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Éliane Bécachea, Anne-Sophie Bonnet-Ben Dhiaa, Sonia Flissa, Antoine Tonnoirb

aPOEMS (UMR 7231 CNRS-ENSTA-INRIA), Université Paris Saclay
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Abstract

In this paper, the Half-Space Matching (HSM) method, first introduced for scalar problems, is extended

to elastodynamics, to solve time-harmonic 2D scattering problems, in locally perturbed infinite anisotropic

homogeneous media. The HSM formulation couples a variational formulation around the perturbations

with Fourier integral representations of the outgoing solution in four overlapping half-spaces. These integral

representations involve outgoing plane waves, selected according to their group velocity, and evanescent

waves. Numerically, the HSM method consists in a finite element discretization of the HSM formulation,

together with an approximation of the Fourier integrals. Numerical results, validating the method, are

presented for different materials, isotropic and anisotropic. Comparisons with the Perfectly Matched Layers

(PML) method are performed for several anisotropic materials. These results highlight the robustness of

the HSM method compared to the sensitivity of the PML method with respect to its parameters.

Keywords: Anisotropic elastic waves, plane wave representation, Fourier Transform, integral operators.

1. Introduction

In this paper we are interested in frequency-domain elastic wave scattering problems set in homogeneous

anisotropic media which are unbounded in all directions. Anisotropic elastic materials appear in many

situations. In geophysical applications for seismic exploration, anisotropic behaviors often arise as effective

models for isotropic layered media or for isotropic media including fractures [33, 86, 32, 88]. More generally,

homogenization of isotropic heterogeneous media (for instance composite materials) leads to anisotropic

effective behavior laws [85, 8]. Imaging defects in composite structures using Non-Destructive Testing

(NDT) is another important field of applications, for instance in austenitic stainless steel materials. In all

these applications, the propagation domain is often very large compared to the size of the scatterer(s) and

to the characteristic wavelength, so that it is relevant to consider the domain as unbounded.

The need for efficient numerical methods to take into account the unbounded character of the domain

is crucial to get accurate and reliable results. Even if it is an old and classical question, addressed since
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the 1980s for various propagation models (acoustics, electromagnetics, elastodynamics etc), it remains chal-

lenging especially in elastodynamics. This motivates the present paper. In general, the principle of these

numerical methods is to truncate the domain to a region of interest, while taking into account outgoing waves

which propagate towards infinity, without introducing spurious reflections inside the computational domain.

Several families of local and non-local methods have been proposed in the literature in the time-domain as

well as in the frequency-domain.

The first historical local methods, appeared in the early 1980s, are Absorbing Boundary Conditions

(ABCs), initially designed for the transient scalar wave equation and then extended to other time-dependent

or time-harmonic models. They consist in introducing an artificial boundary to truncate the computational

domain and in setting on this boundary local approximations of the Dirichlet-to-Neumann (DtN) operator,

involving only differential operators (e.g. [50, 51, 12, 66, 67, 60, 57, 39]). Besides, in the 1990’s, Perfectly

Matched Layers (PMLs), another family of local methods based on domain truncation by an absorbing

layer, became very popular. Introduced originally for time-dependent Maxwell’s equations by Bérenger [18],

they have been rapidly extended to other models (see below). These two families of methods are well suited

to numerical schemes based on volume methods such as finite differences, finite elements or Discontinuous

Galerkin methods.

For the isotropic scalar wave equation, ABCs and PMLs are now well analysed in the time-domain

(e.g. [50, 51, 12, 66, 67, 59, 60, 57, 39, 56, 47] for ABCs, [1, 48, 7, 16, 2, 17] for PMLs) as well as in the

frequency-domain i.e. for the Helmholtz equation (e.g. [69, 98, 82] for ABCs, [76, 19, 27, 28, 70, 62, 83]

for PMLs). Direct extensions of these methods to other scalar models may fail in presence of anisotropy

but roughly speaking, there have been new solutions designed case by case for frequency and time-domain

problems, which is less obvious for vectorial anisotropic models, as we will see later. Let us give some (non

exhaustive) examples of works concerning anisotropic scalar models. In [15], High Orders ABCs have been

proposed for the time-dependent anisotropic scalar wave equation and for the convective wave equation. For

general time-dependent hyperbolic problems set in an open geometry, standard PMLs are known to give

rise to instabilities for some anisotropic models. Indeed this can be explained by the fact that PMLs select

outgoing waves according to the phase velocity while the correct selection should be based on the group

velocity (see (27) for the exact definitions). For anisotropic models these two velocities differ and this may

lead to wrong results as soon as there exist backward waves in the direction of the absorbing layer, i.e.

waves for which the projections on the PML direction of the phase and group velocities are of opposite signs

[14]. Nevertheless, this difficulty can be overcome for several scalar anisotropic models: stable PMLs have

been designed for the anisotropic scalar wave equation [43, 48], aeroacoustics [48], and the linearized Euler

equations [71, 65, 72, 84]. Note that backward waves responsible for instabilities may occur also in some

dispersive isotropic models, for instance in isotropic elastic waveguides [94, 23]. Concerning time-harmonic

problems, one could expect that standard PMLs also fail when they fail in the time-domain, but surprisingly
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it is not always the case. In [13] for instance, standard PMLs for the convected wave equation in a waveguide,

which are unstable in the time-domain, have been proven to converge in the frequency-domain.

For vectorial elastic models, the results are quite different depending on the isotropic or anisotropic

nature of the material. For isotropic media, there are still ABCs and PMLs available in the time-harmonic

regime ([78] for ABCs, [64] for PMLs) and in the time-domain regime ([51],[68] for ABCs, [40, 11, 52, 75]

for PMLs).

For anisotropic elastodynamic models, difficulties arise and there exist much less works. Some time-

domain low-order ABCs (which do not always give satisfactory accuracy) have been developed for specific

materials [10] and for general anisotropic materials [87, 91], but no high-order accurate ABCs up to our

knowledge. Concerning PMLs in time-domain, for a large class of materials which can be specified in terms

of the material coefficients [14], standard PMLs are unstable and the question of designing stable PMLs

is still open. Some alternative methods have been developed, but they are either (i) not always stable,

e.g. the CPMLs, CFS-PMLs and “modal PMLs” which eliminate the long-time instabilities but not the

strong instabilities due to backward waves [6, 5, 99, 77] or (ii) no longer perfectly matched, e.g. the SMART

method [63, 80, 79], the Double Absorbing Boundary (DAB) [89, 90], Nearly PMLs [41, 38], M-PML [81, 49].

For frequency-domain problems, up to our knowledge there is no literature on PMLs in such media. Our

numerical experiments, presented in Section 5.4, will show that PMLs may fail for some materials. Besides,

the sensitivity of PMLs to the parameters of the method is even more important for anisotropic models

which renders the choice of these parameters more delicate.

Let us now give an overview of existing non-local approaches, focusing here on the frequency regime.

They are based on the construction of transparent conditions on the artificial boundary, using an exact

representation of the solution. Among them, the Boundary Integral Equations (BIE) Methods - which

require the knowledge of the Green function that satisfies the radiation condition - are intensively used in

various contexts (see for instance [21] for a general presentation).

For elastic wave propagation, in the 80-90’s there was a huge literature on “classical Boundary Element

Methods” in the harmonic regime (e.g. [74, 92, 3]), most of it concerning isotropic materials. More recently,

the emergence and development of methods such as FMM (Fast Multipole Methods) and H-matrices gave

new impetus to these BIE methods. We only cite some of these recent works for time-harmonic elastic

waves [31] and the references herein, [35, 36, 42] for the Fast Multipole Method (FMM) in the full space,

[34] for FM-BEM (Fast Multipole Boundary Element Methods) in semi-infinite media, [37] for H-matrices.

Let us emphasize that while for isotropic elastic waves, the Green function is known explicitly, this is not

true anymore for anisotropic media. Its computation via for instance Fourier transforms is costly, especially

since it does not only depend on the distance between two points but also on their orientation, contrary to

the isotropic case.

When a separation of variables is available, one can also derive a modal expression of the DtN operator
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on an appropriate artificial boundary. This has been done for the isotropic and anisotropic scalar cases [58],

and for the isotropic elastic case [73]. But such approach cannot be extended to anisotropic elastic media

to our knowledge.

Since there are no satisfying methods for dealing with time-harmonic elastic waves in anisotropic un-

bounded media, a new method, the so-called Half-Space Matching (HSM) method, has been designed,

inspired by the works developped in [53, 54] . This method has been first presented on a scalar model

[46, 26, 45, 95], more precisely in the context of time-harmonic acoustic wave propagation in a 2D medium

which is a local perturbation of an unbounded isotropic or anisotropic homogeneous medium. The idea is

to take advantage of the homogeneity of the medium outside the perturbation, hence in particular in half-

planes (typically four in 2D) surrounding the defect, which allows to write an explicit integral expression of

the solution with respect to its trace on the artificial boundary delimiting the considered half-plane. This

finally gives a system whose unknowns are the restriction of the solution in a bounded domain around the

perturbation and the four traces of the solution on the four artificial boundaries. The equations ensure the

compatibility of the representations in the overlapping zones where at least two different representations

coexist. This coupled system can be discretized by Finite Elements, 1D for the trace unknowns, and 2D for

the volume unknown.

Furthermore, the computation of the traces enables to reconstruct a posteriori the solution in the half-

planes (and therefore in the whole domain), which is impossible for instance when using non exact absorbing

boundary conditions or PML. Another advantage of this method, as for other non-local methods, is to

naturally take into account evanescent waves which is rarely the case with local methods, except in some

specific works [5, 61].

The purpose of the present paper is to extend this work to the 2D vectorial elastic model, considering

isotropic and anisotropic materials.

We first introduce the problem in Section 2. In Section 3, we recall the classical plane wave analysis

in the context of general anisotropic models. The principles of the HSM method are presented in Section

4.1. The method relies on the expression of half-space solutions which are given for isotropic materials in

Section 4.2 and for anisotropic materials in Section 4.3. Section 5 is devoted to the numerical aspects of

the method. Subsection 5.1 presents the discretization scheme. Then, the method is validated, in Section

5.2 in the isotropic case and in Section 5.3 in the anisotropic case. In Section 5.4, a comparison with PMLs

shows that, unlike the HSM method, PMLs are very sensitive to the choice of parameters, especially for

anisotropic materials.
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2. Problem setting

We consider in this paper the two-dimensional linear elastic wave scattering problem by a bounded

obstacle O ⊂ R2 in a frequency-domain regime. The following equations are deduced from the elastodynamic

equations assuming a time-dependency e−iωt at a given frequency ω > 0:

−divσ(u)− ρ̃ ω2u = f in Ω = R2 \ O,

σ(u)ν = g on ∂O
(1)

where ρ̃ = ρ̃(x, y) is the mass density of the material and ν is the unit normal on ∂O, oriented towards the

exterior of Ω (or equivalently towards the interior of O). We suppose that ρ̃ takes a constant value ρ outside

a bounded domain (see (7)). More generally, the medium (whose material coefficients are denoted with ·̃) is

supposed to be a local perturbation of a homogeneous background (whose material coefficients are denoted

without ·̃). The small strains assumption implies that the stress tensor σ is linked to the displacement field

u by the general Hooke’s law [93, 33]

σ(u) :=

σxx(u) σxy(u)

σxy(u) σyy(u)

 = C̃ε(u) (2)

where ε(u) is the strain tensor

ε(u) =

εxx(u) εxy(u)

εxy(u) εyy(u)

 , εij(u) = 1
2(∂iuj + ∂jui), i, j ∈ {x, y}, (3)

and C̃ = C̃(x, y) is the fourth-order rigidity tensor satisfying the classical symmetries

C̃ijkl = C̃klij = C̃ijlk, ∀i, j, k, l ∈ {x, y}.

Moreover, C̃ is positive definite, i.e. there exists α > 0 such that, for all symmetric second-order tensors

ξ ∈ C2×2, one has (with the Einstein convention):

∀(x, y) ∈ Ω, C̃(x, y)ξ : ξ := C̃ijkl(x, y)ξijξkl ≥ α|ξ|2 = αξijξij . (4)

Using the Voigt notation [33], this fourth-order tensor can be represented by a 3 × 3 symmetric matrix

denoted by C̃ = C̃(x, y) such that Hooke’s law is equivalent to :
σxx(u)

σyy(u)

σxy(u)

 =


C̃11 C̃12 C̃13

C̃12 C̃22 C̃23

C̃13 C̃23 C̃33



εxx(u)

εyy(u)

2εxy(u)

 . (5)

For any symmetric second-order tensor ξ ∈ C2×2, if we introduce a corresponding vector V (ξ) ∈ C3 :

V (ξ) = (ξxx, ξyy, 2ξxy)t,
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one has

C̃ξ : ξ = C̃(x, y)V (ξ) · V (ξ).

