
HAL Id: hal-03792874
https://hal.science/hal-03792874

Submitted on 30 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending a Refinement Acting Engine for Fleet
Management

Jérémy Turi, Arthur Bit-Monnot

To cite this version:
Jérémy Turi, Arthur Bit-Monnot. Extending a Refinement Acting Engine for Fleet Management:
Concurrency and Resources. 34th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), Oct 2022, Virtuelle, France. �hal-03792874�

https://hal.science/hal-03792874
https://hal.archives-ouvertes.fr


Extending a Refinement Acting Engine for Fleet
Management: Concurrency and Resources

Jérémy Turi, Arthur Bit-Monnot
LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

jturi@laas.fr, abitmonnot@laas.fr

Abstract—Recent years have seen an important increase in
the complexity of deployed robotic systems, both in terms of the
number of robots involved, and scale of the tackled problems.
The key challenge in this context is to allow the design of
fleet control systems that, on the one hand, allow flexible and
reactive operation of individual robots and, on the other hand,
enable the system to optimize the global behavior of the fleet
in order to increase its effectiveness and efficiency. To approach
this problem, we propose to extend the Refinement Acting Engine
(RAE) that has been used to program the behavior of autonomous
agents through a hierarchical decomposition of high-level tasks
into primitive commands, and is the subject of active research
in order to guide its decisions with planning and scheduling
techniques. The core of our proposal is to provide first-hand
support for concurrency in the RAE procedure, allowing a
natural representation for concurrent systems by reasoning on
resource allocation. The resulting acting engine exploits a custom
language that is designed to ease its integration with planning
engines, both through its simple and orthogonal core constructs
as well as in the explicit identification of decision points in the
system operation. We provide an initial validation of the system
in simulation on a logistic problem involving a fleet of robots.

Index Terms—Acting, Multi-agent systems, concurrency, plan-
ning

I. INTRODUCTION

Recent years have seen an increased interest in the deploy-
ment of fleets of robotic systems. Among many potentially
impacted fields, Industry 4.0 is an area where the deployment
of autonomous mobile robots (AMR) has the potential to
increase both the flexibility and the efficiency of production
lines [1]. However, the operation of such fleets comes with
many challenges. Consider for instance a scenario where a fleet
of AMRs is used to fulfill a set of tasks involving the manipu-
lation and transportation of packages that need to be submitted
to a series of processes at different workstations in a factory
floor. In this context, the fleet management system must allow
the continuous operation of the fleet to treat incoming requests,
allocate tasks to the AMRs, handle possible contingencies
(robot failure, unavailability of a workstation, etc.). Beside
these operational requirements, the efficient exploitation of
the fleet is tightly coupled with the ability of the system to
efficiently allocate the resources (robots, workstations) and
schedule the execution of the tasks.

Such systems thus require a combination of (i) reactive
skills, in order to adapt the activity of individual robots or
of the entire fleet to new requests and contingencies, and of
(ii) explicit deliberation targeting the optimization of the global

behavior of the fleet, in order to, e.g., minimize the exploitation
costs or fulfill deadlines. In robotics, such scenarios have been
traditionally handled by having an acting engine in charge of
controlling a robot or a fleet with ad-hoc mechanisms, and
procedures to react to changes in the environment or in the
objectives. These acting systems can often be coupled with
some sort of planning engine that can either provide a high-
level strategy, or guide the operation of the system.

In this paper, we propose an extension of the Refinement
Acting Engine (RAE) [2], an acting system that relies on
the hierarchical refinement of high-level tasks into lower-level
tasks and commands, based on a set of executable procedures.
The objectives of this extension are to (i) provide native
support for concurrency in the system, (ii) explicitly model
resources, and (iii) clearly identify decision points in the
operation model. Identification of decisions should facilitate
guidance of the acting engine’s choices by, e.g., automated
planning techniques. Beside the adaptation of the original
RAE execution procedure, we propose a dedicated language to
specify executable procedures, with support for asynchronous
execution, resource management and decision points. The
language is a Lisp dialect with a limited set of primitives,
which eases the automated analysis of operational model in
order to use dedicated tools to guide the acting engine for
decision points.

