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Abstract: This work presents a two-step LMI-based approach for the synthesis of State-
Feedback and Static-Output-Feedback controllers for discrete-time Linear Parameter Varying
systems. The benefit of the proposed approach lies on the fact that the two-step LMI method
allows to enforce a common parametric structure on the controller for all the parameter space.
This results in a final controller implementation that does not requires any interpolation step
and thus, is of easy implementation. An illustrative example is given for an autonomous vehicle
steering control design case.

Keywords: Stability and stabilization, LPV H∞ Control, Automotive Dynamics.

1. INTRODUCTION

In this work we propose a two-step LMI optimization prob-
lem to achieve the synthesis of parametric State-Feedback
(SF) and Static-Output-Feedback (SOF) controllers for
discrete-time Linear Parameter Varying (LPV) systems.
Such an strategy was first introduced for the synthesis of
LTI controllers in (Gahinet and Apkarian, 1994). In this
work we translate those results to the SF and SOF cases
and with the use of Parameter Dependent Lyapunov Func-
tions (PDLF) and gridding approaches it is here extended
for discrete-time LPV systems.

The first LMI optimization step allows to prove the fea-
sibility of the SF or SOF design, respectively. Then, the
second step is an LMI optimization problem for controller
reconstruction, with the controller matrices as the only
LMI variables to be found. This can then be exploited to
impose a parameter dependent structure directly on the
controller structure without requiring a change of variables
to obtain LMI conditions.

For standard LPV feedback approaches, e.g. as in Poly-
topic LPV: (Apkarian et al. (1995)), Polyquadratic LPV:
(Daafouz and Bernussou (2001); De Caigny et al. (2010)),
Grid-Based LPV: (Wu et al. (1996)), . . . , the online im-
plementation of the controller requires an interpolation of
point-wise controllers. For complex systems, with a large
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number of varying parameters, this interpolation can be
quite cumbersome as the number of point-wise controllers
increases exponentially with the number of parameters.
The main contribution of the approach presented in this
paper comes from the ease of implementation of the LPV
controller. If the proposed parametric controller exists, its
implementation is then self scheduled based on the im-
posed parameter dependent structure, without requiring
an online interpolation and independent of the number of
grid points considered.

The paper is organized as follows. Section 2 presents some
well-known results from the literature. Section 3 describes
the proposed discrete-time LPV grid based approach.
Sections 4 and 5 deal with the LMI synthesis conditions
and controller reconstruction steps respectively. Section 6
presents an illustrative example of an autonomous vehicle
steering control design. Finally, in Section 7, conclusions
are drawn and futures perspectives are suggested.

The paper notation is the following. ∥·∥2 represents the L2-
norm. xT represents the transpose of x. X−1 represents
the inverse of X, matrix X > 0 represents that X is
symmetric positive-definite, X = ker(X) represents that
X is a base of the null space of X, for simplification
He(X)= X +XT and ⋆ in an LMI represents a symmetric
element transposed.

2. USEFUL LITERATURE RESULT

Consider the discrete-time system:

M :

{
x(k + 1) = Ax(k) + Bw(k)
z(k) = Cx(k) +Dw(k) (1)



where x ∈ Rnx is the state vector, u ∈ Rnu are the
control inputs, w ∈ Rnw is the vector of exogenous inputs
with bounded energy such that w ∈ L2 and z ∈ Rnz

are the output control performances. The upper bound
on the induced L2-norm, generalization of the H∞ norm,
of the system M can be computed making use of the
discrete-time Bounded-Real-Lemma (BRL), presented in
the following.