The property (4) is then equivalent to the positive definite character of the matrix C̃ :

∀(x, y) ∈ Ω, C̃(x, y)V · V ≥ α|V |2, ∀V ∈ C3. (6)

In the sequel, we suppose that there exists a constant a > 0 such that

O ∪ Supp(f) ∪ Supp(ρ̃− ρ) ∪ Supp(C̃ − C) ⊂ (−a, a)2, (7)

where ρ and C are constant parameters characterizing the background material and we set

Ωa := (−a, a)2 \ O. (8)

As usual, we say that the background is

• isotropic if

C13 = C23 = 0, C11 = C22 = λ+ 2µ, C12 = λ, C33 = µ, (9)

where λ and µ are the well-known Lamé coefficients,

• orthotropic if

C13 = C23 = 0,

• general anisotropic if C13 6= 0 and/or C23 6= 0.

As mentioned in the introduction, the case of isotropic backgrounds (C satisfying (9)) is widely studied in

the literature whereas general backgrounds still raise theoretical and numerical questions.

The equations (1) have to be completed by a condition at infinity to select the ”outgoing” or the ”radi-

ating” solution. For isotropic backgrounds (C satisfying (9)), this can be achieved through the Kupradze-

Sommerfeld radiation condition, which writes as folllows(
∂|x| − i

ω

cP

)
div u = o(|x|− 1

2 ) and
(
∂|x| − i

ω

cS

)
rot u = o(|x|− 1

2 ), |x| → +∞ (10)

where

c2P = (λ+ 2µ)/ρ and c2S = µ/ρ. (11)

As proven in [29], the problem (1-10) is well-posed in the classical mathematical framework. In particular,

if f ∈ [L2(Ωa)]2 and g ∈ L2(∂O)2, the solution u belongs to [H1
loc(Ω)]2, which means that for all R > 0,∫

Ω∩{|x|<R}
|u|2 + |∇ux|2 + |∇uy|2 < +∞.
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For anisotropic materials, a radiation condition similar to (10) is not known up to our knowledge. Let

us mention [22] which proposed a well-posed volume integral equation formulation based on the Green’s

function of the anisotropic background. In this work, we propose another definition of the outgoing solution

of (1) which is coherent with (10) for isotropic materials. More precisely, the solution has to be outgoing in

four half-spaces covering the whole domain at infinity (see Section 4.2 for isotropic background and Section

4.3 for anisotropic background).

3. Plane waves and slowness curves

The plane wave analysis, also known as Kelvin Christoffel analysis (see for instance [33, Section 1.3] for

3D problems) is the main tool for understanding wave phenomena in homogeneous anisotropic media. A

well-known and important feature of anisotropic media is that group and phase velocities of plane waves

may differ, contrary to isotropic media. This plays a key role in the description of outgoing waves. In the

present paper, outgoing plane waves appear in the half-space representations that are derived in Sections 4.2

and 4.3. Plane waves are also used for analyzing PML methods for some anisotropic models (see Section 5.4).

We consider the time-harmonic elastodynamic equation

−divσ(u)− ρω2u = 0 in R2, (12)

in a homogeneous material. We look for plane wave solutions of (12) of the form

u = Uei(kxx+kyy), U ∈ C2 \ {0}, (13)

where k := (kx, ky) ∈ R2 is the wave vector and U the polarization vector. From (5), one deduces thatσxx(u)

σxy(u)

 = (ikxA0 + ikyA1) u and

σxy(u)

σyy(u)

 =
(
ikxAT

1 + ikyA2

)
u (14)

where

A0 =

C11 C13

C13 C33

 , A1 =

C13 C12

C33 C23

 , A2 =

C33 C23

C23 C22

 , (15)

and AT
1 denotes the transpose of the matrix A1. Noting that

divσ(u) = ikx

σxx(u)

σxy(u)

+ iky

σxy(u)

σyy(u)

 ,
one can check that a vector field u of the form (13) is a solution of (12) if and only if

A(k)U = ω2U
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where

A(k) = 1
ρ

[
k2
xA0 + kxky(A1 +AT

1 ) + k2
yA2

]
. (16)

This leads to the following so-called dispersion relation of plane waves which links ω and k:

F(k, ω) = 0 with F(k, ω) = det(A(k)− ω2I2). (17)

Since the dependency in ω of F(k, ω) is only in ω2, one can assume without loss of generality that ω > 0.

Note that F(k, ω) is a homogeneous polynomial in kx, ky and ω of degree 4, i.e. F(λk, λω) = λ4F(k, ω).

Therefore it satisfies the Euler identity

k · ∇kF(k, ω) + ω
∂F
∂ω

(k, ω) = 4F(k, ω). (18)

One can deduce the following implication which will be useful later on :

F(kx, ky, ω) = 0 =⇒ k · ∇kF(k, ω) + ω
∂F
∂ω

(k, ω) = 0 (19)

From the definition of A(k), it is easy to see that for all materials

F(k, ω) = 0 ⇔ F(−kx,−ky, ω) = 0. (20)

Additional symmetries occur for orthotropic materials. Indeed, if C13 = C23 = 0,

F(kx, ky, ω) = 0 ⇔ F(kx,−ky, ω) = 0 ⇔ F(−kx, ky, ω) = 0. (21)

Finally, for isotropic materials, the dispersion relation simplifies and gives rise to two uncoupled dispersion

relations:

F(kx, ky, ω) = 0 ⇔ k2
x + k2

y = k2
P or k2

x + k2
y = k2

S (22)

where

kP = ω

cP
and kS = ω

cS
(23)

and cP and cS are defined as in (11).

By homogeneity we have for all ω > 0

F(kx, ky, ω) = ω4 F
(
kx
ω
,
ky
ω
, 1
)
. (24)

This leads to define the so-called slowness diagram

S = {(ξx, ξy) ∈ R2 where F(ξx, ξy, 1) = 0}. (25)

By definition, a plane wave u = Uei(kxx+kyy) is such that (kx/ω, ky/ω) ∈ S. Writing sy = αsx with α ∈ R,

one can check that (sx, αsx) ∈ S if and only if sx = ±1/
√
λ1(α) or sx = ±1/

√
λ2(α) where λ1(α) and λ2(α)
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are the two positive eigenvalues of the symmetric definite positive matrix A(1, α). These two eigenvalues

continuously depend on α and are distinct except maybe at a finite set of values of α (including eventually

α = ±∞ for sx = 0). As a consequence the slowness diagram is composed of two distinct closed and star-

shaped curves, called the slowness curves. Figure 1 shows slowness curves (for a density ρ = 1) associated

to various materials whose characteristics are :

(ISO) C =


20 16 0

16 20 0

0 0 2

 , (O1) C =


20 3.8 0

3.8 20 0

0 0 2

 ,

(O2) C =


4 7.5 0

7.5 20 0

0 0 2

 , (A) C =


6 8 2

8 21 10

2 10 30

 .
(26)

The first material is isotropic (λ = 16, µ = 2), the second and the third materials are taken from [14] and

are orthotropic materials, whereas the last one is a general anisotropic medium.
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Figure 1: Slowness diagrams of the materials whose characteristics are given in (26).

The slowness curves for an isotropic material are two circles which illustrates (22). In general, the

slowness curves are not circles anymore but they have some symmetries, which illustrates (20) for general

materials and (21) for orthotropic materials.

A crucial point for our purpose is to know the direction of propagation of plane waves. More specifi-

cally, the derivation of the half-space representation requires to discriminate plane waves according to their

direction of propagation along directions x or y (and this is also used to explain instabilities of cartesian

PMLs in anisotropic media [14]). We explain below how this discrimination can be done, and how it is

related graphically to the above slowness diagrams.

In anisotropic media, it is well-known that the physical relevant direction of propagation is given by the

group velocity vg, which is the energy velocity, and not by the phase velocity vp.
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To define the phase velocity and the group velocity at a point of a slowness curve, we fix k and we consider

(17) as an equation in ω. Note that for all k, F(k, ·) is a polynomial of order 2 in ω2 and by the hyperbolicity

of the equation, there are four real roots, that we denote ±ω1(k),±ω2(k) where ωj(k) > 0, j = 1, 2. These

roots ωj(k), j = 1, 2 are differentiable (even analytic) with respect to k except for at most a finite set of

k for which ω1(k) = ω2(k). Except for these values, one can check that ∂ωF(k, ωj(k)) 6= 0 for j = 1, 2.

The phase velocity vp(k) and the group velocity vg(k) (defined except at most for a finite set of k) of the

associated plane waves u(x, y) = Uei(kxx+kyy) are then given by (see e.g. [14])

vp(k) = ω(k)
|k|

k
|k| , vg(k) = ∇kω(k), k = (kx, ky). (27)

with ω(k) = ω1(k) or ω2(k).

The plane wave propagates towards x→ +∞ if vg(kx, ky)·ex > 0 and towards x→ −∞ if vg(kx, ky)·ex <

0. To explain how this sign can be obtained graphically thanks to the slowness curves, let us now express

the group velocity in terms of the function F . If we differentiate (17) with respect to k, we obtain

∇kF(k, ω(k)) + ∂F
∂ω

(k, ω(k))vg(k) = 0. (28)

Using (19), we finally obtain

vg(k) = ω∇kF(k, ω(k))
k · ∇kF(k, ω(k))

and consequently k ·vg(k) = ω(k). This shows that vg(k) is colinear to the outward normal to the slowness

curve at (ξ1, ξ2) = (kx/ω, ky/ω) and oriented in the same direction. In conclusion, to know if the plane wave

u(x, y) = Uei(kxx+kyy) propagates towards x→ +∞ (resp. x→ −∞), one can look at the outward normal

to the slowness curve at (ξ1, ξ2) = (kx/ω, ky/ω) and check if it points towards x → +∞ (resp. x → −∞).

In the isotropic case, the slowness curves being simple circles, the plane wave propagates towards x→ +∞

(resp. x → −∞) if kx > 0 (resp. kx < 0). In other words, for the isotropic case, it suffices to look at the

phase velocity. However, this is not the case in general, see Figure 2.

This graphical characterization of the outgoing wave is not directly used for the derivation of the half-

space representation. We use instead the energy flux of a plane wave u in the direction ex defined by

=(σ(u)ex · ū).

Note that this quantity is independent of x and y. Indeed by (14),

=(σ(u)ex · ū) = kxU
TA0U + ky<

(
UTA1U

)
= kxU

TA0U + ky
2 UT(A1 +AT

1 )U. (29)

It is known (and proven in appendix A) that

[=(σ(u)ex · ū)] [vg(kx, ky) · ex] > 0, (30)
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Figure 2: Phase velocity (black arrow) and group velocity (red arrow) on the slowness diagram of an isotropic medium (left)

and of an anisotropic medium (right).

so that a plane wave u(x, y) = Uei(kxx+kyy) propagates towards x → +∞ (resp. x → −∞) if and only if

=(σ(u)ex · ū) > 0 (resp. =(σ(u)ex · ū) < 0). Similarly, u(x, y) = Uei(kxx+kyy) propagates towards y → +∞

(resp. y → −∞) if and only if =(σ(u)ey · ū) > 0 (resp. =(σ(u)ey · ū) < 0) where

=(σ(u)ey · ū) = kyU
TA2U + kx

2 UT(A1 +AT
1 )U

4. The Half-Space Matching (HSM) Method

4.1. Abstract formulation

Let us now consider Problem (1). In this section, we explain how to reformulate this problem with the

Half-Space Matching method, as described in [96, 46] for the case of scalar equations. The main idea is to

couple several representations of the solution in five subdomains which overlap (see Figure 3). Let us recall

that the parameter a > 0 and the interior domain Ωa are defined in (7)-(8). We also introduce:

• a larger domain Ωb = (−b, b)2 \ O with b > a,

• four half-spaces Ωj = {xj > a} × {yj ∈ R} (whose boundaries will be denoted Σj), where the local

coordinates (xj , yj) are defined byxj
yj

 = R(θj)

x
y

 with R(θj) =

 cos(θj) sin(θj)

− sin(θj) cos(θj)

 and θj = jπ

2 , j ∈ J0, 3K := {0, 1, 2, 3}.

