.g. |[Kirkpatrick
et al., 2017} |Aljundi et al 2018|). Second group is knowledge distillation |Li and Hoiem) 2017,
Lee et al.,[2019|, which was firstly used for transfer learning, but can be efficiently applied to In-
cremental Learning, by bringing the "knowledge" from the old model to the new one, forcing the
output of the new model to be more consistent with the output of old models. Finally, rehearsal
methods [Rebuffi et all [2017] or pseudo-rehearsal methods [Mellado et al., 2019] alleviate the
problem of catastrophic forgetting by reusing the data of the old tasks when learning the new
one. Pseudo-rehearsal methods slightly differ from rehearsal methods as they generate data from
the old tasks instead of storing it. More thorough overview of Incremental Learning methods
can be found in [Luo et al. 2020].

6 Conclusion

In this paper, we consider entropy regularized reinforcement learning algorithms and how to
implement them efficiently in practice. These algorithms were shown to be more stable than
the classical approaches as they constrain the current policy to be closer to the previous ones.
In our study, we concentrate on the POLITEX algorithm that builds the policy from the output
of all Q-value functions of past policies. Implementing those functions in practice is not trivial,
and straightforward approaches of assigning one neural network per Q-value function is only
possible for very small tasks and cannot scale. Instead, we suggest using MICARL based on
Cascade-NN;, a neural architecture that grows each iteration by n neurons, capable of preserving
past information while new neurons can leverage increasingly richer feature representations. Our
preliminary results show that this novel approach can successfully compete with the state-of-
the-art for most of the considered use cases, while exhibiting impressive convergence on all
considered metrics for CartPole-vl. We believe these are very promising preliminary results
suggesting that MICARL and its non-parametric approach to Q-function approximation is worth
further investigation. In future work, we would like to understand what makes the algorithm
better approximate the Q-function on CartPole-vl than the other problems, and research the
integration of more sophisticated exploration mechanisms in MICARL to tackle sparse reward
problems.

Acknowledgments

The authors would like to acknowledge the financial support of the French Ministry of Higher
Education and Research, Inria, the Hauts-de-France region. Philippe Preux is also supported
by the Métropole Européenne de Lille, through the AI chair Apprenf number R-PILOTE-19-
004-APPRENF. Riccardo Della Vecchia is thankful for the funding received by the CHIST-
ERA Project Causal eXplainations in Reinforcement Learning — CausalXRL. EI Alena Shilova
acknowledges the funding coming by the Challenge HPC-BigData INRIA Project LAB. E| We
also thank the Scool team at Inria Lille Nord Europe.

Shttps://www.chistera.eu/projects/causalxrl
4https://project.inria.fr/hpcbigdata/

Inria


https://www.chistera.eu/projects/causalxrl
https://project.inria.fr/hpcbigdata/

Entropy Regularized Reinforcement Learning with Cascading Networks 13

References

Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért
Weisz. Politex: Regret bounds for policy iteration using expert prediction. In International
Conference on Machine Learning, pages 3692-3702. PMLR, 2019.

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and
Martin Riedmiller. Maximum a posteriori policy optimisation. In International Conference on
Learning Representations (ICLR), 2018.

R. Akrour, A. Abdolmaleki, H. Abdulsamad, J. Peters, and G. Neumann. Model-free trajectory-
based policy optimization with monotonic improvement. Journal of Machine Learning Re-
source (JMLR), 2018.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
Conference on Computer Vision (ECCYV), pages 139-154, 2018.

J. A. Bagnell and J. C. Schneider. Covariant Policy Search. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2003.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. In Advances
in Neural Information Processing Systems (NeurIPS), 2021.

Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural
actor-critic algorithms. Automatica, 2009.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York,
2006.

Omar Darwiche Domingues, Yannis Flet-Berliac, Edouard Leurent, Pierre Ménard, Xuedong
Shang, and Michal Valko. rlberry - A Reinforcement Learning Library for Research and
Education, 10 2021. URL https://github.com/rlberry-py/rlberry.

Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. Advances
in neural information processing systems, 2, 1989.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized Markov decision
processes. In Proceedings of the 36th International Conference on Machine Learning (ICML),
2019.

Sertan Girgin and Philippe Preux. Basis function construction in reinforcement learning us-
ing cascade-correlation learning architecture. In 2008 Seventh International Conference on
Machine Learning and Applications, pages 75-82. IEEE, 2008.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Con-

ference on Machine Learning (ICML), 2018.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In International Conference on Machine Learning (ICML), 2002.

RR n°® 7003


https://github.com/rlberry-py/rlberry

14 Della Vecchia € Shilova € Preux € Akrour

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy
of sciences, 114(13):3521-3526, 2017.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal of Machine
Learning Research, 4:1107-1149, 2003.

