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Abstract In an alloy subject to vacancy-mediated diffusion, differences in
intrinsic diffusivities tend to produce vacancy excess and deficit. These are
accommodated by mechanisms such as dislocation climb and pore formation.
This is of concern in high temperature alloy-coating systems used in industrial
applications, as pores may develop at the interface between the alloy and the
coating, which is undesired. This paper presents a multicomponent diffusion
model with two types of vacancy sinks/sources: one is associated with disloca-
tion climb and generates lattice shift, the other one is associated with porosity
increase/decrease. The model is designed toward a 1D implementation, and
porosity is described with a local average volume fraction. Thermodynamic
properties and mobility are modeled according to the Calphad method to al-
low future application to engineering materials. Finite-difference simulations
run on two binary systems, NiCr and NiSi, illustrate the role of the two types
of sinks in interdiffusion and pore development. Diffusion is found to be more
sensitive to the sink strengths in the NiSi system, where intrinsic diffusivities
have a stronger composition dependence. This work provides a basis for the
evaluation of the parameters involved in vacancy generation/annihilation (e.g.
dislocation density) from experimental data, such as concentration profiles ob-
tained from diffusion couple experiments, and for the prediction of porosity in
engineering materials.
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Nomenclature

a lattice parameter

cmk concentration of species k (number of moles per unit volume) in the metal phase

ck concentration of species k (number of moles per unit volume) in the system

D∗k tracer diffusion coefficient of species k

D0
k pre-exponential factor in the tracer diffusion coefficient of species k

Dk intrinsic diffusion coefficient of species k

fi volume fraction of phase i (i = m or p, i.e. metal or pore)

f0 geometrical correlation factor

G total Gibbs free energy

GM Gibbs free energy per mole of lattice site

Gm Gibbs free energy per mole of metal species

Gi Gibbs free energy of endmember i
xsGM excess Gibbs free energy per mole of lattice site

Galloy
f,V a vacancy formation energy in the alloy

H number of jogs per unit volume

J labk flux of species k in the laboratory reference frame

J latk flux of species k in the lattice reference frame

JNk flux of species k in the number-fixed reference frame

km sink strength of the lattice (dislocation climb)

kp sink strength of the pores

K bulk viscosity

Lki transport coefficient

Lmki transport coefficient in the metal phase

L0 mean free path of vacancies

mk atomic mass of species k

Mk mobility of species k

np average jog spacing (number of sites between jogs)

Nk number (moles) of species k in the lattice

N total number (moles) of sites in the lattice

Qk activation energy in the tracer diffusion coefficient of species k

rp pore radius

rs pore spacing

R ideal gas constant

t time

T absolute temperature

v velocity of the lattice in the laboratory reference frame

Wi volume of phase i (i = m or p, i.e. metal or pore)

W volume of the system

xk atom fraction of species k

yk site fraction of species k

yeq0 equilibrium site fraction of vacancies

αm rate of vacancy annihilation/creation in the lattice (dislocation climb)

αp rate of vacancy annihilation/creation due to pore growth/shrinkage

α total vacancy annihilation/creation rate

α∞ ideal sink rate (infinite lattice sink strength, vacancies maintained at equilibrium)

γ surface energy

∆zi grid size at position i
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νΛij interaction parameter of order ν between species i and j

µk chemical potential of species k

µ̃k diffusion potential of species k

ρk mass density of species k

ρ dislocation density

σH hydrostatic stress

Ωk partial molar volume of species k

Ωm average molar volume of the metal phase

Ω average molar volume of the system

1 Introduction

Diffusion simulations have become widely used to predict composition evolutions in
high temperature materials, e.g. in alloy-coating systems or in alloys subject to selec-
tive oxidation [1–6]. In a substitutional alloy subject to vacancy-mediated diffusion,
a composition gradient will generate diffusion, which in turn may have consequences
associated with the Kirkendall effect [7–10]. In a composition gradient, the inequal-
ity of the atom intrinsic diffusion coefficients causes a flux imbalance and thereby
generates a local vacancy flux, which in turn drives the vacancy concentration away
from its equilibrium value. Dislocation climb tends to mitigate this non-equilibrium
by emitting and absorbing vacancies in undersaturated and supersaturated regions,
respectively; this produces a shift of lattice planes relative to each other. Excess
vacancies may also condense into pores [11,12], referred to as Kirkendall pores (also
called Frenkel pores or voids). Pore surfaces may then act as sinks/sources, result-
ing in pore growth/decrease. Other manifestations of the Kirkendall effect include
stress build-up or specimen bending [13–16].

Darken’s theory of diffusion [17], which rationalizes the Kirkendall effect, implic-
itly assumes that vacancies are maintained at equilibrium, and that this is entirely
achieved through lattice shift. This in turns implies that sufficient dislocations are
present to accommodate, instantly and everywhere, the vacancy excess/deficit; in
other words, the relaxation of vacancies is instantaneous. In the following, this con-
figuration of ideal sinks in the lattice and no porosity is referred to as ideal lattice
– and the term sink is used to mean both source and sink.

Several numerical tools used today to simulate interdiffusion [1,2,4,5] rely on
Ågren’s formalism [18,19], which also considers an ideal lattice and therefore can-
not, by construction, generate Kirkendall porosity. Methods were introduced [20–22]
to estimate pore fractions as a post-processing step of simulations run in this config-
uration. This assumes that if allowed to vary, the vacancy concentration would not
significantly depart from the equilibrium value, which raises a number of questions.
Where pores are present, some supersaturation had to be reached; the minimum
level required for a pore to nucleate is not known in general. In vacancy-mediated
diffusion, transport coefficients depend on the local vacancy concentration [18]. It
is therefore expected that atom concentration profiles differ depending on whether
vacancies are maintained at equilibrium or not. Balluffi [12] argued that the rela-
tive supersaturation (R = (CV a−CeqV a)/C

eq
V a, where CV a is the number of vacancies

per unit volume) required for pore nucleation could not be large, and provided an
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order of magnitude estimate of the upper limit: R ≤ 10−2. It is desirable to con-
firm this figure with a more quantitative approach, and to evaluate the impact such
supersaturation would have on concentration profiles in alloy systems of interest.

A variety of multicomponent diffusion models with non-ideal sinks, giving rise to
non-equilibrium vacancies, have been developed by previous investigators [11,13,23–
36]. These consider a continuity equation for vacancies, where the sink term is
modeled with a finite strength (or equivalently, a non-zero relaxation time), which
reflects the limited ability of the lattice to annihilate vacancies. Svoboda et al.
associated vacancy generation and molar volume variations with creep [28], and
developed sink models corresponding to different crystal defects (dislocation jogs,
Frank loops, grain boundaries) [37]. Gusak and Storozhuk [31] studied the simul-
taneous action of lattice sinks, modeled as a uniform distribution with prescribed
strength, and pores, modeled as discrete spheres. The authors made simplifying as-
sumptions to keep the problem tractable analytically – the two types of sinks were
treated at different space scales, in a quasi-steady-state regime. These were partially
lifted in Refs. [33,35], where the problem was studied numerically. Yu et al. studied
the case of a perfect lattice (no sink, i.e., conserved vacancies) with grain boundaries
acting as discrete, ideal sinks [29]. The same group studied pore formation in 2D
geometries, with free surfaces acting as ideal sinks, and a lattice with either no sink
[38] or ideal sinks [39].