II. RELATED WORK

Several acting systems exist in the literature that propose
different approaches to deliberative architecture and uses dif-
ferent languages to define the agent behavior.

Language-based systems such as RAE [2] and the Procedu-
ral Reasoning System (PRS) [3] are based on the iterative
refinement of tasks into executable procedures, composed
themselves of commands or tasks. The refinement is done at
runtime, which avoids having to generate the full command
sequence before execution. While PRS is a goal-oriented
system, RAE is task-oriented, which is closer to Hierarchical
Task Networks (HTN), and should make the integration of
HTN planners more natural. Propice-Plan [4] extends PRS,
and endows it with anticipation capabilities and continuous
planning, from which our work is inspired. RAE has been
extended with look-ahead capabilities such as UPOM [5],
that uses an anytime planner to find the best refinement for
a task in the current state thanks to rollouts in a Monte
Carlo Tree Search (MCTS) enhanced by learning techniques.



However, UPOM does not ensure a valid plan as opposed
to the Run-Lazy-Refineahead algorithm [6]. A recent work
presented OMPAS [7], a system based on RAE in which
planning models are extracted from operational models defined
with a Lisp dialect, that we extend in our work. Another work
proposed Dec-RPAE [8], a decentralized version of RAE that
differs from our centralized view of fleet management.

Plan-Exec is a different approach to deliberation that pro-
poses to first generate a plan and then execute and monitor it.
T-REX [9] is a system based on IDEA [10], a descendant of
RAX-PS [11] which differs in proposing a unified architecture
for acting and planning based on tokens, that T-REX makes
more robust by explicitly defining tokens ownership. However,
the programming of an agent is done with a constraint-oriented
language, which can be difficult to use compared to general
purpose languages. Some systems such as IxTet-Exec [12] and
more recently FAPE [13] use a Plan-Exec architecture using
using temporal planners to take into account time.

Some works on Belief Decision Intention (BDI) Systems
propose to optimize the overall behavior of the system by
improving the interleaving of tasks: Summary Information is
used in [14] to generate deadlock-free interleaving of plans. An
interleaving of plans at the command level is proposed in [15]
using MCTS, which improves performances compared to
Round Robin, but does not ensure deadlock-free interleaving.

III. OVERVIEW OF THE SYSTEM

A. RAE, a hierarchical approach to deliberative acting

Several acting systems are based on the RAE algorithms as
first defined in [2]. The objective of these systems is to carry
out one or multiple tasks until they succeed, reactively han-
dling contingencies and execution errors occurring during the
execution. To meet this objective, RAE-based systems refine
down high-level tasks into a set of elementary commands, that
are executable by a platform (e.g. a robotic system) at runtime.

The refinement is based on the hierarchical representation
of the capabilities of an agent defined as a tuple (A, T,M),
where A is the set of commands, T is the set of tasks
corresponding to the high-level capabilities of the system,
and M the set of methods corresponding to the skills of
the agent. A method is an operational model that achieves
a high-level task through lower-level tasks and commands. A
method m ∈ M is associated to a particular task t ∈ T , and
is defined by a list of parameters (possibly inherited from t),
pre-conditions that define the set of states in which the method
is applicable, and a body defined in an executable language.
An example of method is given in Figure 1. For each task it
faces, RAE refines it by finding an applicable method, which
means that pre-conditions are true in the current state ζ, and
executes the corresponding body. In case the method fails,
RAE searches another method to try until a method succeeds,
or no more methods are applicable. In case a command needs
to be executed, a request is sent to the platform and RAE
awaits the result of the command, which can either be success
or failure.

m-transport(o, l, t)
task: transport(o, l)
pre-conditions: fuel(t) ≥ 50%, capacity(t) ≥ 20%
body: (begin

(define loc−o (read−state loc o))
(define loc−t (read−state loc t))
(if (!= loc−o loc−t)

(exec drive t loc−o))
(exec load t o)
(exec drive t l)
(exec unload t o))

Fig. 1: An example of RAE method for a logistic task to
transport an object o to a location l. The body of the method
is a Lisp expression which evaluation depends on the initial
location of the truck.

