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Abstract—HPC systems have experienced significant growth
over the past years, with modern machines having hundreds of
thousands of nodes. Message Passing Interface (MPI) is the de
facto standard for distributed computing on these architectures.
On the MPI critical path, the message-matching process is
one of the most time-consuming operations. In this process,
searching for a specific request in a message queue represents
a significant part of the communication latency. So far, no
miracle algorithm performs well in all cases. This paper explores
potential matching specializations thanks to hints introduced in
the latest MPI 4.0 standard. We propose a hash-table-based
algorithm that performs constant time message-matching for
no wildcard requests. This approach is suitable for intensive
point-to-point communication phases in many applications (more
than 50% of CORAL benchmarks). We demonstrate that our
approach can improve the overall execution time of real HPC
applications by up to 25%. Also, we analyze the limitations of our
method and propose a strategy for identifying the most suitable
algorithm for a given application. Indeed, we apply machine
learning techniques for classifying applications depending on
their message pattern characteristics.

Index Terms—HPC, Distributed programming, MPI Matching,
MPI 4.0 Sessions

I. INTRODUCTION

Supercomputer systems continuously include more compute
nodes and more computing resources per node. The most
powerful ones have thousands of nodes. Furthermore, the HPC
community aims to reach the Exascale by 2022. This target is
highly related to the capacity of the system to provide efficient

inter-node communication. Current solutions strongly rely on
the Message Passing Interface (MPI) standard. It is the most
used message passing environment and has become almost
a synonym for distributed computing. It describes a list of
routines used for parallel computing in a distributed system
and has several implementations.

Under MPI, send and receive operations are identified by a
header, conventionally composed of a communicator identifier,
source process identifier, tag, and a buffer location. The
receiver posts an envelope with these identifiers, and if it
matches an incoming message, data is delivered to the buffer
location. This operation is usually called MPI matching and
is performed on the receiver side. MPI matching is on the
critical path and is known to be computationally complex [1],
[2]. Thus, its performance significantly impacts the message
latency [3].

There are several implementations of the matching algo-
rithm. The most common one uses two different queues for
receive operations. The posted receive queue (PRQ) is used
to store receive requests that were not resolved, and the unex-
pected message queue (UMQ) is used for storing messages that
arrived without a prior receive request. During the matching
operation, queues are traversed in search of a match between
a message and a request. Depending on the message position,
the overhead can have a significant or negligible impact on the
overall performance. An ideal scenario would be one where the
first message of the queue always corresponds to the searched



request. Nevertheless, its position depends on the application
behavior and system noise. Thus, messages that arrive in an
unpredictable order can significantly slow down the execution.

While several attempts aim to reduce this overhead at
a software and hardware level, there is still no con-
sensus. Hence, each MPI implementation uses a differ-
ent approach. The primary factor which makes this op-
eration complex is the presence of MPI wildcards (i.e.
MPI_ANY_SOURCE and MPI_ANY_TAG). Because it is not
mandatory to specify a source and a tag, communication
libraries need to keep either one large list for all mes-
sages or try to separate wildcards in a way that preserves
global order. The new MPI-4.0 standard proposes some
special hints which allow users to provide information to
direct optimization. The mpi_assert_no_any_source
and mpi_assert_no_any_tag hints, when set, inform the
MPI implementation that the application will not use wildcards
for a specific communicator. In particular, this can help an MPI
implementation improve the matching algorithm.

Nevertheless, attaching them to a specific communicator can
present some disadvantages. The fact that the user can specify
this information at any moment makes its exploitation more
complex. The MPI library is initialized when the user adds
an attribute to the communicator. Therefore all data structures
are already built. Moreover, changing the algorithm on the
fly could be challenging if there are already messages in
the matching lists. Also, setting and getting communicator
attributes is an operation on the critical path and could add
an overhead, especially for smaller buffers [4]. We propose to
use the MPI hints approach at a session level to solve these
limitations. The Session model is a new MPI-4.0 addition that
offers an isolated environment and allows it to be customized.
For example, it is possible to specify two different thread-level
supports for two sessions inside an MPI program. Since the
hints are passed at initialization, the communication library can
prepare all necessary data structures and apply an optimized
matching algorithm directly.