In most of the cases cited above, numerical simulations were applied to a thermo-
dynamically ideal alloy system with composition-independent mobilities, using arbi-
trary parameters rather than parameters optimized from experimental data. This,
of course, is very valuable to study the essential features of diffusion, but applica-
tions to systems with quantitative data have been lacking. Fischer and Svoboda [40]
did study the Fe-Cr-Ni system with an assessed thermodynamic description, but the
mobility and equilibrium vacancy fraction were set as composition-independent. As
we shall show, the composition dependence of mobilities plays a significant role in the
system evolution. More recently, Xia et al. [36] used a thermodynamic model that
includes atom-vacancy interaction parameters and allows for composition-dependent
equilibrium vacancy fraction. Their work includes non-ideal lattice sinks, giving rise
to non-equilibrium vacancies, but computes pore fractions as a post-processing step,
and therefore does not consider the possible interactions between lattice sinks and
pores.

Our objective is to study the role of lattice sinks and pores on the composition
during interdiffusion, including the interactions between the two types of sinks, and
to examine how this diffusion behavior is affected by the diffusion properties of the
system. For this purpose, we build a diffusion model with dislocation climb and
pore growth acting as two separate, non-ideal vacancy sinks. The thermodynamic
properties and mobility are modeled according to the Calphad method [41,42] to
facilitate the use of critically assessed data and future application to engineering
materials. The model is at present limited to substitutional diffusion in single-phase
alloys.

The mechanisms underlying vacancy annihilation/creation are complex, and sink
strengths cannot be determined a priori for any given microstructure or chemical
composition. In the present paper, diffusion couple simulations are run with a broad
range of sink strength values. We then examine the influence of lattice and pore sink
strength on quantities that can be measured experimentally (atom fraction and pore

4



T. Gheno et al. Computational Materials Science 215 (2022) 111785

profiles). This approach can be used to estimate sink strengths from experimental
data.

The paper starts with a description of the models and numerical schemes. We
then presents the results of parametric studies on systems with a weaker Kirkendall
effect (NiCr) and with a stronger Kirkendall effect (NiSi). Finally, the influence of
the sink terms is discussed in light of sink models available in the literature.

2 Models

2.1 Composition variables

The system composition is described using the formalism of Svoboda et al. [26,28]
restricted to substitutional species, and modified to include porosity. Let W be a
representative volume comprising a crystalline solid (metal) and pores:

W = Wm +Wp . (1)

Within W , metal and pores are not spatially resolved; we consider the average
properties of the volume.

The metal is a disordered solid solution, with a single sublattice. It contains N
mol of lattice sites, occupied by atoms and vacancies:

N =
n∑
k=0

Nk , (2)

In Eq. (2), Nk is the quantity (mol) of species k, where index 0 represents vacancies
and indices 1 to n represent atoms. Site fractions yk are defined as

yk =
Nk

N
, k ∈ [0, n] , (3)

and verify
n∑
k=0

yk = 1. (4)

Atom fractions are defined as

xk =
yk

1− y0
, k ∈ [1, n] (5)

for atoms, and verify
n∑
k=1

xk = 1. (6)

Vacancies do not have a atom fraction. The average molar volume of the metal, Ωm,
is defined as

Ωm =

n∑
k=1

xkΩk , (7)

where Ωk is the partial molar volume of species k, assumed to be constant. Equa-
tion (7) is obtained by considering that the partial molar volume of the vacancies is
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the molar volume of the metal, Ω0 = Ωm, see Ref. [28]. Concentrations (mol m−3)
in the metal are given by

cmk =
yk
Ωm

, k ∈ [0, n] . (8)

The volume occupied by the metal is

Wm = NΩm . (9)

The pores contain no site; the number of sites in W is that of the metal, N . The
global molar volume Ω is defined such that

W = NΩ . (10)

Volume fractions are defined as

fi =
Wi

W
, i = m or p. (11)

It follows that the global molar volume is related to the metal molar volume through

Ω =
Ωm

fm
. (12)

Global concentrations (mol m−3) are given by

ck =
yk
Ω

= cmk · fm , (13)

and verify
n∑
k=0

ck =
1

Ω
. (14)

2.2 Thermodynamics of the metal phase

The thermodynamic properties of the metal phase are modeled according to the
Calphad method. The Gibbs free energy per mole of lattice site is written [41,42]

GM =
n∑
i=0

yiGi +RT
n∑
i=0

yi ln yi +xs GM , (15)

where Gi is the Gibbs energies of endmember i (0 represents vacancies, indices 1 to
n represent atoms), R and T have their usual meaning and xsGM is the excess term.
The latter is modeled using a Redlich-Kister polynomial . Considering only binary
interactions, this reads [41,42]

xsGM =

n−1∑
i=0

n∑
j=i+1

yiyj

m∑
ν=0

νΛij (yi − yj) (16)

The binary interaction terms, νΛij, are expressed in the form A+B · T .
Two quantities deriving from the Gibbs free energy are needed in the diffusion

simulations: chemical potentials and the equilibrium vacancy fraction. The former
are defined as [42]

µk =
∂G

∂Nk
, (17)
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where G is the total Gibbs free energy, G = N · GM . For example, with a regular
solution model (xsGM =

∑n−1
i=0

∑n
j=i+1 yiyjΛij), one finds

µk = Gk +RT ln yk +
n∑
j=0

(1− δjk) yjΛjk −
n−1∑
i=0

n∑
j=i+1

yiyjΛij, (18)

where δjk = 1 if j = k, and 0 otherwise.
The equilibrium vacancy fraction in the metal is obtained by solving the equi-

librium between the metal and a vacancy-rich phase (a pore), which, making use of
the approximation y0 � 1, leads to the condition

µ0 = 0 (19)

(see derivation in Appendix A). Again taking the example of a regular solution
model, yeq0 then verifies:

G0 +RT ln yeq0 +

n∑
i=1

yiΛ0i −
n−1∑
i=1

n∑
j=i+1

yiyjΛij = 0. (20)

This can be written

yeq0 = exp

(
−
Galloy
f,V a

RT

)
, (21)

where

Galloy
f,V a = G0 +

n∑
i=1

yiΛ0i −
n−1∑
i=1

n∑
j=i+1

yiyjΛij (22)

is the vacancy formation energy in the alloy. Different expressions for Eqs. (18)
and (22) would be obtained with a different solution model. In any case, in a non-
ideal alloy, the equilibrium vacancy fraction is composition-dependent. The chemical
potential of vacancies can always be written in the form:

µ0 = RT · ln
(
y0
yeq0

)
. (23)

While the Gibbs energies of the metal end-members can readily be calculated
from parameters in the literature, the Gibbs energy of the vacancy endmember, i.e.,
of a lattice with no atoms, has no trivial definition. A common practice is to choose
a value arbitrarily to ensure the existence and uniqueness of an equilibrium state
between the metal and the pore, as discussed by multiple investigators [43]–[49].
Here we follow the recommendation of Franke [45] and use GV a = RT (ln 2 − 1/2).
The value of GV a has no significant impact on the simulation results.

