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Abstract: This work presents a two-step LMI-based approach for the synthesis of State-
Feedback and Static-Output-Feedback controllers for discrete-time Linear Parameter Varying
systems. The benefit of the proposed approach lies on the fact that the two-step LMI method
allows to enforce a common parametric structure on the controller for all the parameter space.
This results in a final controller implementation that does not requires any interpolation step
and thus, is of easy implementation. An illustrative example is given for an autonomous vehicle

steering control design case.

Keywords: Stability and stabilization, LPV H

Control, Automotive Dynamics.

1. INTRODUCTION

In this work we propose a two-step LMI optimization prob-
lem to achieve the synthesis of parametric State-Feedback
(SF) and Static-Output-Feedback (SOF) controllers for
discrete-time Linear Parameter Varying (LPV) systems.
Such an strategy was first introduced for the synthesis of
LTT controllers in (Gahinet and Apkarian, 1994). In this
work we translate those results to the SF and SOF cases
and with the use of Parameter Dependent Lyapunov Func-
tions (PDLF) and gridding approaches it is here extended
for discrete-time LPV systems.

The first LMI optimization step allows to prove the fea-
sibility of the SF or SOF design, respectively. Then, the
second step is an LMI optimization problem for controller
reconstruction, with the controller matrices as the only
LMI variables to be found. This can then be exploited to
impose a parameter dependent structure directly on the
controller structure without requiring a change of variables
to obtain LMI conditions.

For standard LPV feedback approaches, e.g. as in Poly-
topic LPV: (Apkarian et al. (1995)), Polyquadratic LPV:
(Daafouz and Bernussou (2001); De Caigny et al. (2010)),
Grid-Based LPV: (Wu et al. (1996)), ..., the online im-
plementation of the controller requires an interpolation of
point-wise controllers. For complex systems, with a large
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number of varying parameters, this interpolation can be
quite cumbersome as the number of point-wise controllers
increases exponentially with the number of parameters.
The main contribution of the approach presented in this
paper comes from the ease of implementation of the LPV
controller. If the proposed parametric controller exists, its
implementation is then self scheduled based on the im-
posed parameter dependent structure, without requiring
an online interpolation and independent of the number of
grid points considered.

The paper is organized as follows. Section 2 presents some
well-known results from the literature. Section 3 describes
the proposed discrete-time LPV grid based approach.
Sections 4 and 5 deal with the LMI synthesis conditions
and controller reconstruction steps respectively. Section 6
presents an illustrative example of an autonomous vehicle
steering control design. Finally, in Section 7, conclusions
are drawn and futures perspectives are suggested.

The paper notation is the following. ||-||2 represents the Lo-
norm. z' represents the transpose of x. X! represents
the inverse of X, matrix X > 0 represents that X is
symmetric positive-definite, X = ker(X) represents that
X is a base of the null space of X, for simplification
He(X)= X + X7 and * in an LMI represents a symmetric

element transposed.

2. USEFUL LITERATURE RESULT

Consider the discrete-time system:

Jx(k+1) = Azx(k) + Bw(k)
M {z(k) — Ca(k) + Duw(k) (1)



where € R™ is the state vector, u € R™ are the
control inputs, w € R™ is the vector of exogenous inputs
with bounded energy such that w € Lo and z € R"=
are the output control performances. The upper bound
on the induced Lg-norm, generalization of the H,, norm,
of the system M can be computed making use of the
discrete-time Bounded-Real-Lemma (BRL), presented in
the following.

Lemma 1. (Extended Discrete-Time BRL). [De Caigny et al.

(2010); Hilhorst et al. (2014)] Given a discrete-time system
M and a positive scalar value 7., then the following three
statements are equivalent:

1.

[12(K) 2
sup < Yoo (2)
wik)o [[w (k)2
2.
GT+G—-X(k+1)GTAT GTcT 0
* X(k) 0 B
* * Yool D >0 (3)
* * * Yool
3.
G"+G-X(k+1)GTAGTB 0
* X(k) o cT
* * Yool DT >0 (4
* * * Yool

where X (k) € R*=*"=_ X (k) > 0, and G € R"=*"= ig a
slack variable.