B. Revision of RAE

The first definition of RAE proposed in [2] is limited in
several aspects: the progression of concurrent tasks relies on
Round Robin, advancing one instruction at a time for each
task, and methods are limited to a sequence of instructions.

The Operational Model Planning and Acting System (OM-
PAS) is a revision of RAE that extends the deliberation
capabilities of the acting engine. It uses a new acting language
for operational models that was specifically designed for the
automated analysis of operational model, in order to use
planning techniques to guide RAE. A specific definition of
concurrency inside methods is provided, with a formalism for
resources shared among several concurrent tasks, on which
the acting engine can reason to improve the progression
of multiple tasks using the same resources. Moreover, the
programmer can identify specific decision points where the
acting engine has some decision freedom that can be exploited
to optimize the overall behavior of the system.

To implement those changes the architecture and operation
of the system have been adapted, and an overview is given in
Figure 2. The essential difference with the original RAE lies in
the fact that each top level task submitted by a user is started
in a dedicated thread and has access to synchronization primi-
tives, relieving the acting engine from explicitly orchestrating
the execution.

C. Operation of the System

OMPAS can be seen as a complete system that embeds
an acting system interfaced with a robotic platform, used
to execute and monitor several tasks in parallel. A platform
must provide an interface to execute or cancel commands, as
well as information about the perceived world and command
execution status. When a command should be executed, a
request is sent to the platform and the acting engine monitors
its status. The command is first in a pending status, and
switches to the running status if the command is accepted by



OMPAS

State

Main

transport(o1,l7)

drive(t1,l8)

pack(o1)

monitor
-fuel(t1)

. . .
Platform

Environment

User

Tasks

Reports

Commands

Updates

Events

Fig. 2: A high-level view of the operation and architecture of
OMPAS. The user, either an operator or a program, can send
new tasks to be executed. A new task is processed by the main
thread, which creates a new thread to handle the execution of
the task. The user receives task status reports and platform
status updates.

the platform, otherwise the command is a failure. This initial
failure can happen if, e.g. incompatible commands have been
requested at the same time. Once the platform has completed
the execution, it communicates back a success or failure
status depending on its outcome, and the command request
is considered completed.

The execution of a task resorts to the EXEC-TASK func-
tion presented in Figure 3 that first generates all applicable
methods in the current state ζ, and then SELECT-METHOD
arbitrarily selects an untried method among them. Several
techniques can be used to select a method, the default selection
will choose the first method of Mapp. The returned method is
a program that is executed with the EXEC-BODY function. If
the result of the execution is a failure then the acting engine
tries to execute the task again with a limited set of possible
methods, restricted by the methods that have been already
tried. The function EXEC-TASK is called until either a method
is a success, or no method is applicable.

While the overall system remains simple, most of the
complexity of the acting engine lies in the EXEC-BODY pro-
cedure that is in charge of interpreting a user-defined program
specifying the behavior of the method. The method’s body
uses a Scheme dialect that allows the usage of general-purpose
programming constructs (e.g. branching, loops, arithmetic)
together with acting-specific features, notably to enable the
execution of commands or tasks as well as the acquisition of
resources.

IV. ACTING LANGUAGE

In this section, we propose Scheme OMPAS (SOMPAS),
a Lisp dialect, and in particular a variation of Scheme, that
provides (i) generic constructs to define the behavior of an
agent, such as loop, branching, and error recovery, (ii) acting
primitives to query the state of the system and request the
execution of a task or command, (iii) the ability to handle
concurrent execution and shared resources management.

procedure EXEC-TASK(τ,Mtried)
Mapp ← APPLICABLE-METHODS(τ , ζ)
m← SELECT-METHOD(τ , Mapp \Mtried)
if m = ∅ then ▷ No untried applicable method left

return failure
res← EXEC-BODY(m)
if res = failure then ▷ Retry, with m forbidden

return EXEC-TASK(τ , Mtried ∩ {m})
else

return res

Fig. 3: Adaptation of RAE’s procedure for executing a task τ .
The procedure arbitrarily selects a method m that is applicable
in the current state ζ and has not been previously tried.