(31)

The boundary of Ωb is split into four parts Σjbb = {xj = b} × {yj ∈ (−b, b)}, j ∈ J0, 3K. Similarly, we will

denote Σjaa = {xj = a} × {yj ∈ (−a, a)}, j ∈ J0, 3K the four segments of the exterior boundary of Ωa.

11



We denote by ub (resp. uj) the restriction of the solution u in Ωb (resp. Ωj). As the subdomains overlap

and since ub and uj all represent the same function, we have

ub = uj in Ωb ∩ Ωj , j ∈ J0, 3K (32)

and

uj = uj+1 in Ωj ∩ Ωj+1, j ∈ J0, 3K, (33)

where we have set u4 = u0 and Ω4 = Ω0, which amounts to identify J0, 3K to Z/4Z. It will be convenient to

make this identification systematically in the sequel. The compatibility relations (32) and (33), which are

obvious for now, are the key properties to derive the HSM formulation. First, by definition, ub satisfies the

following equations:
−divσ(ub)− ρ̃ ω2ub = f in Ωb,

σ(ub)ν = g on ∂O,
(34)

and similarly uj satisfies:

−divσ(uj)− ρω2uj = 0 in Ωj , j ∈ J0, 3K. (35)

O x0

y0

Σ0

Σ0
bb

Σ0
aa

x
1

y 1

Σ1

x2
y2

Σ2

x
3

y
3

Σ3

Figure 3: Notations : the domain Ωb is the largest square represented in light gray and the domain Ωa is the interior square

in stronger grey. The obstacle O is represented by the small circle in the strongest gray.

An important remark is that the outgoing solution uj of (35) in each half-space Ωj can be expressed in

terms of its trace Φj on the boundary Σj by using a Fourier transform in the direction of the boundary. The

construction of such integral representation, which corresponds to a superposition of outgoing plane waves

(see Section 3) and evanescent waves, is detailed in Section 4.2 for isotropic materials and Section 4.3 for

anisotropic materials. For now, we will write

uj = Uj(Φj) in Ωj , j ∈ J0, 3K, (36)
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where Uj(Φ) is called a half-space solution and is the outgoing solution of (35) in Ωj with the given trace

Φ on Σj :
−divσ(Uj(Φ))− ρω2Uj(Φ) = 0 in Ωj ,

Uj(Φ) = Φ on Σj .
, j ∈ J0, 3K, (37)

The idea of the method is to reformulate the problem in terms of ub, a “volume” unknown, (which corre-

sponds to the solution in Ωb) and Φj , j ∈ J0, 3K, the ”surface” unknowns (which correspond to the traces of

the solution on the Σj ’s).

To construct the system of equations linking these unknowns, we use first the compatibility relations (32)

which implies, in terms of the new unknowns

ub = Φj on Σjaa,

σ(ub)νj = σ(Uj(Φj))νj on Σjbb,
, j ∈ J0, 3K, (38)

where νj is the unit normal vector to Σjbb pointing towards the exterior of Ωb. In the spirit of Domain

Decomposition Methods [44], the compatibility conditions on the Neumann traces can be substituted by a

condition on Robin-like traces as follows

ub = Φj on Σjaa,

σ(ub)νj − iγjub = Λj(Φj) on Σjbb,
, j ∈ J0, 3K, (39)

where for all j, γj is a symmetric positive definite matrix and the operator Λj relates the trace Φ on Σj to

the Robin data on Σjbb

∀Φ, Λj (Φ) =
[
σ(Uj(Φ))νj − iγjUj(Φ)

]
|Σj
bb
, j ∈ J0, 3K. (40)

Note that if γj = 0, (39) is nothing else but (38), and Λj is simply the so-called Dirichlet-to-Neumann

(DtN) operator. We will see later on the advantages of introducing γj 6= 0. In principle, γj can be any

symmetric positive definite matrix. A particular choice will be motivated in Section 5.1. The Fourier integral

representation of these Dirichlet-to-Robin (DtR) operators are given in Section 4.2 for isotropic materials

and Section 4.3 for anisotropic materials.

These equations have to be completed by equations linking the Φj ’s on the infinite half-lines Σj±1 ∩Ωj . We

use for that the compatibility relations (33). By writing that for all j, uj = Uj(Φj) and uj+1 = Uj+1(Φj+1)

have to coincide on Σj ∩ Ωj+1 and Σj+1 ∩ Ωj , we obtain that

Φj = Uj+1(Φj+1) on Σj ∩ Ωj+1 and Φj+1 = Uj(Φj) on Σj+1 ∩ Ωj , j ∈ J0, 3K. (41)
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By introducing the Dirichlet-to-Dirichlet (DtD) type operators Dj
j±1 defined by

∀Φ, Dj
j±1 Φ := Uj(Φ)

∣∣∣
Σj±1∩Ωj

, j ∈ J0, 3K, (42)

the relations (41) rewrite for all j

Φj = Dj+1
j Φj+1 on Σj ∩ Ωj+1 and Φj+1 = Dj

j+1 Φj on Σj+1 ∩ Ωj , j ∈ J0, 3K. (43)

The Fourier integral representations of these DtD operators are given in Section 4.2 for isotropic materials

and Section 4.3 for anisotropic materials.

To sum up, the HSM formulation is given by gathering relations (34), (39) and (43):

−divσ(ub)− ρω2ub = f in Ωb
σ(ub)ν = g on ∂O

σ(ub)νj − iγjub = ΛjΦj on Σjbb, j ∈ J0, 3K

Φj = ub on Σjaa, j ∈ J0, 3K

Φj±1 = Dj
j±1Φj on Σj±1 ∩ Ωj , j ∈ J0, 3K

(44)

Remark 4.1. Note that it is natural to express the trace Φj, the half-space solution Uj(Φj) and then

Dj
j±1Φj, in the coordinates (xj , yj). A technical difficulty is that for instance, in the first equality of (43),

Φj is expressed in the coordinates (xj , yj) whereas Dj+1
j Φj+1 is expressed in the coordinates (xj+1, yj+1).

By noting that each point of Σj ∩ Ωj+1 can be represented in the coordinates (xj , yj) and (xj+1, yj+1) with

xj = −yj+1 = a and yj = xj+1 and that each point of Σj+1 ∩Ωj can be also represented in these coordinates

but with yj = xj+1 = a and xj = −yj+1, the relations (43) write as follows

Φj(a, t) = [Dj+1
j Φj+1] (t,−a), t > a and Φj+1(a, t) = [Dj

j+1 Φj ] (−t, a), t < −a; j ∈ J0, 3K.

In the isotropic case, one can check that if u is the outgoing solution of (1), then u|Ωb and {Φj :=

u
∣∣
Σj , j ∈ J0, 3K} satisfy Problem (44). But what about the reverse ? There are still many points to

elucidate in order to answer this question rigorously and positively in the case of interest, namely the case

where ω ∈ R. But the equivalence can be proved easily when =(ω2) > 0, even for the general anisotropic

case, following what is done in [46] for scalar problems. Note that if =(ω2) > 0, the outgoing solution of (1)

is in
[
H1(Ω)

]2. We give below this result and its proof. This gives an insight on why the method works.

Theorem 4.2. If =(ω2) > 0, Problem (44) is equivalent to the original problem (1) in the following sense:

if ub ∈ [H1(Ωb)]2 and Φj ∈ [H1/2(Σj)]2, j ∈ J0, 3K, satisfy (44), then Uj(Φj) = Uj+1(Φj+1) in Ωj ∩ Ωj+1

for all j ∈ J0, 3K. Moreover the function u ∈ [H1(Ω)]2 defined by u|Ωb = ub and u|Ωj = Uj(Φj) for all

j ∈ Z/4Z is solution of Problem (1).
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Proof. Note first that for all j ∈ J0, 3K Φj ∈ [H1/2(Σj)]2 and =(ω2) > 0, Uj(Φj) ∈ [H1(Ωj)]2. Then,

the vector field vj = Uj(Φj)−Uj+1(Φj+1) ∈
[
H1(Ωj ∩ Ωj+1)

]2 satisfies the homogeneous equation in the

quarter plane Ωj ∩ Ωj+1

−divσ(vj)− ρω2vj = 0, in Ωj ∩ Ωj+1, j ∈ J0, 3K. (45)

Moreover vj vanishes on the boundary of Ωj ∩ Ωj+1 by the last equation of (44) and the definition (42)∣∣∣∣∣∣∣
Uj(Φj)−Uj+1(Φj+1) = Dj

j+1(Φj)−Φj+1 = 0 on Σj+1 ∩ Ωj ,

Uj(Φj)−Uj+1(Φj+1) = Φj −Dj+1
j (Φj+1) = 0 on Σj ∩ Ωj+1,

, j ∈ J0, 3K.

Integrating by parts, we get (with ε(vj) denoting the strain tensor)∫
Ωj∩Ωj+1

σ(vj) : ε(vj)− ρω2
∫

Ωj∩Ωj+1
|vj |2 = 0, j ∈ J0, 3K.

Using (2) and (6), the first integral is real and the hypothesis =(ω2) > 0 ensures that vj vanishes in the

quarter plane Ωj ∩ Ωj+1.

Now, since Uj(Φj) = Uj+1(Φj+1) in Ωj ∩ Ωj+1, we can define unequivocally a function uext ∈ [H1(Ω \

Ωa)]2 by uext|Ωj = Uj(Φj) for all j ∈ J0, 3K. Moreover, from the definition (37) of Uj(Φj) and from (44),

we deduce that
uext = Φj on Σjaa,

σ(uext)ν − iγjuext = σ(ub)ν − iγjub on Σjbb,
, j ∈ J0, 3K.

Consequently, v = ub − uext ∈
[
H1(Ωb \ Ωa)

]2 satisfies∣∣∣∣∣∣∣∣∣
−divσ(v)− ρω2v = 0 in Ωb \ Ωa,

v = 0 on Σjaa, j ∈ J0, 3K,

σ(v)νj − iγjv = 0. on Σjbb, j ∈ J0, 3K.

(46)

Integrating by parts, we get∫
Ωb\Ωa

σ(v) : ε(v)− ω2
∫

Ωb\Ωa
ρ|v|2 − i

3∑
j=0

∫
Σj
bb

γj |v|2 = 0. (47)

Again, since the first integral is real, the hypothesis =(ω2) > 0 and the fact that the γj ’s are positive definite

ensure that v vanishes in Ωb \Ωa. Finally, the function u defined by u|Ωb = ub and u|Ω\Ωa = uext is solution

of Problem (1).

If ω2 ∈ R+, the equivalence raises challenging questions for the following reasons. First, as the solution

of (1) decays only like r−1/2 as r := |x| → +∞, we cannot expect that its traces on the Σj ’s are in [L2(Σj)]2.

Moreover even if for each j, Uj(Φj) is supposed to be an outgoing solution in the half-plane Ωj , it is not

clear that the difference Uj(Φj)−Uj+1(Φj+1) satisfies an adequate radiation condition in the quarter plane
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Ωj ∩ Ωj+1. Thus, we cannot easily conclude that Uj(Φj) = Uj+1(Φj+1) in Ωj ∩ Ωj+1. If we admit this

result1, the end of the proof works well. Indeed, one can still show that the solution of (46) is equal to 0.

From (47) with ω2 ∈ R+, since the γj ’s are positive definite, we deduce that v = 0 on each Σjbb. Then the

third equation of (46) implies that also σ(v)νj = 0 on each Σjbb. One can then conclude using the unique

continuation principle, proved in [4] for the isotropic case and in [97] for some anisotropic materials.

Despite these theoretical difficulties, we conjecture that for a solution (ub,Φ0,Φ1,Φ2,Φ3) of (44), the

outgoing half-space solutions Uj(Φj) coincide where they coexist. Then the function u ∈ [H1
loc(Ω)]2 given

by u|Ωb = ub and for each j, u|Ωj = Uj(Φj) is well defined and is, for the anisotropic case, our definition of

the outgoing solution of Problem (1).

4.2. Half-space representation in the isotropic case

Let us now describe how to get an analytical representation of the solution in each half-space in terms

of its trace. Namely, let for all Φ determine Uj(Φ) the outgoing solution of (37) where σ(Uj) is linked to

the displacement field by the Hooke’s law (5) in the isotropic case (9) and where by (7), the coefficients ρ, λ

and µ are constant in Ωj . The meaning of outgoing is given below. To simplify the notation, we will focus

first on the case j = 0 and on the half-space Ω0 where the local coordinates (x0, y0) coincide with the global

ones (x, y).