3. DISCRETE-TIME PARAMETER DEPENDENT
LYAPUNOV FUNCTIONS

Let us consider a discrete-time LPV system
w(k+1) = A(p)x(k), ()
where p € R™ is a vector of m varying parameters. Let

us consider parameter dependent Lyapunov matrices with
the following structure:

N
X(p(k)) = > On(p(k)) X, (6)

such that 6,(p(k)) € R form the basis function, X,
are constant symmetric matrices and N determines the
length of the basis function. Given the associated PDLF
V(z,p) € R:

V(z,p) = z(k)" X (p(k))z(k), (7)
the stability condition according to Lyapunov theory for
(5) leads to:

A(p(k)T X (p(k + 1)) A(p(k)) — X (p(k)) <0 (8)

By considering a PDLF both p(k) and p(k+1) are present
on the LMI condition. As it is standard practice in LPV
theory, the value of p(k) is assumed to be known, however,
the exact future value p(k+ 1) is usually unknown. Never-
theless, if the maximum parameter variation between two
sample instances v € R™ is known, then, it is possible to

define a min-max polytope box with j = 1,...,2™ vertexes
such that it bounds p(k + 1) as:
plle+1) € [p(k) — v, p(k) + ] (9)

Furthermore, condition (8) imposes an infinite number of
LMI conditions to be checked due to the infinite possible

values of the varying parameter vector p. To deal with
this issue, let us consider a frozen grid on the parameter
space with i = 1,..., Z grid points, such that for each grid
point ¢ the value of the frozen varying parameter vector is
defined as p;.

Let us combine this gridding approach on the parameter
space of p € R™ and bounds on p(k + 1) by the known
maximum parameter variation » € R™. Then, for each of
the considered frozen grid points values p;, the vertexes
of the polytope (9) that bounds the parameter variation
are defined as p!, j = 1,...,2™. Fig. 1 shows this grid
and bound approach for the case of a grid with m = 2
varying parameters. Note that the order of the pg vertexes
is arbitrary.

pi % *oi
Pl e 07

Fig. 1. Parameter variation bounds pg for the frozen grid
point p;.

Using this discrete-time grid-based framework, (8) can be
recast as a finite set of LMIs such that V(p;, pz):

ATXIA; — X, <0 (10)
where for simplification of the notation X; = X(p;),
X/ = X(p!) and A(p;) = A;. This framework is employed
in the following sections for the synthesis of discrete-time
LPYV controllers.
Remark 1. Note that for the case when there is no param-
eter variation, e.g. v = 0, then Xij = X;, V(pi,pg).

4. SF AND SOF CONTROLLER EXISTENCE
CONDITIONS

The main contributions of this work are presented here
and in the next section. First, two propositions are intro-
duced that prove the existence of SF and SOF controllers
respectively, for discrete-time LPV systems under induced
Lo-norm performances.

4.1 Hoo State-Feedback Controller Existence

Let us consider the following discrete-time LPV system:
N(p) : {x(k +1) = A(p)z(k) + Bu(p)u(k) + Buw(p)w(k)
L8 = Co)eth) + Dulpolh) + Dutnt)

where x € R™= is the state vector, u € R™ are the control
inputs, w € R™ are the exogenous inputs with bounded



energy such that w € Ly and z € R™* are the exogenous
outputs. p € R™ is the vector of varying parameters.

The following proposition provides sufficient conditions
to prove the existence of a feasible SF controller u(k) =

K(p)z(k) such that \‘IIZ‘\IIQQ is minimized.

Remark 2. The following proposition is actually given con-
sidering the way in which the LMI problem is formulated
for computation. However, note that the proof is carried
out as it should be theoretically, so for all p. This remark
is also valid for Proposition 2.

Proposition 1. Given a positive scalar v, and a discrete-
time LPV system N (p), if there exist matrices X (p) > 0,
with X(p) € R™*" and G € R"™*" gsuch that the

following LMI problem is feasible V(p;, p{):

X; >0, X/ >0 (12)
GT+G - X! GTAT gTct o
T * Xz Bwi .
Niri * * Yool Dai Nui >0
* * * Yool
(13)

with X; = X(p;) and X = X(p}) where p;,i = 1,..., Z
are the frozen grid points, with parameter variation at
each grid point bounded as defined by (9) with vertexes

pl,j=1,..,2™ and Ny = ker([0 B, DL, 0]).

