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Kidney transplant injury processes are associated with
molecular changes in kidney tissue, primarily related to
immune cell activation and infiltration. How these
processes are reflected in the circulating immune cells,
whose activation is targeted by strong
immunosuppressants, is poorly understood. To study this,
we analyzed the molecular alterations in 384 peripheral
blood samples from four European transplant centers,
taken at the time of a kidney allograft biopsy, selected for
their phenotype, using RNA-sequencing. In peripheral
blood, differentially expressed genes in 136 rejection and
248 no rejection samples demonstrated upregulation of
glucocorticoid receptor and nucleotide oligomerization
domain-like receptor signaling pathways. Pathways
enriched in antibody-mediated rejection (ABMR) were
strongly immune-specific, whereas pathways enriched in T
cell-mediated rejection were less immune related. In
polyomavirus infection, upregulation of mitochondrial
dysfunction and interferon signaling pathways was seen.
Next, we integrated the blood results with transcriptomics
of 224 kidney allograft biopsies which showed consistently
upregulated genes per phenotype in both blood and
biopsy. In single-cell RNASeq (scRNASeq) analysis of seven
kidney allograft biopsies, the consistently overexpressed
genes in ABMR were mostly expressed by infiltrating
leukocytes in the allograft. Similarly, in peripheral blood
Correspondence: Maarten Naesens, Department of Nephrology and Renal
Transplantation, University Hospitals Leuven, Herestraat 49, 3000 Leuven,
Belgium. E-mail: maarten.naesens@uzleuven.be

Received 28 September 2021; revised 7 March 2022; accepted 21 March
2022; published online 5 May 2022

Kidney International (2022) 102, 183–195
scRNASeq analysis, these genes were overexpressed in
ABMR in immune cell subtypes. Furthermore,
overexpression of these genes in ABMR was confirmed in
independent cohorts in blood and biopsy. Thus, our results
highlight the immune activation pathways in peripheral
blood leukocytes at the time of kidney allograft pathology,
despite the use of current strong immunosuppressants,
and provide a framework for future therapeutic
interventions.
Kidney International (2022) 102, 183–195; https://doi.org/10.1016/
j.kint.2022.03.026
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D espite excellent short-term outcomes of kidney trans-
plantation, allograft survival in the long term is still
hampered by transplant-specific diseases, most impor-

tantly allograft rejection and polyomavirus-associated ne-
phropathy.1–4 In kidney allograft rejection, graft-infiltrating
cells are activated primarily in lymphoid organs before trav-
eling and infiltrating the graft, despite the use of strong im-
munosuppressants.5 Apart from high-dose steroids and T
cell–depleting agents such as thymoglobulin, there is no suf-
ficiently efficacious therapy for rejection, partly because the
primary pathophysiological processes behind this immune
escape are poorly understood. In polyomavirus-associated ne-
phropathy, acquired immunodeficiency permits reactivation
of latent polyomavirus in the urinary tract epithelium and
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Table 1 | Characteristics of the patients and biopsies

Variable Value

Transplant characteristics
(N ¼ 365 patients)
Recipient age at transplantation, yr 49.3 � 15.5
Recipient age at time of biopsy, yr 51.9 � 14.6
Recipient sex (male/female) 217/148 (59.4/40.6)
Repeat transplantation 61 (16.7)
Recipient ethnicity (European/
Asian/African/other)a

309/6/11/36 (84.7/1.6/3.0/9.9)

Donor age, yra 49.5 � 16.5
Donor sex (male/female)a 169/182 (46.3/49.9)
Deceased/living donora 279/82 (76.4/22.5)
Heart-beating/non–heart-beating
donor

247/32 (67.7/8.8)

Cold ischemia time, ha 12.9 � 8.5
Biopsy characteristics
(N ¼ 384 biopsies)
Indication/protocol biopsy 141/243 (36.7/63.3)
Time after transplantation, d 361 (4 – 12,564)
Time after transplantation, yr

< 1 203 (52.9)
> 1 181 (47.1)

MDRD eGFR, (ml/min per 1.73 m2)
at biopsy

41.9 � 18.3

Proteinuria (g/g creatinine) at
biopsya

0.16 (0.0–8.0)

Immunosuppression at biopsy
Cyclosporine 38 (9.9)
Tacrolimus 323 (84.1)
Mycophenolate 54 (85.9)
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infection of kidney tubular epithelial cells, with direct viral
toxic effects on the cells and activation of an antiviral host
response, leading to tubulo-interstitial inflammatory infil-
trates in the graft.