To express analytically U0(Φ) in terms of its trace Φ, we take advantage of the homogeneity of the medium

and apply formally a Fourier transform in the direction of the boundary, i.e. the y−direction. In the sequel,

we will consider the following definition of the Fourier transformation f̂ of a function f

f̂(ξ) = 1√
2π

∫
R
f(y)e−iξydy,

so that the inverse Fourier transform is given by

f(y) = 1√
2π

∫
R
f̂(ξ)eiξydξ.

Denoting by Û0 the Fourier transformation in the y−direction of U0 (we forget the dependence with respect

to the Dirichlet data Φ for now), we get that Û0 satisfies−∂2
xx

λ+ 2µ 0

0 µ

− iξ∂x
 0 λ+ µ

λ+ µ 0

+ ξ2

µ 0

0 λ+ 2µ

− ρω2

Û0
x

Û0
y

 =

0

0

 (48)

which turns to be a system of two coupled ordinary differential equations of order 2 where the Fourier

variable ξ plays the role of a parameter. It is well known that the general solution of such system can

1Note that for the Helmholtz equation, the equivalence between the HSM formulation and the equation was proven for

ω ∈ R provided the traces satisfy a radiation condition at infinity, which is analogous to the standard Sommerfeld radiation

condition [24].
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be expressed in terms of the particular solutions of the form eiκxV, where the κ’s are the roots of the

characteristic polynomial of the system. This characteristic polynomial is given here by

Pξ(κ) := F(κ, ξ, ω),

where F is defined by (17). Note that contrary to Section 3, the parameter κ can take complex values. Since

here

A(κ, ξ) = κ2

c2P 0

0 c2S

+ κξ

 0 c2P − c2S
c2P − c2S 0

+ ξ2

c2S 0

0 c2P

 , (49)

cP and cS being defined in (11), Pξ(·) can be expressed as

Pξ(κ) = c2P c
2
S

(
κ2 + ξ2 − ω2

c2P

)(
κ2 + ξ2 − ω2

c2S

)
. (50)

For each ξ ∈ R, the four roots of Pξ are then ±κP (ξ) and ±κS(ξ) where

κI(ξ) :=
√
k2
I − ξ2 if |ξ| ≤ kI

i
√
ξ2 − k2

I if |ξ| ≥ kI
(51)

with kI = ω/cI for I ∈ {P, S}. By using the convention =(
√
z) ≥ 0, z ∈ C \ R+, κI can be simply defined

as κI(ξ) =
√
k2
I − ξ2. Finally, for ξ /∈ {±kP ,±kS}, the general form of a solution of the system (48) is given

by

AP,+(ξ)P+(ξ)eiκP (ξ)(x−a)+AP,−(ξ)P−(ξ)e−iκP (ξ)(x−a)+AS,+(ξ)S+(ξ)eiκS(ξ)(x−a)+AS,−(ξ)S−(ξ)e−iκS(ξ)(x−a)

where AP,±(ξ) and AS,±(ξ) are complex coefficients, and where P±(ξ) and S±(ξ) are eigenvectors of

A(±κP , ξ) and A(±κS , ξ) associated to the eigenvalue ω2 that can be chosen as

P±(ξ) =

±κP (ξ)

ξ

 and S±(ξ) =

 ξ

∓κS(ξ)

 . (52)

When |ξ| < kI , I = P or I = S, the terms above correspond (after multiplication by the factor eiξy of the

inverse Fourier transform) to propagative plane waves:

P±(ξ)ei(±κP (ξ)(x−a)+ξy), or S±(ξ)ei(±κS(ξ)(x−a)+ξy),

since by definition of κI(ξ), F(±κI(ξ), ξ, ω) = 0 (where the dispersion relation is given by (17), or by (22)

for isotropic materials). One speaks of P waves (or pressure waves) when I = P , and of S waves (or shear

waves), when I = S. As is well-known, P waves are longitudinal waves and S waves are transverse waves.

To go further, we determine the outgoing solution of (37) as follows.

• First, the solution has to be bounded when x tends to +∞. Since if |ξ| > kI for I ∈ {P, S}, x 7→

e−iκI(ξ)(x−a) is exponentially growing, one has necessarily

AP,−(ξ) = 0 if |ξ| > kP , and AS,−(ξ) = 0 if |ξ| > kS .
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• Besides, if |ξ| < kI for I ∈ {P, S}, only the plane wave which propagates towards x→ +∞ is physically

relevant. Using the discussion of Section 3 (in the isotropic case, group and phase velocities coincide),

we can easily check that this corresponds if |ξ| < kP to select the one of amplitude AP,+(ξ) and to

impose AP,−(ξ) = 0. Similarly, if |ξ| < kS , we impose AS,−(ξ) = 0.

To conclude, Û0(·, ξ) writes as

Û0(x, ξ) = AP,+(ξ)P+(ξ)eiκP (ξ)(x−a) +AS,+(ξ)S+(ξ)eiκS(ξ)(x−a), x > a, ξ ∈ R.

We say that the inverse Fourier transform of Û0 is the outgoing solution of (48), because we have selected

outgoing plane waves in its representation.

Then, from (37), we have that Û0(a, ξ) = Φ̂(ξ) which enables to determine AP,+(ξ) and AS,+(ξ) in terms

of Φ̂(ξ). More precisely, by using the definition (52) of P+(ξ) and S+(ξ) we have

Q(ξ)

AP,+(ξ)

AS,+(ξ)

 = Φ̂(ξ) where Q(ξ) =

κP (ξ) ξ

ξ −κS(ξ)

 . (53)

We easily check that since ω 6= 0, Q(ξ) is invertible and the matrix Q−1(ξ) corresponds to the projection on

the basis of eigenvectors P+(ξ) and S+(ξ).

Finally, one can apply the inverse Fourier transform to find that for all Φ, the outgoing solution of (37)

is given by

U0(Φ)(x, y) = 1√
2π

∫
R
Q(ξ)ei(K(ξ)(x−a)+ξy)Q(ξ)−1Φ̂(ξ) dξ, x > a, y ∈ R, (54)

where Q(ξ) is defined in (53) and

K(ξ) :=

κP (ξ) 0

0 κS(ξ)

 , (55)

with κP (ξ) and κS(ξ) defined by (51). Note that here and in the sequel, the notation with the exponential

in (54) has to be understood as follows:

ei(K(ξ)(x−a)+ξy) :=

ei(κP (ξ)(x−a)+ξy) 0

0 ei(κS(ξ)(x−a)+ξy)

 .
One can easily deduce similar expressions for the half-space representations in Ωj , for j = 1, 2 or 3,

the coordinates (x, y) being replaced by the local ones (xj , yj), but keeping the components of the vector

fields Uj(Φ) and Φ in the global coordinate system (x, y). This is achieved through the application of the

rotation matrix R(θj) defined in (31).

Proposition 4.3. Consider an isotropic material satisfying (5) and (9). Then, for all j ∈ J0, 3K, the

outgoing solution of (37) is given by

Uj(Φ)(xj , yj) = 1√
2π

∫
R
R(θj)−1Q(ξ)ei(K(ξ)(xj−a)+ξyj)Q(ξ)−1R(θj) Φ̂(ξ) dξ, xj > a, yj ∈ R, (56)

where R(θj) is defined in (31), Q(ξ) in (53) and K(ξ) in (55).
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A straightforward consequence is given by the following corollary.

Corollary 4.4. With the hypotheses of the previous lemma, the operators Dj
j±1 defined by (42) have the

following expression

Dj
j±1(Φ)(xj ,±a) = 1√

2π

∫
R
R(θj)−1Q(ξ)ei(K(ξ)(xj−a)±ξa)Q−1(ξ)R(θj) Φ̂(ξ) dξ, xj > a. (57)

Let us now derive the expression of the operators Λj defined in (40). Again we begin with the case j = 0.

Since ν0 = ex and using (5) and (9), we have

σ(U0(Φ))ν0 =

 σxx(U0(Φ))

σxy(U0(Φ))

 =

(λ+ 2µ)∂x λ∂y

µ∂y µ∂x

U0(Φ). (58)

Then, due to the isotropy and to the definition of the local coordinates (xj , yj), we deduce:

[R(θj)σ(Uj(Φ))νj ] =

(λ+ 2µ)∂xj λ∂yj

µ∂yj µ∂xj

R(θj)Uj(Φ), j ∈ J0, 3K.

Therefore, using now the expression (56) of Uj(Φ) we deduce the expression of the operator Λj .

Proposition 4.5. Consider an isotropic material satisfying (5) and (9). Then the field Tj(Φ) defined by

Tj(Φ)(xj , yj) := σ(Uj(Φ))(xj , yj)νj , xj > a, yj ∈ R, j ∈ J0, 3K (59)

is given by

Tj(Φ)(xj , yj) = 1√
2π

∫
R
R(θj)−1F (ξ)ei(K(ξ)(xj−a)+ξyj)Q(ξ)−1R(θj) Φ̂(ξ) dξ, yj ∈ R, j ∈ J0, 3K (60)

where R(θj) is defined in (31), Q(ξ) by (53), K(ξ) by (55) and

F (ξ) := i

λ+ 2µ 0

0 µ

Q(ξ)K(ξ) + iξ

0 λ

µ 0

Q(ξ).

By definition of the operators Λj (see (40)), one has

Λj(Φ)(b, yj) = Tj(Φ)(b, yj)− iγjUj(Φ)(b, yj), yj ∈ (−b, b), j ∈ J0, 3K. (61)

A straightforward consequence of the previous lemma is then given by the corollary.

Corollary 4.6. With the hypotheses of the previous lemma, the operators Λj defined by (40) have the

following expression :

Λj(Φ)(b, yj) = 1√
2π

∫
R
R(θj)−1 [F (ξ)− iγjQ(ξ)

]
ei(K(ξ)(b−a)+ξyj)Q(ξ)−1R(θj) Φ̂(ξ) dξ, yj ∈ (−b, b), j ∈ J0, 3K.

(62)
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4.3. Half-space representation in the anisotropic case

For the anisotropic case, we follow the same approach than in the previous section. Here σ(Uj) is linked

to the displacement field thanks to the general anisotropic Hooke’s law (5). We focus first on the half-space

Ω0 (j = 0). Again, we apply a Fourier transform in the y-direction to the equation, in order to derive the

expression of the Fourier transform of the outgoing half-space solution. This will clarify the definition of

what means ”outgoing” in the anisotropic case.

The Fourier transform Û0 of U0 (we forget the dependence with respect to the Dirichlet data Φ for now)

satisfies (
−∂2

xxA0 − iξ∂x[A1 +A1
T] + ξ2A2 − ρ∞ω2

)
Û0 = 0, (63)

where A0, A1 and A2 are given in (15). The differential system (63) is, as in the previous section, a system

of two coupled ordinary differential equations of order 2, parametrized by the Fourier variable ξ. Again, the

characteristic polynomial of the system is given by

Pξ(κ) := F(κ, ξ, ω), (64)

where F is defined by (17) and

A(κ, ξ) = 1
ρ

[
κ2A0 + κξ(A1 +A1

T) + ξ2A2

]
.

The computation of the roots of the characteristic polynomial is less explicit than in the isotropic case. But

we can state several general properties of these roots.

As a polynomial of degree 4, Pξ has at most four distinct roots. Moreover, since the coefficients of the

polynomial Pξ are real, one has

∀ξ ∈ R, ∀κ ∈ C, Pξ(κ) = P−ξ(−κ) = Pξ(κ). (65)

As a consequence, if κ ∈ C is a root of Pξ, then κ is too, and −κ is a root of P−ξ. Note that for orthotropic

materials, if κ is a root of Pξ, then −κ is too.

Concerning the real roots of Pξ, we can use the description done in Section 3. Indeed, when κ ∈ R is

a root of Pξ, (κ/ω, ξ/ω) belongs to the slowness diagram S defined by (25). This allows in particular to

introduce

k∗ = inf { k > 0, ∀ξ ∈ R, |ξ| > k, Pξ has no real roots} < +∞. (66)

Using Section 3 and Appendix B, we can show the following result.

Proposition 4.7. For a.e. ξ ∈ R, Pξ has four distinct roots and

• if |ξ| < k∗, Pξ has either two or four real roots,

• if |ξ| > k∗, Pξ has four non real roots.
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For any κ, such that Pξ(κ) = 0, we denote Vκ(ξ) an eigenvector of A(κ, ξ) associated to the eigenvalue

ω2. Since for a.e. ξ, the roots are simple, the general form of a solution of the system (63) is given by∑
κ,Pξ(κ)=0

Aκ(ξ)Vκ(ξ)eiκ(x−a), (67)

where the Aκ(ξ)’s are complex coefficients. We describe how to construct outgoing solution of (63) for a.e.

ξ.