Then, there exists a state-feedback control law u(k) =
K(p)x(k) such that I‘Ilz)‘\llzz < Yoo. If the optimal v is
required, the LMI minimization problem for 7., is still
an LMI problem with variables v,,, X and G.

Proof: Considering a state-feedback control law wu(k) =
K(p)x(k), system (11) can be rewritten as (1) with

A(p) = A(p) + Bu(p)K(p) , B(p) = Bu(p)
C(p) = C=(p) + Du(p)K(p) , D(p) = Dw(p)

Substituting (14) in (3) the following condition is obtained:

(14)

B,
U(p) + He Dugﬁg K(p)[G0o00]|>0 (15
where
GT +G—-X(k+1) GTAPT GTc.(p)T o
_ X (k) 0 Bu(p)
\I/(p) - : * Yoo I Dw(g)
* * * Yoo I
(16)

Note that (15) is not an LMI due do the multiplication of
the controller matrix K (p) and the slack variable matrix
G. However, thanks to the Projection Lemma, condition
(15) is equivalent to the following conditions, which are
independent of the controller matrix.

Nar(p) "W (p) N (p) > 0 (17)

NET(p) Ny > 0. (18)
With Ny = ker([G 0 0 0]), condition (18) leads to the
trivial condition X (k) > 0 and can thus be discarded
for controller design. Condition (17) is independent of the
controller and is thus an LMI with variables X (p) and G,
and with Ny (p) = ker([0 By (p)" Du(p)" 0]).

Condition (17) implies an infinite number of LMI to be
checked due to the dependency on the varying parameter.
Following the grid-based approach discussed in Sect. 3,
(17) can be transformed into a finite number of LMIs
to be considered where each grid point p; is bounded by
a polytope due to parameter variation and each vertex
of this polytope is defined as p]. Applying this discrete-
time gridding approach, (17) is transformed into (13). This
concludes the proof. B

4.2 Hoo Static-Output-Feedback Controller Existence

Let us consider now the following discrete-time LPV

system:
z(k +1) = A(p)x(k) + Bu(p)u(k) + Buw(p)w(k)
N(p) : { 2(k) = C:(p)a(k) + Dulp)u(k) + D (p)w(k)
y(k) = Cy(p)x(k) + Fu(p)w(k) )

where x € R"= is the state vector, u € R™* are the control
inputs, w € R™ are the exogenous inputs with bounded
energy such that w € Ly, z € R™: are the exogenous
outputs and y € R™ are the measured outputs. p € R™ is
the vector of varying parameters.

In this case, a SOF control law u(k) = K (p)y(k) is synthe-
sized to get induced Lo-norm performances in closed-loop,

i.e. such that “lljj“llz is minimized. The following proposition

provides sufficient conditions to prove the existence of a
feasible SOF controller K(p).

Proposition 2. Given a positive scalar v,, and a discrete-
time LPV system N (p), if there exist matrices X (p) > 0,

with X(p) € R"*"s, and G € R"*" such that the
following LMI problem is feasible V(p;, p?):
X; >0, X/ >0 (20)
GT+G - X! GTAT G*ct o
AR Y S P
* * * Yool

_ (21)
GT+G—-X) GT4; GT"Byi 0

T
N, * Xio 0 Gl v >0 (22
Ni « % ’YooI DZ:i Ni ( )
* * * Yool

with X; = X(p;) and X/ = X(p!) where p;,i = 1,..., Z
are the frozen grid points, with parameter variation at
each grid point bounded as defined by (9) with vertexes

pl.j=1,..,2" and Nay = ker([0 BL, DT, 0]), Ny; =
ker([0 Cy; Fyi 0]).

Then, there exists a SOF control law u(k) = K(p)y(k)
such that Il\MI‘\
LMI minimization problem for 7, is still an LMI problem
with variables v.,, X and G.