In the past decade, transcriptional studies in kidney
transplant biopsies have improved our pathophysiological
insights into rejection. As immune cell infiltrates in the
graft tissue originate from immune activation outside the
kidneys (i.e., activation in lymphoid tissue), one hypothesis
is that molecular changes seen in kidney allografts at the
time of rejection or virus-associated nephropathy are also
present in circulating immune cells. We recently illustrated
the potential of identifying biologically relevant genes and
pathways in peripheral blood at the time of antibody-
mediated rejection.6

In this study, we used RNA-sequencing for whole
transcriptome screening in a set of peripheral blood sam-
ples selected for rejection and polyomavirus nephropathy,
and we compare this to the transcriptomics of heteroge-
neous control samples without these diseases. We hypoth-
esized that the transcriptional changes in peripheral blood
can unveil the key pathways activated in circulating pe-
ripheral blood immune cells in kidney transplant recipients,
despite the use of powerful immunosuppressants, facilitate
their noninvasive diagnosis, and provide potential targets
for new therapies.
Azathioprine 7 (1.8)
mTOR inhibitor 43 (11.2)
Corticosteroids 353 (91.9)
Otherb 14 (3.6)

Histologic diagnosis
Control biopsy (no rejection, no
PVAN)

227 (59.1)

T-cell mediated rejection (including
mixed)
Borderline changes 42 (10.9)
Grade 1 or 2 26 (6.8)
Histology of antibody-mediated
rejection (incl. mixed)

86 (22.4)

Mixed rejection 18 (4.7)
Interstitial fibrosis/tubular atrophy
grade

0 200 (52.1)
1 70 (18.2)
2 70 (18.2)
3 44 (11.5)

Polyomavirus-associated
nephropathy

21 (5.5)

Polyoma viremiaa 60 (15.6)

CIT, cold ischemia time; eGFR, estimated glomerular filtration rate; MDRD, modifi-
cation of diet in renal disease; mTOR, Mechanistic target of rapamycin;
PVAN, polyoma-virus associated nephropathy.
aDonor age missing in n¼12; CIT missing in n ¼ 14; proteinuria missing in n ¼ 5;
donor sex missing in n ¼ 14; ethnicity unknown in n ¼ 3; deceased/living unknown
in n ¼ 4; polyoma viremia missing in n ¼ 57.
bOther: belatacept (n ¼ 5) / eculizumab (n ¼ 9).
Values are mean (median) � SD (minimum – maximum), or n (%).
METHODS
Study design, patient population, and sample collection
Peripheral blood samples were selected from an existing biobank
prospectively collected as part of the BIOMARGIN (BIOMarkers of
Renal Graft Injuries, www.biomargin.eu, ClinicalTrials.gov,
NCT02832661) and ROCKET (Reclassification using OmiCs inte-
gration in KidnEy Transplantation) multicenter studies performed in
4 European transplant centers (Hôpital Necker, Paris, France; Uni-
versity Hospitals Leuven, Leuven, Belgium; Medizinische Hoch-
schule, Hannover, Germany, and Centre Hospitalier Universitaire
Limoges, Limoges, France). Samples were prospectively and
consecutively collected at the time of kidney allograft biopsies, be-
tween June 2011 and August 2016. In the 4 clinical centers, protocol
kidney allograft biopsies were performed at 3, 12, and sometimes 24
months after transplantation, according to local center practice, in
addition to clinically indicated biopsies (biopsies at the time of graft
dysfunction). All biopsies were used for histologic diagnosis ac-
cording to the Banff 2019 classification,7 whereas in some of the
concomitant biopsy samples (n ¼ 95), additional molecular analysis
was performed. Single-end, 50–base pair (bp) sequencing was per-
formed after RNA extraction and quality control of the peripheral
blood samples, at Genomics Core facility, KU Leuven, Leuven,
Belgium, using an Illumina HiSeq 4000 device, after library prepa-
ration using the Lexogen QuantSeq mRNA kit according to manu-
facturer instructions. Microarray gene expression data of 224 renal
allograft biopsy samples (including 95 matched samples) from the
same 4 European centers were available for data integration. Details
on sample collection, RNA extraction, and the microarray platform
used were published previously8 (Gene Expression Omnibus data-
base under the accession number GSE147089). Previously published
human single-cell data from 7 kidney allograft biopsies were used to
184
determine the corresponding cell types expressing the antibody-
mediated rejection (ABMR) genes observed in both blood and bi-
opsy. The associated raw counts or matrices were downloaded from
the Gene Expression Omnibus (GEO, GSE145927, https://www.ncbi.
Kidney International (2022) 102, 183–195
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nlm.nih.gov/geo)9 and the Kidney Precision Medicine Project
(https://atlas.kpmp.org/repository). Cell enrichment analysis was
performed using the xCell online tool, which is a computational
method used to investigate changes in cell distribution based on bulk
transcriptomic profiles. We validated the observed ABMR signals
obtained in this study in 2 independent publicly available datasets—
1 set of 403 biopsy samples (GSE36059), and 1 set of 16 blood
samples (GSE120649), with available rejection phenotyping. To
further explore the expression of the ABMR signals in the peripheral
blood leukocytes at the time of ABMR, scRNAseq analysis was
performed on 12 peripheral blood samples from 6 ABMR and 6
stable patients (4 with biopsy, 2 without biopsy) from Nantes Uni-
versity Hospital, Nantes, France.

Additional information on patient population, sample collec-
tion, RNA extraction, histologic diagnosis, RNA-sequencing and
differential gene expression, integration with biopsy microarray
data, validation in publicly available datasets, and single-cell
RNASeq experiments can be found in the Supplementary
Methods.