Lemma 1. (Extended Discrete-Time BRL). [De Caigny et al.
(2010); Hilhorst et al. (2014)] Given a discrete-time system
M and a positive scalar value γ∞, then the following three
statements are equivalent:

1.

sup
w(k)̸=0

∥z(k)∥2
∥w(k)∥2

≤ γ∞ (2)

2. G
T +G−X(k + 1) GTAT GTCT 0

⋆ X(k) 0 B
⋆ ⋆ γ∞I D
⋆ ⋆ ⋆ γ∞I

 > 0 (3)

3. 
GT +G−X(k + 1) GTA GTB 0

⋆ X(k) 0 CT
⋆ ⋆ γ∞I DT

⋆ ⋆ ⋆ γ∞I

 > 0 (4)

where X(k) ∈ Rnx×nx , X(k) > 0, and G ∈ Rnx×nx is a
slack variable.

3. DISCRETE-TIME PARAMETER DEPENDENT
LYAPUNOV FUNCTIONS

Let us consider a discrete-time LPV system

x(k + 1) = A(ρ)x(k), (5)

where ρ ∈ Rm is a vector of m varying parameters. Let
us consider parameter dependent Lyapunov matrices with
the following structure:

X(ρ(k)) =

N∑
n=1

θn(ρ(k))Xn, (6)

such that θn(ρ(k)) ∈ R form the basis function, Xn

are constant symmetric matrices and N determines the
length of the basis function. Given the associated PDLF
V (x, ρ) ∈ R:

V (x, ρ) = x(k)TX(ρ(k))x(k), (7)

the stability condition according to Lyapunov theory for
(5) leads to:

A(ρ(k))TX(ρ(k + 1))A(ρ(k))−X(ρ(k)) < 0 (8)

By considering a PDLF both ρ(k) and ρ(k+1) are present
on the LMI condition. As it is standard practice in LPV
theory, the value of ρ(k) is assumed to be known, however,
the exact future value ρ(k+1) is usually unknown. Never-
theless, if the maximum parameter variation between two
sample instances ν ∈ Rm is known, then, it is possible to
define a min-max polytope box with j = 1, . . . , 2m vertexes
such that it bounds ρ(k + 1) as:

ρ(k + 1) ∈ [ρ(k)− ν, ρ(k) + ν] (9)

Furthermore, condition (8) imposes an infinite number of
LMI conditions to be checked due to the infinite possible

values of the varying parameter vector ρ. To deal with
this issue, let us consider a frozen grid on the parameter
space with i = 1, . . . , Z grid points, such that for each grid
point i the value of the frozen varying parameter vector is
defined as ρi.

Let us combine this gridding approach on the parameter
space of ρ ∈ Rm and bounds on ρ(k + 1) by the known
maximum parameter variation ν ∈ Rm. Then, for each of
the considered frozen grid points values ρi, the vertexes
of the polytope (9) that bounds the parameter variation

are defined as ρji , j = 1, . . . , 2m. Fig. 1 shows this grid
and bound approach for the case of a grid with m = 2
varying parameters. Note that the order of the ρji vertexes
is arbitrary.

Fig. 1. Parameter variation bounds ρji for the frozen grid
point ρi.

Using this discrete-time grid-based framework, (8) can be

recast as a finite set of LMIs such that ∀(ρi, ρji ):
ATi X

j
iAi −Xi < 0 (10)

where for simplification of the notation Xi = X(ρi),

Xj
i = X(ρji ) and A(ρi) = Ai. This framework is employed

in the following sections for the synthesis of discrete-time
LPV controllers.

Remark 1. Note that for the case when there is no param-
eter variation, e.g. ν = 0, then Xj

i = Xi, ∀(ρi, ρji ).

4. SF AND SOF CONTROLLER EXISTENCE
CONDITIONS

The main contributions of this work are presented here
and in the next section. First, two propositions are intro-
duced that prove the existence of SF and SOF controllers
respectively, for discrete-time LPV systems under induced
L2-norm performances.