The first key feature of the language is to explicitly identify
where the interpreter (i.e. the acting engine) has some freedom
of decision, which gives some slack to the system in order to
optimize its global behavior. The second key feature is to fa-
cilitate the automated analysis of programs in order to predict
the behavior of the system following a decision by restricting
the core language to fewer primitives than Common Lisp, the
primitives begin, if, define, lambda, quote being sufficient to
define a program. More complex programming constructs can
be added by defining macros from the composition of those
primitives. Like the original Scheme language that heavily
builds on the lambda calculus, the core of our language is
purely functional, which notably forbids mutation and side
effects.

A. Concurrency and interruption

In order to be able to define concurrency, we adapted the
Scheme dialect by adding new types and primitives to the
language. As a reminder, the execution of Scheme programs is
based on the recursive evaluation of LValues, that can be either
an Atom (boolean, number, procedure, symbol) or a List. With
the following additions, it is possible to evaluate an LValue in
a new thread, await its result, or interrupt it. The first thing we
define is the handle, a new kind of LValue that represents the
thread executing the asynchronous evaluation. A handle can
be manipulated with the following functions:

• (async e) starts a new thread where the expression e will
be evaluated and immediately returns the handle of this
thread.

• (await h) takes as argument a handle, and awaits the end
of the corresponding thread. When this occurs, the await
expression returns the result of the expression that was
evaluated in the thread.

• (interrupt h) takes as argument a handle, and sends an
interruption signal to the concurrent evaluation. Then, the
function awaits the result of the interrupted evaluation.
When an interruption signal is sent to a concurrent
evaluation of a handle, the interruption signal propagates
recursively to all expressions currently evaluated in the
handle.



B. Acting primitives

The first purpose of an acting language is to control the
behavior of a robotic platform and leverage the features of the
acting engine. The following functions provide interfaces with
both the platform and the acting engine:

• (exec a p1...pn) executes and monitors the execution of
a task or command a with parameters (p1, ..., pn). If
a is a command, the interpreter resorts to the platform
to execute the command and awaits on its result. The
interruption of a command provokes a cancel request
to the platform. In the case where a is a task, RAE
calls the EXEC-TASK algorithm of OMPAS and awaits its
result. An interruption signal on the execution of a task
is propagated to the body of the method, and therefore
should be handled by the method.

• (read-state sf p1...pn) is used to get the actual value of a
state-variable designated by a state-function sf and a list
of parameters (p1, . . . , pn).

• (arbitrary set λ) selects an arbitrary element ei from a
set {e1, ..., en}. The acting engine is free to select any
variable in the set. The optional function λ that returns
an element of the set can be used to suggest a value to
use (suggestion that the engine is allowed to ignore).

More advanced features and functions are presented in the
documentation of the system at https://plaans.github.io/ompas/.

C. Resources

As soon as concurrency is involved, management of shared
resources becomes a critical aspect. The resource design that
we propose here attempts at fulfilling two needs: provide
exclusive resource usage, and let the acting engine define its
allocation strategy.

We define a resource as an object with an initial capacity
Cinit. A resource r can be acquired at time t with an amount
c that is lower than or equal to the current capacity Ct.
Upon acquisition, the acting engine ensures that no race-
condition occurs that would result in an over allocation and
the capacity is immediately decreased by the amount c. We
distinguish unary and divisible resources. A unary resource
can be acquired by only one task at a time, where initial
capacity and requested amount are always one. A divisible
resource with an initial capacity Cinit can be acquired with
any ct ∈ [0, Cinit]. At the difference of real-time systems
and mutexes, there is no guarantee on the order of access to
resources, as it defers this decision to the acting engine and
reasoning systems. When a resource is released, its capacity
is increased by corresponding amount.