Statistical analysis
Variables with normal distribution are displayed as mean � SD.
Median and range are given for variables not normally distributed.
For variance analysis of xCell enrichment scores in different groups,
a 2-way analysis of variance was used. To correct for multiple testing,
a false discovery rate (FDR) correction was applied during differ-
ential gene expression and pathway analysis, and for comparison of
xCell enrichment scores. A 2-tailed FDR-corrected P value of <0.05
was considered significant for differentially expressed genes and
xCell enrichment scores, and an FDR-corrected P value of < 0.20
was considered significant for Ingenuity Pathway Analysis (IPA)
pathway analyses. For all other analyses, a 2-tailed nominal P value
of < 0.05 was considered statistically significant. R (version 4.0, R
Development Core Team), SAS (version 9.4; SAS Institute), and
GraphPad Prism (version 9; GraphPad Software) were used for data
analysis and presentation.

RESULTS
Patient and biopsy characteristics
From 365 patients, 384 peripheral blood samples taken at
the time of a concomitant allograft biopsy for genome-wide
expression analysis were included in a case–control study
design, as follows: 136 rejection cases (n ¼ 86 with his-
tology of ABMR [ABMRh], and n ¼ 68 with T cell–
mediated rejection [TCMR]; of which n ¼ 18 had
concomitant ABMRh and TCMR in the biopsy); 21
polyoma-virus associated nephropathy (PVAN) cases; and
227 heterogeneous control biopsies (absence of rejection
and PVAN). Patient demographics and clinical character-
istics are provided in Table 1; detailed histologic charac-
teristics are given in Supplementary Table S1. Details on
the biopsy samples used for microarray gene expression
(n ¼ 224) have been provided previously.8

Differential gene expression, pathway enrichment analysis,
and upstream regulators
In the blood samples from patients with any rejection (n ¼
136) versus no rejection (n ¼ 248), ZEB2, DGKH, PATL2,
IL18R1, and SLAMF7 were the top 5 most significant
Kidney International (2022) 102, 183–195
differentially expressed genes (DEGs; Figure 1a;
Supplementary Table S2). Pathway enrichment analysis on the
319 differentially expressed genes (nominal P < 0.005)
revealed glucocorticoid receptor signaling, hepatic fibrosis/
hepatic stellate cell activation, and Th1 and Th2 activation
pathways as the top 3 canonical pathways (Figure 2a). Addi-
tionally, in competitive set enrichment analysis using gene set
enrichment analysis (GSEA), the nucleotide-binding oligo-
merization domain (NOD)-like receptor signaling pathway
was the most upregulated (normalized enrichment score
[NES] 2.65, P ¼ 0.003), followed by the Janus kinase signal
transducer and activator of transcription (Jak-STAT) signaling
pathway (NES 2.21, P ¼ 0.003) and Th17 cell differentiation
(NES 2.19, P ¼ 0.003; Supplementary Figure S1). The top 5
most contributing genes to the NOD-like receptor signaling
pathway were GBP5, STAT1, GBP1, GBP2, and CASP5. Pre-
dicted upstream factor analysis uncovered interferon regula-
tory factors and T cell activating genes as the most activated
upstream regulators (Supplementary Table S3; Supplementary
Figure S2). In a sensitivity analysis comparing any rejection
versus pristine biopsies (without any lesions; n ¼ 110),
similar significant DEGs were found (top 10 DEGs are shown
in Supplementary Table S4). When looking at differential
expression for clinical (n ¼ 78) versus subclinical rejection
(n ¼ 58), no DEG showed a significant difference, with
adjusted P value < 0.05.

Comparing ABMRh (n ¼ 86) versus no ABMRh (n ¼
298), GBP5, STAT1, GBP1, GBP4, and PATL2 were the top 5
most significant DEGs (Figure 1b; Supplementary Table S5).
Primary immunodeficiency signaling, protein ubiquitination,
and antigen presenting pathways were identified as the top 3
canonical pathways (Figure 2b). Competitive set enrichment
analysis with GSEA again identified the NOD-like receptor
signaling pathway as the top upregulated pathway (NES 2.71,
P ¼ 0.008; Supplementary Figure S3). Interferon-regulatory
factors were the most activated upstream regulators
(Supplementary Table S6; Supplementary Figure S4). In a
sensitivity analysis comparing ABMRh versus pristine bi-
opsies, similar significant DEGs were found (top 10 DEGs are
shown in Supplementary Table S7).