4.1 H∞ State-Feedback Controller Existence

Let us consider the following discrete-time LPV system:

N(ρ) :

{
x(k + 1) = A(ρ)x(k) +Bu(ρ)u(k) +Bw(ρ)w(k)

z(k) = Cz(ρ)x(k) +Du(ρ)u(k) +Dw(ρ)w(k)
(11)

where x ∈ Rnx is the state vector, u ∈ Rnu are the control
inputs, w ∈ Rnw are the exogenous inputs with bounded



energy such that w ∈ L2 and z ∈ Rnz are the exogenous
outputs. ρ ∈ Rm is the vector of varying parameters.

The following proposition provides sufficient conditions
to prove the existence of a feasible SF controller u(k) =

K(ρ)x(k) such that ∥z∥2

∥w∥2
is minimized.

Remark 2. The following proposition is actually given con-
sidering the way in which the LMI problem is formulated
for computation. However, note that the proof is carried
out as it should be theoretically, so for all ρ. This remark
is also valid for Proposition 2.

Proposition 1. Given a positive scalar γ∞ and a discrete-
time LPV system N(ρ), if there exist matrices X(ρ) > 0,
with X(ρ) ∈ Rnx×nx , and G ∈ Rnx×nx such that the

following LMI problem is feasible ∀(ρi, ρji ):

Xi > 0, Xj
i > 0 (12)

N T
Mi

G
T +G−Xj

i G
TATi GTCTzi 0

⋆ Xi 0 Bwi
⋆ ⋆ γ∞I Dwi

⋆ ⋆ ⋆ γ∞I

NMi > 0

(13)

with Xi = X(ρi) and Xj
i = X(ρji ) where ρi, i = 1, ..., Z

are the frozen grid points, with parameter variation at
each grid point bounded as defined by (9) with vertexes

ρji , j = 1, ..., 2m, and NMi = ker(
[
0 BTui D

T
ui 0

]
).

Then, there exists a state-feedback control law u(k) =

K(ρ)x(k) such that ∥z∥2

∥w∥2
≤ γ∞. If the optimal γ∞ is

required, the LMI minimization problem for γ∞ is still
an LMI problem with variables γ∞, X and G.

Proof : Considering a state-feedback control law u(k) =
K(ρ)x(k), system (11) can be rewritten as (1) with

A(ρ) = A(ρ) +Bu(ρ)K(ρ) , B(ρ) = Bw(ρ)

C(ρ) = Cz(ρ) +Du(ρ)K(ρ) , D(ρ) = Dw(ρ)
(14)

Substituting (14) in (3) the following condition is obtained:

Ψ(ρ) + He


 0
Bu(ρ)
Du(ρ)

0

K(ρ) [G 0 0 0 ]

 > 0 (15)

where

Ψ(ρ) =

 GT +G−X(k + 1) GTA(ρ)T GTCz(ρ)
T 0

⋆ X(k) 0 Bw(ρ)
⋆ ⋆ γ∞I Dw(ρ)
⋆ ⋆ ⋆ γ∞I


(16)

Note that (15) is not an LMI due do the multiplication of
the controller matrix K(ρ) and the slack variable matrix
G. However, thanks to the Projection Lemma, condition
(15) is equivalent to the following conditions, which are
independent of the controller matrix.

NM (ρ)TΨ(ρ)NM (ρ) > 0, (17)

N T
NΨ(ρ)NN > 0. (18)

With NN = ker([G 0 0 0 ]), condition (18) leads to the
trivial condition X(k) > 0 and can thus be discarded
for controller design. Condition (17) is independent of the
controller and is thus an LMI with variables X(ρ) and G,
and with NM (ρ) = ker(

[
0 Bu(ρ)

T Du(ρ)
T 0

]
).