The declaration of a resource is done with the function (new-
resource r C) that takes the label r of the resource, and an
initial capacity C for a divisible resource. The acquisition of
a resource r is done with the function (acquire r c) that takes
as parameter the label of the resource that is requested, and
the quantity c needed if r is divisible. Once the acquisition has
been validated by the system, the function returns a resource-
handle h. If h goes out of scope, the resource is automatically

Fig. 4: Overview of a 6 × 6 job shop scenario in Gobot-
Sim composed of one input machine (on the left) that feeds
the environment with unprocessed packages, six processing
machines that can do a predefined process, and one output
machine (at the bottom right) that receives fully processed
packages. Two robots can be used to dispatch packages on
the machines. The recharge area (in yellow) is available at the
bottom.

released. A resource can be explicitly released thanks to the
(release h) function, that takes as parameter h. The acquisition
of a resource can be interrupted to avoid blocking a program
waiting too long on a resource.

V. EXPERIMENTAL RESULTS

To show the relevance of the presented approach, we present
here both the successful integration of OMPAS with Gobot-
sim, a new job-shop benchmark for acting systems. Gobot-sim
is simpler than RoboCup Logistics League Simulation [16].
Gobot-sim is similar to Craftbots [17], but focuses on lo-
gistic problems similar to Job Shop Scheduling Problems
(JSSP) [18]. It is composed of a fleet of holonomous robots
that can be controlled to transport packages between machines
used to process packages. An example is visible in the
Figure 4.

The robots can manipulate one package at a time thanks
to the pick and place commands, and can be moved with do-
move for precise displacements, go-charge and navigate-to-
area. Other commands are available, but are not relevant for
the present work. The robots’ energy comes from batteries
that discharge continuously unless robots are at recharge
locations. The state is composed of information concerning
the robots, the machines and the topology of the environment,
e.g. locations of machines. The state is considered to be fully
observable in the current version.

Each package should be processed on all machines in a
given order, and each machine can only process one package
at a time, which means two jobs cannot be done on the same
machine at the same time, but a package can wait at the
entrance of the machine. The role of the acting engine is to
control the fleet of robots in order to minimize the time to
process all packages. We here assume that all packages and



p1 p2 p3 p4
0

50

100

150

200

Problems

Ti
m

e
in

se
co

nd
s

Greedy
Advanced
ALRPTF

Fig. 5: Comparison of the mean time to execute 4 6x6 job-
shop problems with three different allocation strategies. Each
pair problem-strategy has been executed 10 times. Timescale
of the simulator is set to 4.

robots are created at the beginning of the benchmark. The
acting model is composed of a unique high-level task, that
does the following:

• For each package p in the system, a new task process-
package p which goal is to process the package is
executed in a new thread.

• For each robot r in the system, a new task monitor-battery
r to monitor the battery level of r is executed in a new
thread. Each time the battery is under a critical level (here
40%), r is sent to recharge its battery.

In such representation of the problem, we can distinguish two
kinds of unary resources: robots and machines.

The role of the acting engine is therefore to allocate robots
to packages, and schedule the passage of packages on the
machine. In the current version of the system, the acquisition
of a resource is sorted by a priority level, where the task that
monitors the battery of a robot has the highest priority. Several
strategies that differ both on the choice of the resource and
the priority are compared in Figure 5. The Greedy strategy
acquires the machine and an arbitrary robot with no priority
between packages. The Advanced strategy improves the choice
of the robot by acquiring the first available robot, thanks to
a race to acquire each robot, the first acquisition cancelling
the others. The Advanced with Longest Remaining Processing
Time First (ALRPTF) strategy gives priority on the machine
and the robot to packages with the most remaining processing
time. We can see that the Advanced strategy is always better
than the greedy one. Results of the ALRPTF strategy show a
small additional performance gain. For this kind of problem,
it would be particularly interesting to use a planning or
scheduling system to guide resource allocation and compare
with those reactive strategies.