ComparingTCMR(n¼ 68) versus noTCMR(n¼ 316), IFI27
(down),DGKH, RSAD2 (down), IFI44L (down), and IL18R1were
the top 5 most significant DEGs (Figure 1c; Supplementary
Table S8). Hypercytokinemia/hyperchemokinemia in patho-
genesis of influenza (down-regulated), interferon signaling
(down-regulated), and interleukin (IL)-10 signaling were iden-
tified as the top 3 canonical pathways (Figure 2c). Competitive
set enrichment analysis using GSEA identified endocytosis as the
most upregulated enriched pathways (NES 1.78, P¼ 0.03), and
viral infections were significantly downregulated
(Supplementary Figure S5). Interferon regulatory factors were
strong inhibitory upstream regulators (Supplementary Table S9;
Supplementary Figure S6). In a sensitivity analysis comparing
TCMR versus pristine biopsies, fewDEGs were found, with only
DGKH,MIAT, NKG7, and ZEB2with FDR< 0.05 (top 10 DEGs
are shown in Supplementary Table S10).
185
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Figure 1 | Differentially expressed genes in the peripheral blood for different phenotype comparisons. Red line indicates the false
discovery rate (FDR) 0.05 significance level. Themost significant features are denoted by name. ABMRh, histology of antibody-mediated rejection;
HLA–DSA, human leukocyte antigen–donor-specific antibody; PVAN, polyoma-virus associated nephropathy; TCMR, T cell–mediated rejection.
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When comparing pure ABMRh (n ¼ 68) versus pure
TCMR (n ¼ 50; excluding mixed rejection cases), STAT1,
PARP14, RSAD2, APOL6, and GBP5 were the most significant
DEGs, all upregulated in the ABMRh group. Genes that were
more upregulated in TCMR included B and T cell–related
genes (CD79A, BLNK, LSP1, TCL1A, and IGHM;
Supplementary Table S11).
186
When we compared human leukocyte antigen–donor-spe-
cific antibody (HLA–DSA)–positive samples (n ¼ 100) versus
HLA–DSA negative samples (n ¼ 284), CD27 (down), MT-
ND1 (down), SEC24A, SLC2A1, and BIRC2 were the top 5
significant DEGs (Supplementary Table S12; Figure 1d). Nu-
clear factor of activated T cells (NFAT)–signaling pathways
were identified as the top canonical pathways (Figure 2d). The
Kidney International (2022) 102, 183–195



Figure 2 | Top 10 canonical pathways for the different phenotype comparisons obtained using Ingenuity Pathway Analysis. The
orange line denotes the false discovery rate (FDR) P value 0.2 level of significance. The top 5 contributing features are shown per pathway.
ABMRh, histology of antibody-mediated rejection; ARE, antioxidant response element; CXCR, C-X-C C-X-C chemokine receptor; fMLP, N-
Formylmethionyl-leucyl-phenylalanine; GM-CSF, Granulocyte-macrophage colony-stimulating factor; HLA–DSA, human leukocyte antigen–
donor-specific antibody; IL, interleukin; ILK, Integrin-linked kinase; iNOS, Inducible nitric oxide synthase; LXR, Liver X Receptor; NF, nuclear
factor; MSP-RON, macrophage-stimulating protein - recepteur d’origine nantais; NFAT, Nuclear factor of activated T cells; PKR, protein kinase R;
PPAR, Peroxisome proliferator-activated receptor; PVAN, polyoma-virus associated nephropathy; RXR, retinoid X receptor; STAT, signal
transducer and activator of transcription; TCMR, T cell–mediated rejection; Th, T helper; VDR, vitamin D receptor.
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interferon-a group, Krüppel-like Factor 3 (KLF3), IL-5, X-box
binding protein 1 (XBP1), and interferon-g (IFN-g) were the
most strongly activated upstream regulators (Supplementary
Table S13; Supplementary Figure S7).

Comparing PVAN (n ¼ 21) versus no PVAN (n ¼ 363,
including rejection),MT-ND1,MT-ND2, IFI27,MT-ND4, and
MT-ATP6 were the top 5 significant DEGs (Supplementary
Table S14; Figure 1e). Oxidative phosphorylation and mito-
chondrial dysfunction were identified as the top canonical
pathways (Figure 2e). GSEA demonstrated extracellular
matrix–receptor interaction, glycerolipid metabolism, and
antigen processing and presentation as the top 3 upregulated
pathways (Supplementary Figure S8). INFL1 and DAP3
(involved in mediating IFN-g–induced cell death) were the
most activated upstream regulators (Supplementary Table S15;
Supplementary Figure S9). In a sensitivity analysis comparing
PVAN versus pristine biopsies, similar significant DEGs were
found (top 10 DEGs are shown in Supplementary Table S16).

For polyomavirus viremia (with or without nephropathy;
n ¼ 60), compared to absence of viremia (n ¼ 267), LY6E,
IFI27, MT-ND2, MT-ND4, and IFI44L were the top 5 sig-
nificant DEGs (Supplementary Table S17; Figure 1f).
Hypercytokinemia/hyperchemokinemia in the pathogenesis
of influenza, oxidative phosphorylation, and interferon
signaling were identified as the top 3 upregulated canonical
pathways (Figure 2f). Interferons were the most activated
Kidney International (2022) 102, 183–195
upstream regulators (Supplementary Table S18;
Supplementary Figure S10). In a sensitivity analysis
comparing viremia versus control (n ¼ 174, excluding
rejection), similar significant DEGs were found (the top 10
are shown in Supplementary Table S19). No peripheral blood
transcriptomic differences were found for polyoma viremia
with versus without nephropathy after FDR adjustment.