Condition (17) implies an infinite number of LMI to be
checked due to the dependency on the varying parameter.
Following the grid-based approach discussed in Sect. 3,
(17) can be transformed into a finite number of LMIs
to be considered where each grid point ρi is bounded by
a polytope due to parameter variation and each vertex
of this polytope is defined as ρji . Applying this discrete-
time gridding approach, (17) is transformed into (13). This
concludes the proof. ■

4.2 H∞ Static-Output-Feedback Controller Existence

Let us consider now the following discrete-time LPV
system:

N(ρ) :


x(k + 1) = A(ρ)x(k) +Bu(ρ)u(k) +Bw(ρ)w(k)

z(k) = Cz(ρ)x(k) +Du(ρ)u(k) +Dw(ρ)w(k)

y(k) = Cy(ρ)x(k) + Fw(ρ)w(k)
(19)

where x ∈ Rnx is the state vector, u ∈ Rnu are the control
inputs, w ∈ Rnw are the exogenous inputs with bounded
energy such that w ∈ L2, z ∈ Rnz are the exogenous
outputs and y ∈ Rny are the measured outputs. ρ ∈ Rm is
the vector of varying parameters.

In this case, a SOF control law u(k) = K(ρ)y(k) is synthe-
sized to get induced L2-norm performances in closed-loop,

i.e. such that ∥z∥2

∥w∥2
is minimized. The following proposition

provides sufficient conditions to prove the existence of a
feasible SOF controller K(ρ).

Proposition 2. Given a positive scalar γ∞ and a discrete-
time LPV system N(ρ), if there exist matrices X(ρ) > 0,
with X(ρ) ∈ Rnx×nx , and G ∈ Rnx×nx such that the

following LMI problem is feasible ∀(ρi, ρji ):
Xi > 0, Xj

i > 0 (20)

N T
Mi

G
T +G−Xj

i G
TATi GTCTzi 0

⋆ Xi 0 Bwi
⋆ ⋆ γ∞I Dwi

⋆ ⋆ ⋆ γ∞I

NMi > 0

(21)

N T
Ni


GT +G−Xj

i G
TAi G

TBwi 0
⋆ Xi 0 CTzi
⋆ ⋆ γ∞I DT

wi
⋆ ⋆ ⋆ γ∞I

NNi > 0 (22)

with Xi = X(ρi) and Xj
i = X(ρji ) where ρi, i = 1, ..., Z

are the frozen grid points, with parameter variation at
each grid point bounded as defined by (9) with vertexes

ρji , j = 1, ..., 2m, and NMi = ker(
[
0 BTui D

T
ui 0

]
), NNi =

ker([ 0 Cyi Fwi 0 ]).

Then, there exists a SOF control law u(k) = K(ρ)y(k)

such that ∥z∥2

∥w∥2
≤ γ∞. If the optimal γ∞ is required, the

LMI minimization problem for γ∞ is still an LMI problem
with variables γ∞, X and G.

Proof : Considering a static-output-feedback control law
u(k) = K(ρ)y(k), system (19) can be rewritten as (1) with

A(ρ) = A(ρ) +Bu(ρ)K(ρ)Cy(ρ)

B(ρ) = Bw(ρ) +Bu(ρ)K(ρ)Fw(ρ)

C(ρ) = Cz(ρ) +Du(ρ)K(ρ)Cy(ρ)

D(ρ) = Dw(ρ) +Du(ρ)K(ρ)Fw(ρ)

(23)



Substituting (23) in (3) the following condition is obtained:

Ψ(ρ) + He


 0
Bu(ρ)
Du(ρ)

0

K(ρ) [Cy(ρ)G 0 0 Fw(ρ) ]

 > 0

(24)
where

Ψ(ρ) =

 GT +G−X(k + 1) GTA(ρ)T GTCz(ρ)
T 0

⋆ X(k) 0 Bw(ρ)
⋆ ⋆ γ∞I Dw(ρ)
⋆ ⋆ ⋆ γ∞I


(25)

Additionally, substituting (23) in (4) the following condi-
tion is obtained:

Φ(ρ) + He


G

TBu(ρ)
0
0

Du(ρ)

K(ρ) [ 0 Cy(ρ) Fw(ρ) 0 ]

 > 0

(26)
where

Φ(ρ) =

 GT +G−X(k + 1) GTA(ρ) GTBw(ρ) 0

⋆ X(k) 0 Cz(ρ)
T

⋆ ⋆ γ∞I Dw(ρ)
T

⋆ ⋆ ⋆ γ∞I


(27)