This paper presents a detailed study of the possible per-
formance gain when mpi_assert_no_any_source and
mpi_assert_no_any_tag hints are set at a session level.
We propose a constant time matching algorithm for applica-
tions that do not use wildcards and compare it to a common
one used by several MPI implementations. We show how this
approach can result in a speedup of 93% for some micro-
benchmarks and 25% for some proxy applications. Also, we
take care to verify its behavior in disadvantageous cases.
Indeed, we performed an exhaustive study and show how
the performance of the matching algorithms could drastically
change depending on the context. Finally, we present a solu-
tion for identifying applications that could benefit from our
matching algorithm. Our contributions are the following:

• The design and evaluation of a hint-driven MPI matching
algorithm;

• Its integration into a communication library via the MPI
4.0 Sessions;

• The implementation of a matching profiler to analyze
cases where this approach may cause an overhead;

• A methodology based on a simple machine learning
model to detect applications that could benefit from our
solution.

The rest of this paper is organized as follows. The next
section gives an overview of related work and background.
Section 3 describes an optimized hint-driven MPI match-
ing algorithm and also provides a theoretical analysis of
its performance. In section 4, we test our algorithm on
some microbenchmarks and HPC applications and highlight
its behavior in good, bad, and realistic scenarios. Section
5 provides a solution for identifying the most appropriate
matching algorithm for a given application. The last section
presents our conclusions and future work.

II. BACKGROUND AND RELATED WORK

Under MPI, there are two matching queues: one for receive
and one for send requests. The MPI matching algorithm is
triggered when a new request is posted. Depending on the
request type (i.e. receive or send), the algorithm’s workflow
can differ. Figure 1 presents the general workflow of the MPI
matching operation. When a new send request arrives (Figure
1a), we traverse the receive queue in search of a match. The
two elements match if they have the same communicator id,
source, and tag. It is also possible to use wildcards for the
source and tag of a receive request. If the match is found, we
perform the data transfer and delete the receive request from
the receive queue. Otherwise, the send request is added to the
send queue. Symmetrically when a new receive request arrives
(Figure 1b), we search for a match in the send queue. Thus,
there are four paths: match failed upon a send request arrival,
match succeeded upon a send request arrival, match failed
upon a receive request arrival, and match succeeded upon
a receive request arrival. The queue refers to a FIFO data
structure that can vary depending on the MPI implementation.

Modern MPI implementations use different approaches for
the matching algorithm. For example, the OpenMPI imple-
mentation [5] maintains a separate queue for each (communi-
cator id, source) pair. Thus, the queue is traversed only for
searching the tag. While this approach improves the average
search depth, it can lead to high memory consumption [6]. In
contrast, MPICH [7] uses a single linked list for storing all
(communicator id, source, tag) requests. This data structure
offers minimal memory consumption, but in the worst cases,
message matching requires visiting any element of the entire
queue.

The MPI matching has been studied for several years and
in different contexts. Though, there are two main directions:
hardware and software-based approaches. These are not nec-
essarily interchangeable and can be combined to increase
performance.

a) Hardware: Hemmert et al. [8] proposed a microcode
engine for MPI matching composed of two ALUs: one for
binary operations and the other for wildcarded messages. Their
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Fig. 1: General overview of the MPI matching workflow.

goal is to offer a flexible solution while maintaining good
overall performance.

Another approach is to accelerate the matching algorithm
by using modern hardware capabilities. Dosanjh et al. [2] pro-
posed accelerating this operation by exploiting the processor’s
AVX-512 feature. This approach uses vectorized ”integer-
compare-equals” operations and a set of vectors for storing
tags and sources. The output of these operations is a bit-
map containing the id of matching messages. Xiong et al. [9]
introduced the idea of offloading the matching part on FPGA
hardware. Their solution covers messages from PRQ and
UMQ.

Based on the above studies and other research, new gen-
erations of MPI message matching Network Interface Cards
(NICs) were proposed: Bull eXascale Interconnect (BXI) [10],
InfiniBand ConnectX-5 [11].

b) Software: Ghazimirsaeed et al. [12] showed how
using multiple queues can impact the performance of the
matching algorithm. They proposed to group MPI processes
in separate classes and attach each cluster to distinct message
queues. Thus, a specific process needs to iterate through its
assigned queue instead of the global one. The way MPI pro-
cesses are grouped can significantly impact the performance,
as queues can contain a larger or smaller number of messages
during program execution. Consequently, Ghazimirsaeed et
al. proposed using a K-means algorithm to partition all MPI

processes efficiently. This approach requires a first run of the
application to gather the necessary data. Then, this information
can be used for improving matching for further executions.