• If κ with =(κ) > 0 is a root of Pξ then, as explained just above, κ is also. The solution has to be

bounded when x tends to +∞. This implies that one has necessarily Aκ(ξ) = 0, since x 7→ eiκ(x−a) is

exponentially growing at +∞.

• If κ ∈ R is a root of Pξ, the term Aκ(ξ)Vκe
iκ(x−a) leads to a plane wave contribution after inverse

Fourier transform. To select outgoing contributions, i.e. plane waves which propagate towards x →

+∞, following Section 3, one can rely on the sign of the energy flux. Setting u(x, y) = Vκe
i(κ(x−a)+ξy),

we impose Aκ(ξ) = 0 if u is ingoing, i.e. if it satisfies =(σ(u)ex · ū) < 0.

Note that, unlike the isotropic case, this selection may lead to a negative κ, see Section 3 and Figures

1, 2. Such plane wave is said to be backward in the x−direction.

One can check2 that for almost every ξ, with this process of selection, there remain only two terms in (67),

that we call outgoing waves (the two others that have been removed correspond to ingoing waves). We

denote by κ0
1(ξ) and κ0

2(ξ) the two roots of Pξ corresponding to outgoing waves. The two roots can be

chosen so that ξ 7→ κ0
1(ξ) and κ0

2(ξ) are piecewise continuous. We denote V0
i (ξ), i ∈ {1, 2} an eigenvector

of A(κ0
i (ξ), ξ) associated to the eigenvalue ω2. This eigenvector can also be chosen so that ξ 7→ V0

i (ξ) is

piecewise continuous. Consequently, an outgoing solution of the half-space problem in the anisotropic case

writes as

A0
1(ξ)V0

1(ξ)eiκ
0
1(ξ)(x−a) +A0

2(ξ)V0
2(ξ)eiκ

0
2(ξ)(x−a).

Besides, we have that Û0(ξ) = Φ̂(ξ) at x = a, which can be written as follows:

Q0(ξ)

A0
1(ξ)

A0
2(ξ)

 = Φ̂(ξ) where Q0(ξ) :=
[
V0

1(ξ) V0
2(ξ)

]
. (68)

We show in Appendix C that for a.e. ξ, V0
1(ξ) and V0

2(ξ) are linearly independent, so that Q0(ξ) is

invertible. This enables to determine A0
1(ξ) and A0

2(ξ) in terms of Φ̂(ξ). Finally, one can apply the inverse

2This can be proved first for ωε = ω + iε with ε > 0 where equation (63) always admits two solutions in L2, and then by

passing to the limit ε → 0. This can also be proved by geometrical arguments on the slowness curve.
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Fourier transform to find that for all Φ, the outgoing solution of the half-space problem set in Ω0 is given

by

U0(Φ)(x, y) = 1√
2π

∫
R
Q0(ξ)ei(K

0(ξ)(x−a)+ξy)Q0(ξ)−1Φ̂(ξ) dξ, x > a, y ∈ R (69)

where Q0(ξ) is defined in (68) and

K0(ξ) :=

κ0
1(ξ) 0

0 κ0
2(ξ)

 . (70)

Unlike the isotropic case, the representation of the other half-space solutions cannot be deduced directly from

this one, by a simple rotation. One has to apply the same approach to derive the expression of the solution

in each half-space. First, for the half-space solution U2(Φ), it suffices to notice that the characteristic

polynomial that we denote P 2
ξ is equal to P−ξ where Pξ is the characteristic polynomial defined in (64).

Moreover since x2 = −x0, it is easy to see that the roots which are not selected to express the outgoing

solution in Ω0 have to be selected to define the outgoing solution in Ω2 (in other words, thanks to (65), an

ingoing wave in Ω0 corresponds to an outgoing wave in Ω2). For the half-space solution U1(Φ), one has to

use the same reasoning than for U0(Φ) : compute the roots of the characteristic polynomial (which has no

links in general with Pξ defined in (64)) and select the ”good” roots in order to obtain an outgoing solution.

Finally, for the expression of U3(Φ), it suffices to use the computations already done for U1(Φ) applying

the same reasoning that we have used to express U2(Φ) by using the computations already done for U0(Φ).

For all j, we denote by κj1(ξ) and κj2(ξ) the roots defining outgoing waves in Ωj and by Vj
1(ξ) and Vj

2(ξ)

associated eigenvectors. Then we set

Qj(ξ) :=
[
Vj

1(ξ) Vj
2(ξ)

]
and Kj(ξ) :=

κj1(ξ) 0

0 κj2(ξ)

 , j ∈ J0, 3K (71)

and we have the

Lemma 4.8. Consider an anisotropic material satisfying (5). The outgoing solution of (37) is given by

Uj(Φ)(xj , yj) = 1√
2π

∫
R
R(θj)−1Qj(ξ)ei(K

j(ξ)(xj−a)+ξyj)Qj(ξ)−1(ξ)R(θj) Φ̂(ξ) dξ, xj > a, yj ∈ R, j ∈ J0, 3K

(72)

where R(θj) is defined in (31) and Qj(ξ) and Kj(ξ) by (71).

A consequence is given by the

Corollary 4.9. With the hypotheses and notations of the previous lemma, the operators Dj
j±1 defined by

(42) have the following expression:

Dj
j±1(Φ)(xj ,±a) = 1√

2π

∫
R
R(θj)−1Qj(ξ)ei(K

j(ξ)(xj−a)±ξa)Qj(ξ)−1R(θj) Φ̂(ξ) dξ, xj > a, j ∈ J0, 3K

(73)
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and the operators Λj defined by (40) have the following expression:

Λj(Φ)(b, yj) = 1√
2π

∫
R
R(θj)−1 [F j(ξ)− iγjQj(ξ)] ei(Kj(ξ)(b−a)+ξyj)Qj(ξ)−1R(θj) Φ̂(ξ) dξ, yj ∈ (−b, b), j ∈ J0, 3K

(74)

where F j(ξ) is defined in Appendix D.

5. Numerical aspects

5.1. Discretization of the HSM formulation

Let us explain now how to compute a finite element approximation of the solution (ub,Φ0,Φ1,Φ2,Φ3)

of the HSM system (44). To get a discrete problem, we use several ingredients

• Since the traces are regular functions, their Fourier transforms decay rapidly. As a consequence, we

truncate the integrals appearing in the definition of Dj
j±1 (see (57) for the isotropic case and (73)

for the anisotropic case) and in the definition of Λj (see (62) for the isotropic case and (74) for the

anisotropic one). More precisely, the integrals for ξ ∈ R are replaced by integrals for ξ ∈ (−ˆ̀, ˆ̀) for

some ˆ̀ ∈ R+ chosen such that all propagative waves are at least taken into account, i.e. ˆ̀> kS in

the isotropic case (see (23) for the definition of kS) and ˆ̀> k∗ in the anisotropic case (see (66) for the

definition of k∗). Moreover, quadrature formulae are used to evaluate the Fourier integrals. We use a

Gauss quadrature rule with q points in a mesh of size ĥ of (−ˆ̀, ˆ̀). We denote Dj

j±1,ĥ
, with ĥ = (ˆ̀, ĥ, q),

the approximation of Dj
j±1 and Λj

ĥ
the approximation of Λj . For instance, for the isotropic case we

have for all Φ

Dj

j±1,ĥ
(Φ)(xj ,±a) = 1√

2π
∑

(ξ̂,ŵ)∈Q

ŵ R(θj)−1Q(ξ̂)ei(K(ξ̂)(xj−a)±ξ̂a)Q−1(ξ̂)R(θj) Φ̂(ξ̂) (75)

where R(θj) is defined in (31), Q(ξ) in (53) and K(ξ) in (55) and where

Q = {(ξ̂, ŵ), ξ̂ = −ˆ̀+ (i− 1
2)ĥ+ ĥ

2xj , ŵ = ĥ

2wj , i ∈ J1, N̂K, j ∈ J1, qK}

where ĥ = 2ˆ̀/N̂ and {(xj , wj), j ∈ J1, qK} correspond to the quadrature rule in [−1, 1].

• We introduce a finite dimensional subspace Vb
h of H1(Ωb)2 for the approximation of the ”volume”

unknown ub, and finite dimensional spaces Vj
hj for the approximation of the ”surface” unknowns Φj .

To build the discrete spaces, we use classical 2D Lagrange finite elements for Vb
h and 1D Lagrange

finite elements for each Vj
hj , j = J0, 3K. More precisely, we introduce a 2D triangular mesh of Ωb and for

h = (h, p), we denote by Vb
h the set of continuous vector fields in Ωb whose components are polynomials

functions of degree p in each triangle of the mesh, whose maximal element diameter is denoted h.

Concerning Vj
hj with hj = (hj , pj , `j), we first truncate the infinite line Σj , Σj`j = {xj = a}×{|yj | ≤ `j}
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(with `j > b) and introduce a 1D mesh of this segment. The space Vj
hj is the set of continuous vector

fields in Σj supported in Σj`j , whose components are polynomials functions of degree pj in each segment

of the mesh, whose maximal element length is denoted hj .

Let us now derive the equations that should satisfy the discrete solution (ubh,Φ0
h,Φ1

h,Φ2
h,Φ3

h). First the

compatibility equations corresponding to the two last lines of (44) can be written in a weak discretized form

as follows. For all j ∈ Z/4Z and for all test functions Ψj
h ∈ Vj

h, we impose:∫
Σj

Φj
h ·Ψ

j
h =

∫
Σjaa

ubh ·Ψ
j
h +

∫
Σj∩Ωj−1

Dj−1
j,ĥ

(Φj−1
h ) ·Ψj

h +
∫

Σj∩Ωj+1
Dj+1
j,ĥ

(Φj+1
h ) ·Ψj

h. (76)

Note that all integrals are well-defined since Ψj
h has a compact support. Besides, a weak form of the three

first lines of (44) is obtained classically. This leads finally to this following discrete version of the HSM

problem (44):

Find (ubh,Φ0
h,Φ1

h,Φ2
h,Φ3

h) ∈ Vb
h ×V0

h0 ×V1
h1 ×V2

h2 ×V3
h3 such that

∀(vbh,Ψ0
h,Ψ1

h,Ψ2
h,Ψ3

h) ∈ Vb
h ×V0

h0 ×V1
h1 ×V2

h2 ×V3
h3 ,∣∣∣∣∣∣∣∣∣∣

A(ubh,vbh) +
3∑
j=0

Bj

ĥ
(Φj

h,v
b
h) =

∫
∂O

σ(uinc)ν · vbh,

3∑
j=0

[
Cj(ubh,Ψ

j
h) +

(∫
Σj

Φj
h ·Ψ

j
h

)
+ Dj−1

j,ĥ
(Φj−1

h ,Ψj
h) + Dj+1

j,ĥ
(Φj+1

h ,Ψj
h)
]

= 0,

(77)

where the various sesquilinear forms are defined below:

for (ubh,Φ0
h,Φ1

h,Φ2
h,Φ3

h) and (vbh,Ψ0
h,Ψ1

h,Ψ2
h,Ψ3

h) in Vb
h ×V0

h0 ×V1
h1 ×V2

h2 ×V3
h3 ,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A(ubh,vbh) =
∫

Ωb
σ(ubh) : ε(vbh)− ρ̃ ω2ubh · vbh −

3∑
j=0

i

∫
Σj
bb

γjubh · vbh,

Bj

ĥ
(Φj

h,vbh) = −
∫

Σj
bb

Λj
ĥ
(Φj

h) · vbh, j ∈ J0, 3K,

Cj(ubh,Ψ
j
h) = −

∫
Σjaa

ubh ·Ψ
j
h, j ∈ J0, 3K,

Dj±1
j,ĥ

(Φj±1
h ,Ψj

h) = −
∫

Σj∩Ωj±1
Dj±1
j,ĥ

(Φj±1
h ) ·Ψj

h, j ∈ Z/4Z.