Making use of the Projection Lemma, conditions (24) and
(26) are true if and only if the following four conditions
are also true

NM (ρ)TΨ(ρ)NM (ρ) > 0, (28)

ÑN (ρ)TΨ(ρ)ÑN (ρ) > 0, (29)

ÑM (ρ)TΦ(ρ)ÑM (ρ) > 0, (30)

NN (ρ)TΦ(ρ)NN (ρ) > 0, (31)

where

NM (ρ) = ker(
[
0 Bu(ρ)

T Du(ρ)
T 0

]
), (32)

ÑN (ρ) = ker([Cy(ρ)G 0 0 Fw(ρ) ]), (33)

ÑM (ρ) = ker(
[
BTu (ρ)G 0 0 DT

u (ρ)
]
), (34)

NN (ρ) = ker([ 0 Cy(ρ) Fw(ρ) 0 ]). (35)

However, due to the duality property between (3) and
(4), conditions (24) and (26) are likewise dual equivalent
conditions. As such, (28) and (30) as well as (31) and (29)
are respectively equivalent conditions. This means that the
SOF controller K(ρ) in (24) and (26) exists if and only if
both (28) and (31) hold true, while being able to ignore
inequalities (29) and (30).

As (28) and (30) are independent from the controller block,
they are LMI with variables X(ρ) and G, however, due
to parameter dependency theses LMI implies an infinite
number of LMI to be checked. As discussed in Section 3,
considering a grid of frozen values ρi across the considered
space for the varying parameter vector ρ, (28) and (30)
can be transformed into a finite number of LMIs to be
considered where each grid point ρi is bounded by a
polytope due to parameter variation and each vertex of
this polytope is defined as ρji . Applying this discrete-time
gridding approach, (28) and (30) are transformed into (21)
and (22) respectively. This concludes the proof. ■

5. CONTROLLER RECONSTRUCTION

The two propositions introduced in Sect. 4 give conditions
to prove the existence of either SF or SOF controllers
respectively. However, it does not provide any mean to
compute the controller itself. A second step is thus re-
quired. Note that if the LMI problem presented in Propo-
sition 1 or Proposition 2 is feasible, one will find suitable
matrices X(ρ)∗ and G∗ that prove the existence of the
controller, with subscript ∗ indicating that the numerical
values of these matrices are known. Knowing X(ρ)∗ and
G∗, notice that condition (15) as well as (24) are now LMI
conditions with the controller matrix K(ρ) as the only
unknown variable.

Exploiting this fact, the following corollaries formalize the
steps to follow to achieve the controller reconstruction
after successful results obtained from the application of
Proposition 1 and Proposition 2, respectively.

Remark 3. In the following corollaries it is assumed the
controller K(ρ) has a similar parameter dependent struc-
ture as the Lyapunov matrix in (6), that is:

K(ρ(k)) =
N∑
n=1

θn(ρ(k))Kn (36)

However, note that it is not required that the parameter
dependent controller K(ρ) and the parameter dependent
Lyapunov matrix X(ρ) share identical basis functions
θn(ρ).

Corollary 1. (SF Controller Reconstruction). Given a pos-
itive scalar γ∞ and matrices X(ρ)∗ and G∗, substituting
(14) in (3) leads to the following LMI problem with K(ρ)
as the only unknown variable.

Ψ∗
i +He


 0
Bui
Dui

0

Ki [G
∗ 0 0 0 ]

 > 0, (37)

∀(ρi, ρji )
If this LMI problem is feasible, the solution are the
matrices Kn of the SF controller K(ρ).

Corollary 2. (SOF Controller Reconstruction). Given a
positive scalar γ∞ and matrices X(ρ)∗ and G∗, substitut-
ing (23) in (3) leads to the following LMI problem with
K(ρ) as the only unknown variable.