< Yoo- If the optimal 7., is required, the

Proof: Considering a static-output-feedback control law
u(k) = K(p)y(k), system (19) can be rewritten as (1) with
Alp) = ( ) + Bu(p) K (p)Cy(p)
B(p) = Buw(p) + Bu(p)K(p)Fu(p)
C(p) = C:(p) + Du(p) K (p)Cy(p)
D(p) = Duw(p) + Du(p)K(p)Fu(p)

(23)



Substituting (23) in (3) the following condition is obtained:

0
B,
wip)+1ie | | g0 | K()[Cy(0)G 00 Fulp)] | >0
0
(24)
where
GT+G—-X(k+1) GTAPT GTC.(p)T 0
B * X (k) 0 Buw(p)
V(p) = * * Yool Dw(g)
* * * Yoo I
(25)

Additionally, substituting (23) in (4) the following condi-
tion is obtained:

G"B.(p)
P(p) + He O | K0 [0 Cylp) Fulp) 01| >0
Du(p)
(26)
where
GT +G—-X(k+1) GTA(p) GTBw(p) 0
_ * X (k) 0 C:(p)"
(I)(p) - * * 'YooI Dw(p)T
* * * Yool

(27)

Making use of the Projection Lemma, conditions (24) and
(26) are true if and only if the following four conditions
are also true

N (p)" W (p) N (p) > 0, (28)

N (p)" ¥ (p)N (p) > 0, (29)
Nat(p)T®(p)Nar (p) > 0, (30)

) N (p)"@(p)Nn(p) >0, (31)
Nut(p) = ker([0 Bu(p)" Du(p)" 0]),  (32)

N (p) = ker([Cy(p)G 0 0 Fy(p))), (33)

Nut(p) = ker([ BL(p)G 00 DI(p)]),  (34)

N (p) = ker([0 Cy(p) Fulp) 0]). (35)

However, due to the duality property between (3) and
(4), conditions (24) and (26) are likewise dual equivalent
conditions. As such, (28) and (30) as well as (31) and (29)
are respectively equivalent conditions. This means that the
SOF controller K(p) in (24) and (26) exists if and only if
both (28) and (31) hold true, while being able to ignore
inequalities (29) and (30).

As (28) and (30) are independent from the controller block,
they are LMI with variables X (p) and G, however, due
to parameter dependency theses LMI implies an infinite
number of LMI to be checked. As discussed in Section 3,
considering a grid of frozen values p; across the considered
space for the varying parameter vector p, (28) and (30)
can be transformed into a finite number of LMIs to be
considered where each grid point p; is bounded by a
polytope due to parameter variation and each vertex of
this polytope is defined as p]. Applying this discrete-time
gridding approach, (28) and (30) are transformed into (21)
and (22) respectively. This concludes the proof. B

5. CONTROLLER RECONSTRUCTION

The two propositions introduced in Sect. 4 give conditions
to prove the existence of either SF or SOF controllers
respectively. However, it does not provide any mean to
compute the controller itself. A second step is thus re-
quired. Note that if the LMI problem presented in Propo-
sition 1 or Proposition 2 is feasible, one will find suitable
matrices X (p)* and G* that prove the existence of the
controller, with subscript * indicating that the numerical
values of these matrices are known. Knowing X (p)* and
G*, notice that condition (15) as well as (24) are now LMI
conditions with the controller matrix K(p) as the only
unknown variable.

Exploiting this fact, the following corollaries formalize the
steps to follow to achieve the controller reconstruction
after successful results obtained from the application of
Proposition 1 and Proposition 2, respectively.

Remark 3. In the following corollaries it is assumed the
controller K (p) has a similar parameter dependent struc-
ture as the Lyapunov matrix in (6), that is:

N
K(p(k)) =Y n(p(k) K,
n=1

However, note that it is not required that the parameter
dependent controller K (p) and the parameter dependent
Lyapunov matrix X(p) share identical basis functions
On(p)-

Corollary 1. (SF Controller Reconstruction). Given a pos-
itive scalar 7o, and matrices X (p)* and G*, substituting
(14) in (3) leads to the following LMI problem with K (p)
as the only unknown variable.

(36)

0
U7 + He g"? K;[G"000]]| >0, (37)
0
V(Puﬂ{)

If this LMI problem is feasible, the solution are the
matrices K, of the SF controller K(p).