Likewise, atom-vacancy interaction parameters are not generally known. Fol-
lowing Abe et al. [48], we assume 0-order binary interactions, and the interaction
parameters are determined based on the vacancy formation energy in pure metals:
Λk0 = Gkf,V a −GV a (see derivation in Appendix B).
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2.3 Metal-pore equilibrium

Multiphase diffusion simulations typically rely on local equilibrium to compute phase
compositions and fractions from global compositions given by the continuity equa-
tion. Modeling the energetics of the pore phase with an ad-hoc Gibbs energy function
is not trivial, and is avoided here. The present model is designed for a one-dimension
implementation, and does not consider metal and pores as spatially resolved phases
but simply includes their contributions to the system composition through their av-
erage volume fraction. As described in Section 2.5, the lattice sink rate is modeled
as proportional to the difference between the vacancy fraction and the equilibrium
vacancy fraction in the metal. The latter can be computed for any given metal com-
position by solving µ0 = 0, as described above. The remaining degree of freedom,
the pore fraction, will be handled in a similar fashion (Section 2.5).

2.4 Mobility

Situations of interest commonly involve diffusion in one dimension and invariance by
translation in the other two. Our model is therefore designed towards a planar 1D
implementation, and assumes that deformation is constrained to a 1D incompressible
plastic flow, which results in the absence of stress.

Mass transport may be split into diffusive and advective fluxes. Several for-
malisms have been used to distinguish these contributions in the literature, such as
Lagrangian and Eulerian coordinate systems [13] or actual and reference configu-
rations [26]. In the present work, flux densities are described using two reference
frames: (i) the lattice reference frame, based on a local coordinate system attached
to inert markers in the lattice, and (ii) the laboratory reference frame, based on a
global coordinate system that coincides with the lattice reference frame at t = 0
but does not deform thereafter. The lattice moves with respect to the laboratory
reference frame with a velocity field v. The fluxes of species k in the lattice and
laboratory reference frames, noted J latk and J labk respectively, are related by

J labk = J latk + ck · v , (24)

where we recognize diffusive (J latk ) and advective (ck · v) contributions. J latk is writ-
ten [10]

J latk = −
n∑
i=0

Lki grad µi , (25)

where the Lki are the transport coefficients (also called Onsager coefficients), which
form a symmetric matrix. Lattice sites are conserved by substitutional diffusion:

n∑
k=0

J latk = 0. (26)

(this is true even if lattice sites are not conserved overall due to the action of sinks).
This allows the vacancy flux to be expressed as a function of n independent atom
fluxes, and all Lk0 to be expressed as a function of the atom transport coefficients,
which are related to measurable mobilities. After some manipulation one obtains

J latk = −
n∑
i=1

Lki grad µ̃i , (27)
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where µ̃i is the diffusion potential, defined as µ̃i = µi − µ0 (see derivation in Ap-
pendix C).

With regards to porosity, like Audigié’s thesis [34], we are interested in simulating
average pore fractions rather than individual, spatially resolved pores. The Lki then
reflect diffusional transport in the metal + pores system, and we assume these can
be expressed as a weighted average of transport coefficients in the metal and in the
pores:

Lki = fmL
m
ki + fpL

p
ki . (28)

We further assume Lpki = 0 ∀(k, i), i.e., no diffusion in the pores. This yields:

Lki = fmL
m
ki , (29)

where Lmki are the transport coefficients in the metal. Following Ågren [18], we con-
sider the vacancy-exchange mechanism, in which diffusion occurs by atoms jumping
into neighboring vacant sites, and vacant sites are distributed randomly. The trans-
port coefficients are then expressed as{

Lmkk = cmk y0Mk0

Lmki = 0 for k 6= i,
(30)

where Mk0 is a kinetic parameter representing the rate of exchange between a k
atom and a neighboring vacancy. The mobility of species k is then [19]

Mk = y0Mk0 . (31)

The mobility is related to the tracer diffusion coefficient D∗k by Einstein relation:

Mk =
D∗k
RT

. (32)

Here, we follow Ågren [18] and set the off-diagonal transport coefficients to 0, instead
of using Manning’s random alloy model [50] for instance, because simulations will
be run using mobility parameters optimized from experimental data, where in all
cases known to us, the optimization was done with Lmki = 0 for k 6= i.

Tracer experiments measure solute diffusion in the dilute regime, where the Kirk-
endall effect is negligible. It is therefore assumed that D∗k reflects the diffusion of
k in a solution with an equilibrium vacancy fraction, and it follows that mobilities
evaluated from tracer diffusion coefficients are equilibrium mobilities, i.e.,

D∗k
RT

= M eq
k = yeq0 Mk0. (33)

If we further assume that non-equilibrium vacancy fractions arising from the Kirk-
endall effect in the concentrated regime remain sufficiently close to equilibrium
values, the same exchange coefficient Mk0 applies to both equilibrium and non-
equilibrium situations. Consequently, the mobility can be written with the general
form:

Mk =
y0
yeq0

M eq
k . (34)

Using Eqs. (27)–(34), the fluxes are finally written

J latk = −Lkk grad µ̃k, (35)

9
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with

Lkk = fmc
m
k

y0
yeq0

D∗k
RT

= ck
y0
yeq0

D∗k
RT

. (36)

The temperature dependence of tracer diffusion coefficients is described with the
Arrhenius relation

D∗k = D0
k exp

(
−Qk
RT

)
, (37)

where D0
k is the preexponential factor and Qk the activation energy. Following a

common practice in the mobility literature, Eq. (37) is expressed as:

lnD∗k =
φk
RT

, (38)

with φk = RT lnD0
k −Qk. The composition dependence is then given by expanding

φk with a Redlich-Kister polynomial, see Eq. (16).

2.5 Diffusion

The system of continuity equations in the laboratory reference frame is:
∂ck
∂t

= −div
(
J latk + ckv

)
(k > 0)

∂c0
∂t

= −div
(
J lat0 + c0v

)
+

1

Ω

Ṅ

N

(39)

(see derivation in Appendix D). Equation (39) reflects the fact that atom concen-
trations vary because of diffusion and advection, while the vacancy concentration
additionally changes due via the sink term Ṅ/N . The notations ∂X

∂t and Ẋ are
used to denote time derivatives in the laboratory reference frame and in the lattice
reference frame, respectively (see Appendix D). The velocity field is evaluated from
its divergence (Appendix D):

div v = fm

(
Ṅ

N
+

Ω̇m

Ωm

)
+ fp

Ẇp

Wp
. (40)

Evaluating div v requires a sink model. Following Ref. [28], we note the sink
term α = Ṅ/N . As is commonly done in the literature [10], we use a linearized
form and assume α is proportional to y0 − yeq0 . We further postulate that α can be
expressed as the sum of two contributions, due to lattice sinks and pores:

Ṅ

N
= α = αm + αp

αm = −km (y0 − yeq0 )

αp = −kp (y0 − yeq0 ) .