The NewMadeleine communication library proposed a
constant-time MPI matching algorithm [13], even for wildcard
requests. Its approach is based on four data structures (three
hash tables and one linked list) allowing to store any com-
bination of MPI requests: (source, tag), (source, wildcard),
(wildcard, tag), (wildcard, wildcard). Thus, there are four
places to be checked to perform the matching upon a send
request arrival: three hash table lookups and four accesses to
the head list. Symmetrically, upon a receive request arrival,
there is only one place to be checked. Each time, we only
check the head of the list, and therefore, the algorithm’s
complexity is O(1).

III. HINT-DRIVEN MATCHING ALGORITHM

The presence of wildcarded requests makes the MPI match-
ing algorithm non-trivial. To the best of our knowledge,
there is no universal solution adapted for all communication
patterns.

Thanks to the new MPI 4.0 hints the user can inform the
communication library that no wildcarded requests will be
used. Thus, by focusing on this particular context it is possible
to explore even more optimized matching algorithms.

While a hint-driven solution may seem restrictive, there
is a large number of real MPI applications that do not use



any source and any tag requests. For example, more than 50%
of CORAL benchmarks [14] would benefit from this approach.

A. Constant Time Implementation

To further optimize the matching operation we propose an
algorithm based on a single hash table.

All the table elements are identified by a hash key composed
of the communicator identifier, source, and message tag. Each
element contains a linked list with all messages for the
corresponding identifier. Algorithm 1 describes the two main
operations of our MPI matching implementation. Procedure
insertMsgToHash allows inserting a new request in the hash
table. First, we check if there is already an entry with the same
key (lines 2-4). Depending on the lookup result, we either
append the message to an existing list (line 5) or create a new
hash table entry with this new element (lines 7-8). During
this operation, we organize all the requests by their arrival
order. Therefore, the searching operation (searchForMatching
function) becomes a single lookup in a hash table since it is
always the head of the list which corresponds to the searched
message (line 15).

Algorithm 1 Hash Table Matching Algorithm

1: procedure INSERTMSGTOHASH(h tab,msg)
2: key ←− {msg.comm id, msg.source, msg.tag}
3: msg list ←− HASH FIND(h tab, key);
4: if msg list ̸= NULL then
5: DL APPEND(msg list, msg);
6: else
7: new msg list = new list(msg);
8: HASH ADD(h table, new msg list, key);
9: end if

10: end procedure
11:
12: function SEARCHFORMATCHING(h tab, key)
13: msg list ←− HASH FIND(h tab, key);
14: if msg list ̸= NULL then
15: matched msg ←− pop first(msg list);
16: else
17: matched msg ←− NULL;
18: end if
19: return matched msg;
20: end function

The described algorithm has a time complexity of O(1) when
doing an amortized performance analysis, compared to O(n)
for a linked list approach. While it has a theoretical advantage,
this approach is only practical when there are many messages
in the matching queue and when these messages are in a
shuffled order. A single hash table lookup is more efficient than
traversing a long linked list but is less efficient than checking
the first element of the list.

For the hash table data structure, we decided to use the
uthash library1. It is an open-source implementation of a

1Available at https://github.com/troydhanson/uthash

hash table that uses the separate chaining technique [15] for
handling collisions. To provide more performance, uthash can
dynamically adapt its data structure. When the number of
elements in a bucket exceeds a certain threshold, the number of
buckets is doubled, and the items are redistributed. Among all
hash functions provided by the library, we choose the Jenkins
one for performance concerns.

B. Integration into MPC-MPI

The evaluation of Algorithm 1 was possible thanks to the
MPC-MPI communication library. We choose this particular
library because it provided a Session implementation quickly
after the release of the MPI 4.0 standard. Multi-Processor
Computing [16] is a framework for programming distributed
and shared memory architectures. The main idea of the frame-
work is to represent MPI processes as user-level threads. It
also includes an extension called MPC-MPI [17] which fully
implements the MPI standard. Its main advantage concerns
memory consumption. It uses significantly less memory than
other MPI implementations. Also, the original Multi-Processor
Computing matching algorithm uses a linked list approach by
storing all requests in a global queue.