Integration with biopsy microarray data
Next, we compared, per rejection phenotype, the DEGs from
blood with the DEGs from 224 biopsies. Integrative meta-
analysis revealed that the top 10 overexpressed genes consis-
tent across blood and biopsy samples in any rejection, versus
no rejection, were GBP5, CCL4, C1QA, FCGR1B, CRTAM,
GBP1, NKG7, SLAMF7, KLRD1, and STAT1 (Figure 3). These
genes were consistent across the different ranking methods
(Supplementary Table S20). Similarly, the top 10 differentially
expressed genes in ABMRh versus no ABMRh, in blood and
biopsy samples, were GBP5, CCL4, GBP1, C1QA, CRTAM,
FCGR1B, C1QB, GBP4, AIM2, and SLAMF7 (Figure 3;
Supplementary Table S20). In TCMR versus no TCMR,
C1QA, VSIG4, LCN2, KCNJ2, IL18R1, CCL4, FKBP5, C1QB,
CST7, and BCAT1 were the top 10 overexpressed genes when
integrating blood and biopsy differential expression data
(Figure 3; Supplementary Table S20). Given that only 3 PVAN
cases were present in the biopsy dataset, no integration was
187



Figure 3 | The top 10 overexpressed features across biopsy microarray data and peripheral blood RNAseq data for any
rejection, histology of antibody-mediated rejection (ABMRh), and T cell–mediated rejection (TCMR). The scatter plot shows the
distribution of the individual genes, supplemented with a violin plot demonstrating overall distribution with included median and
interquartile range.
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performed for the PVAN phenotype. The top consistently
enriched upregulated pathways from GSEA across the
different rejection phenotypes in blood and biopsies are
represented in Supplementary Table S21.
188
Cellular origin of consistently overexpressed genes in the
kidney allograft
To assess the cellular origin of these consistently overex-
pressed genes in the kidney allograft, we used publicly
Kidney International (2022) 102, 183–195
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available single-cell data from kidney allograft biopsies.
Briefly, scRNASeq was performed on 2 kidney allograft bi-
opsies with ABMR, and 5 healthy surveillance biopsies. After
quality control and filtering was completed, 33,216 cells were
detected, and unsupervised clustering revealed 14 clusters
corresponding to the main kidney cell subtypes but also
infiltrating immune cells (Supplementary Figure S11A–C).
We evaluated the expression of genes corresponding to the
top 10 consistently overexpressed genes in ABMR from both
blood and biopsy (see above, GBP5, CCL4, GBP1, C1QA,
CRTAM, FCGR1B, C1QB, GBP4, AIM2, and SLAMF7) across
the kidney structural cells and infiltrated immune cells
(Supplementary Figure S11D). The genes of interest were
mainly expressed by the infiltrated leukocytes in the kidney—
that is, the antigen-presenting cells and lymphocytes.

Cell-type enrichment analysis
We found that the peripheral blood signals were consistent
with the biopsy signals at the time of rejection. Moreover,
these differentially expressed molecules were expressed by the
leukocyte pool in the allograft. Therefore, we hypothesized
that transcriptomic changes in the peripheral blood reflect
changes in circulating immune cells. To further investigate
this possibility, we conducted a cell enrichment analysis using
xCell. Cell enrichment scores did not discriminate among the
different phenotypes (Figure 4). A comparison of the different
immune cell types across the different phenotypes showed
few significant differences between enrichment scores after
FDR adjustment (Supplementary Figure S12). In mixed
rejection versus control, there was an overrepresentation of
Th2 cells and an underrepresentation of Th1 cells. In PVAN
versus control, basophils and Th1 cells were overrepresented,
and Th2 cells were underrepresented (Supplementary
Figure S12). In contrast, cell enrichment scores based on
the biopsy transcriptomic data did discriminate rejection
phenotypes from no rejection (Figure 4). In the biopsy data,
the most significantly overrepresented cell types in the
rejection phenotypes were basophils, CD4þ and CD8þ
central and effector memory T cells, dendritic cells, mono-
cytes, NK cells, and Th2 cells. In contrast, naïve CD4þ and
CD8þ T cells, and T regulatory cells were significantly un-
derrepresented in all rejection phenotypes (Supplementary
Figure S12). The significant differences between pure
ABMRh and pure TCMR included the overrepresentation of
NK cells in ABMRh and the overrepresentation of B-cells,
CD4þ T cells (including CD4þ memory T cells), and CD8þ
central memory T cells in TCMR (FDR P < 0.05).

Validation of ABMR signals in independent cohorts
Finally, we validated observed ABMR signals from this study
in independent cohorts: one large biopsy microarray cohort
(n ¼ 403; GSE36059) and a small but well-phenotyped blood
RNAseq cohort (n ¼ 16; GSE120649). We started from the
top 10 consistently overexpressed genes from both blood and
biopsy in ABMR—that is, GBP5, CCL4, GBP1, C1QA,
CRTAM, FCGR1B, C1QB, GBP4, AIM2, and SLAMF7. The 10
Kidney International (2022) 102, 183–195
genes of interest were overexpressed in ABMR in both cohorts
(Supplementary Figure S13). All 10 genes were differentially
expressed at the adjusted P value level of < 0.05 in the biopsy
cohort, whereas in the smaller blood dataset, not all 10 genes
reached significance, probably owing to low statistical power
(Supplementary Table S22).