(41)

In Eq. (41), km and kp (unit s−1) are the sink strengths and reflect both the sink
densities and the frequency at which they operate; these parameters may depend
on alloy composition and microstructure. The index m refers to lattice sinks, i.e.,

10
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dislocation climb: αm produces the Kirkendall shift. The index p refers to pores.
The rate of pore volume variation is written:

Ẇp = −NαpΩ0 . (42)

Recalling the hypothesis Ω0 = Ωm (see Section 2.1), this yields

Ẇp

Wp
= −fm

fp
αp . (43)

The variation rate of the metal molar volume is obtained by deriving Eq. (7) and
making use of the expression of ẏk (Eq. (D.2) in Appendix D):

Ω̇m

Ωm
=

1

fm(1− y0)

n∑
k=1

(Ωm − Ωk) div J latk . (44)

Finally, the divergence of the velocity field is:

div v = fmαm +
1

1− y0

n∑
k=1

(Ωm − Ωk) div J latk . (45)

Equation (45) reflects the fact that the system deformation stems from two contri-
butions: the action of lattice sinks (Kirkendall shift) and the differences between
partial molar volumes.

2.6 Limiting case: ideal lattice

The ideal lattice configuration, where lattice sinks are sufficiently active to maintain
vacancies at equilibrium without forming pores, may be represented by km = +∞.
If yeq0 is composition-independent, and assuming that initially y0 = yeq0 , the corre-
sponding sink rate, noted α∞, can be obtained analytically by solving

ẏ0 = 0. (46)

Using the expression for ẏ0 (Eq. (D.2) in Appendix D), this yields

α∞ =
Ω

1− yeq0
div J lat0 . (47)

Substituting αm = α∞ and fm = 1 in Eq. (45), the divergence of the velocity field
is

div v =
Ω

1− yeq0
div J lat0 +

1

1− yeq0

n∑
k=1

(Ωm − Ωk) div J latk . (48)

In the case where all partial molar volumes are equal, Ωk = Ωm ∀k, the right hand
side term in Eq. (48), which corresponds to the lattice deformation due to molar
volume variations, vanishes. If yeq0 is composition-independent, in 1D, Eq. (48) can
be integrated to yield the velocity at position z:

v =
Ω

1− yeq0

[
J lat0

]z
zmin

. (49)

11
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Under the additional conditions that yeq0 � 1 and J lat0 = 0 at the left-hand side
border of the simulated domain (z = zmin), Eq. (49) finally yields:

v = −Ω

n∑
k=1

J latk . (50)

The number-fixed reference frame is defined as the frame in which the fluxes,
noted JNk , verify: ∑

k

JNk = 0. (51)

Since, in the present Section, we assume Ω is constant, the volume-fixed reference
frame is identical to the number-fixed reference frame [18]. The velocity of any
reference frame (where fluxes are noted J

′
k) relative to the number-fixed reference

frame is given by [18]:

v = −Ω
∑
k

J
′
k. (52)

This relation applies to the lattice reference frame. By analogy with Eq. (50), we
conclude that under all the conditions listed in this Section (yeq0 is composition-
independent, yeq0 � 1, y0 = yeq0 initially, Ωk = Ωm ∀k, J lat0 (zmin) = 0), the lab-
oratory reference frame coincides with the volume-fixed reference frame in which
vacancies are not considered. The latter configuration is the one used in Ågren’s
formalism [18,19] and in many commercial and academic diffusion codes used to
simulate engineering materials.

3 Implementation and data

The models are implemented in Python, via scripts that heavily rely on the Numpy [51]
and Scipy [52] libraries. All plotting is done with Matplotlib [53]. The source code
will be distributed under an open license. The documentation will contain more
implementation details than can be included here.

3.1 Thermodynamics

Simulations are run on fcc, Ni-based alloys. The atom-vacancy interaction parame-
ters are obtained from the energy of formation of vacancies in pure metals in the fcc
crystal structure. These cannot necessarily be measured experimentally, and indeed
experimental data of this type are scarce even when the pure metal is stable in the
fcc structure. Instead, we use DFT results from Shang et al [54] (from their Sup-
plementary Data), which provide a consistent dataset for most elements of interest.
When the vacancy formation energy for a given element is not given in Ref. [54],
we use the value for Ni instead.

Gibbs energies of pure metals and atom-atom interaction parameters are ob-
tained from assessed descriptions of the relevant systems published in the literature.
These are available as functions of atom fractions, not site fractions, i.e., instead of
Eq. (15), the data are based on:

GM (. . . xi . . .) =

n∑
i=1

xiGi +RT

n∑
i=1

xi lnxi +xs GM (. . . xi . . .) . (53)
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Figure 1: Space discretization scheme.

In principle, a conversion is required from the atoms description, GM (. . . xi . . .), to
the atoms + vacancy description of Eq. (15), GM (. . . yi . . .). However, as noted
in Section 2.2, we assume y0 � 1, and therefore yk ∼= xk. Consequently, we use
Eq. (53) to obtain interaction parameters, and assume these would be the same as
those obtained with Eq. (15), i.e., we use these parameters in Eq. (15) to compute
equilibrium vacancy fractions and chemical potentials.

Similarly, calculating the equilibrium vacancy fraction using Eqs. (21)-(22) re-
quires the system composition to be described in terms of site fractions. Most
often, however, one needs to calculate yeq0 in a metal whose composition is known
as mole fractions of the metal species, not site fractions. Obtaining yk from xk
requires y0, which is the unknown quantity. However, the assumption y0 � 1 im-
plies yk ∼= xk, k ∈ [1, n]. It follows that yeq0 can be directly computed from atom
fractions, without the need for an iterative scheme to solve Eq. (21).

3.2 Mobility

The parameters describing the composition dependence of φk in Eq. (38) are ob-
tained from the literature. These are available in terms of atom fractions: φk =
φk(. . . xi . . .). In the case of the mobility parameters, however, functions of site frac-
tions are not needed. The φk(. . . xi . . .) models from the literature are directly used
to calculate tracer diffusion coefficients with Eq. (38). Non-equilibrium vacancy
fractions are taken into account when calculating Lkk via Eq. (36).

3.3 Diffusion

The time evolution of the system composition is described by Eq. (39). This is solved
using an explicit (forward Euler) finite difference scheme, in one dimension of space.
The total length is divided into segments of size ∆zi separated by grid points at
positions zi. The composition variables (xk, yk, ck, Ωm, Ω, fm, µk) are associated
with positions zi + ∆zi/2, and represent the average system composition in the ∆zi
segments; the fluxes (and the velocity field) are evaluated on grid points zi: J lati
represents a flux between segments ∆zi−1 and ∆zi. The discretization is illustrated
in Figure 1. Fluxes are discretized using the arithmetic mean of neighboring Li
and ∆zi values, i.e., Eq. (35) is implemented as:

J lati = − (Li−1 + Li)
µ̃i − µ̃i−1

∆zi−1 + ∆zi
. (54)

(In Eq. (54), indices refer to positions on the grid, not chemical species). Linear
interpolation is used when concentrations need to be evaluated on grid points.
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The initial conditions comprise profiles of the atom fractions xk, vacancy site
fraction y0 and metal volume fraction fm. These are used to compute yk, Ωm, and
then Ω and finally ck through the composition relationships in Section 2.1.

The divergence of the velocity field is determined via Eq. (45). In principle, a
large vacancy undersaturation would lead to a large positive value for αp in Eq. (41),
which could in turn result in a negative pore fraction. In order to avoid this, αp is
capped at an αmax

p value, calculated at every time step from the condition fn+1
p ≥ 0.

The velocity is obtained by integrating its divergence along the space dimension,
where the integration constant v(zmin) depends on the boundary condition.