We integrated Algorithm 1 into the MPC-MPI
library by using the MPI-4.0 Sessions. The hash
table matching algorithm can be activated by
setting both mpi_assert_no_any_source and
mpi_assert_no_any_tag hints. While the MPI standard
introduced these hints as info keys for communicators, it is
also possible to use them for sessions. Indeed, in both cases,
the user must specify this information via an MPI Info object
that fully respects the MPI 4.0 standard.

Accordingly, we verify the associated MPI Info object at
session initialization and set an appropriate context for the
chosen algorithm. Indeed, this is the most opportune moment
for preparing all necessary data structures, as the program has
not started yet. Due to this approach, removing any overhead
related to checking communicator attributes on the critical path
is possible.

C. Theoretical Analysis

This section presents a theoretical analysis of our match-
ing algorithm and compares it to NewMadeleine’s approach.
Both algorithms are constant time when doing an amortized
analysis. However, assuming the absence of any source, any
tag requests allowed us to even more optimize the matching
operation.

To highlight the theoretical advantage of our approach, we
implemented a program that simulates the four different paths
of both matching algorithms.

Firstly, we implemented the NewMadeleine’s algorithm. In
our implementation, we use four hash tables instead of one
linked list and three hash tables. The original algorithm uses
the list to store the fully wildcarded request. In the case of
NewMadeleine, a list is sufficient because it does not require a
communicator matching. Indeed, the communicator matching
is done automatically via some NewMadeleine internal tags.

https://github.com/troydhanson/uthash
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Fig. 2: NewMadeleine matching algorithm workflow.

For most other communication libraries, there is also a need to
match the communicator id. Therefore we replace the linked
list with a hash table. Figure 2 details our implementation
and presents the four paths of the NewMadeleine’s algorithm
with their associated cost. To compare, our algorithm needs
a single lookup and delete list operations when a matching
request is found. Symmetrically, when a matching request
is not found, a single lookup and push back operation is
performed. Secondly we run the four matching matching
paths for both algorithms. Our simulation program starts by
posting N receive requests. All those requests will fail to find
a match as there were no previous send requests. Next, we
post N send requests, which will all succeed. We measure
their associated execution times, and then we perform a
symmetrical operation (i.e. start by posting N send requests

which all fail). In this manner, it is possible to simulate the
time for performing each of the four branches of a matching
algorithm. Our algorithm was designed for a no wildcard
context, so we use exclusively fully specified requests for our
simulation.

We generate random requests with the following parameters:
• 0 ≤ communicator id ≤ 100
• 0 ≤ tag ≤ 100
• 0 ≤ source ≤ 500

Table I presents the time necessary for performing a single
matching operation. For the success from receive and fail from
send paths, the hash-based algorithm shows significantly better
performance over the NewMadeleine’s approach. For the other



matching paths, obtained experimental results are equivalent.
Note that in a no wildcarded context, the fail from receive and
success from send paths require the same operations for both
matching algorithms.

Finally, to further compare our approach with New-
Madeleine’s algorithm, we also integrated the last one into
the MPC-MPI. As described previously, we implemented an
adapted version of the algorithm and used a fourth hash table
instead of a linked list.

IV. EXPERIMENTAL RESULTS

This section describes our experimental environment and
presents results on some micro-benchmarks and proxy HPC
applications. We took the MPC-MPI linked list matching
algorithm as a reference and compared it with our constant
time solution and with NewMadeleine’s approach.

A. Experimental Context

We chose to validate the performance of our approach on
some micro-benchmarks and representative proxy applications.
We executed each program with each MPI matching algorithm.
Afterward we compute their total execution time and highlight
the performance improvements of our approach. All bench-
marks were run with the MPC-MPI library, which already
supports MPI-4.0 Sessions. Therefore, we instrumented each
benchmark to obtain a true session context. Essentially, we
replaced all MPI init by MPI Session init and set up an
appropriate MPI Info object.

All experiments from this section were run on Inti, a
cluster hosted at CEA. The AMD partition contains nodes
equipped with AMD EPYC 7H12 processors and ConnectX-6
InfiniBand [18] controllers.

B. Micro-benchmarks

To evaluate the behavior of our algorithm in a favorable
context, we decided to use the shuffle benchmark from the
MadMPI benchmark suite 2. It provides a ping-pong operation
with non-blocking MPI point-to-point routines. The server
starts by posting N receive requests of 1 byte with tags
going from 0 to N-1 (the order in which messages are posted
corresponds to the message tag). At the same time, the client
posts N send requests with tags from 0 to N-1 but in a random
order. Both actors perform an (MPI Waitall) to wait for all
requests to finish. Next, the same operation is performed with
reversed roles (i.e. the ”pong” action).