Corollary 2. (SOF Controller Reconstruction). Given a
positive scalar 7., and matrices X (p)* and G*, substitut-
ing (23) in (3) leads to the following LMI problem with
K (p) as the only unknown variable.
0
U7 4 He ul

ur

0

Ki[CuiG 00 Fui]| >0, (38)

olies

V(pi: pl)
If this LMI problem is feasible, the solution are the
matrices K,, of the SOF controller K(p).

6. ILLUSTRATIVE EXAMPLE

In this section, the design of SF and SOF controllers is
carried out for lateral steering control of an autonomous
vehicle. To show the performance of the computed con-
trollers a high-speed path tracking simulation example is
given.

The vehicle used as reference in this illustrative example
is a Renault Megane full car model, and the parameters



used in this section have been introduced in (Poussot-
Vassal et al. (2011); Fergani (2014)). Additionally, (Fer-
gani (2014)) also details the nonlinear dynamics used for
vehicle simulation.

6.1 LPV SF Controller Design

The control objective is to track an externally provided
yaw rate reference 1),y while minimizing the control effort
and attenuating the effect of noise disturbances n on
the v measurement, the generation of said reference is
outside the scope of this work. The considered general
plant interconnection for the induced Ls-norm synthesis
problem is shown in Fig. 2.

P(vy)
1/)7"6]‘ : + Wp éze
d G(vy) L4

Wu Zu,

n

Fig. 2. LPV/H scheme used for control design.

The system G(v,) represents the lateral dynamics of the
vehicle, given by the well-known bicycle model

C(xf + Cow‘ C(yfl_f - Cow‘lr
= vy — —
il mug o, mus 9
¥ B Caflf — Carly Caflf + Carlr P
I vy I vy (39)

Car
+ C(::cblf §
I,

Notice that G(v,), and thus P(v,), are LPV systems with
the longitudinal velocity v, as a varying parameter.

To impose tracking performances, the weighting function
We is given by a first-order LTI system with:

e Inputs: yaw rate error e, € R.
o States: x, € R
o Qutput: tracking performance output z. € R

To limit actuator bandwidth and the actuator gain, the
weight W, is given by a first-order LTT system with:

e Inputs: steering action 4.
o States: x, € R
e Qutput: actuator performance output z, € R

Note that G(v;) as given in (39) is a continuous-time
model, in order to obtain a discrete-time grid-based rep-
resentation of P(v.), multiple frozen values of v, are
considered. At each frozen grid point v,,, G(vg,) is then
discretized with a sampling time Ts = 0.01s. For the
discretization of G(v,,), the exact zero-order-hold dis-
cretization method is used, while the weighting functions
are discretized employing the Tustin transform. After all
systems have been discretized at each grid point, the
point-wise generalized plant interconnection P(v,,) can be
obtained.

The frozen values for the varying parameter v, are in
the range 15m/s to 35m/s and the considered bound on
parameter variation v = 5m/s?, with a coarse gridding by
considering an interval between grid points of only 0.1m/s.
This amounts to a total of 201 grid points.

Finally, the considered Lyapunov matrix X(v,) in the
PDLF is:

1
X(’Ux) = X1 + UxXQ + vag

x

(40)

For the SF controller design, Proposition 1 is proven to be
feasible, with an optimal upper bound on the closed-loop
induced Ls-norm of the system of v,, = 0.667.

The reconstruction of the SF control law, given by
(k) = Ky (va)a (k) (41)

with z being the full-state vector of the generalized plant
P(vg):

L T

‘T:[ywmexu] ) (42)

is obtained following Corollary 1, imposing the following
structure on the controller:

1
Ky(vy) = Ky + 0Ky, + U—ng (43)

Notice that despite considering 201 grid points, the second
LMI optimization problem has only three decision vari-
ables, one for each of the K, controller matrices in (43).
Moreover, for implementation, with the varying parameter
v, known at each sampling instance, the controller can be

computed directly according to the imposed parametriza-
tion on K, (vy).