The velocity field is then used to compute the time derivatives in Eq. (39).
The n+ 1 concentrations are related through Eq. (14). However, the average molar
volume Ω may vary over time, due to the variation of the metal molar volume
and volume fraction. Obtaining one of the concentrations through the n others
and Eq. (14) would therefore require that the time evolution of Ω be determined
independently. Alternatively, we solve Eq. (39) for all n + 1 concentrations, and
then use Eq. (14) to obtain Ω. The ck and Ω values are then used to compute yk,
then Ωm and fm.

3.4 Limiting case: ideal lattice

As discussed in Section 2.6, the ideal lattice configuration, represented here by
km =∞, is of particular interest for comparison with the literature. This is readily
implemented if yeq0 is constant, using Eq. (47) instead of Eq. (41) to compute α∞. In
the present work, however, yeq0 is derived from the Gibbs free energy of the metal, and
is composition-dependent (see Section 2.2). An alternative method must therefore
be implemented to compute α∞. The solution retained here is to first assume that
yeq0 is constant, compute α∞ via Eq. (47), and solve the continuity equation on this
basis, to obtain a virtual cn+1

k . Then, a virtual yeq0 is calculated from this cn+1
k , and

a corrected α is calculated such that yn0 + ∆t · ẏ0 = yeq0 . The continuity equation is
then solved using the corrected α. The new yeq0 will necessarily differ from the one
calculated in the virtual step; however, the method produces values of y0 typically
within 10−13 − 10−14 of yeq0 , which is a satisfying approximation.

3.5 Initial and boundary conditions

All simulations presented in Section 4 represent diffusion couple experiments in
initially pore-free metal alloys, defined by the following initial conditions: x1..n given
by an Heaviside step function; y0 = yeq0 (x1..n); fm = 1 in all regions;

and the boundary conditions J latk = 0 ∀k at z = zmin and z = zmax. The simu-
lated domains are discretized into linear grids with 100 steps, which yields step sizes
of 6 µm (Section 4.1) and 10 µm (Section 4.2). The time step is chosen to guarantee
the stability of the explicit resolution scheme. The small vacancy fraction places a
strong constraint on ∆t; even smaller ∆t values are required when using large val-
ues of km or kp to avoid negative vacancy fractions in vacancy annihilation regions.
These constraints result in ∆t about 10−3 to 10−2 s in the present conditions.

The partial molar volumes of the atoms are calculated as Ωk = mk/ρk, where
mk is the atomic mass and ρk the mass density. This yields Ωk values of 6.6 · 10−6,
7.3 · 10−6 and 1.2 · 10−5 m3/mol for Ni, Cr and Si, respectively.
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Figure 2: Equilibrium vacancy fraction in the Ni-Cr system at 1200 ◦C, computed via
Eqs. (21)–(22), using atom-vacancy interaction parameters from Shang et al [54] and Ni-Cr
data from Lee [55].

4 Results

The influence of dislocation climb and porosity increase/decrease as a vacancy
sink/source was studied by running simulations with multiple values of the sink
strengths km and kp. The values used were 0, 10−2, 10−1, 1, 10, 102 and 103 s−1.
This produced 49 km,kp combinations. The case of an ideal lattice, where the va-
cancy concentration is maintained at equilibrium and no pore is formed (km = +∞),
was also studied. In total, 50 simulations were run for each system.

4.1 Binary system with weak Kirkendall effect: NiCr

Simulations in the NiCr system were conducted using thermodynamic data from
Lee [55] and mobility data from Jönsson [56]. Figures 2 and 3 show the equilibrium
vacancy fraction and the tracer and intrinsic diffusion coefficients of Cr and Ni at
1200 ◦C, respectively. In a binary system, intrinsic coefficients are defined as [19]:

Dk = Lkk
∂µk
∂ck

. (55)

Intrinsic coefficients combine mobility and thermodynamic contributions to diffusiv-
ities and indicate how fluxes will develop in response to a concentration gradient.
The relative Dk values provide indications as to the amplitude of the Kirkendall
effect. Here, each of DCr and DNi is almost constant over the composition range
of interest (max(Dk) / min(Dk) ∼= 1.1 for Cr as well as Ni). The DCr/DNi ratio is
about 2, which is close to unity, relatively to other systems of interest. Therefore,
the Kirkendall effect is expected to be weak and uniform in diffusion couples in the
NiCr system.

Simulations were done for a Ni/Ni-30Cr (at. %) diffusion couple, 10 h at 1200 ◦C,
with varying values of the sink strengths, km and kp. The results obtained with no
porosity (kp = 0) are presented first.

Figure 4 presents profiles of the Cr atom fraction, fluxes in the lattice reference
frame and vacancy relative deviation from equilibrium obtained with kp = 0. With
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Figure 3: Tracer and intrinsic diffusion coefficients in the Ni-Cr system at 1200 ◦C, com-
puted using data from Lee [55] and Jönsson [56].

an ideal lattice (km = +∞), the shape of the xCr profile is nearly symmetric (Fig-
ure 4(a)), i.e., close to the error function analytical solution that would be obtained
with composition-independent diffusivities. This is due to the weak composition
dependence of Cr and Ni diffusivities. The flux of Cr is twice as large as that of Ni
(Figure 4(b)), which reflects the DCr/DNi ratio. As a consequence, J latV a has the same
sign and nearly the same amplitude as J latNi . The vacancy fraction is maintained at
its equilibrium value in all regions, as expected (Figure 4(c)).

Decreasing the lattice sink strength results in vacancy supersaturation on the
Cr-rich side, as annihilation is not fast enough to maintain the vacancy fraction
at equilibrium. In a symmetric manner, the Cr-lean side is a region of vacancy
generation (div

(
J latV a

)
< 0); decreasing km produces vacancy undersaturation. The

vacancy fraction obtained with lower km values (10−2 and 0 in Figure 4(c)) does
not fall back to the equilibrium value within the bounds of the simulation box. This
indicates that the latter is too small to represent an infinite media; in particular,
this implies that the results depend on the size of the box.

The amplitude of J latV a is seen to decrease with decreasing km, until it reaches 0
in all regions for km = 0 (Figure 4(b)). The reduction of the vacancy flux is caused
by the vacancy accumulation/depletion process: as the yV a− yeqV a gradient develops
between the Cr-rich and Cr-lean sides of the couple (Figure 4(c)), it produces a µV a
gradient (µV a profiles, not plotted here, are homologous to (yV a−yeqV a)/y

eq
V a profiles,

see Eq. (23)), which provides a driving force for J latV a that opposes the driving force
due to the difference between J latCr and J latNi , i.e., the driving force associated with the
Kirkendall effect. Since the three fluxes are related (Eq. (26)), the lower amplitude
of J latV a leads to a decrease of J latCr and an increase of J latNi , until the amplitude of J latCr

and J latNi coincide for km = 0: Cr and Ni diffuse at the same rate. In other words,
the slowness of vacancy generation inhibits the Kirkendall effect generated by the
difference between DCr and DNi.