Figure 3 highlights the effectiveness of the hash-based
matching algorithm in the presence of many point-to-point
communications. The X-axis indicates the number of posted
requests during a half roundtrip (i.e. N). The Y-axis shows
the execution time of the ping-pong operation divided by
two (i.e. the ”one-way” time). The number above the graph
highlights the performance improvements of our algorithm
over a linked list approach (in blue on the graph) and the
NewMadeleine’s approach (in orange on the graph). We can
notice that in the presence of several simultaneous requests,

2Available at https://pm2.gitlabpages.inria.fr/releases

Fig. 3: Shuffle Benchmark - performance improvements of the
hint-driven algorithm over MPC-MPI’s and NewMadeleine’s
approaches. (The number above the graphs indicates the per-
formance gain of our approach over the two other algorithms)

the hash-based algorithm performs significantly better than
the MPC-MPI’s approach. The theoretical complexity of both
approaches can explain these results: a constant time algorithm
always performs better on a large scale than a linear one.
We also can notice that our algorithm and NewMadeleine’s
algorithm maintain a constant pace.

C. Applications

Our approach showed encouraging performance improve-
ments on the shuffle benchmark. However, it is pretty chal-
lenging to reach such a large number of simultaneous requests
while executing real HPC applications. Consequently, this
section presents results for some HPC proxy applications. The
results are depicted on Figure 4.

1) Quicksilver: Quicksilver [19] is a proxy application that
approximates the overall application performance of Mer-
cury [20]. That uses the Monte Carlo Method to solve particle
transport problems. Its primary goal was to facilitate the re-
factoring of Mercury. It has become an essential benchmark
for the HPC community lately, as it reproduces realistic high-
performance patterns.

We evaluated our approach on several configurations based
on examples from Quicksilver’s repository 3. We observed
that the hint-driven algorithm performs at least as well as
the linked list approach for all tested inputs. Figure 4a shows
results for the homogeneousProblem v7 ts.inp input, which
was run with 128, 256, 512, and 1024 MPI processes. The
X-axis indicates the number of MPI processes, the Y-axis
shows the total execution time of the application with the
corresponding algorithm, and the number above the bars
presents the performance improvements of our approach over
MPC-MPI’s (left) and NewMadeleine’s (right) algorithms. The
presented graph shows encouraging results, especially for 1024
processes.

3Available at https://github.com/LLNL/Quicksilver/tree/master/Examples

https://pm2.gitlabpages.inria.fr/releases
https://github.com/LLNL/Quicksilver/tree/master/Examples


Matching paths
Fail from recv Sucess from recv Fail from send Sucess from send

Operations Our algorithm 1 push back +
1 lookup

1 delete list +
1 lookup

1 push back +
1 lookup

1 delete list +
1 lookup

NewMadeleine algorithm 1 push back +
1 lookup

4 delete list +
1 lookup

4 push back +
1 lookup

1 delete list +
1 lookup

Time per request (us)
Our algorithm [HT] 0.44 0.30 0.44 0.30
NewMadeleine algorithm [NM] 0.44 0.42 1.25 0.30
HT execution time
improvement (%) 0% 29% 65% 0%

TABLE I: NewMadeleine algorithm vs single hash-table-based algorithm

(a) Quicksilver

(b) Cholesky Factorization

Fig. 4: Proxy HPC Applications - performance improvements
of the hint-driven algorithm over MPC-MPI’s and New-
Madeleine’s approaches.(The two numbers above the bars
indicate, in order, the gain of our approach gain over MPC-
MPI’s and New-Madeleine’s algorithms)

2) Tiled Cholesky Factorization: In linear algebra,
Cholesky factorization is a decomposition of a symmetric
positive definite matrix A into the product of a lower matrix
L and its transpose LT (i.e. A = LLT ). The matrix is divided
into square blocks for the tiled version of this algorithm.

We used a task version of the Tiled Cholesky Factorization
previously introduced in [21]. In this application, MPI commu-
nications are finely integrated into OpenMP tasks to enhance
the asynchronous execution of the application.

Thus, we could run this application entirely with the Multi-
Processor Computing runtime.

The Cholesky Factorization algorithm exclusively relies on
point-to-point operations triggered by the OpenMP tasks. As
the tasks are scheduled in an unpredictable order, receive
and send requests are also posted in a shuffled order. Thus,
the application presents an irregular communication scheme
similar to the shuffle benchmark.