(78)

If the meshes of the truncated lines Σj`j are compatible with the mesh of Ωb, in the sense that every

segment of the mesh of Σj`j is the edge of a triangle of the mesh of Ωb and if the order of the elements is the

same, p = pj for all j, a slighlty different version of the discrete HSM formulation is preferred. Indeed, in

this case, one can reduce the number of degrees of freedom by enforcing the compatibility relation

Φj
h = ubh on Σjaa, j ∈ J0, 3K,
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at the discrete level. This leads to this second formulation:

Find (ubh,Φ0
h,Φ1

h,Φ2
h,Φ3

h) ∈ Vb
h ×V0

h0 ×V1
h1 ×V2

h2 ×V3
h3 such that

Φj
h = ubh on Σjaa, j ∈ J0, 3K, and such that ∀(vbh,Ψ0

h,Ψ1
h,Ψ2

h,Ψ3
h) ∈ Vb

h ×V0
0,h0 ×V1

0,h1 ×V2
0,h2 ×V3

0,h3 ,∣∣∣∣∣∣∣∣∣∣
A(ubh,vbh) +

3∑
j=0

Bj

ĥ
(Φj

h,v
b
h) =

∫
∂O

σ(uinc)ν · vbh,

3∑
j=0

[(∫
Σj

Φj
h ·Ψ

j
h

)
+ Dj−1

j,ĥ
(Φj−1

h ,Ψj
h) + Dj+1

j,ĥ
(Φj+1

h ,Ψj
h)
]

= 0,

(79)

where Vj
h,0 = {Ψj

h ∈ Vj
h; Ψj

h = 0 on Σjaa} for j ∈ J0, 3K.

Even if the numerical method offers a great flexibility in the choice of the discretization parameters, in

the numerical results in the sequel, we have chosen pj = p, hj = h0 and lj = l0 for all j.

Remark 5.1. Let us briefly comment the choice of the parameters a and b, and of the matrix γj which

appears in the definition of the operators Λj (see (62) for the isotropic case and (74) for the anisotropic

one). In practice, a is chosen as small as possible, the constraint being to satisfy (7). Then b is chosen

slightly larger than a, in order to minimize the size of the 2D finite element domain Ωb. Moreover, for γj

we choose the approximation of the DtN maps in normal incidence. More precisely, using the notation of

(74), γj is chosen such that F j(0)− iγjQj(0) = 0. This leads to

γj = ω

√ρ(λ+ 2µ) 0

0 √
ρµ

 and γj = ω

√ρC11 0

0
√
ρC33


in respectively the isotropic case and the orthotropic case. Note that this γj is the operator appearing in the

first-order absorbing boundary conditions used in [55]. Let us mention that the choice of b and of γj may

be more important when solving the problem with an iterative algorithm, using a sparse approximation as a

preconditioner, in the spirit of [9]. In that case, as in domain decomposition methods [30], increasing the

overlap b − a and using for γj the approximation of the DtN map in normal incidence enable to speed up

the convergence of iterative algorithms.

5.2. Numerical validation in the isotropic case

In the isotropic case, we can validate the HSM formulation comparing the results with an analytical

solution in an homogeneous medium. We consider a pressure wave generated by a point source given by:

uex(x) = H ′(kP r)
r

x
y


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where r =
√
x2 + y2 and H is the Hankel function of the first kind. The function uex is of course the

outgoing solution to
−divσ(u)− ρω2u = 0 in Ω = R2 \ O,

u = uex on ∂O,
(80)

for any obstacle O ⊂ R2. The following results are obtained with a square obstacle O = [−0.2, 0, 2]2 and

with the following material parameters and frequency:

λ = 16, µ = 2, ρ = 1 and ω = 20, (81)

so that k2
P = 20 and k2

S = 200. For the discretization parameters, we use

(a, b) = (0.4, 0.5)

h = (h, p) = (0.07, 2),

hj = (hj , pj , `j) = (0.05, 2, 6) j ∈ J0, 3K,

ĥ = (ˆ̀, ĥ, q̂) = (30, 0.05, 10).

(82)

(a) Φ0
x (b) Φ0

y

Figure 4: x component (a) and y component (b) of the trace of the computed solution (blue line) and the exact solution (orange

line).

On Figure 4, we have represented the trace of the exact solution Φ0 and of the approximated solution

Φ0
h on the truncated line {x = a}× (−`0, `0). We can observe qualitatively a good agreement. In particular,

the L2-relative error ‖Φ
0−Φ0

h‖2
‖Φ0‖2 on the segment {x = a} × (−`0, `0) is around 0.011, and the L2-relative

error in Ωb given by ‖u
ex−ubh‖2
‖uex‖2 is around 0.0029. We can observe that the y− component of the trace of the

solution is still not neglectable at the truncation distance `0 = 6 (since uexy decays as 1√
r
), but this does not

seem to affect the accuracy of the approximation ubh. This could be explained by the fact that even if we

use an abrupt truncation of the traces, the half-space representations are valid up to infinity.
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Since with the HSM method we compute (an approximation of) the trace Φj on Σj and thanks to the

analytical expressions of the solutions in the half-spaces Ωj (see Lemma 4.3), we can reconstruct a posteriori

(an approximation of) uj in each half-space and then u in the whole domain. Note that different choices

of reconstruction of u are possible (since the half-spaces Ωj and Ωb overlap). On Figure 5-(a), we have

represented the solution using the identities

u = U0(Φ0) in Ω0, u = U1(Φ1) in Ω1 \ Ω0, u = ub in Ωb \ (Ω1 ∪ Ω0).

As we can see, the different representations match at the various interfaces between the domains of repre-

sentation, which illustrates the validity of the compatibility relations. On Figure 5-(b), we have represented

the solution everywhere, the result being independent (up to a discretization error) of the choices of the

representation in the overlapped areas. For comparison, we have represented the same reconstruction with a

smaller ˆ̀. We have chosen ˆ̀= 8, so that kP < l̂ < kS , and as expected, the solution is no longer satisfactory.

The good news is that, even if one does not know the exact solution, the discrepancy in the matching at the

interfaces warns that the parameters have to be modified.

(a) The reconstructed solution in Ω0 ∪

Ω1 ∪ Ωb

(b) The reconstructed solution in Ω

Figure 5: Modulus of the reconstructed solution in Ω0 ∪ Ω1 ∪ Ωb (a) and in Ω (b) using the discretization parameters (82).

Let us now study the influence of the various discretization parameters. First, we have represented on

Figure 7 the L2-relative error in Ωb with respect to the mesh size h for two degrees of finite elements, p = 1

in blue and p = 2 in orange. As we can see, we recover the classical rate of convergence (2 for p = 1 and

3 for p = 2). We also see that for p = 2, a plateau is reached for the smallest values of h. This comes

from the fact that the error due to the finite elements approximation becomes smaller than the error due to

the truncation of the lines Σj . Indeed, by picking ` = 12 instead of ` = 6 and plotting the new error with

respect to h with p = 2 (see the dotted line), the plateau moves down.

Now, let us study the effect of the parameters ` and ĥ. On Figure 8, we have represented the L2-relative

error in Ωb with respect to ` for various values of ĥ ∈ {0.4, 0.2, 0.1, 0.05}.
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(a) The reconstructed solution in Ω0 ∪

Ω1 ∪ Ωb

(b) The reconstructed solution in Ω

Figure 6: Modulus of the reconstructed solution in Ω0 ∪ Ω1 ∪ Ωb (a) and in Ω (b) using the discretization parameters (82) but

with l̂ = 8.
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Figure 7: Relative error in Ωb versus the mesh size h for p = 1 (in blue) and p = 2 (in orange). The continuous lines correspond

to the case ` = 6 and the dotted one to ` = 12.

As we can see, the choice of ĥ is related to the one of `: if the parameter ` is chosen large, we must take

ĥ small enough to accurately compute the Fourier integral. In particular, the error decreases between ` = 12

and ` = 24 only in the case ĥ = 0.05. This means that only for sufficiently accurate quadrature formula the

error will decrease with respect to the parameter `. A first reason is the slow decay of the solution. Indeed

by using the asymptotics of the Hankel function, we have

Φ0(y) ∼
|y|→+∞

1
r

3
2

0.4

y

 eikP r where r =
√

0.42 + y2.

This is responsible for the presence of peaks in the Fourier transform of the traces as represented on Figure

9 in blue for Φ0 and in orange for Φ0
h computed with various values of `. Note that as expected from the

behavior of Φ0, the peaks are stronger for the y−component. The larger ` is, the higher and thinner the
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Figure 8: Relative error in Ωb versus ` for different values of parameter ĥ

peaks are, which requires an adequate choice of the parameter ĥ.
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Figure 9: Real part of the Fourier transform of Φ0 (dotted blue line) and Φ0
h (orange line) taking ` ∈ {3, 6, 12} (from left to

right). On the top, we represent the x-component and, on the bottom, the y-component.

A second reason explaining the results of Figure 8 comes from the kernels appearing in the operators

Dj
j±1 which oscillate more and more with respect to ξ for large values of x. To illustrate this point, we have

represented on Figure 10 the integrand of D0
1:

1√
2π
Q(ξ)ei(K(ξ)(x−a)±ξa)Q−1(ξ) Φ̂(ξ) (83)
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for different values of x and taking Φ as a 1D Lagrange basis function of order 1 (hat function) centered in

y = 0.5 and with support in [0.4, 0.6]. We can also notice that the integrand becomes very small for ξ ≥ kS
(' 14 in that case) since it is exponentially decaying. Solving the drawback of highly oscillating integrands

by the use of asymptotic formulas will be the object of a forthcoming paper. Nevertheless, let us recall that,

as we have seen, a small relative error can be achieved with reasonable discretization parameters.

ξ

x = 1, 5

ξ

x = 3

ξ

x = 6

Figure 10: Real part of the x-component (in blue) and y-component (in orange) of the integrand term (83) versus ξ taking

x = `.

5.3. Application to the diffraction problem in anisotropic media

Let us now show some numerical experiments for anisotropic media. We consider the diffraction of an

incident Quasi-Shear plane wave. More precisely, we take

uinc = V0
1(ξinc)eiκ

0
1(ξinc)x+iξincy

where ξinc < k∗ and |κ0
1(ξinc)| > |κ0

2(ξinc)|, see Section 4.3.

The scatterer is a thin obstacle O which mimics a crack: it is the polygon delimited by the four points

(−0.2,−0.15), (0, 0.01), (0.12, 0.25) and (0, 0). This problem fits into our initial problem (1) taking f = 0

and g = −σ(uinc)ν, the solution u being the diffracted field.

For these numerical simulations, we consider the four examples of homogeneous materials given in

Section 1 characterized by their tensor C̃ =C given in (26). We recall that the slowness diagrams associated

to these materials are represented in Figure 1. In each case, we take ρ̃ = ρ = 1, ω = 20 and ξinc = 3. For the

discretization parameters, we use the same parameters (82) as for the isotropic validation case. On Figure

11, we have represented the (modulus of the) diffracted field ubh in Ωb computed with the HSM method for

the four materials. To test the “transparency” of the boundary condition on Σjbb, we have computed the

solution twice taking b = 0.5 and b = 0.6 and we have represented u0.5 in Ω0.5 while u0.6 is represented in

Ω0.6 \ Ω0.5 with a certain opacity. The two solutions match very well (up to a discretization error).

Again, since we compute an approximation of the trace Φj on Σj and thanks to the analytical expression

of the solution in the half-spaces Ωj (see Lemma 4.8), we can reconstruct a posteriori (an approximation of)
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ISO O1 O2 A

Figure 11: Modulus of the diffracted field |ubh| =
√

Re(ubx)2 + Re(uby)2.

uj in the exterior domain. On Figure 12, we have represented the computed diffracted field ubh in Ωb and the

reconstructed fields ujh in Ωj in the case of material A, the result being independent (up to a discretization

error) of the choices of the representation in the overlapped areas.

Figure 12: Modulus of the diffracted field in Ω considering material A.

The results presented in Figure 11 have shown that the computed solution is independent of the size

of the square Ωb. In the same spirit, the following test aims to check that the computed solution does not

depend on the position of the infinite lines Σj of the HSM method. We compare two solutions, with the

same material O1 and the same source term, the only difference between them being a rotation of angle

π/3 of the line Σj and the square Ωb. As expected, one can observe a perfect matching between the two

solutions, see Figure 13.

5.4. Comparison with the PML method for anisotropic media

In this section, we will compare the HSM method with the PML method. Let us briefly recall this last

method. The idea is to apply a complex change of variable (this process is also called complex scaling of the

cartesian coordinates) in a layer (denoted ΩPML) surrounding the physical domain of interest (here Ωb), see
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Figure 13: Modulus of the solution in Ωb for two different orientations of the lines Σj and superposition of the two solutions.