Ψ∗
i +He


 0
Bui
Dui

0

Ki [CyiG
∗ 0 0 Fwi ]

 > 0, (38)

∀(ρi, ρji )
If this LMI problem is feasible, the solution are the
matrices Kn of the SOF controller K(ρ).

6. ILLUSTRATIVE EXAMPLE

In this section, the design of SF and SOF controllers is
carried out for lateral steering control of an autonomous
vehicle. To show the performance of the computed con-
trollers a high-speed path tracking simulation example is
given.

The vehicle used as reference in this illustrative example
is a Renault Megane full car model, and the parameters



used in this section have been introduced in (Poussot-
Vassal et al. (2011); Fergani (2014)). Additionally, (Fer-
gani (2014)) also details the nonlinear dynamics used for
vehicle simulation.

6.1 LPV SF Controller Design

The control objective is to track an externally provided
yaw rate reference ψ̇ref while minimizing the control effort
and attenuating the effect of noise disturbances n on
the ψ̇ measurement, the generation of said reference is
outside the scope of this work. The considered general
plant interconnection for the induced L2-norm synthesis
problem is shown in Fig. 2.

Fig. 2. LPV/H∞ scheme used for control design.

The system G(vx) represents the lateral dynamics of the
vehicle, given by the well-known bicycle model[

ÿ

ψ̈

]
=

 −
Cαf + Cαr

mvx
−vx −

Cαf lf − Cαrlr

mvx

−
Cαf lf − Cαrlr

Izvx
−
Cαf l

2
f

+ Cαrl
2
r

Izvx

[
ẏ

ψ̇

]
+

[
Cαf

m
Cαf lf

Iz

]
δ

(39)

Notice that G(vx), and thus P (vx), are LPV systems with
the longitudinal velocity vx as a varying parameter.

To impose tracking performances, the weighting function
We is given by a first-order LTI system with:

• Inputs: yaw rate error eψ̇ ∈ R.
• States: xe ∈ R
• Output: tracking performance output ze ∈ R

To limit actuator bandwidth and the actuator gain, the
weight Wu is given by a first-order LTI system with:

• Inputs: steering action δ.
• States: xu ∈ R
• Output: actuator performance output zu ∈ R

Note that G(vx) as given in (39) is a continuous-time
model, in order to obtain a discrete-time grid-based rep-
resentation of P (vx), multiple frozen values of vx are
considered. At each frozen grid point vxi , G(vxi) is then
discretized with a sampling time Ts = 0.01s. For the
discretization of G(vxi), the exact zero-order-hold dis-
cretization method is used, while the weighting functions
are discretized employing the Tustin transform. After all
systems have been discretized at each grid point, the
point-wise generalized plant interconnection P (vxi) can be
obtained.

The frozen values for the varying parameter vx are in
the range 15m/s to 35m/s and the considered bound on
parameter variation ν = 5m/s2, with a coarse gridding by
considering an interval between grid points of only 0.1m/s.
This amounts to a total of 201 grid points.

Finally, the considered Lyapunov matrix X(vx) in the
PDLF is:

X(vx) = X1 + vxX2 +
1

vx
X3 (40)

For the SF controller design, Proposition 1 is proven to be
feasible, with an optimal upper bound on the closed-loop
induced L2-norm of the system of γ∞ = 0.667.

The reconstruction of the SF control law, given by

δ(k) = Kx(vx)x(k) (41)

with x being the full-state vector of the generalized plant
P (vx):

x =
[
ẏ ψ̇ xe xu

]T
, (42)

is obtained following Corollary 1, imposing the following
structure on the controller:

Kx(vx) = Kx1
+ vxKx2

+
1

vx
Kx3

(43)

Notice that despite considering 201 grid points, the second
LMI optimization problem has only three decision vari-
ables, one for each of the Kxn

controller matrices in (43).
Moreover, for implementation, with the varying parameter
vx known at each sampling instance, the controller can be
computed directly according to the imposed parametriza-
tion on Kx(vx).