Nevena Lazic, Dong Yin, Yasin Abbasi-Yadkori, and Csaba Szepesvari. Improved regret bound
and experience replay in regularized policy iteration. In International Conference on Machine
Learning, pages 6032-6042. PMLR, 2021.

Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee. Overcoming catastrophic forgetting with
unlabeled data in the wild. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 312-321, 2019.

Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search
under unknown dynamics. In Advances in Neural Information Processing Systems (NeurIPS).
2014.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935-2947, 2017.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Sto-
ica. Tune: A research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

Yong Luo, Liancheng Yin, Wenchao Bai, and Keming Mao. An appraisal of incremental learning
methods. Entropy, 22(11):1190, 2020.

Diego Mellado, Carolina Saavedra, Steren Chabert, Romina Torres, and Rodrigo Salas. Self-
improving generative artificial neural network for pseudorehearsal incremental class learning.
Algorithms, 12(10):206, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-
level control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Gergely Neu, Anders Jonsson, and Viceng Gémez. A unified view of entropy-regularized markov
decision processes. CoRR, 2017.

J. Peters and S. Schaal. Natural Actor-Critic. Neurocomputation, 2008.

Matteo Pirotta, Marcello Restelli, Alessio Pecorino, and Daniele Calandriello. Safe policy itera-
tion. In International Conference on Machine Learning (ICML), 2013.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001-2010, 2017.

Inria



Entropy Regularized Reinforcement Learning with Cascading Networks 15

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR.

John Schulman, Sergey Levine, Michael Jordan, and Pieter Abbeel. Trust Region Policy Opti-
mization. International Conference on Machine Learning (ICML), 2015.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of Go with deep neural networks and tree search. Nature, 529(7587):484-489, January
2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

Csaba Szepesvari. Algorithms for Reinforcement Learning. Morgan & Claypool, 2010.

Voot Tangkaratt, Abbas Abdolmaleki, and Masashi Sugiyama. Guide actor-critic for continuous
control. In International Conference on Learning Representations (ICLR), 2018.

Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential dynamic program-
ming. In International Conference on Robotics and Automation (ICRA), 2014.

E. Todorov and Weiwei L. A generalized Iterative LQG Method for Locally-Optimal Feedback
Control of Constrained Nonlinear Stochastic Systems. In American Control Conference (ACC),
2005.

RR n°® 7003



16 Della Vecchia & Shilova € Preux € Akrour

A  Number of added neurons

We ran an additional set of experiments to study the performance of MiCARL with respect to its
dependence on n, the number of neurons added per iteration, in Figure[5] In general, we expect
better performance as we increase the number of neurons since it should be easier in this case
to approximate the Q function. This is confirmed by our simulations for n € {10, 20,50}, where
we see that more neurons seem to indicate faster learning, as least initially, while in some cases,
the mean squared Bellman residual seem to increase with time for higher n, perhaps due to an
overfitting problem. Asymptotically however, the curves of the rewards achieve approximately
the same values.

Reward KL Reward KL

-100

~200

10 -300 10-¢

400

500 10

00 02 04 06 o8 10 0o 02 04 06 08 10
1e6 1e6 1e6

Loss Entropy Loss

00 02 o4 06 08 10 00 02 o4 06 o8 10 00 02 o4 06 08 10 00 02 o4 06 08 10
1e6 1e6 1e6 1e6

Reward KL Reward KL
0 -1900
100 10
—200 > ~1925
107 10
400 ~195.0

10 100
600 ~1975

800 0” -2000 107

1000 107 2025 10

1400 107 2075 10710

~1600 107 -2100 1071

10 00 02 04 06 o8 10 00 02 [ o6 08 10
1e6 1e6 1e6 1e6

Loss Entropy Loss Entropy

1.005

1.000

107
0.995
10 0.990

0.985

10 0380
0975 n=01,n=10
0970 — n=01n-20
— n=01n=50

00 02 o4 06 08 10 00 02 o4 06 08 10 00 02 o4 06 08 10 00 02 o4 06 08 10
1e6 1e6 1e6 1e6

Figure 5: Dependence on the number of added neurons per iteration n on CartPole-v1 (top-left
corner), Acrobot-vl (top-right corner), Pendulum-v1l (bottom-left corner) and MountainCar-v0
(bottom-right corner).

Inria



RESEARCH CENTRE
LILLE - NORD EUROPE

Parc scientifique de la Haute-Borne
40 avenue Halley - Bat A - Park Plaza
59650 Villeneuve d’Ascq

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399



	Introduction
	Preliminaries
	Notation
	Entropy regularized policy iteration
	Cascade-NN

	The MicaRL algorithm
	Experiments
	Related Work
	Conclusion
	Number of added neurons