VI. CONCLUSION

The present work proposes an extension of the RAE proce-
dure to handle tasks in a concurrent environment. The existing

RAE procedure allows us to define reactive programs to handle
complex problems in a hierarchical fashion. We add first-
class concurrency support, which greatly simplifies the core
of the acting procedure by removing the need for ad hoc man-
agement of concurrently executing tasks. Operational models
are defined with a dedicated acting language, that integrates
functions to define concurrent programs. Shared resources are
explicitly represented, which allows the system to deliberately
interleave the progression of several tasks depending on the
available resources. The developed system has been integrated
in the Gobot-Sim benchmark, that simulates the operation of
a robotic fleet in a logistic environment where the support
for concurrency and resource management turned out to be
essential for a correct operation of the fleet.

REFERENCES

[1] G. I. Fragapane, D. A. Ivanov, M. Peron, F. Sgarbossa, and J. O.
Strandhagen, “Increasing flexibility and productivity in Industry 4.0
production networks with autonomous mobile robots and smart intralo-
gistics,” Annals of Operations Research, 2022.

[2] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting.
Cambridge University Press, 2016.

[3] F. Ingrand, R. Chatila, R. Alami, and F. Robert, “PRS: A high level
supervision and control language for autonomous mobile robots,” in Pro-
ceedings of IEEE International Conference on Robotics and Automation,
1996.

[4] O. Despouys and F. F. Ingrand, “Propice-Plan: Toward a Unified
Framework for Planning and Execution,” in Recent Advances in AI
Planning. Springer Berlin Heidelberg, 2000.

[5] S. Patra, J. Mason, M. Ghallab, D. Nau, and P. Traverso, “Deliberative
Acting, Online Planning and Learning with Hierarchical Operational
Models,” Artificial Intelligence, 2021.

[6] Y. Bansod, D. Nau, S. Patra, and M. Roberts, “Integrating Planning
and Acting With a Re-Entrant HTN Planner,” ICAPS Workshop on
Hierarchical Planning (HPlan), 2021.

[7] J. Turi and A. Bit-Monnot, “Guidance of a Refinement-based Acting
Engine with a Hierarchical Temporal Planner,” ICAPS Workshop on
Integrated Planning, Acting, and Execution (IntEx), 2022.

[8] R. Li, S. Patra, and D. S. Nau, “Decentralized Refinement Planning
and Acting,” Proceedings of the International Conference on Automated
Planning and Scheduling, 2021.

[9] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and R. McEwen,
“T-REX: A Model-Based Architecture for AUV Control,” 3rd Workshop
on Planning and Plan Execution for Real-World Systems, 2007.

[10] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, C. Plaunt, and
D. Clancy, “Idea: Planning at the core of autonomous reactive agents,”
Sixth International Conference on AI Planning and Scheduling, 2002.

[11] N. Muscettola, P. Nayak, B. Pell, and B. C. Williams, “Remote Agent: To
boldly go where no AI system has gone before,” Artificial Intelligence,
1998.

[12] F. Ingrand, S. Lacroix, S. Lemai-Chenevier, and F. Py, “Decisional
autonomy of planetary rovers,” J. Field Robotics, 2007.

[13] A. Bit-Monnot, M. Ghallab, F. Ingrand, and D. E. Smith, “FAPE:
A Constraint-based Planner for Generative and Hierarchical Temporal
Planning,” arXiv:2010.13121 [cs], 2020.

[14] B. J. Clement and E. H. Durfee, “Theory for Coordinating Concurrent
Hierarchical Planning Agents Using Summary Information,” AAAI/IAAI,
1999.

[15] Y. Yao and B. Logan, “Action-Level Intention Selection for BDI Agents,”
Association for Computing Machinery (ACM), 2016.

[16] T. Niemueller, E. Karpas, T. Vaquero, and E. Timmons, “Planning
Competition for Logistics Robots in Simulation,” ICAPS Workshop on
Planning and Robotics (Plan-Rob), 2016.

[17] L. Nemiro, G. Canal, O. Lima, M. Cashmore, and M. Roberts, “Design-
ing an Adaptable Benchmark and Competition Simulation for Integrated
Planning and Execution,” Workshop on the International Planning
Competition (WIPC), 2021.

[18] D. Applegate and W. Cook, “A computational study of the job-shop
scheduling problem,” ORSA Journal on computing, 1991.