We set the size of the matrix to 131072 and the block size
to 256 and performed a strong scaling with MPI processes
going exponentially from 128 (1 node) to 1024 (8 nodes).
Figure 4b presents the obtained results. As for the Quicksilver
graph, the X and Y axes indicate the number of MPI processes
and the total execution time. Again, the number above the
bars highlights the performance improvements. We observe
significant performance improvements principally for runs
with a smaller number of MPI processes.

D. Overhead
Generally, a lookup in a hash table is less efficient than

checking the head of a list (i.e. dereference a pointer). There-
fore, we propose to evaluate the overhead of our approach
in a context favorable for a linked list implementation: cases
where the searched message always corresponds to the head
of the list. For this purpose, we use the burst benchmark
from the MadMPI benchmark suite. It is similar to the shuffle
benchmark, except that requests with the same tags are posted
in the same order. In this configuration, a hash table has a
considerable disadvantage.

Figure 5a shows a significant overhead of our approach.
The X-axis and Y-axis are identical to the shuffle benchmark.
The number above and below the graph allows to compare
our approach to other matching algorithms. We can notice
significant performance improvements over NewMadeleine’s
approach, but an overhead compared to MPC-MPI’s approach.

The goal of the presented results was to see how our
approach performs in extreme cases. However, as for the



(a) Burst

(b) IMB PingPong

Fig. 5: Matching algorithm overhead when using a hash table
data structure compared to a linked list. (Negative numbers
indicate the overhead of our approach over the MPC-MPI’s
algorithm)

shuffle benchmark, it is almost impossible to have such a
situation for real HPC applications. We performed a ping-
pong on two different nodes to obtain more realistic results
by using the well-known Intel MPI Benchmarks (IMB) [22].
This operation shows the impact of the matching algorithm
on communication latency. Figure 5b illustrates the obtained
results. The X-axis presents the buffer size, and the Y-axis
shows the execution time of an IMB ping-pong operation. The
number above each pair of bars indicates the overhead of the
hint-driven algorithm compared to a linked list approach. We
can observe an insignificant slowdown for the smaller buffer
sizes. However, it becomes irrelevant in a real HPC context.
We observed a similar overhead for the NewMadeleine algo-
rithm.
We also performed several experiments on some IMB collec-
tives and NAS benchmarks [23] and did notice no overhead.

V. RESULTS VERIFICATION UNDER AI MODEL

This section presents a solution for identifying the most
suitable matching algorithm for a given application. Indeed,
the presented results confirmed that no universal solution
performs well for all situations. Therefore, we study different
matching situations by instrumenting a matching profiler and
some micro-benchmarks. We propose a machine learning
solution for classifying the MPI matching algorithms. The
training data described in this section was built on an another
partition of the Inti cluster. The last one contains 2 Intel(R)
Xeon(R) Platinum 8168 CPUs and ConnectX-4 InfiniBand
controllers.

We focus exclusively on the hint-driven and linked-list-
based algorithms. In fact, we could not obtain data points
where the NewMadeleine’s approach performs better, as our
solution presents an optimized version of a hash-table-based
algorithm. However, our classification models can be extended
to other specialized matching algorithms.

A. Matching Profiler

First, we implemented a profiler for gathering data related
to the linked-list-based matching algorithm. It collects the total
number of attempts for a message matching. All attempts are
grouped into two categories: successful ones, when a matching
message is found, and unsuccessful ones when the tail of the
list is reached without finding any match. The profiler also
provides the number of traversed cells before a success or
failure attempt. Failure attempts allow us to know how the
list size changes during the execution, and successful attempts
allow us to identify matching intensive phases. The last one
is a good indicator for detecting the impact of the matching
overhead. The matching overhead becomes more critical when
the number of traversed cells increases. In this context, a hash-
table-based algorithm would have an obvious advantage over
a linked list approach.

B. Matching micro-benchmarks

Then, we implemented a simple ping-pong benchmark to
highlight the behavior of matching algorithms. Before starting
the ping-pong operation, we post N requests into the receive
queue of each process. Thus, each process that uses a linked-
list-based matching algorithm traverses exactly N+1 cells
before finding the matching message. This benchmark aims
to highlight situations where the hash-table-based algorithm
could bring some benefits. Also, it can identify a threshold
above which it is not suitable to use a linked-list-based
approach.