The case of the NiCr system is particular in that DCr and DNi are relatively
close to each other, and as a result the Kirkendall effect is weak, even when the
lattice sink strength is infinite. It follows that the effects of km variations discussed
above have no visible manifestation in the Cr atom fraction profile, which remains
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Figure 4: Simulation results for a Ni / Ni-30Cr (at. %) couple, after 10 h at 1200 ◦C, with
kp = 0. (a) Cr atom fraction; (b) fluxes in the lattice reference frame; (c) relative deviation
from equilibrium vacancy fraction.
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unaffected by the value of km (Figure 4(a)).
Simulations done with varying km and kp values show that flux profiles are

mainly governed by km. Figure 5(a) shows pore fraction profiles obtained with
varying kp and a constant km = 10 s−1. Porosity is predicted to develop close to
the initial interface between the two alloys, on the Cr-rich side, at z ∼= 300-400 µm,
where div J latV a is maximum. The amplitude of the porosity peak increases with
increasing kp. Closer examination of pore fraction profiles shows that the amount
of porosity depends on both kp and km. Figure 5(b) shows the amplitude of the fp
peak as a function of both parameters. The porosity is seen to generally increase
with increasing kp; the effect of km is not monotonic, as a maximum in porosity
is obtained for km ∼= 1 s−1. This non-monotonicity results from two antagonistic
effects: on the one hand, a larger km will consume more vacancies in regions of
vacancy excess, and thereby reduce the supersaturation that would otherwise feed
pore growth; this tends to oppose pore growth. On the other hand, a smaller km will
hinder the generation of vacancies in undersaturated regions, which will increase the
undersaturation, increase the µV a gradient and thereby lower the flux of vacancies
towards supersaturated regions, in turn reducing the quantity of vacancies available
for pore formation. The latter effect is demonstrated in Figure 5(c).

4.2 Binary system with strong Kirkendall effect: NiSi

Simulations in the NiSi system were conducted using thermodynamic and mobility
data from Du and Schuster [57,58]. Figures 6 and 7 show the equilibrium vacancy
fraction and the tracer and intrinsic diffusion coefficients of Si and Ni at 1200 ◦C.
The value of DNi varies by more than two orders of magnitude over the composition
range of interest (max(DNi) / min(DNi) ∼= 285), while DSi has a weaker composition
dependence. Furthermore, DSi and DNi vary with slopes of opposite signs: on the
Ni-rich side, DSi is about 5 times larger than DNi, while on the Si-rich side, DSi is
about 100 times smaller than DNi. These variations imply a strong and non-uniform
Kirkendall effect in diffusion couples in the NiSi system, as illustrated below.

Simulations were done for a Ni/Ni-10Si (at. %) diffusion couple, 10 h at 1200 ◦C,
with varying values of km and kp. The results obtained with no porosity (kp = 0)
are presented first.

Figure 8 presents profiles of the Si atom fraction, fluxes and vacancy deviation
from equilibrium obtained from the simulations with kp = 0. With an ideal lattice
(km = +∞), the Si atom fraction profile is asymmetric (Figure 8(a)): diffusion is
faster on the Si-rich side, because of the larger diffusivity of Ni on that side (see
Figure 7). This is reflected in the fluxes (Figure 8(b)): J latNi is larger on the Si-rich
side than it is on the Si-lean side. Furthermore, its amplitude is larger than that of
J latSi on the Si-rich side, while the reverse is true on the Si-lean side, again reflecting
the diffusivity variations. As a result, J latV a changes sign across the couple. The
vacancy fraction is at equilibrium everywhere (Figure 8(c)), as expected.

Decreasing km has the same effect as that observed in the NiCr system: it
produces vacancy supersaturation and undersaturation in regions of vacancy anni-
hilation and generation, respectively. In Ni / Ni-10Si, div J latV a changes sign more
than once: this produces two regions of vacancy undersaturation around a central
region of supersaturation, visible for km = 1 s−1 in Figure 8(c). Again, the yV a
profiles are sensitive to the size of the simulation box for lower km values. In partic-
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Figure 5: Simulation results for a Ni / Ni-30Cr (at. %) couple, after 10 h at 1200 ◦C.
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Figure 6: Equilibrium vacancy fraction in the Ni-Si system at 1200 ◦C, computed via
Eqs. (21)–(22), using atom-vacancy interaction parameters from Shang et al [54] and Ni-Si
data from Du and Schuster [57].
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Figure 7: Tracer and intrinsic diffusion coefficients in the Ni-Si system at 1200 ◦C, com-
puted using data from Du and Schuster [57,58].

ular, for km = 0 s−1, vacancy accumulation in the central region of the couple is so
strong that the supersaturation reaches the left-hand side boundary, and in doing
so, hides the effect of the vacancy depletion expected for z < 200 µm; the absence
of undersaturation there is due to the limited size of the simulation box.

The µV a gradient generated by the vacancy supersaturation profile produces a
driving force that opposes the Kirkendall effect, and the amplitude of J latV a decreases
until it reaches 0 for km = 0 (Figure 8 (b)). Since J latV a changes sign across the
couple, the effect of its decrease on J latSi and J latNi is different on either side of the
couple: J latNi decreases on the Si-rich side and slightly increases on the Si-lean side,
while J latSi follows opposite evolutions. The net result is that as km decreases, J latSi

and J latNi reach the same amplitude, and the amplitude of each of J latSi and J latNi on
the Si-rich side becomes comparable to those on the Si-lean side. In other words,
the slowness of vacancy annihilation/generation inhibits the Kirkendall effect, and
in doing so, cancels out the asymmetry in the fluxes that was due to the strong
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Figure 8: Simulation results for a Ni / Ni-10Si (at. %) couple, after 10 h at 1200 ◦C, with
kp = 0. (a) Si atom fraction; (b) fluxes in the lattice reference frame; (c) relative deviation
from equilibrium vacancy fraction.
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Figure 9: Simulation results for a Ni / Ni-10Si (at. %) couple, after 10 h at 1200 ◦C. (a)
Pore fraction profiles with km = 10 s−1; (b) maximum pore fraction as a function of km and
kp.

composition dependence of the intrinsic diffusivities. This side effect is also visible
in the shape of the composition profiles: with values of km of 1 s−1 and below, the
xSi profile is nearly symmetric (Figure 8(a)).

Simulations done with varying km and kp show the same effects observed with the
Ni/Ni-30Cr couple. Figure 9(a) shows pore fraction profiles obtained with varying
kp and a constant km = 10 s−1. Porosity is predicted to develop close to the initial
interface between the two alloys, with a maximum amplitude slightly on the Si-lean
side, where div J latV a is maximum, and the vacancy supersaturation is the largest
(Figure 8(c)). The pore fractions are about 10 times greater than those obtained
with the Ni/Ni-30Cr couple. Figure 9(b) shows the amplitude of the fp peak, where
again the influence of the sink terms follows the trends observed with the NiCr
couple.

5 Discussion

Qualitatively, the results reported here regarding the role of lattice sinks of arbitrary
strength on substitutional diffusion are consistent with trends identified by previous
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investigators (see e.g. Refs. [25,59,60] for lattice sinks with no pores, Refs. [32,34]
for sinks associated with pores). The present work differs from these previous studies
by evaluating the combined role of variable sink strengths in the lattice and at pore
surfaces, and by demonstrating the interactions between the two types of sinks.
The effect of including composition-dependent diffusivity data is also highlighted.
Producing quantitative simulations requires realistic values of the sink strengths,
km and kp, that reflect the composition and microstructure of the alloys of interest.
Accurate values are not readily available for the systems of interest but estimates
are discussed now.