Figure 14. The objective is that the layer ”absorbs” the outgoing waves without producing any reflection

at the interface between the physical domain and the layer. In the frequency domain, several changes of

variable have been proposed in the literature (see for instance [20]) but the simplest one, that we use, is

given by x̃ := ζ(x) and ỹ := ζ(y) where:

ζ(t) = α(t)(t− b) + b with α(t) =
1 if |t| < b,

δeiθ if |t| ≥ b.
(84)

Here δ > 0 and θ ∈]0, π2 [ are two parameters of the PMLs. Another parameter is the thickness L of the PML

layer ΩPML. Then, we consider ũ(x̃, ỹ) that satisfies the same partial differential equation than u, replacing

the derivatives with respect to (x, y) by the derivatives with respect to the stretched coordinates (x̃, ỹ) (i.e.

replacing the partial derivative ∂x by ∂x̃ and the partial derivative ∂y by ∂ỹ). To get the PML formulation,

we rewrite these equations in physical coordinates (x, y), which amounts to replace the partial derivative ∂x̃
by 1

α(x)∂x and the partial derivative ∂ỹ by 1
α(y)∂y. Finally, at the boundary of the computational domain

Ωb ∪ ΩPML, one can impose homogeneous Dirichlet or Neumann boundary conditions.

Ωb

O

ΩPML

b

b+ L

Figure 14: Description of the computational domain for the PML method.

In Figure 15, we have represented the results obtained by applying the PML method to the diffraction of
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a shear or quasi-shear plane wave by the thin obstacle presented in Section 5.3. We have considered the four

examples of homogeneous materials given in Section 3 whose tensors are given in (26), and with ρ̃ = ρ = 1,

ω = 20, a = 0.4 and b = 0.5. The PMLs parameters are δ = 4, L = 0.2 (so that the computational domain

is [−0.7, 0.7]2 \O) and θ = π/3 (first column), θ = π/4 (second one) and θ = π/5 (third one) and as before,

we have used Lagrange finite elements of order 2. It seems that the method works well for the two first

materials (in particular the isotropic one) whereas it is difficult to conclude for the two last ones. Let us

now give some explanations.

First we focus on the isotropic material and explain why the PML method should work in this case. To

simplify the explanations, let us consider for instance the half-space problem introduced in (37) for j = 0.

We now apply the complex change of variable x → ζ(x) while keeping the y−variable unchanged. We say

that we have an infinite PML in the x−direction in Ω0. We can understand the effect of this PML in this

case, since we have a representation of the solution U0 before the change of variable, by Lemma 4.3. We

deduce easily that after the change of variable, the obtained function writes as

UPML(x, y) = Ũ0(Φ)(ζ(x), y) = 1√
2π

∫
R
Q(ξ)ei(K(ξ)(ζ(x)−a)+ξy)[Q(ξ)]−1(ξ) Φ̂(ξ) dξ, x > a, y ∈ R,

(85)

where Q(ξ) is defined in (53) and K(ξ) in (55). Here UPML is nothing else but the analytic continuation

of U0 with respect to x on the line of the complex plane x → ζ(x). In particular, by definition of ζ,

UPML = U0 in the ”physical” layer a < x < b. This explains why the PML layer is said to be ”perfectly

matched” because it has no effect on the solution in the physical domain. Let us note that for each x > a,

the matrix-valued function

ξ → ei(K(ξ)(ζ(x)−a)+ξy)

is still exponentially decaying since for I ∈ {P, S}, κI(ξ) behaves like i|ξ| for large |ξ| and <
(
ζ(x)− a

)
> 0

(since δ > 0 and θ < π
2 ). This implies that UPML is well-defined for x > a. Moreover, since we have

also that for I ∈ {P, S}, κI(ξ) ∈ R+ for |ξ| < kI and =
(
ζ(x)

)
> 0 for x > b (since θ > 0), the function

x→ UPML(x, y) decays exponentially fast when x tends to infinity. This explains why the truncation of the

PML in this case introduces only negligible reflections. By reproducing the same reasoning for PML layers

in all directions, we understand why the PML method works for isotropic materials.

For anisotropic materials, one has to use the half-space representation U j given in Lemma 4.8 and apply

the same change of variable. Since for I ∈ {1, 2} and j ∈ {0, 1, 2, 3}, =(κjI(ξ)) is positive and behaves like

O(|ξ|), the integrand in ξ is exponentially decaying and the analytic continuation Uj
PML is well-defined.

But, what is not always true (and which can explain the numerical difficulties) is the decay of Uj
PML with

respect to xj . This strongly depends on the anisotropy of the material.

For the orthotropic material (O1), one has the same properties than in the isotropic case that is to say

κjI(ξ) is either in R+ or in iR+, I ∈ {1, 2} and j ∈ {0, 1, 2, 3}. In this case, Uj
PML will decay exponentially
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fast with respect to xj and the PML method still works.

More generally, the PML method should work as soon as

∀j ∈ {0, 1, 2, 3}, ∀I ∈ {1, 2}, ∀ξ ∈ R, =
(
eiθκjI(ξ)

)
> 0, (86)

where for I ∈ {1, 2}, κjI(ξ) is defined in Section 4.3. Unfortunately, this condition (86) is not always satisfied

(see section 4.3):

• If there exist j, I, ξ s.t. κjI(ξ) ∈ R− (corresponding to backward waves), then the above condition

can never be satisfied. This occurs for instance for material (O2) and (A). In this case, Uj
PML is

exponentially growing, so the effect of truncation of the PML is not negligible anymore.

• An additional difficulty, which is less known, comes with the so-called inhomogeneous waves, i.e.

there exist j and ranges of ξ for which κjI(ξ) is neither real nor purely imaginary (but is such that

=(κjI(ξ)) > 0 as required for an outgoing wave). In that case, there necessarily exists an inhomogeneous

wave such that <(κjI(ξ)) < 0. Indeed, by properties (65), either <(κjI(ξ)) < 0 (and =(κjI(ξ)) > 0)

or <(κjI(−ξ)) < 0 (and =(κjI(−ξ)) > 0). Therefore, the condition (86) is not satisfied as soon as

tan(θ) > =(κjI(ξ))/|<(κjI(ξ))|.

Very often, the two difficulties mentioned above occur together. In particular, one can show that in-

homogeneous waves always exist if backward waves exist (for instance for materials (O2) and (A)). The

converse is not true, and one can exhibit anisotropic materials for which inhomogeneous waves exist without

backward waves, as for material (O3) (see also material V in [14]). In that case, the PMLs should work for

a parameter θ small enough if

inf
ξ∈R

=(κjI(ξ))
|<(κjI(ξ))|

> 0, j ∈ {0, 1, 2, 3}, I ∈ {1, 2}.

Does it definitely mean that for a material which generates backward waves or inhomogeneous waves,

PMLs do not work ? Let us mention that in the time-domain regime, the presence of backward waves in

the x-direction, responsible of an exponential behavior of the PML solution, results in strong instabilities

of the PMLs as explained in [14]. On the other hand, the presence of inhomogeneous waves results in long-

time instabilities (see [14, 6, 17]). For the frequency-domain regime, the situation is not so clear, since as

mentioned in the introduction of this paper, PMLs may work for some models for which they are unstable

in the time-domain. We will observe how the PMLs behave on some numerical illustrations.

We come back to the numerical results in Figure 15. As we have noticed previously, PMLs work well

for the isotropic material ISO as well as for material (O1), which both do not generate any backward nor

inhomogeneous waves : they give similar results to the HSM method, whatever the angle θ. Concerning

the two last anisotropic materials (O2) and (A), which generate both backward and inhomogeneous waves,
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ISO

O1

O2

A

Figure 15: Modulus of the diffracted field |ubh| =
√

<(ubx)2 + <(uby)2 computed using PML method (first three columns) with

L = 0.2 and for various values of θ = {π3 ,
π
4 ,

π
5 } (from left to right). The results obtained with the HSM method are recalled

in the last column.

we observe perturbations of the solution for the angles θ = π
3 and θ = π

4 but they seem to disappear when

decreasing the angle to θ = π
5 and the results again look similar to the ones obtained with the HSM method.

To assess the PMLs with θ = π
5 , we have computed the difference between the solutions in the physical

regions [−b, b]2 \ O using the PML method and the HSM method, for the isotropic medium ISO and the

anisotropic medium (A). This difference is presented in Figure 16 for three different sizes of the PMLs,

L = 0.2, 0.3 and 0.5. In the isotropic case, we can observe that the difference reduces as L grows, up to the

discretization error of the two methods. This can be explained by the fact that, for a large enough layer, the

truncation of the PMLs do not have anymore impact on the solution. On the contrary, in the anisotropic

case, the error does not decrease when the size of the PMLs grows, it even increases, which shows that the

PML solution does not converge as the length of the layer grows. This non convergence can be explained
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by the fact that this time UPML is exponentially growing inside the layers due to presence of backward and

inhomogeneous waves.

ISO

A

Figure 16: Modulus of the difference between the PML (θ = π/5) and HSM solutions in Ωb for different sizes of layers

L = {0.2, 0.3, 0.5}. On the first line, the isotropic medium, and on the bottom line the anisotropic medium. The color scale is

the same for all images.

Finally, let us present a last case, an orthotropic medium with no inverse waves but with inhomogeneous

waves. We consider the material defined by

(O3) C =


18 8 0

8 21 0

0 0 7

 . (87)

The corresponding slowness diagram is given in Figure 17. We have also represented in this figure the

position in the complex plane of κ0
1(ξ) and κ0

2(ξ) for ξ ∈ [−50, 50] and ω = 90.

For this last material, we have considered the same diffraction problem as before but with a larger

frequency ω = 90. In Figure 18, we give the results obtained using the PML method taking θ = π
2.5 , π3 and

π
4 . We have also represented in the complex plane the position of eiθκ0

1(ξ) and eiθκ0
2(ξ) for ξ ∈ [−50, 50]. As

we can see, the condition (86) is satisfied for θ = π
4 and π

3 , but is not satisfied for θ = π
2.5 . For θ = π

3 and
π
4 , the results obtained with PML and HSM are very similar. For θ = π

2.5 , the PML solution is in particular

wrong near the PML interface and the obstacle (see left bottom corner).

In conclusion, for anisotropic materials, as soon as there is the presence of inhomogeneous waves, one

has to be really careful for chosing the PMLs parameters: PMLs could work with some specific choices of

the parameters but this is in general not obvious to determine them in advance and they have to be adapted
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0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.2

0.0

0.2

0.4

(O3)

Figure 17: Slowness diagram of the orthotropic material O3 (on the left) and position of the wave number κ0
1(ξ) (in blue) and

κ0
2(ξ) (in orange) in the complex plane (on the right).

to the material and to the frequency. Therefore, there is a clear lack of robustness of the PML method in

this case.

Figure 18: Modulus of the diffracted field computed using PML method (first three columns) for θ = π
2.5 ,

π
3 and π

4 (from left

to right) and using HSM method (last column). On the second line, position of eiθκ0
1(ξ) (in blue) and eiθκ0

2(ξ) (in orange) in

the complex plane.

6. Conclusions and ongoing works

In this paper we have presented a new numerical method to solve scattering problems with unbounded

anisotropic elastic backgrounds. The method has been validated through several numerical results in both

isotropic and anisotropic media. There is still work to be done in the future. As mentioned in Section 4.1,
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we need to find an adequate framework to establish the well-posedness of the HSM formulation. This is a

preliminary step for proving convergence results as it was done for the scalar dissipative case in [26].

Besides, a practical question concerns the computation of oscillating Fourier integrals (see section 5.2):

some solutions are currently investigated for the scalar case using the stationary phase theorem or deforming

the Fourier path in the complex plane.

The HSM method provides reference solutions which can be compared to the solutions obtained with

classical cartesian PMLs. This allows to check the validity of the PMLs, in particular in situations where

they are known to be unstable in the time-domain. The conclusion is that in absence of backward waves in

the PMLs’ directions, we can always choose the parameters so that the PMLs work. Note that this choice,

which depends only on the background, can be very constrained in presence of inhomogeneous waves. In

presence of backward waves, the PMLs do not work in general, with results deteriorating all the more as

the dissipation of the PML increases. A prospect is to better understand and justify these observations

theoretically.

Finally let us mention the possibility of combining the ideas of both the HSM and the PML methods,

introducing the so-called “complex-scaled traces”, as it was done for the Helmholtz equation in [25]. A

main advantage of this “complex-scaled HSM” method is to recover exponentially decaying traces like in the

dissipative case.

Appendix A. Energy flux and limiting absorption principle

The inequality (30) can be established using a limiting absorption technique. The idea is to add to

the frequency ω a small imaginary part: ωε = ω + iε with ε > 0. Then outgoing plane waves become

exponentially decaying and the result can be obtained by simple integration by part. More precisely, suppose

F(kx, ky, ω) = 0, ∂ωF(kx, ky, ω) 6= 0 and vg(k) · ex 6= 0. We deduce by (28) that ∂kxF(kx, ky, ω) 6= 0. Then,

by the implicit function theorem, for ε > 0 small enough, there exists kεx ∈ C such that F(kεx, ky, ωε) = 0.