To further explore the expression of these genes in the
peripheral blood leukocytes at the time of ABMR, scRNAseq
analysis was performed on 12 peripheral blood samples (6
ABMR and 6 stable patients). After quality control and
filtering was completed, along with removal of 2 clusters
containing only doublets, 69,127 cells were detected. Unsu-
pervised clustering revealed 15 clusters corresponding to the
main myeloid and lymphoid cells and granulocytes/platelets
(Figure 5a–c). We evaluated the expression of genes corre-
sponding to the top 10 consistently overexpressed genes in
ABMR from both blood and biopsy across the peripheral
blood cells (Figure 5d). The genes of interest were mainly
expressed by the monocytes, NK cells, T cells, and B cells
from the ABMR condition. When performing differential
expression for ABMR versus no ABMR per cell type, signif-
icantly differentially expressed genes in ABMR in nonclassical
monocytes included C1QA, C1QB, GBP5, GBP1, GBP4, and
FCGR1B; in T cells, GBP5, GBP1, and GBP4; and in B cells,
AIM2 (Figure 5e).

DISCUSSION
In this study, we report the transcriptomic changes in pe-
ripheral blood at the time of kidney transplant rejection and
polyomavirus-associated nephropathy. The gene expression
changes observed in blood partly mirror those observed in
kidney transplant biopsies, although the latter are more
pronounced, reflecting immune cell infiltration in addition to
activation of resident cells. The differentially expressed genes
in blood of cases with rejection reflect immune activation
pathways, with interferons as the most likely upstream reg-
ulators, which are very sensitive to corticosteroid therapy but
nonetheless seem to escape our current immunosuppressive
armamentarium. Analysis per rejection subtype reveals that it
is ABMRh that associates with these activated immune
pathways, whereas the TCMR signals are nonspecific. Poly-
omavirus nephropathy also associates with transcriptional
changes in interferon-regulated genes, in addition to mito-
chondrial gene overexpression. Although the composition of
the immune cell infiltration in kidney transplant biopsies is
being charted,8,10 and overlapping rejection genes from both
blood and biopsy are expressed in the leukocytes present in
the kidney allograft biopsy, our transcriptomic analyses do
not suggest major changes in the immune cell composition in
peripheral blood. Overall, we identified the key genes and
pathways related to immune activation after kidney trans-
plantation, despite the use of strong immunosuppressants.

We included a heterogeneous control group, containing
varying degrees of fibrosis, with inclusion of low-grade in-
flammatory scores not reaching the threshold for definition of
rejection. This makeup reflects the heterogeneity of samples
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Figure 4 | Cell enrichment scores in the different phenotypes of kidney allograft pathology as obtained from blood (upper panel)
and biopsy transcriptomic data. Heatmaps of the cell enrichment scores, ordered by hierarchical clustering. In the blood samples, cell
enrichment scores did not discriminate among the different phenotypes, whereas in the biopsy samples, discrimination of rejection versus
no-rejection phenotypes based on their cell enrichment scores in immune cells is seen. ABMRh, histology of antibody-mediated rejection; CD,
cluster of differentiation; DC, dendritic cell; HLA–DSA, human leukocyte antigen–donor-specific antibody; NK, natural killer cell; NKT, natural
killer T cell; PVAN, polyoma-virus associated nephropathy; Tcm, Tem, TCMR, T cell–mediated rejection; Th, T helper cell.
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Figure 5 | Overview of the single-cell RNA-sequencing analysis on 12 peripheral blood samples with and without antibody-mediated
rejection (ABMR) to determine the cellular origin of the ABMR signals in the blood. Briefly, scRNAseq was performed on 6 peripheral
blood samples from kidney transplant recipients with a concomitant diagnosis of ABMR, and 6 stable patients without ABMR. After quality
control and filtering were completed, along with removal of 2 clusters containing only doublets, 69,127 cells were detected. (a–c)
Unsupervised clustering revealed 15 clusters corresponding to the main myeloid and lymphoid cells and granulocytes/platelets. (d) We
evaluated the expression of genes corresponding to the top 10 consistently overexpressed genes in ABMR from both blood and (continued)
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encountered in biopsies taken in clinical practice, rather than
highly selected clear-cut samples, and attenuates confounding
factors (such as kidney dysfunction and time after trans-
plantation) in the comparisons. Also, the gene expression
seems to be related to the underlying process, independent of
the clinical presentation, as illustrated by the absence of dif-
ferences in clinical versus subclinical rejection. Similarly, we
compared samples with the phenotype versus without the
phenotype, including other diagnoses, as this is most repre-
sentative for samples encountered in clinical practice, yet it
could have impacted the statistical power to detect signals in
more severely inflamed cases, for example, of TCMR.
Therefore, we also included sensitivity analyses comparing
each phenotype against pristine controls.

To our knowledge, this is the largest discovery set of
biopsy-paired peripheral blood samples analyzed with RNA-
sequencing, studying both rejection phenotypes and poly-
omavirus infection. The enrichment of these phenotypes
allowed for sufficient power to detect robust and biologically
relevant signals. The strong enrichment of immune pathways
observed in rejection cases in our study contrasts with a
previous RNAseq study on 37 peripheral blood samples,
which primarily identified noncoding genes and non–
immune pathway enrichment in cases with ABMR.11 The
reason for the difference in results between the present study
and this previous study could lie in the larger power of our
study, with enrichment of the phenotypes of interest leading
to stronger detectable signals. Nevertheless, even with this
enriched and large cohort, fold changes are quite small in the
blood DEGs, likely related to the heterogeneity in phenotypes
and the weaker signals in blood.