6.2 LPV SOF Controller Design

The control design for the SOF controller is similar to
the one seen for the SF control design case, with the
control performances enforced employing the generalized
plant P(v,) given in Fig. 2. For the SOF controller case,
the lateral velocity g is not available for feedback, so the
measured outputs are given as:

0100 01
mewm+mmzbm1ﬁmm+oﬂww
0001 00

= [’(/}""nqje xu}T
(44)

Proposition 2 is proven to be feasible, with an optimal
upper bound on the closed-loop induced Ls-norm of the
system of v, = 0.835.

With the aim of computing a control law given by
6(k) = Ky(va)y(k), (45)
the controller reconstruction is then carried according

to Corollary 2, imposing the following structure on the
controller:

1
Ky(vx) = Ky, + v, Ky, + ;K% (46)

6.3 Time Domain Simulation

To assess the performance of the designed controllers in
the time domain, a path tracking simulation is performed.



The reference path is based on the first sector from
the racing circuit of Montmelé in Barcelona. A white
noise have been injected in the yaw rate w measurement
signal, simulating a sensor noise of zero mean and 1.48
[deg] standard deviation. Two simulation scenarios are
compared, where the only difference is the considered
steering controller, referenced in the following as SF case
or SOF case, respectively. In both scenarios, the vehicle
shares the same longitudinal speed v, profile, which is
available for the controller at each sampling instance as
the varying parameter, shown in Fig. 3.

15 . . . . . .
0 10 20 30 40 50 60 70 80

Time [s]

Fig. 3. Varying parameter v, profile.

Figure 4 shows the desired reference trajectory (in blue)
and for the SF (in red) and SOF (in yellow) cases the
actual achieved trajectory. From these results, we can
see that in terms of trajectory tracking both controllers
perform fairly similar. As observed, the vehicle manages
to achieve an almost perfect tracking of the reference track
in both scenarios.

150 F = ‘ ‘ e
) /\ Reference Track
-200 \ —SF Case
250 | SOF Case
-300 | /
T -350 - /
= 400
-450 |
-500 L N
\
-550 | \ N
-600 | .
——
650 L ‘ ‘ ‘ ‘ ‘
-700 -600 -500 -400 -300 -200 -100
X [m]

Fig. 4. Reference and followed paths by the vehicle in SF
and SOF scenarios.

Fig. 5 presents the controller command § for the SF (top)
and for the SOF (bottom) cases, respectively. In both
cases, the controller steering action is very similar for
the most part. The most noticeable difference is that the
SOF controller ensures a reduction of the effect of sensor
noises on the controller command. This improvement can
be attributed to the fact that the SOF control synthesis
method based on Proposition 2 allows to account for
disturbances in the feedback signal y(k). This translates to
an improvement of the controller in practice, even though
the theoretical induced Lo-norm performance is degraded
with respect to the state-feedback case.

SF Case
sk |
- i
sl v |
0 1‘0 2‘0 3‘0 4‘0 5‘0 8‘0 7‘0 80
Time [s]

SOF Case

d [deg]

0 10 20 % 4 s 6 70 8
Time [s]

Fig. 5. Controller command ¢ fot the SF and SOF case.

7. CONCLUSION

In this work, a synthesis method has been proposed for
the computation of parametric State-Feedback and Static-
Output-Feedback controllers for discrete-time Linear Pa-
rameter Varying systems under induced Ly performances.
Arguably this method could be more conservative than
state of the art LPV synthesis results based on point-
wise controller variables. However, the major benefit of
this approach is the ease of implementation effort for the
obtained parametric controller as the real-time applied
control law does not requires any interpolation step. This
was showcased on an illustrative example for a lateral
steering control problem based on a realistic vehicle simu-
lation. Despite the fact that the presented design examples
were based on coarse gridding approach, with 201 frozen
grid values on the considered varying parameter range, the
controller implementation still remained simple, while at
the same time both parametric SF and SOF controllers
achieved great performance.

In future works it is expected to validate the proposed
parametric control synthesis method in a real platform
and offer a comparison with recent LPV controllers syn-
thesis results, which require for real-time implementation
the interpolation of point-wise controllers. Additionally it
should be studied the effect of the number of considered
frozen grid-points on the obtained controller. Whereas an
interesting extension is the design of Dynamic-Output-
Feedback controllers.
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