Fischer et al. [37] proposed a model of vacancy generation at dislocation jogs,
which relates the sink strength to the jog density. With the present notations, their
sink rate reads:

αm = −µ0 − Ω0σH
KΩm

, (56)

where σH is the hydrostatic stress, which is neglected here, and K is the bulk
viscosity. If jogs are distributed evenly, the latter is given by [37]:

K =
1

2πaHA0Ω2
m

. (57)

In Eq. (57), a is the lattice parameter, H is the number of jogs per unit volume,
and A0 is given by [37]:

A0 =
y0
yeq0

1

RTf0Ωm

n∑
k=1

ykD
∗
k , (58)

where f0 is the geometrical correlation factor (f0 = 0.7815 for fcc crystals). The
model used in the present work for transport coefficients, Eq. (30), amounts to
making the approximation f0 ∼= 1; for consistency, this approximation is done here
too. Let D∗0 be the tracer diffusion coefficient of vacancies, defined as:

D∗0 =
1

y0

n∑
k=1

ykD
∗
k . (59)

(this definition differs from that used in Ref. [37]). The jog density is expressed as
a function of the dislocation density ρ:

H =
ρ

npa
, (60)

where np is the average jog spacing (number of sites between jogs) along a dislocation
line. Using Eq. (23) for µ0, the sink rate now reads:

αm = − ln

(
y0
yeq0

)
y0
yeq0

2πρ

np
y0D

∗
0 . (61)

For y0 ∼= yeq0 , if the logarithm is approximated by the first term of its Taylor series,
this simplifies to:

αm = − (y0 − yeq0 )
2πρ

np
D∗0 . (62)
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Eq. (71), evaluated for the Ni-Cr and Ni-Si systems at 1200 ◦C – see text for details. x1 is
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Equation (62) is analog to the linear form commonly used in the literature [10],
αm = −km (y0 − yeq0 ), with

km =
2πρ

np
D∗0 . (63)

In annealed fcc alloys, a typical dislocation density would be ρ ∼= 1012 m−2. An order
of magnitude estimate of the jog spacing in common metals is given in Ref. [61]:
np ∼= 100 at 1000 K, which, using their model, extrapolates to np ∼= 20 at 1200 ◦C.
As discussed in Ref. [37], different values of np can be arrived at depending on the
method used to determine it. Given the use of approximate values for ρ and np, the
results obtained here should be considered as order of magnitude estimates.

Values of the sink strengths calculated from Eq. (63) in the Ni-Cr and Ni-Si
systems at 1200 ◦C are plotted in Figure 10. The composition dependence of km
derives from that of D∗0, and in turn from those of the tracer diffusion coefficients of
the relevant species. Accordingly, km is nearly constant in the Ni-Cr system, while
it has a strong composition dependence in the Ni-Si system. In both cases, the
values obtained this way are large, relative to those used in the simulations shown
in Section 4 – in other words, the values given by Eq. (63) correspond to conditions
close to those of the ideal lattice, with relatively small deviations from equilibrium
in terms of vacancy fractions.

An estimate for the sink strength at pore surfaces, kp, is now obtained following
the two-scale, quasi-steady-state approach of Gusak and Storozhuk [31]. Briefly,
this approach relies on the distinction of a coarse-grained scale, where the diffusion
problem is solved in the absence of pores, and a fine-grained scale, where pore growth
is solved subject to boundary conditions imposed by the coarse-grained problem.
Consider a uniform distribution of spherical pores with average pore spacing 2rs
and average pore radius rp. The rate of vacancy annihilation at a pore surface is
given by:

Ṅp = J lat0 (rp) 4πr2p. (64)

The number of sites in the region of influence of a pore, defined as the sphere of
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radius rs centered on the pore center, is:

N =
4

3
π
(
r3s − r3p

) 1

Ωm
. (65)

The sink rate is then:

αp =
Ṅp

N
= ΩmJ

lat
0 (rp)

3r2p
r3s − r3p

. (66)

The vacancy flux at the pore surface is then estimated by considering two boundary
conditions. (1) At the pore surface, vacancies are at equilibrium. Taking into
account the Gibbs-Thomson effect, this reads:

y0 (rp) = yeq0 exp

(
2γΩm

rpRT

)
, (67)

where γ is the surface energy. (2) Far away from the pore, the vacancy fraction is
that of the coarse-grained diffusion problem, y0 (z, t), simply noted y0. With the
present notations, the vacancy flux derived in Ref. [31] is:

J lat0 (rp) =
D∗0
Ωm

(y0 (rp)− y0)
(

1

L0
+

1

rp

)
, (68)

where L0 is the mean free path of vacancies in the presence of lattice sinks, given
by:

L0 =
√
D∗0τm =

√
D∗0
km

. (69)

Using Eq. (63) for km yields L0 =
√

np
2πρ
∼= 1.8 µm in the conditions of interest.

Using a typical surface tension of 1 J m−2, the exponential in Eq. (67) decays
rapidly and is close to one for rp values above 10 nm. We are interested in the
steady-state, where rp is in the µm range. In these conditions, the Gibbs-Thomson
effect is negligible and y0 (rp) ∼= yeq0 . Introducing Eq. (68) in Eq. (66) then leads to:

αp = −D∗0 (y0 − yeq0 )

(
1

L0
+

1

rp

)
3r2p

r3s − r3p
. (70)

Equation (70) takes the linear form αp = −kp (y0 − yeq0 ), with

kp = D∗0

(
1

L0
+

1

rp

)
3r2p

r3s − r3p
. (71)

Noting that the pore fraction is related to rs and rp via

fp =

(
rp
rs

)3

, (72)

the pore sink strength can also be written:

kp = D∗0

(
1

L0
+

1

rsf
1/3
p

)
3

rs

f
2/3
p

fm
. (73)

25



T. Gheno et al. Computational Materials Science 215 (2022) 111785

The evolution of kp as pores develop follows from two opposite contributions visible
in Eq. (73): as fp increases, J lat0 (rp) decreases, while the ratio of pore to metal
volume increases. Overall, the latter contribution prevails, and kp increases with
increasing fp.

Typical pore distributions in the conditions of interest can be described by rp = 5
µm and rs = 20 µm. These are then fed into Eq. (71) to evaluate kp. Again, it is
emphasized that the results obtained this way are order of magnitude estimates. In
particular, Eq. (68) implies that pores be isolated, which requires rs � rp: this is
obviously not respected in the conditions retained here. Values of kp calculated from
Eq. (71) in the Ni-Cr and Ni-Si systems at 1200 ◦C are plotted in Figure 10. Again
the composition dependence is given by that of D∗0. We note that the estimated kp
values are smaller than the km values by about 1.5 decades. Referring to Figures
5(b) and 9(b), this situation where kp < km is not favorable to the development
of porosity. A quantitative evaluation of pore fractions expected with these sink
strengths cannot be obtained by interpolation of the simulation results showed in
Section 4 since the latter were obtained with constant sink strengths. At the compo-
sition mid-ranges (Ni-15Cr and Ni-5Si), one finds km = 45 s−1 and kp = 1 s−1 in the
NiCr couple, and km = 620 s−1 and kp = 14 s−1 in the NiSi couple. Interpolation
of the simulation results on this basis yields maximum pore fractions of 0.2 % and
3.8 % in the NiCr and NiSi couples, respectively.