The NOD-like receptor signaling pathway was one of the
most upregulated and enriched pathways identified in pe-
ripheral blood of rejection cases, more specifically for
ABMRh, as we also observed in kidney transplant biopsies.
The guanylate binding protein (GBP) genes and interferon-
related genes are the strongest contributors to the upregula-
tion of this pathway. In our previous transcriptomic study
using gene expression microarray in peripheral blood sam-
ples,6 the GBP genes were also identified as the top discrim-
inating genes for ABMRh, and were proven to be valid in a
noninvasive signature for this phenotype. NOD-like receptors
are important intracellular receptors that initiate innate im-
mune recognition but can also activate adaptive immune
responses by identifying pathogen-associated molecular pat-
terns. They are directly linked to the nuclear factor (NF)-kB
pathway and the inflammasome, through which they lead to
the release of various proinflammatory cytokines. These
pattern-recognition receptors can recognize non–self-com-
ponents and respond to various forms of cell stress. Activation
=

Figure 5 | (continued) biopsy (GBP5, CCL4, GBP1, C1QA, CRTAM, FCGR1B, C
When performing differential expression for ABMR versus no ABMR per
nonclassical monocytes included C1QA, C1QB, GBP5, GBP1, GBP4, and FCG
of differentiation; cDC, conventional dendritic cell; IL, interleukin; MT, mit
PBMC, peripheral blood mononuclear cell; pDC, plasmacytoid dendritic
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of these receptors by missing of “self” has been described in
mice12; however, in humans, the role of these cytosolic
pattern-recognition receptors in allograft rejection has not
been clarified.13 We also identified other pattern-recognition
receptor- like toll-like receptors and retinoic acid inducible
gene I (RIG-I)-like helicases among the top enriched ca-
nonical pathways in rejection cases.

Next, we studied the transcriptomic differences in patients
with versus without HLA–DSA, irrespective of histologic
diagnosis. Clinical studies have demonstrated worse outcome
in patients with HLA–DSA, even in the absence of histologic
lesions in the biopsy,14 whereas transcriptomic studies
observed increased intrarenal ABMR-associated transcripts in
these patients.15,16 Here, we observed peripheral blood
upregulation of calcineurin-NFAT–associated genes such as
CALM1 (Calmodulin 1), CHP1 (calcineurin homologous
protein), and PPP3R1 (Calcineurin B, Type I) in patients with
HLA–DSA. The strong upregulation of this lymphocyte-
activating pathway in patients with HLA–DSA might result
in insufficient therapeutic action of the calcineurin inhibitor
therapy, given to >90% of patients in this study. This po-
tential imbalance between the activated lymphocyte-
activating pathway and our targeted immunosuppressive
therapy could suggest that higher doses of calcineurin in-
hibitors or additional therapy are needed in patients with
HLA–DSA, to prevent the deleterious lymphocyte activation
associated with HLA–DSA. Further confirmation of the
relevance of this pathway in patients with HLA–DSA is
needed from other transcriptomic studies, as well as clinical
studies investigating the impact of therapy (and non-
adherence?) on this pathway.

One of the major upstream regulators predicted in these
cases, XBP1, is required for the transcription of a subset of
class II major histocompatibility genes. XBP1 expression is
controlled by the cytokine IL-4 and the antibody Immuno-
globulin Heavy Constant Mu (IGHM), and in turn, XBP1
controls the expression of IL-6, which promotes plasma cell
growth and production of immunoglobulins in B lympho-
cytes. XBP1 has been implicated in human cancers and
metabolic diseases, for which potential therapeutics have been
described.17,18

Although ABMRh is associated with clear immune acti-
vation in peripheral blood, this was not the case for TCMR. In
TCMR, many of the significant differentially expressed genes
were downregulated, reflected by downregulation of the
enriched pathways, such as hypercytokinemia and interferon
signaling, and rather unspecific upregulated pathways. The
absence of biologically relevant upregulated pathways in pe-
ripheral blood in TCMR was also seen in previous whole
transcriptome studies.19,20 The reason these signals are
1QB, GBP4, AIM2, and SLAMF7) across the peripheral blood cells. (e)
cell type, significantly differentially expressed genes in ABMR in
R1B; in T cells, GBP5, GBP1, and GBP4; and in B cells, AIM2. CD, cluster
ochondrial transcripts; NK, natural killer cell; NKT, natural killer T cell;
cell.
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weaker and unspecific in TCMR is not clear, other than being
due to attenuation by T cell–targeted immunosuppression.
Also, the heterogeneity of this group, comprising borderline
changes, tubulo-interstitial inflammation, and intimal arter-
itis, might contribute to these less-specific findings. A ma-
jority of cases in the TCMR group were borderline changes
(threshold t > 0 and i > 0), reflecting also the lower preva-
lence of more severe forms of TCMR in current clinical
practice, again related to the use of T cell–targeted immu-
nosuppressive drugs that largely suppress the clinical
phenotype of TCMR.21 In comparing pure ABMRh with pure
TCMR cases, we found overexpression of some B cell tran-
scripts in TCMR. We could speculate that these B-cell tran-
scripts are related to the modulating role of B cells for T-cell
activation through antigen presentation, costimulation, or
production of cytokines, independently from antibody pro-
duction.22,23 Possibly, the B-cell activation from this interac-
tion during TCMR then leads to plasma cell formation,
antibody production, and eventually ABMR, which is
mirrored in the clinical observations of arising de novo DSA
and ABMR after previous TCMR episodes.24–26