Differentiating this identity with respect to ε and using again (28) leads to

kεx − kx
ε

→ ivg(k) · ex. (A.1)

Let us define the associated plane wave uε(x, y) = Uεe
i(kεxx+kyy) where Uε ∈ C2 satisfies A(kεx.ky)Uε =

ω2
εUε and |Uε| = 1. Since vg(k) · ex > 0 which implies =(kεx) > 0, uε is exponentially decaying in x. One

can then write: ∫ +∞

0

[
σ(uε) : ε(ūε)− ω2

ε |uε|2
]
dx = −[σ(uε)ex · ūε]|x=0

where all terms of the previous identity are independent of y. Taking the imaginary part gives

=[σ(uε)ex · ūε]|x=0 = ωε

=(kεx)

which, by (A.1), tends to ω/(vg(k) · ex) when ε→ 0.
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Appendix B. The roots of Pξ are simple, except for discrete values of ξ

Let us prove this result by contradiction and suppose that Pξ has a root κ(ξ) of multiplicity 2 for all

ξ ∈ I where I ⊂ R is some non empty interval. From the results of section 3, we know that this can occur

only if ∀ξ ∈ I, κ(ξ) /∈ R. But then κ(ξ) is also a root of Pξ of multiplicity 2, for all ξ ∈ I. Summing up, Pξ
must have the following form for ξ ∈ I:

Pξ(κ) = A0

[
(κ− κ(ξ))(κ− κ(ξ))

]2
which can be rewritten as follows:

Pξ(κ) = A0
[
κ2 − 2a(ξ)κ+ ρ(ξ)

]2 (B.1)

where a(ξ) = <(κ(ξ)) and ρ(ξ) = |κ(ξ)|2. On the other hand, from the definition Pξ(κ) = F(κ, ξ, ω) where

F is defined by (50), we know that for all ξ ∈ R,

Pξ(κ) =
4∑
j=0

A4−j(ξ)κj (B.2)

where A0(ξ) = A0 and Aj(ξ) is a polynomial function of ξ of degree j. By identification between (B.1) and

(B.2), we deduce that for all ξ ∈ I,

−4A0 a(ξ) = A1(ξ) (B.3)

2A0(ρ(ξ) + 2a(ξ)2) = A2(ξ) (B.4)

−4A0 a(ξ)ρ(ξ) = A3(ξ) (B.5)

A0ρ(ξ)2 = A4(ξ) (B.6)

Equation (B.3) shows that a(ξ) is a polynomial function of ξ, and then also ρ(ξ) by equation (B.4). Thus

the functions a(ξ) and ρ(ξ) which were a priori defined only for ξ ∈ I can be extended to all ξ ∈ R, and

the identities (B.3) to (B.6) are in fact valid for all ξ ∈ R. This is equivalent to say that identity (B.1) is

valid for all ξ ∈ R. But then Pξ would have two roots of multiplicity 2 for all ξ ∈ R, which is not the case

as explained in section 3.

Appendix C. V0
1(ξ) and V0

2(ξ) are linearly independent

Let, for a fixed ξ ∈ R, denote by κ1 and κ2 the two roots of Pξ corresponding to outgoing waves,

as explained in section 4.3, and let V1 and V2 be two corresponding eigenvectors. We want to show by

contradiction that V1 and V2 are linearly independent. If not, it means that there exists a non-zero vector

U ∈ C2 such that A(κ1, ξ)U = ω2U and A(κ2, ξ)U = ω2U, where we recall that

A(κ, ξ) = 1
ρ

[κ2A0 + κξ(A1 +AT
1 ) + ξ2A2],
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the matrices Aj being defined by (15). Then, projecting these two equations on U, we deduce that κ1 and

κ2 are the two roots of the equation

(UTA0U)κ2 + (UT(A1 +AT
1 )U)κξ + (UTA2U)ξ2 − (UTU)ω2ρ = 0 (C.1)

Note that, since the matrices A0, A2 and (A1 + AT
1 ), are real and symmetric, the equation (C.1) has real

coefficients. A direct consequence is that κ1 and κ2 must be real. Indeed, if for instance κ1 /∈ R, then

necessarily κ2 = κ1, but this is impossible since complex roots corresponding to outgoing waves have a

positive imaginary part (see section 4.3).

Now let us set for m = 1, 2, U(m)(x, y) = Uei(κm(x−a)+ξy). Then, according to the selection of outgoing

waves, we must have =(σ(U(m))ex ·U(m)) > 0 for m = 1, 2 which can be rewritten as follows (see (29)):

(UTA0U)κm + (UT(A1 +AT
1 )U)ξ2 > 0, m = 1, 2. (C.2)

From (C.1) and (C.2), we deduce that each root κm is locally a holomorphic function of ω, such that:

dκm
dω

(ω) =
(

(UTA0U)κm + (UT(A1 +AT
1 )U)ξ2

)−1
(UTU)ωρ > 0.

Using again (C.2), this implies that for ε > 0 small enough, setting κεm = κm(ω + iε), we have =(κεm) > 0,

m = 1, 2, which is false: indeed one has for instance κε1 + κε2 ∈ R since

κε1 + κε2 = −UT(A1 +AT
1 )U

UTA0U
ξ.

Appendix D. Formulas for the normal stress of the half-space representation in the anisotropic

case

Let us derive the expression of the matrices F j(ξ) which appear in the the expression of the operators

Λj . In the general case, we need to consider separately each half-space. As in Section 4.2, the operators

Λj are given by (61) where the fields Tj(Φ), for j = 0, 1, 2, 3 are defined in (59). Using (14), we get the

following expressions.

• For j = 0, we have for x0 > a, y0 ∈ R

T0(Φ)(x0, y0) = A0∂x0U0(Φ)(x0, y0) +A1∂y0U0(Φ)(x0, y0).

Using (69), we deduce that for x0 > a, y0 ∈ R

T0(Φ)(x0, y0) = 1√
2π

∫
R
F 0(ξ)ei(K

0(ξ)(x0−a)+ξy0)Q0(ξ)−1 Φ̂(ξ) dξ, (D.1)

where Q0(ξ) is defined in (68), K0(ξ) in (70) and F 0(ξ) is given by

F 0(ξ) := iA0Q
0(ξ)K0(ξ) + iξA1Q

0(ξ).
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• In the same way, for j = 1, we have for x1 > a, y1 ∈ R

T1(Φ)(x1, y1) = 1√
2π

∫
R
F 1(ξ)ei(K

1(ξ)(x1−a)+ξy1)Q1(ξ)−1R(θ1) Φ̂(ξ) dξ (D.2)

where Q1(ξ) and K1(ξ) are defined in (71) and F 1(ξ) is given by

F 1(ξ) := iAT1 Q1(ξ)K1(ξ)− iξA2Q
1(ξ).

• For j = 2, we have for x2 > a, y2 ∈ R

T2(Φ)(x2, y2) = 1√
2π

∫
R
F 2(ξ)ei(K

2(ξ)(x2−a)+ξy2)Q2(ξ)−1R(θ2) Φ̂(ξ) dξ, (D.3)

where Q2(ξ) and K2(ξ) are defined in (71) and F 2(ξ) is given by

F 2(ξ) := iA0Q
2(ξ)K2(ξ) + iξA1Q

2(ξ).

• Finally, for j = 3, we have for x1 > a, y1 ∈ R

T3(Φ)(x3, y3) = 1√
2π

∫
R
F 3(ξ)ei(K

3(ξ)(x3−a)+ξy3)Q3(ξ)−1R(θ3) Φ̂(ξ) dξ (D.4)

where Q3(ξ) and K3(ξ) are defined in (71) and F 3(ξ) is given by

F 3(ξ) := iA2Q
3(ξ)K1(ξ)− iξAT

1 Q
3(ξ).
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[18] J.-P. Bérenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2):185–200,

1994.

[19] A. Bermudez, L. Hervella-Nieto, A. Prieto, and R. Rodriguez. An exact bounded pml for the helmholtz equation. C. R.

Math., 339(11):803–808, 2004.

[20] A. Bermudez, L. Hervella-Nieto, A. Prieto, and R. Rodrıguez. An optimal perfectly matched layer with unbounded

absorbing function for time-harmonic acoustic scattering problems. J. Comput. Phys., 223(2):469–488, 2007.

[21] M. Bonnet. Boundary integral equations methods in solids and fluids. John Wiley and sons, 1999.

[22] M. Bonnet. Solvability of a volume integral equation formulation for anisotropic elastodynamic scattering. J. Integral

Equations Appl., 28(2):169–203, 2016.

[23] A.-S. Bonnet-Ben Dhia, C. Chambeyron, and G. Legendre. On the use of perfectly matched layers in the presence of long

or backward propagating guided elastic waves. Wave Motion, 51(2):266–283, 2014.

[24] A.-S. Bonnet-BenDhia, S. Chandler-Wilde, and S. Fliss. On the half-space matching method for real wavenumbers. SIAM

J. Appl. Math., 82(4), 2022.

[25] A.-S. Bonnet-BenDhia, S. Chandler-Wilde, S. Fliss, C. Hazard, Karl-Michael Perfekt, and Y. Tjandrawidjaja. The

complex-scaled half-space matching method. SIAM J. Math. Anal., 54:512–557, 1 2022.

[26] A-S. Bonnet-BenDhia, S. Fliss, and Y. Tjandrawidjaja. Numerical analysis of the Half-Space Matching method with Robin

traces on a convex polygonal scatterer, pages 105–144. Maxwell’s Equations: Analysis and Numerics, 5 2019.

[27] J. H. Bramble and J. E. Pasciak. Analysis of a finite pml approximation for the three dimensional time-harmonic maxwell

and acoustic scattering problems. Math. Comput., pages 597–614, 2006.

[28] J. H. Bramble and J. E. Pasciak. Analysis of a cartesian pml approximation to acoustic scattering problems in r2 and r3.

J. Comput. Appl. Math., 247:209–230, 2013.

[29] J.H. Bramble and J.E. Pasciak. A note on the existence and uniqueness of solutions of frequency domain elastic wave

problems: A priori estimates in h1. Journal of Mathematical Analysis and Applications, 345(1):396–404, 2008.

[30] R. Brunet, V. Dolean, and M. J Gander. Natural domain decomposition algorithms for the solution of time-harmonic

elastic waves. SIAM J. Sci. Comput., 42(5):A3313–A3339, 2020.

[31] O.P. Bruno and T. Yin. Regularized integral equation methods for elastic scattering problems in three dimensions. J.

Comput. Phys., 2020.

[32] P. Cance and Y. Capdeville. Validity of the acoustic approximation for elastic waves in heterogeneous media. Geophysics,

80 (4):T161–T173, 2015.

42



[33] J. M. Carcione. Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media.

Elsevier, 2007.

[34] S. Chaillat and M. Bonnet. A new fast multipole formulation for the elastodynamic half-space green’s tensor. J. Comput.

Phys., 258:787–808, 2014.

[35] S. Chaillat, M. Bonnet, and J.-F. Semblat. A Fast Multipole Method formulation for 3D elastodynamics in the frequency

domain. C.R. Mec., 335:709–714, 2007.

[36] S. Chaillat, M. Bonnet, and J.-F. Semblat. A multi-level fast multipole BEM for 3-D elastodynamics in the frequency

domain. Comput. Methods Appl. Mech. Eng., 197:4233–4249, 2008.

[37] S. Chaillat, L. Desiderio, and P. Ciarlet. Theory and implementation of H-matrix based iterative and direct solvers for

Helmholtz and elastodynamic oscillatory kernels. J. Comput. Phys., September 2017.

[38] J. Chen and J-G. Zhao. Application of the nearly perfectly matched layer to seismic-wave propagation modeling in elastic

anisotropic media. Bull. Seismol. Soc. Am., 101:2866–2871, 12 2011.

[39] F. Collino. High order absorbing boundary conditions for wave propagation models. straight line boundary and corner

cases. In R. Kleinman et al. (Eds.), editor, Proc. 2nd Int. Conf. on Mathematical and Numerical Aspects of Wave

Propagation, pages pp. 161–171., Delaware, 1993. SIAM.

[40] F. Collino and C. Tsogka. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem

in anisotropic heterogeneous media. Geophysics, 66:294–307., 2001.

[41] S. Cummer. A simple, nearly perfectly matched layer for general electromagnetic media. IEEE Microwave Wireless

Compon. Lett., 13:128 – 130, 04 2003.
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[52] S. Fauqueux. Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d’ondes
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