We executed our ping-pong benchmark with both matching
algorithms and measured the execution time. Figure 6 presents
obtained results with buffer sizes (X-axis) going from 1 B to 8
KB and for avg traversed cells success (Y-axis) going from
0 to 200. The last one corresponds to the average number
of traversed cells before finding a match. Because of the
benchmark construction, the two MPI processes traverse the
same number of cells. The color map indicates cases where
our algorithm implementation performs better. We can notice



Fig. 6: PingPong Benchmark - analyzing the benefits of
using a hash-table-based approach for a ping-pong operation,
depending on the buffer size and the average traversed cells
success.

two important tendencies from our results: first, the hash-
based algorithm offers significant performance improvements
when several requests are in the queue; second, this advantage
becomes insignificant for larger buffer sizes since the latency
becomes less than the time needed for transferring a large
buffer.

C. Binary Classification

Based on observations from previous sections, we decided
to instrument a machine learning model for predicting which
algorithm is the most suitable for a given application. Indeed,
our goal is to identify situations where our hash-based ap-
proach can bring significant performance improvements.

For this purpose, we have built a dataset based on our
ping-pong implementation and some NAS and IMB bench-
marks. We collected data on the average number of traversed
cells before a match, buffer sizes and execution time for
each configuration. Then we set up three simple models: a
logistic regression, a support vector machine (SVM), and a
multilayer perceptron (MLP). As all these models have a
fixed input size we need to adapt our collected data. The
avg traversed cells success metric is computed individually
for each MPI process, and obviously, the number of processes
can change for different runs.

Consequently, we decided to compose the input of our
models from statics data on the avg traversed cells success
metric and buffer sizes. The input comprises the following
items for both metrics: mean, standard deviation, variance,
and some quartiles. The output is composed of two classes
corresponding to our two matching algorithms. We consider
the hash-based algorithm performing better if it decreases the
total execution time by at least 5%.

We took care to build a balanced dataset and split it into a
training and a testing part. All three models showed encour-

aging results on the benchmark-based testing data, obtaining
an accuracy between 99% and 100%. Also, we tested the
MLP model (i.e. trained exclusively on micro-benchmarks)
on some Cholesky and Quicksilver samples. We obtained
satisfactory results for the Cholesky application: an accuracy
of 75% and a well-balanced confusion matrix. However, our
model could not provide the same performance on Quicksilver
as we got several numbers of false negatives for a 60% of
accuracy. Indeed, Quicksilver has a specific communication
pattern that changes during the execution, and it is difficult
to reproduce its behavior only with micro-benchmarks. We
integrated the Cholesky samples into the training dataset to
improve our model. Thereby we achieved an 87% accuracy
on the Quicksilver dataset, but still with a dominant number
of false negatives. We believe our model can be improved by
adding more significant data related to real HPC communica-
tion patterns.

VI. CONCLUSION

This paper studies possible MPI matching benefits in a
no any source, no any tag context. Our goal is to raise
users’ awareness about the importance of providing helpful
information to the communication library.

We proposed a hint-driven constant-time matching algo-
rithm and integrated it into the MPC-MPI library thanks to the
new MPI-4.0 Sessions. We showed how it could improve the
overall execution time of some real HPC applications by up to
25%. Indeed, we proved the effectiveness of our approach in
a real implementation of MPI Sessions and realistic scenarios.

Also, we tested our algorithm in some extreme cases (i.e. in
the presence of many simultaneous requests) and highlighted
its weak points. We have shown that no universal algorithm is
suitable for all applications and we have proposed integrating
several matching implementations into the communication
libraries. Hence, a user could choose the most suitable one
for its application. To assist the user with his choice, we
have implemented a matching profiler and built some classical
machine learning models, which have shown encouraging
results.

One notable contribution of this paper is that we focus
our analysis on the matching algorithms rather than differ-
ent communication libraries. Indeed, all experiments were
performed using the same communication library but with
different matching implementations. Thus, we brought out
possible performance improvements which are exclusively due
to the matching algorithms.

In the presented work, we addressed the performance of
three matching algorithms, but several other implementations
exist. Therefore, this work should be extended to cover all
possible configurations and matching algorithms. Also, we
would like to improve our solution for identifying the most
efficient algorithm. Indeed, we believe that adding more proxy
applications with different communication patterns can signif-
icantly enhance our approach.
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