Obtaining more accurate estimations of pore fractions will require using composition-
dependent, time-dependent models of the sink strengths such as those outlined in
this Section. Together with such simulations, dedicated experiments would be useful
to assess the validity of the parameters entering these models (dislocation density,
average jog and pore spacing), and discuss how these may vary from one alloy sys-
tem to another. Such experiments are currently under way in our laboratory, and
will be the object of a forthcoming publication.

6 Conclusions

The present work evaluates the development of non-equilibrium vacancy concentra-
tions and of porosity associated with the Kirkendall effect, using critically assessed
thermodynamic and mobility data. It shows how reducing the lattice sink strength
slows down vacancy generation/annihilation, to a point where two elements of dif-
ferent intrinsic diffusivities diffuse at the same rate. The lattice sink strength plays
two antagonistic roles with regards to pore formation. A higher sink strength leads
to smaller vacancy supersaturation in regions of vacancy excess, which hinders pore
growth: excess vacancies are consumed by lattice shift rather than by pore growth.
A lower sink strength produces larger vacancy undersaturation in regions of vacancy
deficit; the resulting vacancy potential gradient opposes vacancy diffusion toward the
pore-forming region, which hinders pore growth as well. Our parametric study shows
that a maximum pore growth is obtained with intermediate lattice sink strengths.

Our work highlights the influence of intrinsic diffusivities and their composition
dependence on the Kirkendall effect. In the NiCr system, DCr and DNi are of
similar amplitude, and each is weakly composition-dependent. Atom concentration
profiles are nearly symmetric, and are not significantly affected by the vacancy
excess and deficit that develop with finite sink strengths. On the other hand, in the
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NiSi system, DSi and DNi are strongly dissimilar, and each is strongly composition-
dependent. This produces non-symmetric atom concentration profiles in ideal lattice
conditions. Reducing the lattice sink strength significantly affects these profiles, as
they become more symmetric.

In both systems, the maximum vacancy excess/deficit, obtained in the absence of
vacancy sinks, is smaller than 30 %, relative to the local equilibrium concentration.
This indicates that the effects associated with non-equilibrium vacancies should
remain of limited amplitude. For instance, atom mobilities measured in a diffusion
couple with finite sink strength are not expected to be significantly different from
the mobilities measured in a tracer experiment.

Finally, this work provides a basis for the evaluation of the parameters involved
in lattice sinks (dislocation density and jog spacing) from experimental data. In sys-
tems where intrinsic diffusivities bear a sufficiently strong composition dependence,
the fact that atom concentration profiles are sensitive to excess/deficit vacancies
may in principle be used to evaluate lattice sink strengths from diffusion couple
experiments.
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Appendix A: Equilibrium vacancy fraction

Let Gm be the Gibbs free energy per mole of metal,

Gm =
G

N −N0
=

GM
1− y0

. (A.1)

The metal-pore equilibrium is achieved when [47–49]

∂Gm
∂y0

= 0. (A.2)

After some manipulation, one can show that

∂Gm
∂y0

=
µ0

(1− y0)2
. (A.3)

We are interested in the metal phase, where the equilibrium vacancy fraction is
orders of magnitude smaller than 1. We therefore make the approximation y0 � 1
and the equilibrium condition, Eq. (19), simply becomes µ0 = 0.

Appendix B: Atom-vacancy interaction parameters

We follow the method by Abe et al. [48]. Consider the A-Va system, where A is an
atom species and Va represents vacancies. The Gibbs energy per mole of lattice site
is written:

GM = yAGA + yV aGV a +RT (yA ln yA + yV a ln yV a) + yAyV aΛAV a, (B.1)
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where ΛAV a represents non-ideal interactions between A and Va. We assume A–Va is
a regular solution, i.e., ΛAV a is composition-independent. Making the approximation
yV a � 1, the equilibrium condition, Eq. (19), is written

GV a +RT ln
(
yeqV a
)

+ ΛAV a = 0. (B.2)

This yields

yeqV a = exp

(
−
GAf,V a
RT

)
(B.3)

with GAf,V a = GV a + ΛAV a the energy of formation of vacancies in A. If the latter
is known, ΛAV a can be evaluated. This is then repeated for all atom species of the
multicomponent alloy considered.

Appendix C: Fluxes in the lattice reference frame

The derivation follows Van der Ven et al. [62]. We inject Eq. (25) into Eq. (26) to
obtain

n∑
i=0

(
grad µi ·

n∑
k=0

Lik

)
= 0. (C.1)

For Eq. (C.1) to be fulfilled for arbitrary chemical potentials, we must require [63]

n∑
i=0

Lik = 0 ∀k. (C.2)

Equation (C.2) is then used to substitute all Lk0 in Eq. (25), which yields the desired
expression, Eq. (27).

Appendix D: Derivation of the continuity equations

Following Svoboda et al. [26,28], the mass balance is written{
Ṅk = −W · div J latk (k > 0)

Ṅ0 = −W · div J lat0 + Ṅ .
(D.1)

Using Eq. (3), this is expressed in terms of site fractions:
ẏk = −Ω · div J latk − yk

Ṅ

N
(k > 0)

ẏ0 = −Ω · div J lat0 − y0
Ṅ

N
+
Ṅ

N
.

(D.2)

With Eq. (13), we obtain
ċk = −div J latk − ck

Ẇ

W
(k > 0)

ċ0 = −div J lat0 − c0
Ẇ

W
+

1

Ω

Ṅ

N
.

(D.3)
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In deriving Eq. (D.3), we have also used the following relation,

Ẇ

W
=
Ṅ

N
+

Ω̇

Ω
, (D.4)

which derives from Eq. (10) and reflects the fact that volume variations are due to
variations in the number of lattice sites and in the molar volume. The term Ω̇/Ω in
Eq. (D.4) cannot be directly evaluated. Instead, we note that combining Eqs. (1)
and (9), the rate of volume variations can be decomposed into contributions from
the metal and the pores, which are more easily accessed:

Ẇ

W
= fm

(
Ṅ

N
+

Ω̇m

Ωm

)
+ fp

Ẇp

Wp
. (D.5)

The rate of volume variation can be expressed as the divergence of the lattice
velocity:

Ẇ

W
= div v. (D.6)

This yields 
ċk = −div J latk − ck div v (k > 0)

ċ0 = −div J lat0 − c0 div v +
1

Ω

Ṅ

N
.

(D.7)

The time derivatives in Eqs. (D.7) are material (or total) derivatives:

ċk =
Dck
Dt

=
∂ck
∂t

+ v · grad ck. (D.8)

Introducing Eq. (D.8) in Eqs. (D.7) yields the set of continuity equations used in
Section 2.5, Eqs. (39).

Data availability

The raw/processed data required to reproduce these findings cannot be shared at
this time due to time limitations. The source code used to produce all data will be
distributed under an open license.
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[19] J.-O. Andersson, J. Ågren, Models for numerical treatment of multicomponent
diffusion in simple phases, Journal of Applied Physics. 72 (1992) 1350–1355. DOI:
10.1063/1.351745
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