From the integrative analysis with rejection signals from
the biopsy, we extracted consistently upregulated genes and
pathways in both blood and biopsy per rejection phenotype.
Given that the biopsy signals are more local to the injury
compared to the blood signals, we believe this integration
further strengthens and uncovers robust and specific signals.
The overexpression of these integrated signals in ABMR was
confirmed in external datasets, both from biopsy and blood
and from different platforms (microarray, RNASeq, and small
conditional [sc]RNASeq).

The infiltration and composition of immune cells in kid-
ney transplant biopsies at the time of rejection have been
reported before, at the transcriptomic level, and using
multiplex imaging.8,10,27–29 Whether the immune cell
composition in peripheral blood changes in parallel was un-
clear. From the scRNASeq analysis, we found that the genes
that were overexpressed in both blood and biopsies from
ABMRh cases were found to correspond to expression in the
leukocytes present in the kidney allograft. Next, using im-
mune cell enrichment analysis in biopsy samples, we
confirmed and expanded on previous observations, showing
that the most significantly overrepresented cell types in
rejection were basophils, CD4þ and CD8þ central and
effector memory T cells, dendritic cells, monocytes, NK cells,
and Th2 cells. In ABMRh cases, we observed over-
representation of NK cells, whereas in TCMR, there was
overrepresentation of B cells, CD4þ T cells (including CD4þ
memory T cells), and CD8þ central memory T cells. Naïve
CD4þ and CD8þ T cells, and T regulatory cells, were
significantly underrepresented in all rejection phenotypes.
These solid observations strengthen our approach of using
immune cell enrichment analysis in biopsy specimens; yet,
this approach did not yield clear differences in immune cell
enrichment scores inferred from peripheral blood tran-
scriptomic data. The intrarenal immune cell composition
Kidney International (2022) 102, 183–195
thus does not seem to be mirrored by alterations in peripheral
blood cell populations. This discrepancy could be due to
confounders influencing the cell populations in the peripheral
blood, such as systemic infections. Also, in contrast to the
graft tissue, these cells are always present in the peripheral
blood and do not infiltrate solely upon inflammation.
Moreover, others have previously suggested that there are
compartment-specific differences between the peripheral
blood leukocytes in the circulation and the subset of leuko-
cytes that are activated and recruited to the allograft at the
time of rejection.30 Finally, xCell reports abundances in cell
types to allow comparisons between conditions but is not
fully equipped to study the activation changes of these cells.
As an illustration of these activation changes, in scRNASeq
analysis of peripheral blood, we found differentially expressed
genes in peripheral leukocyte cell types in ABMR versus no
ABMR, suggesting changes in expression and activation state
within the same cell type upon rejection.

The presence of polyomavirus viremia, with or without
evidence of PVAN, was associated with clear upregulation of
interferon-regulated genes, and remarkably, mitochondrial
genes. Related to these mitochondrial genes, oxidative phos-
phorylation and mitochondrial dysfunction were identified
among the top upregulated canonical pathways. Recently, the
polyomavirus agnoprotein was shown to target mitochondria
and modulate their functions.31 The BK polyomavirus dis-
rupts the mitochondrial network and membrane potential
when expressing the 66aa-long agnoprotein in the late viral
life cycle. This agnoprotein impairs nuclear interferon regu-
latory factor 3 (IRF3)-translocation, impairs interferon-beta
expression, and promotes mitophagy, thereby allowing the
polyomavirus to evade innate immune sensing.32 This
mechanism could explain mitochondrial injury in tubular
cells, which might be reflected in the peripheral blood but will
need confirmation through gene expression analyses on kid-
ney allograft tissue.

Our study has several limitations. For instance, our pop-
ulation was almost universally treated with a calcineurin
inhibitor–based immunosuppressive regimen, and the ma-
jority of our population was of Caucasian ethnicity, which
might limit generalizability. Moreover, the diagnostic criteria
for rejection after kidney transplantation are a topic of active
discussion, making our reference standard of histology
imperfect. Also, this study consists of selected cases of rejec-
tion phenotypes, PVAN, and control cases from per-protocol
and for-cause biopsies, not representing the real-life preva-
lence. No information on HLA–DSA specificity was available
in the centralized database, nor did we have available infor-
mation on previous rejection treatments. Downstream anal-
ysis and validation were confined to ABMR signals based on
the more robust signals in this phenotype and the availability
of this phenotype in other datasets.

In conclusion, using peripheral blood RNASeq data, we
uncover the immune activation in the peripheral blood leu-
kocytes at the time of kidney allograft pathology, bypassing
our current strong immunosuppressant armamentarium,
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which mirrors the molecular changes in the kidney allograft
and provides a framework for future therapeutic
interventions.
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