6.2 LPV SOF Controller Design

The control design for the SOF controller is similar to
the one seen for the SF control design case, with the
control performances enforced employing the generalized
plant P (vx) given in Fig. 2. For the SOF controller case,
the lateral velocity ẏ is not available for feedback, so the
measured outputs are given as:

y(k) = Cyx(k) + Fw(k) =

[
0 1 0 0
0 0 1 0
0 0 0 1

]
x(k) +

[
0 1
0 0
0 0

]
w(k)

=
[
ψ̇ + n xe xu

]T
(44)

Proposition 2 is proven to be feasible, with an optimal
upper bound on the closed-loop induced L2-norm of the
system of γ∞ = 0.835.

With the aim of computing a control law given by

δ(k) = Ky(vx)y(k), (45)

the controller reconstruction is then carried according
to Corollary 2, imposing the following structure on the
controller:

Ky(vx) = Ky1 + vxKy2 +
1

vx
Ky3 (46)

6.3 Time Domain Simulation

To assess the performance of the designed controllers in
the time domain, a path tracking simulation is performed.



The reference path is based on the first sector from
the racing circuit of Montmeló in Barcelona. A white
noise have been injected in the yaw rate ψ̇ measurement
signal, simulating a sensor noise of zero mean and 1.48
[deg] standard deviation. Two simulation scenarios are
compared, where the only difference is the considered
steering controller, referenced in the following as SF case
or SOF case, respectively. In both scenarios, the vehicle
shares the same longitudinal speed vx profile, which is
available for the controller at each sampling instance as
the varying parameter, shown in Fig. 3.

0 10 20 30 40 50 60 70 80

15

20
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30

35

40

Fig. 3. Varying parameter vx profile.

Figure 4 shows the desired reference trajectory (in blue)
and for the SF (in red) and SOF (in yellow) cases the
actual achieved trajectory. From these results, we can
see that in terms of trajectory tracking both controllers
perform fairly similar. As observed, the vehicle manages
to achieve an almost perfect tracking of the reference track
in both scenarios.
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Fig. 4. Reference and followed paths by the vehicle in SF
and SOF scenarios.

Fig. 5 presents the controller command δ for the SF (top)
and for the SOF (bottom) cases, respectively. In both
cases, the controller steering action is very similar for
the most part. The most noticeable difference is that the
SOF controller ensures a reduction of the effect of sensor
noises on the controller command. This improvement can
be attributed to the fact that the SOF control synthesis
method based on Proposition 2 allows to account for
disturbances in the feedback signal y(k). This translates to
an improvement of the controller in practice, even though
the theoretical induced L2-norm performance is degraded
with respect to the state-feedback case.
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Fig. 5. Controller command δ fot the SF and SOF case.

7. CONCLUSION

In this work, a synthesis method has been proposed for
the computation of parametric State-Feedback and Static-
Output-Feedback controllers for discrete-time Linear Pa-
rameter Varying systems under induced L2 performances.
Arguably this method could be more conservative than
state of the art LPV synthesis results based on point-
wise controller variables. However, the major benefit of
this approach is the ease of implementation effort for the
obtained parametric controller as the real-time applied
control law does not requires any interpolation step. This
was showcased on an illustrative example for a lateral
steering control problem based on a realistic vehicle simu-
lation. Despite the fact that the presented design examples
were based on coarse gridding approach, with 201 frozen
grid values on the considered varying parameter range, the
controller implementation still remained simple, while at
the same time both parametric SF and SOF controllers
achieved great performance.

In future works it is expected to validate the proposed
parametric control synthesis method in a real platform
and offer a comparison with recent LPV controllers syn-
thesis results, which require for real-time implementation
the interpolation of point-wise controllers. Additionally it
should be studied the effect of the number of considered
frozen grid-points on the obtained controller. Whereas an
interesting extension is the design of Dynamic-Output-
Feedback controllers.
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